SlideShare a Scribd company logo
1 of 19
Download to read offline
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
DOI:10.5121/msej.2016.3101 1
MODIFICATION OF DOPANT CONCENTRA-
TION PROFILE IN A FIELD-EFFECT HETERO-
TRANSISTOR FOR MODIFICATION ENERGY
BAND DIAGRAM
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we consider an approach of manufacturing more compact field-effect heterotransistors. The
approach based on manufacturing a heterostructure, which consist of a substrate and an epitaxial layer
with specific configuration. After that several areas of the epitaxial layer have been doped by diffusion or
ion implantation with optimized annealing of dopant and /or radiation defects. At the same time we intro-
duce an approach of modification of energy band diagram by additional doping of channel of the transis-
tors. We also consider an analytical approach to model and optimize technological process.
KEYWORDS
Modification of profile of dopant; decreasing of dimension of field-effect transistor; modification of energy
band diagram
1. INTRODUCTION
Development of solid state electronic leads to increasing performance of the appropriate electron-
ic devices [1-11]. At the same time one can find increasing integration rate of integrated circuits
[1-3,5,7]. In this situation dimensions of elements of integrated circuits decreases. To increase
performance of solid-state electronics devices are now elaborating new technological processes of
manufacturing of solid state electronic devices. Another ways to increase the performance are
optimization of existing technological processes and determination new materials with higher
values of charge carriers mobilities. To decrease dimensions of elements of integrated circuits
they are elaborating new and optimizing existing technological processes. Framework this paper
we introduce an approach to decrease dimensions of field-effect heterotransistors. At the same
time we introduce an approach of modification of energy band diagram for regulation of transport
of charge carriers. The approach based on manufacturing a field-effect transistor in the hetero-
structure from Fig. 1. The heterostructure consists of a substrate and an epitaxial layer. They are
have been considered four sections in the epitaxial layer. The sections have been doped by diffu-
sion or ion implantation. Left and right sections will be considered in future as source and drain,
respectively. Both average sections became as channel of transistor. Using one section instead
two sections leads to simplification of structure of transistor. However using additional doped
section framework the channel of the considered transistor gives us possibility to modify energy
band diagram in the structure. After finishing of the considered doping annealing of dopant and/or
radiation defects should be done. Several conditions for achievement of decreasing of dimensions
of the field-effect transistor have been formulated.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
2
2. METHOD OF SOLUTION
To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We
calculate the required distributions by solving the second Fick's law in the following form [12,13]
( ) ( ) ( ) ( )






+





+





=
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC
CCC
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,,,,,,,,,,
. (1)
Boundary and initial conditions for the equations are
Fig. 1. Heterostructure, which consist of a substrate and an epitaxial layer.
View from side
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C(x,y,z,0)=f (x,y,z). (2)
Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and
time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem-
perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of
heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation
defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate
in heterostructure, temperature of annealing and concentrations of dopant and radiation defects
could be written as [14-16]
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit
of solubility of dopant. The parameter γ is integer and usually could be varying in the following
interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
3
age) with each atom of dopant. Ref.[14] describes more detailed information about dependence of
dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-
tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of
concentration of vacancies has been denoted as V*
. It is known, that doping of materials by diffu-
sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa-
tio-temporal distributions of concentrations of radiation defects by solving the following system
of equations [15,16]
( ) ( ) ( ) ( ) ( ) ( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
IIII ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
tzyxI VII ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× (4)
( ) ( ) ( ) ( ) ( ) ( )×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVVV ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
tzyxV VIV ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× .
Boundary and initial conditions for these equations are
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I
(x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and
temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4)
describes generation divacancies and diinterstitials. Parameter of recombination of point radiation
defects and parameters of generation of simplest complexes of point radiation defects have been
denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively.
Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials
ΦI(x,y,z,t) in space and time by solving the following system of equations [15,16]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
4
Boundary and initial conditions for these equations are
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com-
plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,
T) describe the parameters of decay of these complexes on coordinate and temperature.
To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to
the following integro-differential form
( ) ( )
( ) ( )
( )
×∫ ∫ ∫ 





++=∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
L
zyx y zx y z V
wvxV
V
wvxV
TwvxDudvdwdtwvuC
LLL
zyx
0
2*
2
2*1
,,,,,,
1,,,,,,
τ
ς
τ
ς
( )
( )
( ) ( ) ( )
( )
×∫ ∫ ∫ 





++





+×
t x
L
z
L
L
zy x z TzyxP
wyuC
TwyuD
LL
zy
d
x
wvxC
TwvxP
wvxC
0 ,,,
,,,
1,,,
,,,
,,,
,,,
1 γ
γ
γ
γ
τ
ξτ
∂
τ∂τ
ξ
( ) ( )
( )
( ) ( ) ×∫ ∫ ∫+





++×
t x
L
y
L
L
zx x y
TzvuD
LL
zx
d
y
wyuC
V
wyuV
V
wyuV
0
2*
2
2*1 ,,,
,,,,,,,,,
1 τ
∂
τ∂τ
ς
τ
ς
( ) ( )
( )
( )
( )
( ) +





+





++×
yx
LL
yx
d
z
zvuC
TzyxP
zvuC
V
zvuV
V
zvuV
τ
∂
τ∂τ
ξ
τ
ς
τ
ς γ
γ
,,,
,,,
,,,
1
,,,,,,
1 2*
2
2*1
( )∫ ∫ ∫+
x
L
y
L
z
L
zyx x y z
udvdwdwvuf
LLL
zyx
,, . (1a)
Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [17]. To use the ap-
proach we consider solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nCnnnnC tezcycxcatzyxC
0
0 ,,, .
Here ( ) ( )[ ]222
0
22
exp −−−
++−= zyxCnC LLLtDnte π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the
series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0)
and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the
following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫



×


∑+−=∑
==
t y
L
z
L
N
n
nCnnnnC
zy
N
n
nCnnn
C
y z
ewcvcxca
LL
zy
tezsysxs
n
azyx
0 11
32
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( ) ×








++



× ∑=
N
n
nnnCL vcxsaTwvxD
V
wvxV
V
wvxV
TwvxP 1
2*
2
2*1 ,,,
,,,,,,
1
,,,
τ
ς
τ
ς
ξ
γ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
5
( ) ( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ×









∑+−×
=
t x
L
z
L
N
m
mCmmmmC
zx
nCn
x z TwyuP
ewcycuca
LL
zx
dewcn
0 1 ,,,
1 γ
γ
ξ
τττ
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×∑





++×
=
ττ
τ
ς
τ
ς dewcysucn
V
wyuV
V
wyuV
TwyuD
N
n
nCnnnL
1
2*
2
2*1
,,,,,,
1,,,
( )
( )
( ) ( ) ( ) ( ) ×∫ ∫ ∫









∑+−×
=
t x
L
y
L
N
n
nCnnnnCL
yx
nC
x y
ezcvcuca
TzvuP
TzvuD
LL
yx
a
0 1,,,
1,,,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×+∑





++×
=
zyx
N
n
nCnnnnC
LLL
zyx
dezsvcucan
V
zvuV
V
zvuV
ττ
τ
ς
τ
ς
1
2*
2
2*1
,,,,,,
1
( )∫ ∫ ∫×
x
L
y
L
z
Lx y z
udvdwdwvuf ,, ,
where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the
considered series. The coefficients an could be calculated for any quantity of terms N. In the
common case the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫



×



∑+−=∑−
==
t L L L N
n
nCnnnnCL
zy
N
n
nC
nCzyx
x y z
ezcycxcaTzyxD
LL
te
n
aLLL
0 0 0 0 1
2
1
65
222
1,,,
2
γ
τ
ππ
( )
( ) ( )
( )
( ) ( ) ( ) ( )×∑





