SlideShare a Scribd company logo
1 of 36
Download to read offline
JAHANGIRABAD INSTITUTE
OF
TECHNOLOGY
ENGINEERING
MATHEMTICS-II
(QUESTION BANK)
NUMERICAL PROBLEMS WITH
THEORY
PREPRAED BY
MOHAMMAD IMRAN
(ASSISTANT PROFESSOR, JIT)
E-mail: mohammad.imran@jit.edu.in
Website: www.jit.edu.in
Mobile no 9648588546
DIFFERENTIAL EQUATION
Linear Differential Equations
Definition: A differential equation in which independent variable and only its first derivative involved
Called “Linear Differential Equation”.
1 2 3
1 2 3 11 2 3
n n n n
n nn n n n
d y d y d y d y dy
a a a a a y Q
dx dx dx dx dx
− − −
−− − −
+ + + + − − − − − − − + + =
Above equation is an example of linear Differential equation of order n. Where 1 2 1, ,............ na a a −
all are constant and Q is any function of x which is called Differential equation with constant coefficients.
Different notations of Differential operator:
First derivative : '
, ,
d
D y
d x
Second Derivative:
2
2 ''
2
, ,
d
D y
d x
Third Derivative :
3
3 '''
3
, ,
d
D y
d x
.
.
.
.
Nth
Derivative : , ,
n
n n
n
d
D y
dx
Order and Degree of A differential Equation :
• The highest derivative in the given differential equation called the “Order of the
Differential Equation”.
For Example consider a differential equation
32
2
2 0
d y dy
y
dx dx
 
+ + = 
 
the order of the differential equation is 2.
• In a differential Equation After made free from the radicals and fraction the degree of
the highest derivative called “Degree of the Differential equation”.
For Example consider a differential equation
32
2
2 0
d y dy
y
dx dx
 
+ + = 
 
the Degree of the differential equation is 1.
Ordinary and Partial Differential Equations :
Differential equation in which unknown function is depends on only one independent
variable called “Ordinary Differential Equation”.
Differential equations in which two or more independent variables are involved called “Partial
Differential Equation”
Linear Differential Equation
Differential equation in which dependent variables and all its first degree derivatives involved called
“Linear Differential Equation”
dy dy
P Qy R
dx dx
+ + =
Where P, Q are constant and R is the function of x only.
Linear Differential Equation of second order with constant coefficients :
2
2
d y dy
P Qy R
dx dx
+ + =
Where P, Q are constant and R is the function of x only.
Non-Linear differential Equation :
A Differential Equation in which dependent variable and its derivative Having degree more
than 1 called “Non-Linear differential Equation”.
Auxiliary Equation :
Suppose we have a Differential Equation as
2
2
3 4 0
d y dy
y
dx dx
− − = ----------------------------------------------------- (1)
Equation (1) we can rewrite as
2
3 4 0D y Dy y− − =
( )2
3 4 0D D y− − =
On equating the coefficient of y with 0 we will get 2
3 4 0D D− − = Which is called “Auxiliary
Equation”.
Solution of different type of Differential Equations :
When given differential equation not having any function ( having “0” ) in right hand side
1
1 21
0
n n
n n
d y d y
a a y
dx dx
−
−
− − =
Case –I : when all the roots of Auxiliary Equation are distinct
Let the roots of Auxiliary Equation are 1 2 3, , ..................... nm m m m than the general solution will be
1 2 3
1 2 3 ............... nm x m x m x m x
ny c e c e c e c e= + + + +
Case –II : when all the roots of Auxiliary Equation are equal than the general solution will be
( )2 1
1 2 3 ...............
m xn
ny c c x c x c x e−
= + + + +
Where m is equal roots of Auxiliary Equation
Case –III: when some roots of Auxiliary Equation are equal and some are different than the
General Solution will be
( ) ( )32 42 1
1 2 3 1 2 3............... ............... nm x m xm xm x m xn
n n n n n ny c c x c x c x e c e c e c e c e−
+ + + += + + + + + + + + +
Case –IV : when roots of Auxiliary Equation are imaginary as iα β± than
( )1 2cos sinx
y e c x c xα
β β= +
Case –V : when roots of Auxiliary Equation are imaginary and repeated twice than
{ } { }( )1 2 3 4cos sinx
y e c c x x c c x xα
β β= + + +
Case –VI : when roots of Auxiliary Equation are Irrational as α β± where β is positive than
( )1 2cosh sinhx
y e c x c xα
β β= +
Case – V: if ,i iα β α β± ± be the two equal pairs of imaginary roots and all other roots real and
Different.
( ) 5
1 2 3 4 5cos ( )sin ..................... nm x m xax
ny e c c x x c c x x c cβ β = + + + + + + 
Some useful expansions :
(i) 1 2 3 4 5
(1 ) 1 ..............................D D D D D D−
− = + + + + + + ∞
(ii) 1 2 3 4 5
(1 ) 1 ..............................D D D D D D−
+ = − + − + − + ∞
(iii) 2 2 3 4
(1 ) 1 2 3 4 5 .............................D D D D D−
+ = − + − + − ∞
(iv) 2 2 3 4
(1 ) 1 2 3 4 5 .............................D D D D D−
− = + + + + + ∞
(v) 3 2 3
(1 ) 1 3 6 10 .............................D D D D−
− = + + + + ∞
(vi) 3 2 3
(1 ) 1 3 6 10 .............................D D D D−
+ = − + − + ∞
Remark :
When given differential equation not having any function ( having “0” ) in
right hand side then there is no need to find out particular integral (P.I) so general
solution will be ࢟ = ࢉ࢕࢓࢖࢒࢏࢓ࢋ࢔࢚࢘࢟	ࢌ࢛࢔ࢉ࢚࢏࢕࢔	(࡯. ࡲ)	
Question : find the general solution of the differential equation
5 3
5 3
0
d y d y
dx dx
− = (2009)
2
1 2 3 4 5( ) x x
y c c x c x c e c e−
= + + + + Ans
Question : find the particular integral of ( )2
4 4 sin 2D D y x− − = (UPTU2010-11
cos2
.
8
x
P I = Ans
Question : Find the particular integral of
2
2
2
2 1
d y
x x
dx
= + − (uptu 2013-14
4 3 2
2
.
12 6 2
x x x
P I
 
= + − 
 
Ans
Question : Find the particular integral of
2
2
2
d y
y x
dx
− = (UPTU 2012
2
1 2. 2x x
C S C e C e x−
 = + − +  Ans
Question: solve the differential equation (UPTU 2009-10
2
2
5 6 sin3 cos2
d y dy
y x x
dx dx
+ − = +
Question : solve
2
2 3
2
2 xd y dy
y x e
dx dx
− + = UPTU 203-14
( )
3
2
1 2. 2 16 128
16
x
x e
C S C C x e x x x = + + + − +  Ans
Question : solve
3 2
2
3 2
6 1
d y d y dy
x
dx dx dx
− − = + UPTU 2001
3 2
3 2
1 2 3
1 25
6 18 3 6
x x x x
CS c c e c e x−  
= + + − + − 
 
Ans
Question : if ( )
2
2
0; ,
d x g
x a a b and g
dt b
+ − = are positive numbers and '
; 0 0
dx
x a whent
dt
= = = , show that
( )'
cos
g
x a a a t
b
= + −
(UPTU 2007
1 2cos sin
g g ag b
CS c x c x
b b b g
   
= + +       
Ans
Question : if
3 2
3 2
3 4 2 0
d y d y dy
y
dx dx dx
− + − =
(uptu 2001
Question : obtain the general solution of the differential equation '' '
2 2 cosx
y y y x e x− + = + uptu 2002
Ans ( ) [ ]1 2
1
. cos sin 1 sin
2 2
x
x xe
C S e c x c x x x= + + + +
[ ] [ ]6
1 2
1 1
. cos3 sin 3 sin 2 cos 2
30 20
x x
C S C e C e x x Ax x ns−
= + − + + −
Question : find the complete solution of
2
3
2
3 2 sin 2xd y dy
y xe x
dx dx
− + = + (uptu 2003
( )
3
2
1 2
3 1
. 3cos2 sin 2
2 2 20
x
x x e
C S c e c e x x x
 
 = + + + + −   
Question : solve the differential equation ( )2 2
1 cos ( 2007x
D y xe x uptu− = +
Question : find the complete solution of
2
2
3 2 sin 2xd y dy
y xe x
dx dx
− + = + (uptu 2001
Question : solve
2
2
2
sin
d y
a y ax
dx
+ = ( UPTU 2008
1 2
cos
. cos sin
2
x ax
C S c ax c ax
a
= + −
Question : solve
3 2
3 2
3 4 2 cosxd y d y dy
y e x
dx dx dx
− + − = + (UPTU 2001, 2006
Ans ( )1 2 3
3sin cos
. cos sin
10
x x x x
C S e c x c x c e
 
= + + +   
Question : solve ( )2
4 sin3 cos2D x x+ = + ( UPTU 2008
Ans ( ) ( )1 2
1 sin 2
. cos2 sin 2 sin 3
5 4
x x
C S c x c x x
 
= + − + 
 
Question : solve the differential equation ( )4 3 2 2
2 3 3 4sinx
D D D y e x+ − = + (UPTU2008
Ans ( ) ( ) [ ]0 3 2
1 2 3 3
3 2
. cos 2sin
20 5
x x x x
C S c c x e c e c e e x x−
= + + + + − −
Question : solve
3 2
3 2
3 2
3 log
d y d y dy
x x x y x x
dx dx dx
+ + + = + UPTU 2001
1
1 2
1 2 3
3 3 1
cos log sin log log
2 2 2
y c x x c x c x x x−
    