++



×
=
N
n
nCnnn
nC
ezcycxs
n
a
V
zyxV
V
zyxV
TzyxP 1
2*
2
2*1 2
,,,,,,
1
,,,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−






−+






−+×
t L L L
Ln
z
nn
y
n
x y z
TzyxDdxdydzdzc
n
L
zszyc
n
L
ysy
0 0 0 0
,,,11 τ
ππ
( ) ( ) ( ) ( ) ( )
( )
( )


++









∑+×
=
*1
1
,,,
1
,,,
1,,,
V
zyxV
TzyxP
ezcycxcaTzyxD
N
n
nCnnnnCL
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )[ ]∑ ×






−+





++


+
=
N
n
nC
n
x
n
n
a
xc
n
L
xsx
V
zyxV
V
zyxV
V
zyxV
1
2*
2
2*12*
2
2
1
,,,,,,
1
,,,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )[ ] ×−






−+× 22
2
12
2 π
τ
π
τ
π
yx
n
z
nnCnnn
zx
LL
dxdydzdzc
n
L
zszezcysxc
LL
( ) ( ) ( ) ( )
( )
( )
( )∫ ∫ ∫ ∫ 


++









∑+×
=
t L L L N
n
nCnnnnC
x y z
V
zyxV
TzyxP
ezcycxca
0 0 0 0
2*
2
2
1
,,,
1
,,,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑






−+

+
=
N
n
n
x
nnnn
nC
L xc
n
L
xsxzsycxc
n
a
TzyxD
V
zyxV
1
*1 1,,,
,,,
π
τ
ς
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
6
( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×






−++






−+×
=
N
n
L
n
x
nnCn
y
n
x
xc
n
L
xsxdxdydzdeyc
n
L
ysy
1 0
11
π
ττ
π
( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫






−+






−+×
y z
L L
n
z
nn
y
n xdydzdzyxfzc
n
L
zszyc
n
L
ysy
0 0
,,11
ππ
.
As an example for γ=0 we obtain
( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +






−+






−+=
x y zL L L
nn
y
nn
y
nnC xsxydzdzyxfzc
n
L
zszyc
n
L
ysya
0 0 0
,,11
ππ
( )[ ] ( ) ( ) ( ) ( )[ ] ( )






∫ ∫ ∫ ∫ ×






−+



−×
t L L L
Ln
y
nnn
x
n
x y z
TzyxDyc
n
L
ysyycxs
n
xd
n
L
xc
0 0 0 0
,,,12
2
1
ππ
( ) ( )[ ] ( ) ( )
( ) ( )
×





+





++






−+×
TzyxPV
zyxV
V
zyxV
zc
n
L
zsz n
y
n
,,,
1
,,,,,,
11 2*
2
2*1 γ
ξτ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫






−++×
t L L L
nnn
y
nnnCnCn
x y z
zcysxc
n
L
xsxxcedexdydzdzc
0 0 0 0
21
π
τττ
( ) ( )[ ]
( )
( ) ( )
( )
×





++





+






−+× 2*
2
2*1
,,,,,,
1
,,,
11
V
zyxV
V
zyxV
TzyxP
zc
n
L
zsz n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×






−++×
t L L
nnn
x
nnnCL
x y
ysycxc
n
L
xsxxcedxdydzdTzyxD
0 0 0
1,,,
π
ττ
( )[ ] ( ) ( )
( )
( )
( )∫ 


++





+



−+×
zL
Lnn
y
V
zyxV
TzyxP
TzyxDzsyc
n
L
y
0
2*
2
2
,,,
1
,,,
1,,,21
τ
ς
ξ
π γ
( ) ( )
1
65
222
*1
,,,
−




−





+ te
n
LLL
dxdydzd
V
zyxV
nC
zzz
π
τ
τ
ς .
For γ=1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )∫ ∫ ∫+±−=
x y zL L L
nnnnn
n
n
nC
xdydzdzyxfzcycxca
0 0 0
2
,,4
2
αβ
α
β
,
where ( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×





++=
t L L L
nnnnC
zy
n
x y z
V
zyxV
V
zyxV
zcycxse
n
LL
0 0 0 0
2*
2
2*12
,,,,,,
12
2
τ
ς
τ
ςτ
π
ξ
α
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
7
( )
( )
( ) ( )[ ] ( ) ( )[ ] ×+






−+






−+×
n
LL
dxdydzdzc
n
L
zszyc
n
L
ysy
TzyxP
TzyxD zx
n
z
nn
y
n
L
2
2
11
,,,
,,,
π
ξ
τ
ππ
( ) ( ) ( ) ( )[ ] ( ) ( )
( )
( ) ( )[ ] ×∫ ∫ ∫ ∫






−−






−+×
t L L L
n
z
n
L
nn
x
nnnC
x y z
zc
n
L
zsz
TzyxP
TzyxD
zcxc
n
L
xsxxce
0 0 0 0
1
,,,
,,,
1
ππ
τ
( )
( )
( ) ( )
( )
( ) ×+





++×
n
LL
dxdydyszd
V
zyxV
V
zyxV
TzyxP
TzyxD yx
n
L
22*
2
2*1
2
2
,,,,,,
1
,,,
,,,
π
ξ
τ
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )
×∫ ∫ ∫ ∫ 





++×
t L L L
L
nnnnC
x y z
V
zyxV
V
zyxV
TzyxP
TzyxD
zsycxce
0 0 0 0
2*
2
2*1
,,,,,,
1
,,,
,,,
2
τ
ς
τ
ςτ
( ) ( )[ ] ( ) ( )[ ] τ
ππ
dxdydzdyc
n
L
ysyxc
n
L
xsx n
y
nn
x
n






−+






−+× 11 , ( )×∫=
t
nC
zy
n e
n
LL
0
2
2
τ
π
β
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )
( )
∫ ∫ ∫ ×





++






−+×
x y zL L L
nn
y
nnn
V
zyxV
V
zyxV
zcyc
n
L
ysyycxs
0 0 0
2*
2
2*1
,,,,,,
112
τ
ς
τ
ς
π
( ) ( ) ( )[ ] ( ) ( ) ( )×∫ ∫ ∫+






−+×
t L L
nnnC
zx
n
z
nL
x y
ysxce
n
LL
dxdydzdzc
n
L
zszTzyxD
0 0 0
2
2
2
1,,, τ
π
τ
π
( ) ( )[ ] ( ) ( ) ( ) ( )
( )
×∫ 





++






−+×
zL
nLn
x
n
V
zyxV
V
zyxV
zcTzyxDxc
n
L
xsx
0
2*
2
2*1
,,,,,,
1,,,1
τ
ς
τ
ς
π
( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−++






−+×
t L
n
x
nnC
yx
n
z
n
x
xc
n
L
xsxe
n
LL
dxdydzdzc
n
L
zsz
0 0
2
1
2
1
π
τ
π
τ
π
( ) ( ) ( )[ ] ( ) ( ) ( )
( )
∫ ∫ ×





++






−+×
y z
L L
Ln
y
nn
V
zyxV
V
zyxV
TzyxDyc
n
L
ysyxc
0 0
2*
2
2*1
,,,,,,
1,,,1
τ
ς
τ
ς
π
( ) ( ) ( ) 65222
2 nteLLLdxdydyczdzs nCzyxnn πτ −× .
The same approach could be used for calculation parameters an for different values of parameter
γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap-
proach is absent of necessity to join dopant concentration on interfaces of heterostructure.
The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans-
form the differential equations to the following integro- differential form
( ) ( ) ( ) +∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
I
zy
x
L
y
L
z
L
zyx y zx y z
dvdwd
x
wvxI
TwvxD
LL
zy
udvdwdtwvuI
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ( )×∫ ∫ ∫−∫ ∫ ∫
∂
∂
+
x
L
y
L
z
L
VI
zyx
t x
L
z
L
I
zx x y zx z
twvuITwvuk
LLL
zyx
dudwd
x
wyuI
TwyuD
LL
zx
,,,,,,
,,,
,,, ,
0
τ
τ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
8
( ) ( ) ( ) ×−∫ ∫ ∫
∂
∂
+×
zyx
t x
L
y
L
I
yx
LLL
zyx
dudvdTzvuD
z
zvuI
LL
yx
udvdwdtwvuV
x y0
,,,
,,,
,,, τ
τ
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫×
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
II
x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuITwvuk ,,,,,,,, 2
, (4a)
( ) ( ) ( ) +∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
V
zy
x
L
y
L
z
L
zyx y zx y z
dvdwd
x
wvxV
TwvxD
LL
zy
udvdwdtwvuV
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ×∫ ∫ ∫
∂
∂
+∫ ∫ ∫
∂
∂
+
t x
L
y
L
yx
t x
L
z
L
V
zx x yx z z
zvuV
LL
yx
dudwd
x
wyuV
TwyuD
LL
zx
00
,,,,,,
,,,
τ
τ
τ
( ) ( ) ( ) ( ) −∫ ∫ ∫−×
x
L
y
L
z
L
VI
zyx
V
x y z
udvdwdtwvuVtwvuITwvuk
LLL
zyx
dudvdTzvuD ,,,,,,,,,,,, ,
τ
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫−
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
VV
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuVTwvuk
LLL
zyx
,,,,,,,, 2
, .
We determine spatio-temporal distributions of concentrations of point defects as the same series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the
following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
InnnI
zyx
N
n
nInnn
nI
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
InnnInnI
zyx
nnI
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
II
N
n
t x
L
y
L
InnnInnI
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnI
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑×
=
x
L
y
L
z
L
I
N
n
VInVnnnnVnI
x y z
udvdwdwvufudvdwdTvvuktewcvcucate ,,,,,
1
,
zyx
LLLzyx×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
VnnnV
zyx
N
n
nVnnn
nV
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
9
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
VnnnVnnV
zyx
nnV
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
VV
N
n
t x
L
y
L
VnnnVnnV
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnV
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑×
=
x
L
y
L
z
L
V
N
n
VInVnnnnVnI
x y z
udvdwdwvufudvdwdTvvuktewcvcucate ,,,,,
1
,
zyx LLLzyx× .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms
N. In the common case equations for the required coefficients could be written as
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nI
x
N
n
nI
nIzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nI
y
L
nIn
z
nI
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzIn
x
x
yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nIn
z
nzInI dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nI
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnInI
L
nIIn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zIIn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
10
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
In
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nV
x
N
n
nV
nVzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nV
y
L
nVn
z
nV
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzVn
x
x yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nVn
z
nzVnV
dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nV
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnVnV
L
nVVn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zVVn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
Vn
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
.
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
11
In the final form relations for required parameters could be written as
( )





 −
+−
+
±
+
−=
A
yb
yb
Ab
b
Ab
a nInV
nI
2
3
4
2
3
4
3
4
44
λγ
,
nInI
nInInInInI
nV
a
aa
a
χ
λδγ ++
−=
2
,
where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++






−++=
x y zL L L
ynn
x
nxnn Lysyxc
n
L
xsxLTzyxkte
0 0 0
, 212
2
2,,,2
π
γ ρρρρ
( )[ ] ( ) ( )[ ] xdydzdzc
n
L
zszLyc
n
L
n
z
nzn
y






−++



−+ 12
2
212
2 ππ
, ( )×∫=
t
n
x
n e
nL 0
2
2
1
τ
π
δ ρρ
( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −






−+






−+×
x y zL L L
n
z
nn
y
n ydzdTzyxDzc
n
L
zszyc
n
L
ysy
0 0 0
1,,,1
2
1
2
ρ
ππ
( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−






−+++−
t L L L
znn
x
nxn
y
n
x y z
Lycxc
n
L
xsxLe
nL
dxdxc
0 0 0 0
2
21122
2
1
2
π
τ
π
τ ρ
( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++



−++
t L
nn
z
n
z
n
x
xsxe
nL
dxdydzdTzyxDzc
n
L
zsz
0 0
2
2
2
1
,,,12
2
2 τ
π
τ
π
ρρ
( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −






−++



−++
y z
L L
nn
y
nyn
x
x zdTzyxDzcyc
n
L
ysyLxc
n
L
L
0 0
,,,211
2
12 ρ
ππ
( )te
n
LLL
dxdyd n
zyx
ρ
π
τ 65
222
−× , ( ) ( )[ ] ( )[ ]∫ ∫



+−+






−+=
x yL L
n
y
yn
x
nnIV yc
n
L
Lxc
n
L
xsx
0 0
12
2
1
ππ
χ
( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc
n
L
zszLTzyxkysy nVnI
L
n
z
nzVIn
z
∫