= + + + +       
      Ans
Question : solve ( )
2
2
2
log sin log
d y dy
x x y x x
dx dx
+ + = UPTU 2002
Ans ( ) ( ) ( ) ( ) ( ) ( )
2
1 2
1 1
. cos log sin log log sin log log cos log
4 4
C S c x c x x x x x= + + −  
Question : solve the following simultaneous differential equation (UPTU 2011-12, 2013-14
( )4 , 4 4 ,
dx dx dy
x y y
dt dt dt
= − + + = − with condition (0) 1x = (0) 0y = Ans ( ) 2
1 2
t
x c c x e−
= + 2
( ) t
y t te−
=
Question: solve the simultaneous equations UPTU 2008
3 2 , 5 3
dx dy
x y x y
dt dt
= + = +
( ) ( )3 10 3 10
1 2
t t
Ans x c e c e
+ −
= +
( ) ( )
( )3 10 3 10
1 2
1
10 10
2
t t
y c e c e
+ +
= −
QUESTION: Question: solve the simultaneous equations UPTU 2008
5 2 , 2 0
dx dy
x y t x y
dt dt
+ − = + + =
Ans ( ) 3
1 2
1
9 27
t t
x c c t e−
= + + + 3 3 32
1 2
4 2
2 27 9
t t tc t
y c e c te e− − − 
= + + + −  
1
1
27
c = − 2
6 2
27 9
c = − = −
Question : The equations of the motions of a particle are given by UPTU 2009
0, 0
dx dy
wy wx
dt dt
+ = − =
Find the path of the particle and show that it is a circle.
Ans 1 2cos sinx c wt c wt= + , 1 2sin cosy c wt c wt= − , 2 2 2
x y r+ = Which is a equation of circle
Question : solve the following differential equation (uptu 2009
1, 1
dx dy
y x
dt dt
= + = +
Ans 1 2 1t t
x c e c e−
= + − , 1 2 1t t
y c e c e−
= − −
Question: Solve the simultaneous differential equations uptu 2005
2 2
2 2
3 4 0, 0
d x d y
x y x y
dt dt
− − = + + =
( ) ( )
( ) ( )
1 2 2 3 4 4
1 2 3 4
2 2 2 2 2 2t t
t t
x c c c t e c c c t e
y c c t e c c t e
−
−
 =− + + + + + 
= + + +
Ans.
Question: Solve the simultaneous differential equations uptu 2001
2 2
2 2
3 , 4 3 sin 2td x dx d y dx
x e y t
dt dt dt dt
+ + = − + =
1 2 3 4
1 2 1
2 3 4
2
cos sin cos3 sin3 cos2
5 15
1
cos 3 sin 3 sin 2 2 sin
15
1
2 cos 2 sin3 2 cos3
5
t
t
e
x c t c t c t c t t
y c t c t t c t
c t c t c t e
−
−
= + + + + +
= + + −
+ + − −
Question: Solve the simultaneous differential equations uptu 2008
4 3 , 2 5 tdx dy
x y t x y e
dt dt
+ + = + + =
2 7
1 2
2 7
1 2
5 31 1
14 196 8
2 1 9 5
3 7 98 24
t t t
t t t
x c e c e t e
y c e c e t e
− −
− −
= + + − −
=− + − + +
Ans.
Question: Solve the simultaneous differential equations uptu 2003
3 sin , cosDx Dy x t Dx y x t+ + = + − =
( )
( )
3
1 2
3
1 2
1
2sin cos
5
1
2cos sin 2 2
5
t t
t t
x c e c e t t
y t t c e c e
−
−
= + + −
= + − +
Ans.
Question: Solve the simultaneous differential equations uptu 2001
2 2
2 2
4 4 , 4 4 25 16 td x dx d y dy
x y y x e
dt dt dt dt
− + = + + = +
Ans
3 3
1 2 3 4 3 4
3 3
1 2 3 4
25 (3 4 )cos (4 3 )sin
cos sin
t t t
t t t
y c e c e c c t c c t e
x c e c e c t c t e
−
−
= + + − + + + −
= + + + −
Question solve
1/222
2
1
d y dy
dx dx
  
= −  
   
uptu 2002
Ans 1cos( )y x c c= − + +
Question : Solve
22
2
0
d y dy dy
x x
dx dx dx
 
+ − = 
 
uptu 2010
Ans 2
1 2log( 2 )y x c c= + +
Question : solve 2
" 4 ' (4 2) 0y xy x y− + − = given that
2
x
y e= is an integral included in the complementary
function . uptu 2004
Ans
2
1 2( )x
y e c x c= +
DEFINITION:
Infinite Series of Trigonometric functions
periodic function, used in Fourier analysis.
EVEN FUNCTION:
Let f(x) be a real-valued function of a real variable.
Then f is even if the following equation holds for all
x and -x in the domain of f.
( ) ( )f x f x− =
or
( ) ( ) 0f x f x− − =
Geometrically speaking, the graph face of an even function
is symmetric with respect to the
graph remains unchanged after
about the y-axis.
Examples of even functions are
or any linear combination of these.
ODD FUNCTIONS
Again, let f(x) be a real-valued function of a real variable.
Then f is odd if the following equation holds for all
x and -x in the domain of f:
( ) ( )f x f x− = −
or
( ) ( ) 0f x f x− + =
Geometrically, the graph of an odd function has rotational
symmetry with respect to the origin
remains unchanged after rotation
origin.
Examples of odd functions are x
any linear combination of these.
FOURER SERIES
Trigonometric functions which represents an expansion or approximation of a
periodic function, used in Fourier analysis.
valued function of a real variable.
if the following equation holds for all
Geometrically speaking, the graph face of an even function
with respect to the y-axis, meaning that its
remains unchanged after reflection
Examples of even functions are |x|, x2
, x4
, cos(x), cosh(x),
y linear combination of these.
valued function of a real variable.
if the following equation holds for all
an odd function has rotational
origin, meaning that its graph
rotation of 180 degrees about the
x, x3
, sin(x), sinh(x), erf(x), or
any linear combination of these.
which represents an expansion or approximation of a
Properties involving addition and subtraction
• The sum of two even functions is even, and any constant multiple of an even function is even.
• The sum of two odd functions is odd, and any constant multiple of an odd function is odd.
• The difference between two odd functions is odd.
• The difference between two even functions is even.
• The sum of an even and odd function is neither even nor odd, unless one of the functions is equal to zero
over the given domain.
Properties involving multiplication and division
• The product of two even functions is an even function.
• The product of two odd functions is an even function.
• The product of an even function and an odd function is an odd function.
• The quotient of two even functions is an even function.
• The quotient of two odd functions is an even function.
• The quotient of an even function and an odd function is an odd function.
Properties involving composition
• The composition of two even functions is even.
• The composition of two odd functions is odd.
• The composition of an even function and an odd function is even.
• The composition of any function with an even function is even (but not vice versa).
Other algebraic properties
• Any linear combination of even functions is even, and the even functions form a vector space over the reals.
Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space
over the reals. In fact, the vector space of all real-valued functions is the direct sum of the subspaces of even
and odd functions. In other words, every function f(x) can be written uniquely as the sum of an even function
and an odd function:
( ) ( ) ( )e of x f x f x= +
where
[ ]
1
( ) ( ) ( )
2
ef x f x f x= + −
is even and
[ ]
1
( ) ( ) ( )
2
of x f x f x= − −
is odd. For example, if f is exp, then fe is cosh and fo is sinh.
• The even functions form a commutative algebra over the reals. However, the odd functions do not form an
algebra over the reals, as they are not closed under multiplication.
Important questions
1. find the Fourier series for the function
2
( )
4
x
f x x xπ π= + − ≤ ≤ uptu 2009
2. find the Fourier series for the function ( ) sin 0 2f x x x x π= ≤ ≤ uptu 2001
3. find the Fourier series for the function
0
( )
0
k x
f x
k x
π
π
− −
= 

uptu 2010
hence show that
1 1 1
1 ........
3 5 7 4
π
− + − + =
4. find the Fourier series for the function
0
( )
0
x x
f x
x x
π
π
− < <
= 
− < <
uptu 2002, 2008
Hence show that
2
2 2 2 2
1 1 1 1
........
1 3 5 7 8
π
− + − + =
5. find the Fourier series for the function
2
( )
4
x
f x x xπ π= + − ≤ ≤ uptu 2009
6. find the Fourier series for the function 2
( )f x x x xπ π= + − ≤ ≤ uptu 2003
Deduce that
2
2 2 2 2
1 1 1 1
........
6 1 2 3 4
π
= + + + +
7. find the Fourier series for the function
0
( ) ( 2 ) ( )
0
x x
f x and f x f x
x x
π π
π
π π
+ − < <
= + =
− − < <
uptu 2006
8. find the Fourier series for the function
1 0
( ) ( 2 ) ( )
1 0
x
f x and f x f x
x
π
π
π
− − < <
= + =
< <
9. find the Fourier series for the function ( ) sinf x x x xπ π= − ≤ ≤ uptu 2008
Deduce that
1 1 1 1 2
........
1.3 3.5 5.7 7.9 4
π −
+ + + + =
10. find the Fourier series for the function ( ) cosf x x x xπ π= − ≤ ≤ uptu 2008
11. Obtain the half range sine series for the function 2
( )f x x= in the interval 0 3x< < uptu 2008
12. Find the half range cosine series for the function
2 0 1
( )
2(2 ) 1 2
t x
f x
t x
< <
= 
− < <
uptu 2001, 06, 07
13. Obtain the fourier cosine series expansion of the periodic function define by the function uptu 2001
( ) sin , 0 1
t
f t t
l
π 
= < < 
 
14. Find the half range sine series for the function ( )f x given in the range (0,1) by the graph OPQ as shown in
the figure. Uptu 2009
The Laplace Transformation
Pierre-Simon Laplace (1749-1827)
Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian theory of
gravitation to the solar system (an important problem of his day). He played a leading role in the
development of the metric system.
The Laplace Transform is widely used in engineering applications (mechanical and electronic),
especially where the driving force is discontinuous. It is also used in process control.
What Does the Laplace Transform Do?
The main idea behind the Laplace Transformation is that we can solve an equation (or system of
equations) containing differential and integral terms by transforming the equation in "t-space" to
one in "s-space". This makes the problem much easier to solve. The kinds of problems where the
Laplace Transform is invaluable occur in electronics. You can take a sneak preview in
the Applications of Laplace section.
If needed we can find the inverse Laplace transform, which gives us the solution back in "t-space".
The Unit Step Function (Heaviside Function)
In engineering applications, we frequently encounter functions whose values change abruptly at
specified values of time t. One common example is when a voltage is switched on or off in an
electrical circuit at a specified value of time t.
The value of t = 0 is usually taken as a convenient time to switch on or off the given voltage.
The switching process can be described mathematically by the function called the Unit Step
Function (otherwise known as the Heaviside function after Oliver Heaviside).
The Unit Step Function
Definition: The unit step function, u(t), is defined as
0 0
{ }
1 0
t
u t
t
<
= 
>
That is, u is a function of time t, and u has value zero when time is negative (before we flip the
switch); and value one when time is positive (from when we flip the switch).
Laplace Transformation
Question : find the Laplace transform of the function
1, 1 2
( )
3 , 2 3
t t
f t
t t
− < <
= 
− < <
uptu 2009
Ans 2 3
2
1
2s s s
e e e
s
− − −
 − + 
Question: find the Laplace transform of the function
2
, 1 2
( ) 1, 2 3
7 3
t t
f t t t
t
 < <

= − < <
 >
uptu 2007
Ans ( ) ( )
2 3
2
3 3 2
2
2 3 3 5 1
s s
e e
s s s
s s s
− −
− + + + −
Question: if ( )
( )
2
2
2
2
cos
4
s
L t
s s
+
=
+
, find 2
(cos )L at Ans
( )
2 2
2 2
2
4
s a
s s a
+
+
uptu 2006
Question: if { }( ) ( ),L f t F s= then prove that { } ( ) [ ]( ) 1 ( )
n
nn
n
d
L t f t F s
ds
= − uptu 2005
Question: Obtain the laplace transform of 2
. .sin 4t
t e t Ans
( )
( )
2
32
4 3 6 13
2 17
s s
s s
− −
− +
uptu 2002
Question: find the laplace transform of the function ( ) . .sin 2t
f t t e t−
= Ans
( )
( )
22
4 1
1 4
s
s
+
 + +
 
uptu 2002
Question: if { }( ) ( ),L f t F s= then prove that
1
( ) ( )
s
L f t F s ds
t
∞
 
= 
 
∫ uptu 2005, 07
Question: find the laplace transform of the
0
sin
( )
t
at
f t dt
t
= ∫ uptu 2004
Question: find the laplace transform of the
cos cos
( )
at bt
f t
t
−
= Ans
2 2
2 2
1
log
2
s b
s a
+
+
uptu 2004
Question: if
cos
( )
at
e bt
f t
t
−
= , find the laplace transform of ( )f t Ans
( )
2 2
2
1
log
2
s b
s a
 +
 
+  
uptu 2003
Question: find { }L erf t and hence prove that { } ( )
3/22
3 8
. 2
4
s
L t erf t
s s
+
=
+
uptu 2001
Question : Express the following function in terms of unit step function : 1, 1 2
( )
3 , 2 3
t t
f t
t t
− < <
= 
− < <
uptu 2009
Ans
2 3
2 2 2
2
s s s
e e e
s s s
− − −
− +
Question : Express the following function in terms of unit step function :
0, 0 1
( ) 1, 1 2
1 2
t
f t t t
t
< <

= − < <
 >
uptu 2002
Ans
2
2 2
s s
e e
s s
− −
−
Question : find the laplace transform of the function
, 0
( )
, 2
t t
f t
t t
π
π π π
< <
= 
− < <
uptu 2003
Ans
( )2
1
1
s s
s
se e
s e
π π
π
π − −
−
− + −
+
Question : find the laplace transform of the function
sin , 0
( )
2
0,
t t
f t
t
π
ω
ω
π π
ω ω

< <
= 
 < <

uptu 2010
Ans
( )2 2
1
s
s e
π
ω
ω
ω
−
 
+ − 
 
Question : Draw the graph of the following periodic function and find the Laplace transform of the function
, 0
( ) 2002
2 , 0 2
t for t a
f t uptu
a t for t a
< ≤
= 
− < <
Question : state and prove Convolution theorem.
OR
If [ ] [ ] [ ]1 1 1
1 1 2 2 1 2 1 2
0
( ) ( ) ( ) ( ) ( ). ( ) ( ). ( )
t
L F s f t and L F s f t then prove that L F s F s f x f t x dx− − −
= = = −∫
Solution/proof : By using the definition we can write
1 2 1 2
0 0 0
( ). ( ) ( ). ( )
t t
st
L f x f t x dx e f x f t x dx dt
∞
−
   
− = −  
   
∫ ∫ ∫
1 2 1 2
0 0 0
( ). ( ) ( ). ( )
t t
st
L f x f t x dx e f x f t x dxdt
∞
−
 
− = − 
 
∫ ∫∫
By using the change of order the above equation reduced as
1 2 1 2
0 0
( ). ( ) ( ). ( )
t
st
s
L f x f t x dx e f x f t x dxdt
∞ ∞
−
 
− = − 
 
∫ ∫∫
On adding and subtracting x in the power of e we will get
( )
( )
( )
1 2 1 2
0 0
1 2 1 2
0 0
1 2 1 2
0 0
( ). ( ) ( ). ( )
( ). ( ) ( ). ( )
( ). ( ) ( ) . ( )
t
s t x x
s
t
s t x x
s
t
s t xsx
s
L f x f t x dx e f x f t x dxdt
L f x f t x dx e f x f t x dxdt
L f x f t x dx e f x dx e f t x dt
∞ ∞
− − +
∞ ∞
−  − +  
∞ ∞
− −−
 
− = − 
 
 
− = − 
 
 
− = − 
 
∫ ∫∫
∫ ∫ ∫
∫ ∫ ∫
Let t x z dt dz− = ⇒ =
Now the above equation reduced as
[ ]
1 2 1 2
0 0 0
1 2 1 2
0
1
1 2 1 2
0
( ). ( ) ( ) . ( )
( ). ( ) ( ). ( )
( ). ( ) ( ). ( )
t
sx sz
t
t
L f x f t x dx e f x dx e f z dt
L f x f t x dx F s F s
L F s F s f x f t x dx proved
∞ ∞
− −
−
 
− = 
 
 
− = 
 
= −
∫ ∫ ∫
∫
∫
Question : Use the convolution theorem to evaluate
( )
1
2
2
4
s
L
s
−
 
 
 
+  
uptu 2010 Ans
1
sin 2
4
t
Question : Use the convolution theorem to find the inverse of the function
( )
22
s
s a+
uptu 2009
Ans [ ]3
1
sin cos
2
at at at
a
−
Question : using the Convolution theorem find
( ) ( )
2
1
2
,
2 2
s
L a b
s s
−
  
≠ 
+ −  
uptu 2006,04
Ans 2 2
sin sina at b bt
a b
−
−
Question : using the Convolution theorem find
( )( )
1
2 2
1 4
s
L
s s
−
  
 
+ +  
uptu 2006,04
Ans ( )
1
cos cos2
3
t t−
Question : using the convolution theorem, prove that
( )
2
1
3 2
1
cos 1
21
t
L t
s s
−
  
= + − 
+  
uptu 2005
Question: Using Laplace transformation solve the differential equation uptu 2002
2
2
9 2 , (0) 1, 1
2
d x
x t if x x
dt
π 
+ = = = − 
 
Ans. [ ]
1 4 12 sin3 1
cos2 cos3 cos2 4cos3 4sin3
5 5 5 3 5
t
x t t t t t= + + = + +
Question : solve, using Laplace transform method ' " '
(0) 2, (0) 8, 4 4 6 t
y y y y y e−
= − = + + = uptu 2007
Ans. 2 2
6 8 2t t t
y e e te− − −
= − −
Question : solve
2
'
2
2 5 sin (0) 1, (0) 1xd x dy
y e x where y y
dt dx
−
+ + = = = uptu 2004
Ans. ( )
1
sin sin 2
3
x
y e x x−
= +
Question : apply Laplace transform to solve the equation
2
2
cos2 , 0, 0 0
d x dx
y t t t where y for t
dt dt
+ = > = = =
Uptu 2005 Ans
5 4
sin sin 2 cos2
9 9 3
t
y t t t= − + −
Question: solve, by the method of laplace transform, the differential equation
( ) ( )2 2
sin , 0 0D n x a nt x Dx at tα+ = + = = = uptu 2002, 2010
Ans ( )2
sin cos cos sin
2
a
x nt nt nt
n
α α = − 
Question : using the laplace transform, solve the differential equation
"
2 ' (0) 0 '(0) 1y ty y t when y and y+ − = = = Ans , ( )y t C y t c must bevanish= + = uptu 2003
Question : A particle moves in a line so that its displacement x from the fixed point O at any time t, is
given by "
4 ' 5 80sin5x x x t+ + = using Laplace transform, find its displacement at any time t if initially
particle is at rest at 0x = . Uptu 2009
Ans. ( ) ( )2
2 cos 7sin 2 cos5 sin5t
x e t t t t−
= + − +
Question : Voltage at
Ee is applied at 0t = to a circuit of inductance L and R. show that the current (i) at time t is
( )/at Rt LE
e e
R aL
− −
−
−
. uptu 2007
Question : Solve the simultaneous differential equations by using the laplace transform
3 2 , 0
dx dx dy
y t y
dt dt dt
− = + − = with the condition (0) (0) 0x y= = uptu 2008
Ans
2 22
3 3
3 3 3 3
,
2 2 4 4 2 2
t t
t t
x e y t e= + − + = + −
Question : Solve the simultaneous equation , sin , (0) 1, (0) 0tdx dy
y e x t x y
dt dt
− = + = = = uptu 2006
Ans.
1 1
cos 2sin cos , sin cos sin
2 2
t t
x e t t t t y t t e t t   = + + − = − + −   
Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by
2 cos2 , 2 sin 2 ,( 0)
dx dy
y t x t t
dt dt
− = + = > it is given that at 0, 1 0.t x and y= = = show by using transforms that
the particle moves along the curve 2 2
4 4 5 4x xy y+ + = uptu 2003
Ans: ( )2 2 2 2 2 2
4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
Question : Solve the simultaneous differential equations by Laplace transform 4 0, 2 tdx dy dx
y y e
dt dt dt
+ − = + =
With the condition (0) (0) 0x y= = uptu 2008
Ans.
3
3 /4 4
1 5 8 1
,
3 7 21 7
t
t t t
x e e y e e− 
= − + = − 
 
Question : solve the simultaneous equations ( ) ( )2 2
3 4 0, 1 0D x y x D y− − = + + = for 0,t > given that
0 2 0
dy dx
x y and at t
dt dt
= = = = = uptu 2004
Ans ( )2 cosh , 1 sinhx t t y t t= = −
Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by
2 sin 2 , 2 cos2 ,( 0)
dx dy
y t y t t
dt dt
+ = − = > it is given that at 0, 1 0.t x and y= = = show by using transforms that
the particle moves along the curve 2 2
4 4 5 4x xy y+ + = uptu 2003
Ans: ( )2 2 2 2 2 2
4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
UNIT- V
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
Question: Explain the method of separation of variables. Uptu 2007
Question: Solve the following equation
2
2
2 0
z z z
x x y
∂ ∂ ∂
− + =
∂ ∂ ∂
by the separation of variables method.
Ans.
( ) ( )
{ }1 1 1 1
1 2 3
K x K x Ky
z C e C e C e
+ + − + −
= + uptu 2006
Question : Using the method of separation of variables, solve 3
2 ( ,0) 6 xu u
u whereu x e
x t
−∂ ∂
= + =
∂ ∂
Ans. 3 2
6 x t
u e− −
= uptu 2006
Question : solve the following equation by the method of separation of variables
2
costu
e x
x t
−∂
=
∂ ∂
Given that 0u = when 0t = and 0 0
u
when x
t
∂
= =
∂
Ans. ( )1
1 sinu e x−
= − uptu 2008
Question : Drive the one Dimensional wave equation
2 2
2
2 2
y y
a
t x
∂ ∂
=
∂ ∂
. uptu 2007
Question : Solve completely the equation
2 2
2
2 2
y y
a
t x
∂ ∂
=
∂ ∂
,representing the vibrations of a string of length l,
fixed at both the ends, given that (0, ) 0, ( , ) 0, ( ,0) ( )y t y l t y x f x= = = and ( ,0) 0,0 .y x x l
t
∂
= < <
∂
Ans. sin cosn
n x n ct
y b
l l
π π
= uptu 2005
Question : A string is stretched and fastened to two points ݈ apart. Motion is started by displacing the string in the
form sin
x
y a
l
π 
=  
 
from which it is released at a time 0t = show tat the displacement of any point at a
distance x from one end at time t is given by
( , ) sin cosn
x ct
y x t b
l l
π π   
=    
   
uptu 2004, 09
Question: If a string of the length ݈ is initially at rest in equilibrium position and each of its points is given the
velocity 3
0
sin
t
y x
b
t l
π
=
∂ 
= 
∂ 
, find the displacement ( , )y x t .
Ans:
3 3
( , ) 9sin sin sin sin
12
bl x cl x ct
y x t
c l l l l
π π π π
π
 