−+++
0
, 12
2
2,,,2
π
,
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×






−+






−+






−+=
x y zL L L
n
z
nn
y
nn
x
nn zc
n
L
zszyc
n
L
ysyxc
n
L
xsx
0 0 0
111
πππ
λ ρ
( ) xdydzdTzyxf ,,,ρ× , 22
4 nInInInV
b χγγγ −= , nInInVnInInInInV
b γχδχδδγγ −−= 2
3
2 ,
2
2
3
48 bbyA −+= , ( ) 22
2
2 nInInVnInInVnInVnInInV
b χλλδχδγγλδγ −+−+= , ×= nI
b λ21
nInInVnInV
λχδδγ −× ,
4
33 323 32
3b
b
qpqqpqy −++−−+= , 2
4
2
342
9
3
b
bbb
p
−
= ,
( ) 3
4
2
4132
3
3
542792 bbbbbbq +−= .
We determine distributions of concentrations of simplest complexes of radiation defects in space
and time as the following functional series
( ) ( ) ( ) ( ) ( )∑=Φ
=
Φ
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs.
(6) to the following integro-differential form
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
12
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
I
yx
t x
L
z
L
I
I
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
II
zyx
I
x y z
udvdwdwvuITwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
, (6a)
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
I
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuITwvuk
LLL
zyx
,,,,,,,, τ
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
V
yx
t x
L
z
L
V
V
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
VV
zyx
V
x y z
udvdwdwvuVTwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
,
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
V
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuVTwvuk
LLL
zyx
,,,,,,,, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnInIn
zyx
N
n
nInnn
In
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦ
N
n
t x
L
z
L
InnIn
zyx
I
x z
dudwdTwvuDwcuca
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
InnInnIn
zyx
Inn
x y
dudvdTzvuDvcuctezsan
LLL
yx
teysn
1 0
,,, τ
π
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
II
zyx x y zx y z
udvdwdwvufudvdwdwvuITwvuk
LLL
zyx
,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
I
zyxzyx x y z
udvdwdwvuITwvuk
LLL
zyx
LLL
zyx
τ,,,,,,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnVnVn
zyx
N
n
nVnnn
Vn
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
13
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦ
N
n
t x
L
z
L
Vnn
zyx
V
x z
dudwdTwvuDwcucn
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
VnnVnn
zyx
VnnVn
x y
dudvdTzvuDvcuctezsn
LLL
yx
teysa
1 0
,,, τ
π
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ
x
L
y
L
z
L
V
x
L
y
L
z
L
VV
zyx
Vn
x y zx y z
udvdwdwvufudvdwdwvuVTwvuk
LLL
zyx
a ,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
V
zyxzyx x y z
udvdwdwvuVTwvuk
LLL
zyx
LLL
zyx
τ,,,,,, .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of
terms N. In the common case equations for the required coefficients could be written as
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
In
Inzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
1 0 0 01
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Inn
z
nI
In
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
1 0 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nInn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
In
xy
In
In
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
In
In
L
InIny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
II
L
n
y
nn zc
n
L
TzyxktzyxIyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nIn
In
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
In
L
In
z
nn
n
a
xdydzdtzyxITzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nIn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
14
( )} ( ) xdydzdzyxfzsz In
,,Φ
+
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
Vn
Vnzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
1 0 0 01
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Vnn
z
nV
Vn
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
1 0 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nVnn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
Vn
xy
Vn
Vn
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
Vn
Vn
L
VnVny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
VV
L
n
y
nn zc
n
L
TzyxktzyxVyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nVn
Vn
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
Vn
L
Vn
z
nn
n
a
xdydzdtzyxVTzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nVn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
( )} ( ) xdydzdzyxfzsz Vn
,,Φ
+ .
3. DISCUSSION
In the present paper we analyzed redistribution of infused and implanted dopants in heterostruc-
ture, which have been presented on Fig. 1. The analysis has been done by using relations, calcu-
lated in the previous section. First of all we consider situation, when dopant diffusion coefficient
in doped area is larger, than in nearest areas. It has been shown, that in this case distribution of
concentration of dopant became more compact in comparison with wise versa situation (see Figs.
2 and 3 for diffusion and ion types of doping). In the wise versa situation (when dopant diffusion
coefficient in doped area is smaller, than in nearest areas) we obtained spreading of distribution of
concentration of dopant. In this case outside of doping material one can find higher spreading in
comparison with wise versa situation (see Fig. 4).
It should be noted, that properties of layers of multilayer structure varying in space: varying lay-
ers with larger and smaller values of the diffusion coefficient. In this situation with account re-
sults, which shown on Figs. 2-4, layers of the considered heterostructure with smaller value of
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
15
dopant should has smaller level of doping in comparison with nearest layers to exclude changing
of type of doping in the nearest layers. For a more complete doping of each section and at the
same to decrease diffusion of dopant into nearest sections it is attracted an interest optimization of
annealing of dopant and /or radiation defects. Let us optimize annealing of dopant and/or radia-
tion defects by using recently introduce criterion [18-23]. Framework the criterion we approx-
imate real distribution of concentration of dopant by idealized step-wise distribution of concentra-
tion ψ (x,y,z) (see Figs. 5 and 6 for diffusive or ion types of doping). Farther we determine optim-
al annealing time by minimization of mean-squared error
Fig.2. Spatial distributions of infused dopant concentration in the considered heterostructure.
The considered direction perpendicular to the interface between epitaxial layer substrate. Differ-
ence between values of dopant diffusion coefficient in layers of heterostructure increases with
increasing of number of curves
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Spatial distributions of infused dopant concentration in the considered heterostructure.
Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corres-
ponds to annealing time Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 corresponds to homogenous
sample. Curves 3 and 4 corresponds to the considered heterostructure. Difference between values
of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of
curves
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
16
Fig.4. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid
lines) and with one epitaxial layer (dushed lines) for different values of annealing time.
Difference between values of dopant diffusion coefficient in layers of heterostructure increases
with increasing of number of curves
( ) ( )[ ]∫ ∫ ∫ −Θ=
xL yL zL
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (8)
Dependences of optimal annealing time are shown on Figs. 7 and 8 for diffusion and ion types of
doping. It should be noted, that after finishing of ion doping of material it is necessary to anneal
radiation defects. In the ideal case after finishing of the annealing dopant achieves nearest inter-
face between materials of heterostructure. If the dopant has no time to achieve the interface, it is
practicably to additionally anneal the dopant. The Fig. 8 shows dependences of the exactly addi-
tional annealing time of implanted dopant. Necessity of annealing of radiation defects leads to
smaller values of optimal annealing time for ion doping in comparison with values of optimal
annealing time for diffusion type of doping. Using diffusion type of doping did not leads to so
large damage in comparison with damage during ion type of doping.
C(x,Θ)
0 Lx
2
1
3
4
Fig. 5. Distributions of concentrations of infused dopant in the considered heterostructure.
Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentra-
tions of dopant for different values of annealing time for increasing of annealing time with in-
creasing of number of curve
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
17
x
C(x,Θ)
1
2
3
4
0 L
Fig. 6. Distributions of concentrations of implanted dopant in the considered heterostructure.
Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentra-
tions of dopant for different values of annealing time for increasing of annealing time with in-
creasing of number of curve
Dependences of optimal annealing time are shown on Figs. 7 and 8 for diffusion and ion types of
doping. It should be noted, that after finishing of ion doping of material it is necessary to anneal
radiation defects. In the ideal case after finishing of the annealing dopant achieves nearest inter-
face between materials of heterostructure. If the dopant has no time to achieve the interface, it is
practicably to additionally anneal the dopant. The Fig. 8 shows dependences of the exactly addi-
tional annealing time of implanted dopant. Necessity of annealing of radiation defects leads to
smaller values of optimal annealing time for ion doping in comparison with values of optimal
annealing time for diffusion type of doping. Using diffusion type of doping did not leads to so
large damage in comparison with damage during ion type of doping.
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0L
-2
3
2
4
1
Fig.7. Optimal annealing time of infused dopant as dependences of several parameters.
Curve 1 is the dependence of the considered annealing time on dimensionless thickness of epitax-
ial layer a/L and ξ=γ=0 for equal to each other values of dopant diffusion coefficient in all parts
of heterostructure. Curve 2 is the dependence of the considered annealing time on the parameter ε
for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of the considered annealing time on the para-
meter ξ for a/L=1/2 and ε=γ=0. Curve 4 is the dependence of the considered annealing time on
parameter γ for a/L=1/2 and ε=ξ=0
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
18
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0L
-2
3
2
4
1
Fig.8. Optimal annealing time of implanted dopant as dependences of several parameters.
Curve 1 is the dependence of the considered annealing time on dimensionless thickness of epi-
taxial layer a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all
parts of heterostructure. Curve 2 is the dependence of the considered annealing time on the para-
meter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of the considered annealing time on
the parameter ξ for a/L=1/2 and ε= γ= 0. Curve 4 is the dependence of the considered annealing
time on parameter γ for a/L=1/2 and ε=ξ=0
4. CONCLUSIONS
In this paper we introduced an approach to manufacture of field-effect of transistors which gives a
possibility to decrease their dimensions. The decreasing based on manufacturing the transistors in
a heterostructure with specific configuration, doping of required areas of the heterostructure by
diffusion or ion implantation and optimization of annealing of dopant and/or radiation defects.
Framework the approach we introduce an approach of additional doping of channel. The addi-
tional doping gives us possibility to modify energy band diagram. We also consider an analytical
approach to model and optimize technological process.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa-
tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and
educational fellowship for scientific research of Nizhny Novgorod State University of Architec-
ture and Civil Engineering.
REFERENCES
1. J.Y. Fang, G.Y. Lee, J.I. Chyi, C.P. Hsu, Y.W. Kang, K.C. Fang, W.L. Kao, D.J. Yao, C.H. Hsu,
Y.F. Huang, C.C. Chen, S.S. Li, J.A. Yeh, F. Ren, Y.L. Wang. Viscosity-dependent drain current
noise of AlGaN/GaN high electron mobility transistor in polar liquids. J. Appl. Phys. Vol. 114
(20). P. 204503-204507 (2013).
2. G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Is-
sue 2. P. 10-17 (2006).
3. A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Elec-
tronics. Issue 1. P. 34-38 (2008).
4. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M.
Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of
current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903
(2009).
Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016
19
5. C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider
Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3
(1). P. 61-72 (2009).
6. M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of
XOR/XNOR Circuit: A Case Study. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013).
7. S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for
CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
8. M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs.
Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
9. D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4
(3). P. 171-176 (2009).
10. D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanos-
cale technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
11. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance In-
GaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Т. 43 (7). С. 971-974
(2009).
12. V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu (2001).
13. N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
14. Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
15. V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
16. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod.
Phys. Vol. 61. № 2. P. 289-388 (1989).
17. M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976).
18. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
19. E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer
structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7
(4-5). P. 187–197 (2008).
20. E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostruc-
ture by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
21. E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of
vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
22. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
23. E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by us-
ing radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012).
Authors:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radio physics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radio-physics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radio physi-
cal Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor
of Nizhny Novgorod State University. He has 135 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radio-physical Department of Nizhny
Novgorod State University. She has 90 published papers in area of her researches.