= −  
uptu 2001,06
Question : find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the
initial temperature is
5
sin 3sin
2 2
x xπ π
+
Ans
2 2 2 2
25
4 4
5
sin 3sin
2 2
t t
c c
x x
u e e
π π
π π− −
= + uptu 2007,09
Question : An insulated of of length ݈ has its ends A and B maintained at 0
0 C and 0
100 C respected until steady
conditions prevail. If B is suddenly reduced to 0
0 C and maintained at 0
0 C, find the temperature at a distance x
from A at time t.
Ans : ( )
2 2 2
21 200
1 . sin
t
n c
n
l
n x
u e
n l
π
π
π
−
+
= − uptu 2004,05
Question: Solve
2 2
2 2
0
u u
x y
∂ ∂
+ =
∂ ∂
which satisfies the conditions (0, ) (0, ) ( ,0) 0u y u y u x= = = and
( , ) sin
n x
u x a
l
π 
=  
 
Ans.
sinh
sin
sinh
n y
n x l
u
n al
l
π
π
π
 
 
   =  
  
 
 
uptu 2004
Question : Solve
2 2
2 2
0,0 ,0
u u
x y
x y
π π
∂ ∂
+ = < < < <
∂ ∂
, which satisfies the conditions
2
(0, ) ( , ) ( , ) 0 ( ,0) sinu y u y u x and u x xπ π= = = =
Ans. 2
1,3,5,..
8 sin sinh ( )
( 4)sinhn
nx n y
u
n n n
π
π π
∞
=
− −
=
−
∑ (from AKTU Question Bank
SERIES SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATIONS
Question : solve the series the legendre’s equation of order one
( )2
1 " 2 ' 2 0 ................ (1)x y xy y− − + =
Solution : here x=0 is an ordinary point. Let a trial solution of (1) in the form ogf series in x be
2 3
0 1 2 3 .............. .... (2)n
ny c c x c x c x c x= + + + + + + − − − − − −
Different equation (2) we get
2
1 2 3
2
2 3 4
' 2 3 ..............
" 2 6 12 ..........
y c c x c x
y c c x c x
= + + +
= + + +
On putting the values of y,y’ and y” in equation (1) we get
( )( ) ( ) ( )2 2 2 2 3
2 3 4 1 2 3 0 1 2 31 2 6 12 ..... 2 2 3 ..... 2 ..... 0x c c x c x x c c x c x c c x c x c x− + + + − + + + + + + + + =
( ) ( ) ( ) ( )2 3
2 0 3 1 1 4 2 2 2 5 3 3 32 2 6 2 2 12 2 4 2 20 6 6 2 .... 0c c c c c x c c c c x c c c c x+ + − + + − − + + − − + + = on equating
the powers of x to zero we get
2 0 3 4 2 0 5 7 9 6 0
1 1 1
, 0, , 0
3 3 5
c c c c c c c c c and c c= − = = = − = = = = −
On substitute these above values in equation (2) we get
2 4 6
0 1 0 0 0
2 4 6
0 1
1 1
......
3 5
1 1
1 ....
3 5
y c c x c x c x c x
y c x x x c x
= + − − − −
 
= − − − − + 
 
Question : Using the Frobenius method, obtain a series solution in powers of x for differential equation
( ) ( )
2
2
2 1 1 3 0
d y dy
x x x y
dx dx
− + − + = UPTU 2010
Solution : we have ( ) ( )
2
2
2 1 1 3 0 (1)
d y dy
x x x y
dx dx
− + − + = − − − − − − −
Here 2
1 2( ) ( )xP x and x P x are analytic at x=0. So x=0 is a regular singular point, as assume the solution in the form
( )
( )( )
0
1
0
2
2
2
0
1
m k
k
k
m k
k
k
m k
k
k
y a x
dy
a m k x
dx
d y
a m k m k x
dx
∞
+
=
∞
+ −
=
∞
+ −
=
=
= +
= + + −
∑
∑
∑
On putting the values of
2
2
, ,
dy d y
y
dx dx
in equation (1) we get
( ) ( )( ) ( ) ( )2 1
0 0 0
2 1 1 1 3 0m k m k m k
k k k
k k k
x x a m k m k x x a m k x a x
∞ ∞ ∞
+ − + − +
= = =
− + + − + − + + =∑ ∑ ∑
( )( ) ( )( ) ( )
( )1 1
0 0 0 0
0
2 1 2 1
3 0
m k
km k m k m k
k k k
k k k k
m k
k
k
a m k x
a m k m k x a m k m k x a m k x
a x
+∞ ∞ ∞ ∞
+ − + + −
= = = =
∞
+
=
+
+ + − − + + − + + −
+ =
∑ ∑ ∑ ∑
∑
We can rewrite as
2 2
0
2 2 1
0
2 2 2 2 2 2 3
2 2 2 2 2 2 0
m k
k
k
m k
k
k
a m mk m mk k k m k x
a m mk m mk k k m k x
∞
+
=
∞
+ −
=
 − − + − − + − − + 
 + + − + + − + + = 
∑
∑
( )2 2 2 2 1
0 0
2 4 2 3 2 4 1 2 0m k m k
k k
k k
a m mk m k k x a m k m k k x
∞ ∞
+ + −
= =
   − − + − + + + + − + − =   ∑ ∑
( )[ ] ( )[ ] 1
0 0
1 2 2 3 2 2 1 0 (2)m k m k
k k
k k
a m k m k x a m k m k x
∞ ∞
+ + −
= =
+ − − − + + + + − = − − −∑ ∑
The coefficient of the lowest degree term 1m
x −
in equation (2) is obtain by substituting k=0 in second summation
of (2) only equating it by zero we get
( )0 02 1 0 0, 1/ 2, 0a m m m a− = ⇒ = = ≠
The coefficient of the next lowest degree term m
x in (2) is obtained by substituting k=0 in first summation and k=1
in the second summation, we get
( )( ) ( )( )0 11 2 3 1 2 1 0a m m a m m+ − + + + + =
( )( )
( )( )
( )
( )
1
1
1 2 3
1 2 1
2 3
2 1
m m
a
m m
m
a
m
+ − +
= −
+ +
−
= −
+
On equating the coefficient of 2
x
On putting 1k k→ + in second summation of (2) we get the coefficient of m
x and equating to zero we get
( )( ) ( )( )
( )
( )
( )
1
1
1
1 2 2 3 1 2 2 1 0
2 2 3
2 2 1
2 2 3
2 2 1
k k
k k
k k
a m k m k a m k m k
m k
a a
m k
m k
a a
m k
+
+
+
+ + − + + + + + + + =
− + +
= −
+ +
− −
=
+ +
( )
( )
1 0
2 1
2 2 3
0
2 2 1
2 2 3
1
2 2 1
m k
if k a a
m k
m k
if k a a
m k
− −
= =
+ +
− −
= =
+ +
( )
( )
( )
3 2
4 3
5 4
2 2 3
2
2 2 1
2 2 3
3
2 2 1
2 2 3
4
2 2 1
m k
if k a a
m k
m k
if k a a
m k
m k
if k a a
m k
− −
= =
+ +
− −
= =
+ +
− −
= =
+ +
m=0 M=1/2
( )
1 0
2 1 0 0
3 2 0
4 3 0 0
5 4 0 0
2 3 4 5
1 0
2
3 4 5
1 0
3
1 1
3
3 3
1 1
5 5
3 3 1 3
7 7 5 35
5 5 3 1
9 9 35 21
1 3 1
1 3 ....
5 35 21
3 3 3 3
1 3 ....
1.3 3.5 5.7 7.9
a a
a a a a
a a a
a a a a
a a a a
y a x x x x x
x
y a x x x x
= −
= − = − − =
= =
 
= = = 
 
 
= = = 
 
 
= − + + + + + 
 
 
= − + + + + + 
 
( )
1 0 0
2 1
3 4 5
1 3
2 2
2 0 0
2 0
1
2 3
2
1
2 1
2
1
2 1
2
0
1
2 3
2
...... 0
1
a a a
a a
a a a
y a x a x
y a x x
 
− 
 = = −
 
+ 
 
 
− 
 = =
 
+ 
 
= = = =
= −
= −
General solution
( )
2
3 4 5
0
3 3 3 3
1 3 .... 1
1.3 3.5 5.7 7.9
x
y A x x x x Ba x x
 
= − + + + + + + − 
 
Ans
Question: using extended power series method find one solution of the differential equation 2
" ' 0xy y x y+ + = .
Indicate the form of a second solution which is linearly independent of the first obtained above .
(UPTU 2007
Solution: we have 2
( ) ( )xP x and x Q x are analytic therefore x=0 is a regular singular point of the equation
2
2
2
0
d y dy
x x y
dx dx
+ + =
Suppose
( )
1
2
2
2
( )
( ) 1
m k
k
m k
k
m k
k
y a x
dy
a m k x
dx
d y
a m k m k x
dx
+
+ −
+ −
=
= +
= + + −
∑
∑
∑
On putting all these above values of y , y’ and y” in (1) we get
( )
( )
( )
( ){ }
{ }
2 1 2
1 1 2
1 2
1 2
1
( ) 1 ( ) 0
( ) 1 ( ) 0
( ) 1 ( ) 0
( ) 1 1 0
( ) 1 1
m k m k m k
k k k
m k m k m k
k k k
m k m k
k k
m k m k
k k
m k
k k
x a m k m k x a m k x x a x
a m k m k x a m k x a x
a m k m k m k x a x
a m k m k x a x
a m k m k x a x
+ − + − +
+ − + − + +
+ − + +
+ − + +
+ −
+ + − + + + =
+ + − + + + =
 + + − + + + = 
 + + − + + = 
 + + − + + 
∑ ∑ ∑
∑ ∑ ∑
∑ ∑
∑ ∑
∑
( )
2
1 2
2 1 2
0
( ) 0
( ) 0 (2)
m k
m k m k
k k
m k m k
k k
a m k m k x a x
a m k x a x
+ +
+ − + +
+ − + +
=
 + + + = 
 + + = − − − − − − − − 
∑
∑ ∑
∑ ∑
The coefficient of the lowest degree term 1m
x −
in (2) is obtained by the putting k=0 in the first summation of (2)
only and equating it to zero. Then the indicial equation is 2 2
0 0 0 0,0a m m m= ⇒ = ⇒ =
Coefficient of next lowest degree term m
x in (2) is obtained putting k=1 in the first summation only and equating it
to zero
( )
2
1 11 0 0a m a+ = ⇒
Equating the cifficient of 1m
x +
for k =2 we get
( )
2
2 22 0 0a m a+ = ⇒
Now on equating the coefficient of 2m k
x + +
to zero we have
( )
( )
2
3
3 2
3 0
3
k k
k
k
a m k a
a
a
m k
+
+
+ + + =
= −
+ +
I
( )
( )
( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 02
4 1 7 102
5 2 8 112
6 3 02 2 2
9 6 02 2 2 2
3 6 9
0 2 2 2 2 2 2
1
0
3
1
1 0, 0
4
1
2 0, 0
5
1 1
3
6 3 6
1 1
9 3 6 9
1 ............. (3)
3 3 6 3 6 9
m
if k a a
m
if k a a a a
m
if k a a a a
m
if k a a a
m m m
a a a
m m m m
x x x
y x a
m m m m m m
= = −
+
= = − = = =
+
= = − = = =
+
= = − =
+ + +
= − =
+ + + +
 
= − + − + − − − − − − 
+ + + + + +  
For m=0
To find the first solution , put m=0 in (3) we get
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
1 0 2 2 2 2 2 2
1 ............. (4)
3 3 6 3 6 9
x x x
y a
 
= − + − + − − − − − 
  
To find the second independent solution, differentiate (3) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
(5)
2 2
.............
3 6 9 3 6 9
m
m
y x x x
x x a
m m m m m m m
x x x x
m m m m m m m m
x a
x x
m m m m m m
 ∂
= − + − + 
∂ + + + + + +  
 
− − + 
+ + + + + + + + 
+ − − − − − 
 + +
 + + + + + + 
putting m=0 in equation (5) we get
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
2 0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
(6)
2 2
.............
3 6 9 3 6 9
x x x
y x a
x x x x
a
x x
 
= − + − + 
  
 
− − + 
 
+ − − − − − 
 + +
  
hence, the general solution is given by (4) and (6)
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2
3 6 9 3 6 9
1 0 2 02 2 2 2 2 2 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
2 0 9 9
2 3 2 2 3 3
1 ............. log 1 ..........
3 3 6 3 6 9 3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
2 2
.............
3 6 9 3 6 9
y c y c y
x x x x x x
y c a c x a
x x x x
c a
x x
y c
= +
  
= − + − + + − + − +  
    
 
− − + 
 
+  
 + +
  
= ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
1 2 0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
2 0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
3 3 6 3 6 3 6 9
2.
.............
3 6 9 3 6 9
x x x
c x a
x x x x
c a Ans
x x
 
+ − + − + + 
  
 
− − + 
 
 
 + +
  
Question : solve the differential equation
2
2
0
d y dy
x y
dx dx
+ − = (UPTU C.O, 2003
Solution : on comparing with the equation
2
2
( ) ( ) 0
1 1( ) ( )
d y dy
P x Q x y wehave
dx dx
P x and Q x
x x
+ + =
−= =
Because at x=0 both ( )P x and ( )Q x are not analytic
0x∴ = is a singular point
Also ( ) 1xP x = and 2
( )x Q x x=−
Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 .......
" 1 1 2 1 3 2 .......
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + +
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )
( )
2 1 1
0 1 2 3
1 1 2
0 1 2 3
1 2 3
0 1 2 3
1 1 2 1 3 2 .......
1 2 3 ......
....... 0
m m m m
m m m m
m m m m
x m m a x m m a x m m a x m m a x
ma x m a x m a x m a x
a x a x a x a x
− − +
− + +
+ + +
 − + + + + + + + + + 
+ + + + + + + +
− + + + + =
The coefficient of 1m
x −
=0 Then the indicial equation is
( ) 0 01 0 0,0m m a ma m− + = ⇒ = which are equal
Coefficient of next lowest degree term 0m
x =
( ) ( ) ( )
( )
2
1 1 0 1 0
0
1 2
1 1 0 1
1
m ma m a a m a a
a
a
m
+ + + − = ⇒ + =
=
+
Equating the coefficient of 1
0m
x +
=
( )( ) ( ) ( )
( ) ( ) ( )
2
2 2 1 2 1
01
2 2 2 2
2 1 2 0 2
2 1 2
m m a m a a m a a
aa
a
m m m
+ + + + − = ⇒ + =
= =
+ + +
( ) ( ) ( )
0
3 2 2 2
1 2 3
a
a
m m m
=
+ + +
Using equation (1)
( ) ( ) ( ) ( ) ( ) ( )
2 3
0 2 2 2 2 2 2
1 .......... (2)
1 1 2 1 2 3
m x x x
y a x
m m m m m m
 
= + + + + − − − − 
+ + + + + +  
( ) ( )
2 3
1 0 0 2 2
( ) 1 .......... (3)
2! 3!
m
x x
y y a x x=
 
= = + + + + − − − − 
  
To find the second independent solution, partially differentiate (1) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
2 9
0 2 2 2 2 2 2
2
3 2 2
0
3
2 2 2
log 1 .............
1 1 2 1 2 3
2 2 1 1
1 21 1 2
2 1 1 1
.....
1 2 31 2 3
m
m
y x x x
a x x
m m m m m m m
x
x
m mm m m
x a
x
m m mm m m
 ∂
= + + + + 
∂ + + + + + +  
   
− − +  
+ ++ + +    
+  
   
− + + −  + + ++ + +    
Now the second solution
( )
( ) ( ) ( ) ( )
( ) ( )
2 3
2 3
2 0 02 2 2 2
0
2 3
1 0 2 2
1 1 1 1 1
log 1 ............. 2 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 2 1 1 ......
2 2 32! 3!
m
y x x
y a x x a x x x
m
y x a x x x
=
   ∂     
= = + + + + − + + + + + −       
∂           
    
= − + + + + + −    
     
Hence the complete solution is
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
1 1 2 2
2 3
2 3
1 2 0 2 02 2 2 2
2 3
2
2 2 2 2
1 1 1 1 1
log 1 .......... 2. 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 1 .......... 2. 1 1
2 2 32! 3! 2! 3!
y c y c y
x x
y c c x a x c a x x x
x x
y A B x x B x x
= +
      
= + + + + + − + + + + + −      
         
     
= + + + + + − + + + + +     
    
3
......x Ans
 
− 
  
Question: Solve in the series the differential equation
2
2 2
2
5 0
d y
x x x y
dx
+ + = UPTU 2002
Solution : we have
2
2 2
2
5 0
d y
x x x y
dx
+ + =
on comparing above given differential equation with
2
2
( ) ( ) 0
5( ) ( ) 1
d y dy
P x Q x y wehave
dx dx
P x and Q x
x
+ + =
= =
Because at x=0 both ( )P x and ( )Q x are not analytic
0x∴ = is a singular point
Also ( ) 5xP x = and 2 2
( )x Q x x=
Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 ....... (2)
" 1 1 2 1 3 2 ....... (3)
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + + − −
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( )
( ) ( )( )
( )
2 2 1
0 1 2
1 1
0 1 2
2 1 2 3
0 1 2 3
1 1 2 1 .......
5 1 2 ......
....... 0 (4)
m m m
m m m
m m m m
x m m a x m m a x m m a x
x ma x m a x m a x
x a x a x a x a x
− −
− +
+ + +
 − + + + + + + 
+ + + + + +
+ + + + + = − − − − − −
The coefficient of m
x =0 Then the indicial equation is
( )
( )
( )
0 0
2
0
0
1 5 0
4 0
4 0
0, 4
m m a ma
m m a
m m a
m
− + =
+ =
+ =
= −
which are distinct
Coefficient of next lowest degree term 1
0m
x +
=
( ) ( ) ( )( )1 1 1
1
1 5 1 0 5 1 0
0 (5) [ 5, 1
m ma m a m m a
a m
+ + + = ⇒ + + =
= − − − − − − ≠− −
Equating the coefficient of 2
0m
x +
=
( )( ) ( )
( )( )
( )( )
2 2 0
2 0
0
2
2 1 5 2 0
2 6 0
(6)
1 6
m m a m a a
m m a a
a
a
m m
+ + + + + =
+ + + =
−
= − − − − − −
+ +
Equating the coefficient of 2
0m
x +
=
( ) ( ) ( )
3 3 1
3 1
1
3 2 2 2
3
5 7 9
( 3)( 2) 5( 3) 0
( 3)( 7) 0
1 2 3
0
0 (7)
m m a m a a
m m a a
a
a
m m m
a
similarly a a a
+ + + + + =
+ + + =
−
=
+ + +
=
= = = − − − − − −
Coefficient of 4
0m
x +
=
4 4 2
4 2
02
4
( 4)( 3) 5( 3) 0
( 4)( 8)
. (8)
( 4)( 8) ( 2)( 4)( 6)( 8)
m m a m a a
m m a a
aa
a etc
m m m m m m
+ + + + + =
+ + = −
−
= = − − − − −
+ + + + + +
These give
( )( ) ( )( )( )( )
2 3
0 1 .......... (9)
2 6 2 4 6 8
m x x
y a x
m m m m m m
 
= − + + − − − − 
+ + + + + +  
On putting 0m = in eq (9) we get
2 4
1 0 0( ) 1 .......... (10)
2.6 2.4.6.8
m
x x
y y a=
 
= = − + + − − − − 
 
On putting 4m = − in the series given by equation (9). The coefficients becomes infinite.
To skip this problem we will put 0 0 ( 4)a b m= + so that
( )
( )
( )( ) ( )( )( )
2 3
0
4
4 .......... (11)
2 6 2 6 8
m m x x
y b x m
m m m m m
 +
= + − + + − − − − 
+ + + + +  
( )
( )
( )
( )
22
2 4
0 2 2
2 3 2
3 32 768 20
log 1 .............
8 12 16 76 96
m
m my m m
b x x x x
m m m m m m
 + +∂ + + = + − +
 ∂ + + + + + 
Now the second solution
( )
( )
( )
2 4
4
2 0
4
4 6 2 4
4 4
2 0 0
4
4 6
4
2 0
4
log 1 .............
4 4
log 0 0 ... 1 ....
( 2)(2)(4) 16 ( 2)(2)(4) 16
log .....
16 16
m
m
m
y x x
y b x x
m
y x x x x
y b x x b x
m
y x x
y b x x
m
−
=−
− −
=−
−
=−
 ∂ 
= = + − +   
∂   
   ∂ 
= = − + − + + + − +     
∂ − −     
 ∂ − 
= = − − +  
∂   
2 4
4
0 1 ...
(4) 4
x x
b x−  
+ − + 
 
Hence the Hence
complete solution is
( )
( )
1 1 2 2
2 4 4 6 2 4
4 4
1 0 2 0 2 0
2 4 2 4 6
4
1 .......... log ..... 1 ...
2.6 2.4.6.8 16 16 (4) 4
1
1 .......... 1 ... log .....
12 384 (4) 4 16 16
y c y c y
x x x x x x
y c a c b x x c b x
x x x x x
y A Bx B x An
− −
−
= +
     