More Related Content

What's hot

ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaDaniel Wheeler
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...msejjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
Electromagnetic analysis using FDTD method, Biological Effects Of EM Spectrum
Electromagnetic analysis using FDTD method, Biological Effects Of EM SpectrumElectromagnetic analysis using FDTD method, Biological Effects Of EM Spectrum
Electromagnetic analysis using FDTD method, Biological Effects Of EM SpectrumSuleyman Demirel University
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 

What's hot (12)

ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and ElasticityUCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
 
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
 
Electromagnetic analysis using FDTD method, Biological Effects Of EM Spectrum
Electromagnetic analysis using FDTD method, Biological Effects Of EM SpectrumElectromagnetic analysis using FDTD method, Biological Effects Of EM Spectrum
Electromagnetic analysis using FDTD method, Biological Effects Of EM Spectrum
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 

Similar to MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSISTOR FOR MODIFICATION ENERGY BAND DIAGRAM

ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...antjjournal
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 

Similar to MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSISTOR FOR MODIFICATION ENERGY BAND DIAGRAM (20)

ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 

More from msejjournal

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...msejjournal
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...msejjournal
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabricmsejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) msejjournal
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)msejjournal
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...msejjournal
 

More from msejjournal (20)

Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...Modelling and Simulation of Composition and Mechanical Properties of High Ent...
Modelling and Simulation of Composition and Mechanical Properties of High Ent...
 
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
Thermal and Metrological Studies on YTTRIA Stabilized Zirconia Thermal Barrie...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
New Experiment System for the Interaction Between Soft Rock and Water : A Cas...
 
International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)International Conference on Embedded Systems and VLSI (EMVL 2023)
International Conference on Embedded Systems and VLSI (EMVL 2023)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
Modeling, Analyzing and Safety Aspects of Torsion and Noise Effects on Round ...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
Using Advanced Inspection Method (Three-Dimensional Ultrasonic) in Recognitio...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
RESULTS OF FINITE ELEMENT ANALYSIS FOR INTERLAMINAR FRACTURE REINFORCED THERM...
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp FabricFlammability Characteristics of Chemical Treated Woven Hemp Fabric
Flammability Characteristics of Chemical Treated Woven Hemp Fabric
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ) Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)Advances in Materials Science and Engineering: An International Journal (MSEJ)
Advances in Materials Science and Engineering: An International Journal (MSEJ)
 
Advances in Materials Science and Engineering: An International Journal ...
     Advances in Materials Science and Engineering: An International Journal ...     Advances in Materials Science and Engineering: An International Journal ...
Advances in Materials Science and Engineering: An International Journal ...
 

Recently uploaded

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 

Recently uploaded (20)