= − + + + − − − + + − +    
     
     
= − + + + + − + − + +    
     
s
Question : solve the given differential equation " 2 ' 0xy y xy+ + = UPTUU 2003
Solution : we have
" 2 ' 0xy y xy+ + =
on comparing above given differential equation with
2
2
( ) ( ) 0
2( ) ( ) 1
d y dy
P x Q x y wehave
dx dx
P x and Q x
x
+ + =
= =
Because at x=0 ( )P x
0x∴ = is a singular point
Also ( ) 2xP x = and 2 2
( )x Q x x=
Both at x=0 ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 ....... (2)
" 1 1 2 1 3 2 ....... (3)
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + + − −
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )
( )
2 1 1
0 1 2 3
1 1 2
0 1 2 3
1 2 3
0 1 2 3
1 1 2 1 3 2 .......
2 1 2 3 ......
....... 0
m m m m
m m m m
m m m m
x m m a x m m a x m m a x m m a x
ma x m a x m a x m a x
x a x a x a x a x
− − +
− + +
+ + +
 − + + + + + + + + + 
+ + + + + + + +
+ + + + + =
The coefficient of 1m
x −
=0 Then the indicial equation is
( )
( )
0 0
2
0
2
1 2 0
0
0
0, 1
m m a ma
m m a
m m
m
− + =
+ =
+ =
= −
which are distinct
Coefficient of next lowest degree term 0m
x =
( ) ( )
( )( )
( )
1 1
1
1
1 2 1 0
1 2 0
1 0
m ma m a
m m a
m a
+ + + =
+ + =
+ =
Since m+1 may be zero ,hence 1a is arbitrary ( 1a becomes in determinant)
Hence the solution will contain 0a and 1a as arbitrary constants. The complete solution will be given by the
putting 1m = − in y
Equating the coefficient of 1
0m
x +
=
( )( ) ( )
( )( )
( )( )
2 2 0
2 0
0
2
2 1 2 0
2 3 0
3 2
m m a m a a
m m a a
a
a
m m
+ + + + + =
⇒ + + + =
−
=
+ +
Equating the coefficient of 2
0m
x +
=
( )( )
3 3 1
3 1
1
3
( 3)( 2) 2( 3) 0
( 3)( 4) 0
3 4
m m a m a a
m m a a
a
a
m m
+ + + + + =
+ + + =
−
=
+ +
Equating the coefficient of 3
0m
x +
=
4 4 2
4 2
2
4
0
4
( 4)( 3) 2( 4) 0
( 4)( 5) 0
( 4)( 5)
( 2)( 3)( 4)( 5)
m m a m a a
m m a a
a
a
m m
a
a
m m m m
+ + + + + =
+ + + =
−
=
+ +
=
+ + + +
Equating the coefficient of 4
0m
x +
=
5 5 3
5 3
5 3
3
5
1
5
( 5)( 4) 2( 5) 0
( 5)( 6) 0
( 5)( 6)
( 5)( 6)
( 3)( 4)( 5)( 6)
m m a m a a
m m a a
m m a a
a
a
m m
a
a so on
m m m m
+ + + + + =
+ + + =
+ + = −
−
=
+ +
=
+ + + +
On putting all above values in equation (1) we get
( )( ) ( )( )
2 3 40 01
0 1
51
3 2 3 4 ( 2)( 3)( 4)( 5)
( 3)( 4)( 5)( 6)
m
a aa
a a x x x x
m m m m m m m m
y x
a
x
m m m m
 
+ − − + + + + + + + + +
 =
 
+ 
+ + + + 
( )( )
( )( )
( )
2 4
0
3 5
1
2 4 3 5
1
0 11
1 ...
3 2 ( 2)( 3)( 4)( 5)
....
3 4 ( 3)( 4)( 5)( 6)
1 ... ....
1.2 1.2.3.4. 2.3 2.3.4.5
m
m
x x
a
m m m m m m
y x
x x
a x
m m m m m m
Now
x x x x
y x a a x−
=−
   
− + −  
+ + + + + +   
=  
   − + −  + + + + + +   
    
= − + − + − + −    
    
Hence the solution is
( )
( )
1
0 1
1
cos sin
m
y y
y a x a x
x
=−
=
= +
( ) ( ) ( )
0
3 2 2 2
1 2 3
a
a
m m m
=
+ + +
Using equation (1)
( ) ( ) ( ) ( ) ( ) ( )
2 3
0 2 2 2 2 2 2
1 .......... (2)
1 1 2 1 2 3
m x x x
y a x
m m m m m m
 
= + + + + − − − − 
+ + + + + +  
( ) ( )
2 3
1 0 0 2 2
( ) 1 .......... (3)
2! 3!
m
x x
y y a x x=
 
= = + + + + − − − − 
  
To find the second independent solution, partially differentiate (1) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
2 9
0 2 2 2 2 2 2
2
3 2 2
0
3
2 2 2
log 1 .............
1 1 2 1 2 3
2 2 1 1
1 21 1 2
2 1 1 1
.....
1 2 31 2 3
m
m
y x x x
a x x
m m m m m m m
x
x
m mm m m
x a
x
m m mm m m
 ∂
= + + + + 
∂ + + + + + +  
   
− − +  
+ ++ + +    
+  
   
− + + −  + + ++ + +    
Now the second solution
( )
( ) ( ) ( ) ( )
( ) ( )
2 3
2 3
2 0 02 2 2 2
0
2 3
1 0 2 2
1 1 1 1 1
log 1 ............. 2 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 2 1 1 ......
2 2 32! 3!
m
y x x
y a x x a x x x
m
y x a x x x
=
   ∂     
= = + + + + − + + + + + −       
∂           
    
= − + + + + + −    
     
Hence the complete solution is
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
1 1 2 2
2 3
2 3
1 2 0 2 02 2 2 2
2 3
2
2 2 2 2
1 1 1 1 1
log 1 .......... 2. 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 1 .......... 2. 1 1
2 2 32! 3! 2! 3!
y c y c y
x x
y c c x a x c a x x x
x x
y A B x x B x x
= +
      
= + + + + + − + + + + + −      
         
     
= + + + + + − + + + + +     
    
3
......x Ans
 
− 
  

More Related Content

What's hot

Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula Deep Dalsania
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and applicationshreyansp
 
Thomas algorithm
Thomas algorithmThomas algorithm
Thomas algorithmParidhi SK
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODreach2arkaELECTRICAL
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodMeet Nayak
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examplesSajjad Hossain
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodNaimesh Bhavsar
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsSanthanam Krishnan
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matricesKomal Singh
 
Gauss jordan method.pptx
Gauss jordan method.pptxGauss jordan method.pptx
Gauss jordan method.pptxRehmanRasheed3
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 

What's hot (20)

Gauss elimination
Gauss eliminationGauss elimination
Gauss elimination
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
Thomas algorithm
Thomas algorithmThomas algorithm
Thomas algorithm
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Sor
SorSor
Sor
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matrices
 
Gauss jordan method.pptx
Gauss jordan method.pptxGauss jordan method.pptx
Gauss jordan method.pptx
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
 

Similar to Question bank Engineering Mathematics- ii

Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxmakdul
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docxmakdul
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdfIILSASTOWER
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
 
Definite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsDefinite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsLakshmikanta Satapathy
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guidemorrobea
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guidemorrobea
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdfRajuSingh806014
 
sim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptxsim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptxJeffreyEnriquez10
 
Sim math 9 factoring
Sim math 9 factoringSim math 9 factoring
Sim math 9 factoringRoqueGerale
 

Similar to Question bank Engineering Mathematics- ii (20)

Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docx
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docx
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Definite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsDefinite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by Parts
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Differentiation.pdf
Differentiation.pdfDifferentiation.pdf
Differentiation.pdf
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
1 to hop
1 to hop1 to hop
1 to hop
 
Diff-Eqs
Diff-EqsDiff-Eqs
Diff-Eqs
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
 
sim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptxsim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptx
 
Sim math 9 factoring
Sim math 9 factoringSim math 9 factoring
Sim math 9 factoring
 

More from Mohammad Imran

Atomic number ,mass , symbols and nature
Atomic number ,mass , symbols and natureAtomic number ,mass , symbols and nature
Atomic number ,mass , symbols and natureMohammad Imran
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...Mohammad Imran
 
Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran Mohammad Imran
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier seriesMohammad Imran
 
notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)Mohammad Imran
 
Theory of fourier series
Theory of fourier seriesTheory of fourier series
Theory of fourier seriesMohammad Imran
 
Solution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imranSolution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imranMohammad Imran
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMohammad Imran
 

More from Mohammad Imran (12)

Atomic number ,mass , symbols and nature
Atomic number ,mass , symbols and natureAtomic number ,mass , symbols and nature
Atomic number ,mass , symbols and nature
 
Discussion forum
Discussion forumDiscussion forum
Discussion forum
 
Z transformation
Z transformationZ transformation
Z transformation
 
Complex variables
Complex variablesComplex variables
Complex variables
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...
 
Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier series
 
notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)
 
Fp
FpFp
Fp
 
Theory of fourier series
Theory of fourier seriesTheory of fourier series
Theory of fourier series
 
Solution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imranSolution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imran
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 