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 

MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSISTOR FOR MODIFICATION ENERGY BAND DIAGRAM

  • 1. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 DOI:10.5121/msej.2016.3101 1 MODIFICATION OF DOPANT CONCENTRA- TION PROFILE IN A FIELD-EFFECT HETERO- TRANSISTOR FOR MODIFICATION ENERGY BAND DIAGRAM E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we consider an approach of manufacturing more compact field-effect heterotransistors. The approach based on manufacturing a heterostructure, which consist of a substrate and an epitaxial layer with specific configuration. After that several areas of the epitaxial layer have been doped by diffusion or ion implantation with optimized annealing of dopant and /or radiation defects. At the same time we intro- duce an approach of modification of energy band diagram by additional doping of channel of the transis- tors. We also consider an analytical approach to model and optimize technological process. KEYWORDS Modification of profile of dopant; decreasing of dimension of field-effect transistor; modification of energy band diagram 1. INTRODUCTION Development of solid state electronic leads to increasing performance of the appropriate electron- ic devices [1-11]. At the same time one can find increasing integration rate of integrated circuits [1-3,5,7]. In this situation dimensions of elements of integrated circuits decreases. To increase performance of solid-state electronics devices are now elaborating new technological processes of manufacturing of solid state electronic devices. Another ways to increase the performance are optimization of existing technological processes and determination new materials with higher values of charge carriers mobilities. To decrease dimensions of elements of integrated circuits they are elaborating new and optimizing existing technological processes. Framework this paper we introduce an approach to decrease dimensions of field-effect heterotransistors. At the same time we introduce an approach of modification of energy band diagram for regulation of transport of charge carriers. The approach based on manufacturing a field-effect transistor in the hetero- structure from Fig. 1. The heterostructure consists of a substrate and an epitaxial layer. They are have been considered four sections in the epitaxial layer. The sections have been doped by diffu- sion or ion implantation. Left and right sections will be considered in future as source and drain, respectively. Both average sections became as channel of transistor. Using one section instead two sections leads to simplification of structure of transistor. However using additional doped section framework the channel of the considered transistor gives us possibility to modify energy band diagram in the structure. After finishing of the considered doping annealing of dopant and/or radiation defects should be done. Several conditions for achievement of decreasing of dimensions of the field-effect transistor have been formulated.
  • 2. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 2 2. METHOD OF SOLUTION To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We calculate the required distributions by solving the second Fick's law in the following form [12,13] ( ) ( ) ( ) ( )       +      +      = z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC CCC ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,,,,,,,,,,, . (1) Boundary and initial conditions for the equations are Fig. 1. Heterostructure, which consist of a substrate and an epitaxial layer. View from side ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=f (x,y,z). (2) Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem- perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate in heterostructure, temperature of annealing and concentrations of dopant and radiation defects could be written as [14-16] ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit of solubility of dopant. The parameter γ is integer and usually could be varying in the following interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
  • 3. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 3 age) with each atom of dopant. Ref.[14] describes more detailed information about dependence of dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen- tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of concentration of vacancies has been denoted as V* . It is known, that doping of materials by diffu- sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa- tio-temporal distributions of concentrations of radiation defects by solving the following system of equations [15,16] ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI IIII ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxI TzyxD z tzyxI VII ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× (4) ( ) ( ) ( ) ( ) ( ) ( )×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVVV ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxV TzyxD z tzyxV VIV ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I (x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4) describes generation divacancies and diinterstitials. Parameter of recombination of point radiation defects and parameters of generation of simplest complexes of point radiation defects have been denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively. Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) in space and time by solving the following system of equations [15,16] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ .
  • 4. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 4 Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com- plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z, T) describe the parameters of decay of these complexes on coordinate and temperature. To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to the following integro-differential form ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫       ++=∫ ∫ ∫ t y L z L L x L y L z L zyx y zx y z V wvxV V wvxV TwvxDudvdwdtwvuC LLL zyx 0 2* 2 2*1 ,,,,,, 1,,,,,, τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫       ++      +× t x L z L L zy x z TzyxP wyuC TwyuD LL zy d x wvxC TwvxP wvxC 0 ,,, ,,, 1,,, ,,, ,,, ,,, 1 γ γ γ γ τ ξτ ∂ τ∂τ ξ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+      ++× t x L y L L zx x y TzvuD LL zx d y wyuC V wyuV V wyuV 0 2* 2 2*1 ,,, ,,,,,,,,, 1 τ ∂ τ∂τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) +      +      ++× yx LL yx d z zvuC TzyxP zvuC V zvuV V zvuV τ ∂ τ∂τ ξ τ ς τ ς γ γ ,,, ,,, ,,, 1 ,,,,,, 1 2* 2 2*1 ( )∫ ∫ ∫+ x L y L z L zyx x y z udvdwdwvuf LLL zyx ,, . (1a) Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [17]. To use the ap- proach we consider solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( )∑= = N n nCnnnnC tezcycxcatzyxC 0 0 ,,, . Here ( ) ( )[ ]222 0 22 exp −−− ++−= zyxCnC LLLtDnte π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫    ×   ∑+−=∑ == t y L z L N n nCnnnnC zy N n nCnnn C y z ewcvcxca LL zy tezsysxs n azyx 0 11 32 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×         ++    × ∑= N n nnnCL vcxsaTwvxD V wvxV V wvxV TwvxP 1 2* 2 2*1 ,,, ,,,,,, 1 ,,, τ ς τ ς ξ γ
  • 5. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ×          ∑+−× = t x L z L N m mCmmmmC zx nCn x z TwyuP ewcycuca LL zx dewcn 0 1 ,,, 1 γ γ ξ τττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑      ++× = ττ τ ς τ ς dewcysucn V wyuV V wyuV TwyuD N n nCnnnL 1 2* 2 2*1 ,,,,,, 1,,, ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫          ∑+−× = t x L y L N n nCnnnnCL yx nC x y ezcvcuca TzvuP TzvuD LL yx a 0 1,,, 1,,, γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×+∑      ++× = zyx N n nCnnnnC LLL zyx dezsvcucan V zvuV V zvuV ττ τ ς τ ς 1 2* 2 2*1 ,,,,,, 1 ( )∫ ∫ ∫× x L y L z Lx y z udvdwdwvuf ,, , where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the considered series. The coefficients an could be calculated for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫    ×    ∑+−=∑− == t L L L N n nCnnnnCL zy N n nC nCzyx x y z ezcycxcaTzyxD LL te n aLLL 0 0 0 0 1 2 1 65 222 1,,, 2 γ τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑      ++    × = N n nCnnn nC ezcycxs n a V zyxV V zyxV TzyxP 1 2* 2 2*1 2 ,,,,,, 1 ,,, τ τ ς τ ς ξ γ ( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−       −+       −+× t L L L Ln z nn y n x y z TzyxDdxdydzdzc n L zszyc n L ysy 0 0 0 0 ,,,11 τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( )   ++          ∑+× = *1 1 ,,, 1 ,,, 1,,, V zyxV TzyxP ezcycxcaTzyxD N n nCnnnnCL τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ×       −+      ++   + = N n nC n x n n a xc n L xsx V zyxV V zyxV V zyxV 1 2* 2 2*12* 2 2 1 ,,,,,, 1 ,,, π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( )[ ] ×−       −+× 22 2 12 2 π τ π τ π yx n z nnCnnn zx LL dxdydzdzc n L zszezcysxc LL ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫    ++          ∑+× = t L L L N n nCnnnnC x y z V zyxV TzyxP ezcycxca 0 0 0 0 2* 2 2 1 ,,, 1 ,,, 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑       −+  + = N n n x nnnn nC L xc n L xsxzsycxc n a TzyxD V zyxV 1 *1 1,,, ,,, π τ ς
  • 6. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 6 ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×       −++       −+× = N n L n x nnCn y n x xc n L xsxdxdydzdeyc n L ysy 1 0 11 π ττ π ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫       −+       −+× y z L L n z nn y n xdydzdzyxfzc n L zszyc n L ysy 0 0 ,,11 ππ . As an example for γ=0 we obtain ( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +       −+       −+= x y zL L L nn y nn y nnC xsxydzdzyxfzc n L zszyc n L ysya 0 0 0 ,,11 ππ ( )[ ] ( ) ( ) ( ) ( )[ ] ( )       ∫ ∫ ∫ ∫ ×       −+    −× t L L L Ln y nnn x n x y z TzyxDyc n L ysyycxs n xd n L xc 0 0 0 0 ,,,12 2 1 ππ ( ) ( )[ ] ( ) ( ) ( ) ( ) ×      +      ++       −+× TzyxPV zyxV V zyxV zc n L zsz n y n ,,, 1 ,,,,,, 11 2* 2 2*1 γ ξτ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫       −++× t L L L nnn y nnnCnCn x y z zcysxc n L xsxxcedexdydzdzc 0 0 0 0 21 π τττ ( ) ( )[ ] ( ) ( ) ( ) ( ) ×      ++      +       −+× 2* 2 2*1 ,,,,,, 1 ,,, 11 V zyxV V zyxV TzyxP zc n L zsz n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×       −++× t L L nnn x nnnCL x y ysycxc n L xsxxcedxdydzdTzyxD 0 0 0 1,,, π ττ ( )[ ] ( ) ( ) ( ) ( ) ( )∫    ++      +    −+× zL Lnn y V zyxV TzyxP TzyxDzsyc n L y 0 2* 2 2 ,,, 1 ,,, 1,,,21 τ ς ξ π γ ( ) ( ) 1 65 222 *1 ,,, −     −      + te n LLL dxdydzd V zyxV nC zzz π τ τ ς . For γ=1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( )∫ ∫ ∫+±−= x y zL L L nnnnn n n nC xdydzdzyxfzcycxca 0 0 0 2 ,,4 2 αβ α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×      ++= t L L L nnnnC zy n x y z V zyxV V zyxV zcycxse n LL 0 0 0 0 2* 2 2*12 ,,,,,, 12 2 τ ς τ ςτ π ξ α