Question bank Engineering Mathematics- ii

  • 1. JAHANGIRABAD INSTITUTE OF TECHNOLOGY ENGINEERING MATHEMTICS-II (QUESTION BANK) NUMERICAL PROBLEMS WITH THEORY PREPRAED BY MOHAMMAD IMRAN (ASSISTANT PROFESSOR, JIT) E-mail: mohammad.imran@jit.edu.in Website: www.jit.edu.in Mobile no 9648588546
  • 2. DIFFERENTIAL EQUATION Linear Differential Equations Definition: A differential equation in which independent variable and only its first derivative involved Called “Linear Differential Equation”. 1 2 3 1 2 3 11 2 3 n n n n n nn n n n d y d y d y d y dy a a a a a y Q dx dx dx dx dx − − − −− − − + + + + − − − − − − − + + = Above equation is an example of linear Differential equation of order n. Where 1 2 1, ,............ na a a − all are constant and Q is any function of x which is called Differential equation with constant coefficients. Different notations of Differential operator: First derivative : ' , , d D y d x Second Derivative: 2 2 '' 2 , , d D y d x Third Derivative : 3 3 ''' 3 , , d D y d x . . . . Nth Derivative : , , n n n n d D y dx Order and Degree of A differential Equation : • The highest derivative in the given differential equation called the “Order of the Differential Equation”. For Example consider a differential equation 32 2 2 0 d y dy y dx dx   + + =    the order of the differential equation is 2. • In a differential Equation After made free from the radicals and fraction the degree of the highest derivative called “Degree of the Differential equation”.
  • 3. For Example consider a differential equation 32 2 2 0 d y dy y dx dx   + + =    the Degree of the differential equation is 1. Ordinary and Partial Differential Equations : Differential equation in which unknown function is depends on only one independent variable called “Ordinary Differential Equation”. Differential equations in which two or more independent variables are involved called “Partial Differential Equation” Linear Differential Equation Differential equation in which dependent variables and all its first degree derivatives involved called “Linear Differential Equation” dy dy P Qy R dx dx + + = Where P, Q are constant and R is the function of x only. Linear Differential Equation of second order with constant coefficients : 2 2 d y dy P Qy R dx dx + + = Where P, Q are constant and R is the function of x only. Non-Linear differential Equation : A Differential Equation in which dependent variable and its derivative Having degree more than 1 called “Non-Linear differential Equation”. Auxiliary Equation : Suppose we have a Differential Equation as 2 2 3 4 0 d y dy y dx dx − − = ----------------------------------------------------- (1)
  • 4. Equation (1) we can rewrite as 2 3 4 0D y Dy y− − = ( )2 3 4 0D D y− − = On equating the coefficient of y with 0 we will get 2 3 4 0D D− − = Which is called “Auxiliary Equation”. Solution of different type of Differential Equations : When given differential equation not having any function ( having “0” ) in right hand side 1 1 21 0 n n n n d y d y a a y dx dx − − − − = Case –I : when all the roots of Auxiliary Equation are distinct Let the roots of Auxiliary Equation are 1 2 3, , ..................... nm m m m than the general solution will be 1 2 3 1 2 3 ............... nm x m x m x m x ny c e c e c e c e= + + + + Case –II : when all the roots of Auxiliary Equation are equal than the general solution will be ( )2 1 1 2 3 ............... m xn ny c c x c x c x e− = + + + + Where m is equal roots of Auxiliary Equation Case –III: when some roots of Auxiliary Equation are equal and some are different than the General Solution will be ( ) ( )32 42 1 1 2 3 1 2 3............... ............... nm x m xm xm x m xn n n n n n ny c c x c x c x e c e c e c e c e− + + + += + + + + + + + + + Case –IV : when roots of Auxiliary Equation are imaginary as iα β± than ( )1 2cos sinx y e c x c xα β β= + Case –V : when roots of Auxiliary Equation are imaginary and repeated twice than { } { }( )1 2 3 4cos sinx y e c c x x c c x xα β β= + + + Case –VI : when roots of Auxiliary Equation are Irrational as α β± where β is positive than
  • 5. ( )1 2cosh sinhx y e c x c xα β β= + Case – V: if ,i iα β α β± ± be the two equal pairs of imaginary roots and all other roots real and Different. ( ) 5 1 2 3 4 5cos ( )sin ..................... nm x m xax ny e c c x x c c x x c cβ β = + + + + + +  Some useful expansions : (i) 1 2 3 4 5 (1 ) 1 ..............................D D D D D D− − = + + + + + + ∞ (ii) 1 2 3 4 5 (1 ) 1 ..............................D D D D D D− + = − + − + − + ∞ (iii) 2 2 3 4 (1 ) 1 2 3 4 5 .............................D D D D D− + = − + − + − ∞ (iv) 2 2 3 4 (1 ) 1 2 3 4 5 .............................D D D D D− − = + + + + + ∞ (v) 3 2 3 (1 ) 1 3 6 10 .............................D D D D− − = + + + + ∞ (vi) 3 2 3 (1 ) 1 3 6 10 .............................D D D D− + = − + − + ∞ Remark : When given differential equation not having any function ( having “0” ) in right hand side then there is no need to find out particular integral (P.I) so general solution will be ࢟ = ࢉ࢕࢓࢖࢒࢏࢓ࢋ࢔࢚࢘࢟ ࢌ࢛࢔ࢉ࢚࢏࢕࢔ (࡯. ࡲ) Question : find the general solution of the differential equation 5 3 5 3 0 d y d y dx dx − = (2009) 2 1 2 3 4 5( ) x x y c c x c x c e c e− = + + + + Ans Question : find the particular integral of ( )2 4 4 sin 2D D y x− − = (UPTU2010-11 cos2 . 8 x P I = Ans Question : Find the particular integral of 2 2 2 2 1 d y x x dx = + − (uptu 2013-14
  • 6. 4 3 2 2 . 12 6 2 x x x P I   = + −    Ans Question : Find the particular integral of 2 2 2 d y y x dx − = (UPTU 2012 2 1 2. 2x x C S C e C e x−  = + − +  Ans Question: solve the differential equation (UPTU 2009-10 2 2 5 6 sin3 cos2 d y dy y x x dx dx + − = + Question : solve 2 2 3 2 2 xd y dy y x e dx dx − + = UPTU 203-14 ( ) 3 2 1 2. 2 16 128 16 x x e C S C C x e x x x = + + + − +  Ans Question : solve 3 2 2 3 2 6 1 d y d y dy x dx dx dx − − = + UPTU 2001 3 2 3 2 1 2 3 1 25 6 18 3 6 x x x x CS c c e c e x−   = + + − + −    Ans Question : if ( ) 2 2 0; , d x g x a a b and g dt b + − = are positive numbers and ' ; 0 0 dx x a whent dt = = = , show that ( )' cos g x a a a t b = + − (UPTU 2007 1 2cos sin g g ag b CS c x c x b b b g     = + +        Ans Question : if 3 2 3 2 3 4 2 0 d y d y dy y dx dx dx − + − = (uptu 2001 Question : obtain the general solution of the differential equation '' ' 2 2 cosx y y y x e x− + = + uptu 2002 Ans ( ) [ ]1 2 1 . cos sin 1 sin 2 2 x x xe C S e c x c x x x= + + + + [ ] [ ]6 1 2 1 1 . cos3 sin 3 sin 2 cos 2 30 20 x x C S C e C e x x Ax x ns− = + − + + −
  • 7. Question : find the complete solution of 2 3 2 3 2 sin 2xd y dy y xe x dx dx − + = + (uptu 2003 ( ) 3 2 1 2 3 1 . 3cos2 sin 2 2 2 20 x x x e C S c e c e x x x    = + + + + −    Question : solve the differential equation ( )2 2 1 cos ( 2007x D y xe x uptu− = + Question : find the complete solution of 2 2 3 2 sin 2xd y dy y xe x dx dx − + = + (uptu 2001 Question : solve 2 2 2 sin d y a y ax dx + = ( UPTU 2008 1 2 cos . cos sin 2 x ax C S c ax c ax a = + − Question : solve 3 2 3 2 3 4 2 cosxd y d y dy y e x dx dx dx − + − = + (UPTU 2001, 2006 Ans ( )1 2 3 3sin cos . cos sin 10 x x x x C S e c x c x c e   = + + +    Question : solve ( )2 4 sin3 cos2D x x+ = + ( UPTU 2008 Ans ( ) ( )1 2 1 sin 2 . cos2 sin 2 sin 3 5 4 x x C S c x c x x   = + − +    Question : solve the differential equation ( )4 3 2 2 2 3 3 4sinx D D D y e x+ − = + (UPTU2008 Ans ( ) ( ) [ ]0 3 2 1 2 3 3 3 2 . cos 2sin 20 5 x x x x C S c c x e c e c e e x x− = + + + + − − Question : solve 3 2 3 2 3 2 3 log d y d y dy x x x y x x dx dx dx + + + = + UPTU 2001 1 1 2 1 2 3 3 3 1 cos log sin log log 2 2 2 y c x x c x c x x x−      = + + + +              Ans Question : solve ( ) 2 2 2 log sin log d y dy x x y x x dx dx + + = UPTU 2002
  • 8. Ans ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 1 . cos log sin log log sin log log cos log 4 4 C S c x c x x x x x= + + −   Question : solve the following simultaneous differential equation (UPTU 2011-12, 2013-14 ( )4 , 4 4 , dx dx dy x y y dt dt dt = − + + = − with condition (0) 1x = (0) 0y = Ans ( ) 2 1 2 t x c c x e− = + 2 ( ) t y t te− = Question: solve the simultaneous equations UPTU 2008 3 2 , 5 3 dx dy x y x y dt dt = + = + ( ) ( )3 10 3 10 1 2 t t Ans x c e c e + − = + ( ) ( ) ( )3 10 3 10 1 2 1 10 10 2 t t y c e c e + + = − QUESTION: Question: solve the simultaneous equations UPTU 2008 5 2 , 2 0 dx dy x y t x y dt dt + − = + + = Ans ( ) 3 1 2 1 9 27 t t x c c t e− = + + + 3 3 32 1 2 4 2 2 27 9 t t tc t y c e c te e− − −  = + + + −   1 1 27 c = − 2 6 2 27 9 c = − = − Question : The equations of the motions of a particle are given by UPTU 2009 0, 0 dx dy wy wx dt dt + = − = Find the path of the particle and show that it is a circle. Ans 1 2cos sinx c wt c wt= + , 1 2sin cosy c wt c wt= − , 2 2 2 x y r+ = Which is a equation of circle Question : solve the following differential equation (uptu 2009 1, 1 dx dy y x dt dt = + = + Ans 1 2 1t t x c e c e− = + − , 1 2 1t t y c e c e− = − − Question: Solve the simultaneous differential equations uptu 2005 2 2 2 2 3 4 0, 0 d x d y x y x y dt dt − − = + + = ( ) ( ) ( ) ( ) 1 2 2 3 4 4 1 2 3 4 2 2 2 2 2 2t t t t x c c c t e c c c t e y c c t e c c t e − −  =− + + + + +  = + + + Ans. Question: Solve the simultaneous differential equations uptu 2001
  • 9. 2 2 2 2 3 , 4 3 sin 2td x dx d y dx x e y t dt dt dt dt + + = − + = 1 2 3 4 1 2 1 2 3 4 2 cos sin cos3 sin3 cos2 5 15 1 cos 3 sin 3 sin 2 2 sin 15 1 2 cos 2 sin3 2 cos3 5 t t e x c t c t c t c t t y c t c t t c t c t c t c t e − − = + + + + + = + + − + + − − Question: Solve the simultaneous differential equations uptu 2008 4 3 , 2 5 tdx dy x y t x y e dt dt + + = + + = 2 7 1 2 2 7 1 2 5 31 1 14 196 8 2 1 9 5 3 7 98 24 t t t t t t x c e c e t e y c e c e t e − − − − = + + − − =− + − + + Ans. Question: Solve the simultaneous differential equations uptu 2003 3 sin , cosDx Dy x t Dx y x t+ + = + − = ( ) ( ) 3 1 2 3 1 2 1 2sin cos 5 1 2cos sin 2 2 5 t t t t x c e c e t t y t t c e c e − − = + + − = + − + Ans. Question: Solve the simultaneous differential equations uptu 2001 2 2 2 2 4 4 , 4 4 25 16 td x dx d y dy x y y x e dt dt dt dt − + = + + = + Ans 3 3 1 2 3 4 3 4 3 3 1 2 3 4 25 (3 4 )cos (4 3 )sin cos sin t t t t t t y c e c e c c t c c t e x c e c e c t c t e − − = + + − + + + − = + + + − Question solve 1/222 2 1 d y dy dx dx    = −       uptu 2002 Ans 1cos( )y x c c= − + + Question : Solve 22 2 0 d y dy dy x x dx dx dx   + − =    uptu 2010 Ans 2 1 2log( 2 )y x c c= + +
  • 10. Question : solve 2 " 4 ' (4 2) 0y xy x y− + − = given that 2 x y e= is an integral included in the complementary function . uptu 2004 Ans 2 1 2( )x y e c x c= +