  • 7. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 7 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×+       −+       −+× n LL dxdydzdzc n L zszyc n L ysy TzyxP TzyxD zx n z nn y n L 2 2 11 ,,, ,,, π ξ τ ππ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ×∫ ∫ ∫ ∫       −−       −+× t L L L n z n L nn x nnnC x y z zc n L zsz TzyxP TzyxD zcxc n L xsxxce 0 0 0 0 1 ,,, ,,, 1 ππ τ ( ) ( ) ( ) ( ) ( ) ( ) ×+      ++× n LL dxdydyszd V zyxV V zyxV TzyxP TzyxD yx n L 22* 2 2*1 2 2 ,,,,,, 1 ,,, ,,, π ξ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ++× t L L L L nnnnC x y z V zyxV V zyxV TzyxP TzyxD zsycxce 0 0 0 0 2* 2 2*1 ,,,,,, 1 ,,, ,,, 2 τ ς τ ςτ ( ) ( )[ ] ( ) ( )[ ] τ ππ dxdydzdyc n L ysyxc n L xsx n y nn x n       −+       −+× 11 , ( )×∫= t nC zy n e n LL 0 2 2 τ π β ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×      ++       −+× x y zL L L nn y nnn V zyxV V zyxV zcyc n L ysyycxs 0 0 0 2* 2 2*1 ,,,,,, 112 τ ς τ ς π ( ) ( ) ( )[ ] ( ) ( ) ( )×∫ ∫ ∫+       −+× t L L nnnC zx n z nL x y ysxce n LL dxdydzdzc n L zszTzyxD 0 0 0 2 2 2 1,,, τ π τ π ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ×∫       ++       −+× zL nLn x n V zyxV V zyxV zcTzyxDxc n L xsx 0 2* 2 2*1 ,,,,,, 1,,,1 τ ς τ ς π ( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −++       −+× t L n x nnC yx n z n x xc n L xsxe n LL dxdydzdzc n L zsz 0 0 2 1 2 1 π τ π τ π ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫ ∫ ×      ++       −+× y z L L Ln y nn V zyxV V zyxV TzyxDyc n L ysyxc 0 0 2* 2 2*1 ,,,,,, 1,,,1 τ ς τ ς π ( ) ( ) ( ) 65222 2 nteLLLdxdydyczdzs nCzyxnn πτ −× . The same approach could be used for calculation parameters an for different values of parameter γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap- proach is absent of necessity to join dopant concentration on interfaces of heterostructure. The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans- form the differential equations to the following integro- differential form ( ) ( ) ( ) +∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L I zy x L y L z L zyx y zx y z dvdwd x wvxI TwvxD LL zy udvdwdtwvuI LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ( )×∫ ∫ ∫−∫ ∫ ∫ ∂ ∂ + x L y L z L VI zyx t x L z L I zx x y zx z twvuITwvuk LLL zyx dudwd x wyuI TwyuD LL zx ,,,,,, ,,, ,,, , 0 τ τ
  • 8. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 8 ( ) ( ) ( ) ×−∫ ∫ ∫ ∂ ∂ +× zyx t x L y L I yx LLL zyx dudvdTzvuD z zvuI LL yx udvdwdtwvuV x y0 ,,, ,,, ,,, τ τ ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫× x L y L z L I zyx x L y L z L II x y zx y z udvdwdwvuf LLL zyx udvdwdtwvuITwvuk ,,,,,,,, 2 , (4a) ( ) ( ) ( ) +∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L V zy x L y L z L zyx y zx y z dvdwd x wvxV TwvxD LL zy udvdwdtwvuV LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ×∫ ∫ ∫ ∂ ∂ +∫ ∫ ∫ ∂ ∂ + t x L y L yx t x L z L V zx x yx z z zvuV LL yx dudwd x wyuV TwyuD LL zx 00 ,,,,,, ,,, τ τ τ ( ) ( ) ( ) ( ) −∫ ∫ ∫−× x L y L z L VI zyx V x y z udvdwdtwvuVtwvuITwvuk LLL zyx dudvdTzvuD ,,,,,,,,,,,, , τ ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− x L y L z L V zyx x L y L z L VV zyx x y zx y z udvdwdwvuf LLL zyx udvdwdtwvuVTwvuk LLL zyx ,,,,,,,, 2 , . We determine spatio-temporal distributions of concentrations of point defects as the same series ( ) ( ) ( ) ( ) ( )∑= = N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L InnnI zyx N n nInnn nI y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L InnnInnI zyx nnI x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L II N n t x L y L InnnInnI zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnI x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑× = x L y L z L I N n VInVnnnnVnI x y z udvdwdwvufudvdwdTvvuktewcvcucate ,,,,, 1 , zyx LLLzyx× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L VnnnV zyx N n nVnnn nV y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π
  • 9. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 9 ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L VnnnVnnV zyx nnV x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L VV N n t x L y L VnnnVnnV zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnV x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑× = x L y L z L V N n VInVnnnnVnI x y z udvdwdwvufudvdwdTvvuktewcvcucate ,,,,, 1 , zyx LLLzyx× . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nI x N n nI nIzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nI y L nIn z nI xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzIn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nIn z nzInI dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nI z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnInI L nIIn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zIIn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π
  • 10. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 10 ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L In y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nV x N n nV nVzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nV y L nVn z nV xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzVn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nVn z nzVnV dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nV z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnVnV L nVVn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zVVn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L Vn y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π .
  • 11. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 11 In the final form relations for required parameters could be written as ( )       − +− + ± + −= A yb yb Ab b Ab a nInV nI 2 3 4 2 3 4 3 4 44 λγ , nInI nInInInInI nV a aa a χ λδγ ++ −= 2 , where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++       −++= x y zL L L ynn x nxnn Lysyxc n L xsxLTzyxkte 0 0 0 , 212 2 2,,,2 π γ ρρρρ ( )[ ] ( ) ( )[ ] xdydzdzc n L zszLyc n L n z nzn y       −++    −+ 12 2 212 2 ππ , ( )×∫= t n x n e nL 0 2 2 1 τ π δ ρρ ( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −       −+       −+× x y zL L L n z nn y n ydzdTzyxDzc n L zszyc n L ysy 0 0 0 1,,,1 2 1 2 ρ ππ ( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−       −+++− t L L L znn x nxn y n x y z Lycxc n L xsxLe nL dxdxc 0 0 0 0 2 21122 2 1 2 π τ π τ ρ ( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++    −++ t L nn z n z n x xsxe nL dxdydzdTzyxDzc n L zsz 0 0 2 2 2 1 ,,,12 2 2 τ π τ π ρρ ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −       −++    −++ y z L L nn y nyn x x zdTzyxDzcyc n L ysyLxc n L L 0 0 ,,,211 2 12 ρ ππ ( )te n LLL dxdyd n zyx ρ π τ 65 222 −× , ( ) ( )[ ] ( )[ ]∫ ∫    +−+       −+= x yL L n y yn x nnIV yc n L Lxc n L xsx 0 0 12 2 1 ππ χ ( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc n L zszLTzyxkysy nVnI L n z nzVIn z ∫       −+++ 0 , 12 2 2,,,2 π , ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×       −+       −+       −+= x y zL L L n z nn y nn x nn zc n L zszyc n L ysyxc n L xsx 0 0 0 111 πππ λ ρ ( ) xdydzdTzyxf ,,,ρ× , 22 4 nInInInV b χγγγ −= , nInInVnInInInInV b γχδχδδγγ −−= 2 3 2 , 2 2 3 48 bbyA −+= , ( ) 22 2 2 nInInVnInInVnInVnInInV b χλλδχδγγλδγ −+−+= , ×= nI b λ21 nInInVnInV λχδδγ −× , 4 33 323 32 3b b qpqqpqy −++−−+= , 2 4 2 342 9 3 b bbb p − = , ( ) 3 4 2 4132 3 3 542792 bbbbbbq +−= . We determine distributions of concentrations of simplest complexes of radiation defects in space and time as the following functional series ( ) ( ) ( ) ( ) ( )∑=Φ = Φ N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs. (6) to the following integro-differential form
  • 12. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 12 ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L I yx t x L z L I I zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂ ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L II zyx I x y z udvdwdwvuITwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , (6a) ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L I zyx x L y L z L I zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuITwvuk LLL zyx ,,,,,,,, τ ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L V yx t x L z L V V zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂ ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L VV zyx V x y z udvdwdwvuVTwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L V zyx x L y L z L V zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuVTwvuk LLL zyx ,,,,,,,, τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnInIn zyx N n nInnn In y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦ N n t x L z L InnIn zyx I x z dudwdTwvuDwcuca LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L InnInnIn zyx Inn x y dudvdTzvuDvcuctezsan LLL yx teysn 1 0 ,,, τ π ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ x L y L z L I x L y L z L II zyx x y zx y z udvdwdwvufudvdwdwvuITwvuk LLL zyx ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L I zyxzyx x y z udvdwdwvuITwvuk LLL zyx LLL zyx τ,,,,,, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnVnVn zyx N n nVnnn Vn y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π
  • 13. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 13 ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦ N n t x L z L Vnn zyx V x z dudwdTwvuDwcucn LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L VnnVnn zyx VnnVn x y dudvdTzvuDvcuctezsn LLL yx teysa 1 0 ,,, τ π ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ x L y L z L V x L y L z L VV zyx Vn x y zx y z udvdwdwvufudvdwdwvuVTwvuk LLL zyx a ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L V zyxzyx x y z udvdwdwvuVTwvuk LLL zyx LLL zyx τ,,,,,, . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n In Inzyx x y yc n L ysyLxc L te n aLLL 1 0 0 01 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Inn z nI In xz xsxdexdydzdzc n L zszTzyxD n a 1 0 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nInn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n In xy In In x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x In In L InIny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z II L n y nn zc n L TzyxktzyxIyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nIn In n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n In L In z nn n a xdydzdtzyxITzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nIn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ
  • 14. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 14 ( )} ( ) xdydzdzyxfzsz In ,,Φ + ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n Vn Vnzyx x y yc n L ysyLxc L te n aLLL 1 0 0 01 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Vnn z nV Vn xz xsxdexdydzdzc n L zszTzyxD n a 1 0 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nVnn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n Vn xy Vn Vn x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x Vn Vn L VnVny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z VV L n y nn zc n L TzyxktzyxVyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nVn Vn n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n Vn L Vn z nn n a xdydzdtzyxVTzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nVn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ ( )} ( ) xdydzdzyxfzsz Vn ,,Φ + . 3. DISCUSSION In the present paper we analyzed redistribution of infused and implanted dopants in heterostruc- ture, which have been presented on Fig. 1. The analysis has been done by using relations, calcu- lated in the previous section. First of all we consider situation, when dopant diffusion coefficient in doped area is larger, than in nearest areas. It has been shown, that in this case distribution of concentration of dopant became more compact in comparison with wise versa situation (see Figs. 2 and 3 for diffusion and ion types of doping). In the wise versa situation (when dopant diffusion coefficient in doped area is smaller, than in nearest areas) we obtained spreading of distribution of concentration of dopant. In this case outside of doping material one can find higher spreading in comparison with wise versa situation (see Fig. 4). It should be noted, that properties of layers of multilayer structure varying in space: varying lay- ers with larger and smaller values of the diffusion coefficient. In this situation with account re- sults, which shown on Figs. 2-4, layers of the considered heterostructure with smaller value of
  • 15. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 15 dopant should has smaller level of doping in comparison with nearest layers to exclude changing of type of doping in the nearest layers. For a more complete doping of each section and at the same to decrease diffusion of dopant into nearest sections it is attracted an interest optimization of annealing of dopant and /or radiation defects. Let us optimize annealing of dopant and/or radia- tion defects by using recently introduce criterion [18-23]. Framework the criterion we approx- imate real distribution of concentration of dopant by idealized step-wise distribution of concentra- tion ψ (x,y,z) (see Figs. 5 and 6 for diffusive or ion types of doping). Farther we determine optim- al annealing time by minimization of mean-squared error Fig.2. Spatial distributions of infused dopant concentration in the considered heterostructure. The considered direction perpendicular to the interface between epitaxial layer substrate. Differ- ence between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corres- ponds to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves
  • 16. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 16 Fig.4. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves ( ) ( )[ ]∫ ∫ ∫ −Θ= xL yL zL zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (8) Dependences of optimal annealing time are shown on Figs. 7 and 8 for diffusion and ion types of doping. It should be noted, that after finishing of ion doping of material it is necessary to anneal radiation defects. In the ideal case after finishing of the annealing dopant achieves nearest inter- face between materials of heterostructure. If the dopant has no time to achieve the interface, it is practicably to additionally anneal the dopant. The Fig. 8 shows dependences of the exactly addi- tional annealing time of implanted dopant. Necessity of annealing of radiation defects leads to smaller values of optimal annealing time for ion doping in comparison with values of optimal annealing time for diffusion type of doping. Using diffusion type of doping did not leads to so large damage in comparison with damage during ion type of doping. C(x,Θ) 0 Lx 2 1 3 4 Fig. 5. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentra- tions of dopant for different values of annealing time for increasing of annealing time with in- creasing of number of curve
  • 17. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 17 x C(x,Θ) 1 2 3 4 0 L Fig. 6. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentra- tions of dopant for different values of annealing time for increasing of annealing time with in- creasing of number of curve Dependences of optimal annealing time are shown on Figs. 7 and 8 for diffusion and ion types of doping. It should be noted, that after finishing of ion doping of material it is necessary to anneal radiation defects. In the ideal case after finishing of the annealing dopant achieves nearest inter- face between materials of heterostructure. If the dopant has no time to achieve the interface, it is practicably to additionally anneal the dopant. The Fig. 8 shows dependences of the exactly addi- tional annealing time of implanted dopant. Necessity of annealing of radiation defects leads to smaller values of optimal annealing time for ion doping in comparison with values of optimal annealing time for diffusion type of doping. Using diffusion type of doping did not leads to so large damage in comparison with damage during ion type of doping. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0L -2 3 2 4 1 Fig.7. Optimal annealing time of infused dopant as dependences of several parameters. Curve 1 is the dependence of the considered annealing time on dimensionless thickness of epitax- ial layer a/L and ξ=γ=0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of the considered annealing time on the parameter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of the considered annealing time on the para- meter ξ for a/L=1/2 and ε=γ=0. Curve 4 is the dependence of the considered annealing time on parameter γ for a/L=1/2 and ε=ξ=0
  • 18. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 18 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0L -2 3 2 4 1 Fig.8. Optimal annealing time of implanted dopant as dependences of several parameters. Curve 1 is the dependence of the considered annealing time on dimensionless thickness of epi- taxial layer a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of the considered annealing time on the para- meter ε for a/L=1/2 and ξ=γ=0. Curve 3 is the dependence of the considered annealing time on the parameter ξ for a/L=1/2 and ε= γ= 0. Curve 4 is the dependence of the considered annealing time on parameter γ for a/L=1/2 and ε=ξ=0 4. CONCLUSIONS In this paper we introduced an approach to manufacture of field-effect of transistors which gives a possibility to decrease their dimensions. The decreasing based on manufacturing the transistors in a heterostructure with specific configuration, doping of required areas of the heterostructure by diffusion or ion implantation and optimization of annealing of dopant and/or radiation defects. Framework the approach we introduce an approach of additional doping of channel. The addi- tional doping gives us possibility to modify energy band diagram. We also consider an analytical approach to model and optimize technological process. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa- tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and educational fellowship for scientific research of Nizhny Novgorod State University of Architec- ture and Civil Engineering. REFERENCES 1. J.Y. Fang, G.Y. Lee, J.I. Chyi, C.P. Hsu, Y.W. Kang, K.C. Fang, W.L. Kao, D.J. Yao, C.H. Hsu, Y.F. Huang, C.C. Chen, S.S. Li, J.A. Yeh, F. Ren, Y.L. Wang. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids. J. Appl. Phys. Vol. 114 (20). P. 204503-204507 (2013). 2. G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Is- sue 2. P. 10-17 (2006). 3. A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Elec- tronics. Issue 1. P. 34-38 (2008). 4. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
  • 19. Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol. 3, No. 1, March 2016 19 5. C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1). P. 61-72 (2009). 6. M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of XOR/XNOR Circuit: A Case Study. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013). 7. S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). 8. M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). 9. D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3). P. 171-176 (2009). 10. D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanos- cale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). 11. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance In- GaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Т. 43 (7). С. 971-974 (2009). 12. V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu (2001). 13. N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). 14. Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). 15. V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). 16. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod. Phys. Vol. 61. № 2. P. 289-388 (1989). 17. M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976). 18. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39. 19. E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). 20. E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostruc- ture by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). 21. E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). 22. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). 23. E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by us- ing radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1250035 (2012). Authors: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radio physics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radio-physics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radio physi- cal Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radio-physical Department of Nizhny Novgorod State University. She has 90 published papers in area of her researches.