  • 11. DEFINITION: Infinite Series of Trigonometric functions periodic function, used in Fourier analysis. EVEN FUNCTION: Let f(x) be a real-valued function of a real variable. Then f is even if the following equation holds for all x and -x in the domain of f. ( ) ( )f x f x− = or ( ) ( ) 0f x f x− − = Geometrically speaking, the graph face of an even function is symmetric with respect to the graph remains unchanged after about the y-axis. Examples of even functions are or any linear combination of these. ODD FUNCTIONS Again, let f(x) be a real-valued function of a real variable. Then f is odd if the following equation holds for all x and -x in the domain of f: ( ) ( )f x f x− = − or ( ) ( ) 0f x f x− + = Geometrically, the graph of an odd function has rotational symmetry with respect to the origin remains unchanged after rotation origin. Examples of odd functions are x any linear combination of these. FOURER SERIES Trigonometric functions which represents an expansion or approximation of a periodic function, used in Fourier analysis. valued function of a real variable. if the following equation holds for all Geometrically speaking, the graph face of an even function with respect to the y-axis, meaning that its remains unchanged after reflection Examples of even functions are |x|, x2 , x4 , cos(x), cosh(x), y linear combination of these. valued function of a real variable. if the following equation holds for all an odd function has rotational origin, meaning that its graph rotation of 180 degrees about the x, x3 , sin(x), sinh(x), erf(x), or any linear combination of these. which represents an expansion or approximation of a
  • 12. Properties involving addition and subtraction • The sum of two even functions is even, and any constant multiple of an even function is even. • The sum of two odd functions is odd, and any constant multiple of an odd function is odd. • The difference between two odd functions is odd. • The difference between two even functions is even. • The sum of an even and odd function is neither even nor odd, unless one of the functions is equal to zero over the given domain. Properties involving multiplication and division • The product of two even functions is an even function. • The product of two odd functions is an even function. • The product of an even function and an odd function is an odd function. • The quotient of two even functions is an even function. • The quotient of two odd functions is an even function. • The quotient of an even function and an odd function is an odd function. Properties involving composition • The composition of two even functions is even. • The composition of two odd functions is odd. • The composition of an even function and an odd function is even. • The composition of any function with an even function is even (but not vice versa). Other algebraic properties • Any linear combination of even functions is even, and the even functions form a vector space over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of all real-valued functions is the direct sum of the subspaces of even and odd functions. In other words, every function f(x) can be written uniquely as the sum of an even function and an odd function: ( ) ( ) ( )e of x f x f x= + where [ ] 1 ( ) ( ) ( ) 2 ef x f x f x= + − is even and [ ] 1 ( ) ( ) ( ) 2 of x f x f x= − − is odd. For example, if f is exp, then fe is cosh and fo is sinh. • The even functions form a commutative algebra over the reals. However, the odd functions do not form an algebra over the reals, as they are not closed under multiplication.
  • 13. Important questions 1. find the Fourier series for the function 2 ( ) 4 x f x x xπ π= + − ≤ ≤ uptu 2009 2. find the Fourier series for the function ( ) sin 0 2f x x x x π= ≤ ≤ uptu 2001 3. find the Fourier series for the function 0 ( ) 0 k x f x k x π π − − =   uptu 2010 hence show that 1 1 1 1 ........ 3 5 7 4 π − + − + = 4. find the Fourier series for the function 0 ( ) 0 x x f x x x π π − < < =  − < < uptu 2002, 2008 Hence show that 2 2 2 2 2 1 1 1 1 ........ 1 3 5 7 8 π − + − + = 5. find the Fourier series for the function 2 ( ) 4 x f x x xπ π= + − ≤ ≤ uptu 2009 6. find the Fourier series for the function 2 ( )f x x x xπ π= + − ≤ ≤ uptu 2003 Deduce that 2 2 2 2 2 1 1 1 1 ........ 6 1 2 3 4 π = + + + + 7. find the Fourier series for the function 0 ( ) ( 2 ) ( ) 0 x x f x and f x f x x x π π π π π + − < < = + = − − < < uptu 2006 8. find the Fourier series for the function 1 0 ( ) ( 2 ) ( ) 1 0 x f x and f x f x x π π π − − < < = + = < < 9. find the Fourier series for the function ( ) sinf x x x xπ π= − ≤ ≤ uptu 2008 Deduce that 1 1 1 1 2 ........ 1.3 3.5 5.7 7.9 4 π − + + + + = 10. find the Fourier series for the function ( ) cosf x x x xπ π= − ≤ ≤ uptu 2008 11. Obtain the half range sine series for the function 2 ( )f x x= in the interval 0 3x< < uptu 2008 12. Find the half range cosine series for the function 2 0 1 ( ) 2(2 ) 1 2 t x f x t x < < =  − < < uptu 2001, 06, 07 13. Obtain the fourier cosine series expansion of the periodic function define by the function uptu 2001 ( ) sin , 0 1 t f t t l π  = < <    14. Find the half range sine series for the function ( )f x given in the range (0,1) by the graph OPQ as shown in the figure. Uptu 2009
  • 14. The Laplace Transformation Pierre-Simon Laplace (1749-1827) Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian theory of gravitation to the solar system (an important problem of his day). He played a leading role in the development of the metric system. The Laplace Transform is widely used in engineering applications (mechanical and electronic), especially where the driving force is discontinuous. It is also used in process control. What Does the Laplace Transform Do? The main idea behind the Laplace Transformation is that we can solve an equation (or system of equations) containing differential and integral terms by transforming the equation in "t-space" to one in "s-space". This makes the problem much easier to solve. The kinds of problems where the Laplace Transform is invaluable occur in electronics. You can take a sneak preview in the Applications of Laplace section. If needed we can find the inverse Laplace transform, which gives us the solution back in "t-space". The Unit Step Function (Heaviside Function) In engineering applications, we frequently encounter functions whose values change abruptly at specified values of time t. One common example is when a voltage is switched on or off in an electrical circuit at a specified value of time t. The value of t = 0 is usually taken as a convenient time to switch on or off the given voltage.
  • 15. The switching process can be described mathematically by the function called the Unit Step Function (otherwise known as the Heaviside function after Oliver Heaviside). The Unit Step Function Definition: The unit step function, u(t), is defined as 0 0 { } 1 0 t u t t < =  > That is, u is a function of time t, and u has value zero when time is negative (before we flip the switch); and value one when time is positive (from when we flip the switch). Laplace Transformation Question : find the Laplace transform of the function 1, 1 2 ( ) 3 , 2 3 t t f t t t − < < =  − < < uptu 2009 Ans 2 3 2 1 2s s s e e e s − − −  − +  Question: find the Laplace transform of the function 2 , 1 2 ( ) 1, 2 3 7 3 t t f t t t t  < <  = − < <  > uptu 2007 Ans ( ) ( ) 2 3 2 3 3 2 2 2 3 3 5 1 s s e e s s s s s s − − − + + + − Question: if ( ) ( ) 2 2 2 2 cos 4 s L t s s + = + , find 2 (cos )L at Ans ( ) 2 2 2 2 2 4 s a s s a + + uptu 2006 Question: if { }( ) ( ),L f t F s= then prove that { } ( ) [ ]( ) 1 ( ) n nn n d L t f t F s ds = − uptu 2005 Question: Obtain the laplace transform of 2 . .sin 4t t e t Ans ( ) ( ) 2 32 4 3 6 13 2 17 s s s s − − − + uptu 2002
  • 16. Question: find the laplace transform of the function ( ) . .sin 2t f t t e t− = Ans ( ) ( ) 22 4 1 1 4 s s +  + +   uptu 2002 Question: if { }( ) ( ),L f t F s= then prove that 1 ( ) ( ) s L f t F s ds t ∞   =    ∫ uptu 2005, 07 Question: find the laplace transform of the 0 sin ( ) t at f t dt t = ∫ uptu 2004 Question: find the laplace transform of the cos cos ( ) at bt f t t − = Ans 2 2 2 2 1 log 2 s b s a + + uptu 2004 Question: if cos ( ) at e bt f t t − = , find the laplace transform of ( )f t Ans ( ) 2 2 2 1 log 2 s b s a  +   +   uptu 2003 Question: find { }L erf t and hence prove that { } ( ) 3/22 3 8 . 2 4 s L t erf t s s + = + uptu 2001 Question : Express the following function in terms of unit step function : 1, 1 2 ( ) 3 , 2 3 t t f t t t − < < =  − < < uptu 2009 Ans 2 3 2 2 2 2 s s s e e e s s s − − − − + Question : Express the following function in terms of unit step function : 0, 0 1 ( ) 1, 1 2 1 2 t f t t t t < <  = − < <  > uptu 2002 Ans 2 2 2 s s e e s s − − − Question : find the laplace transform of the function , 0 ( ) , 2 t t f t t t π π π π < < =  − < < uptu 2003
  • 17. Ans ( )2 1 1 s s s se e s e π π π π − − − − + − + Question : find the laplace transform of the function sin , 0 ( ) 2 0, t t f t t π ω ω π π ω ω  < < =   < <  uptu 2010 Ans ( )2 2 1 s s e π ω ω ω −   + −    Question : Draw the graph of the following periodic function and find the Laplace transform of the function , 0 ( ) 2002 2 , 0 2 t for t a f t uptu a t for t a < ≤ =  − < < Question : state and prove Convolution theorem. OR If [ ] [ ] [ ]1 1 1 1 1 2 2 1 2 1 2 0 ( ) ( ) ( ) ( ) ( ). ( ) ( ). ( ) t L F s f t and L F s f t then prove that L F s F s f x f t x dx− − − = = = −∫ Solution/proof : By using the definition we can write 1 2 1 2 0 0 0 ( ). ( ) ( ). ( ) t t st L f x f t x dx e f x f t x dx dt ∞ −     − = −       ∫ ∫ ∫ 1 2 1 2 0 0 0 ( ). ( ) ( ). ( ) t t st L f x f t x dx e f x f t x dxdt ∞ −   − = −    ∫ ∫∫ By using the change of order the above equation reduced as 1 2 1 2 0 0 ( ). ( ) ( ). ( ) t st s L f x f t x dx e f x f t x dxdt ∞ ∞ −   − = −    ∫ ∫∫ On adding and subtracting x in the power of e we will get
  • 18. ( ) ( ) ( ) 1 2 1 2 0 0 1 2 1 2 0 0 1 2 1 2 0 0 ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ) . ( ) t s t x x s t s t x x s t s t xsx s L f x f t x dx e f x f t x dxdt L f x f t x dx e f x f t x dxdt L f x f t x dx e f x dx e f t x dt ∞ ∞ − − + ∞ ∞ −  − +   ∞ ∞ − −−   − = −      − = −      − = −    ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫ Let t x z dt dz− = ⇒ = Now the above equation reduced as [ ] 1 2 1 2 0 0 0 1 2 1 2 0 1 1 2 1 2 0 ( ). ( ) ( ) . ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) t sx sz t t L f x f t x dx e f x dx e f z dt L f x f t x dx F s F s L F s F s f x f t x dx proved ∞ ∞ − − −   − =      − =    = − ∫ ∫ ∫ ∫ ∫ Question : Use the convolution theorem to evaluate ( ) 1 2 2 4 s L s −       +   uptu 2010 Ans 1 sin 2 4 t Question : Use the convolution theorem to find the inverse of the function ( ) 22 s s a+ uptu 2009 Ans [ ]3 1 sin cos 2 at at at a − Question : using the Convolution theorem find ( ) ( ) 2 1 2 , 2 2 s L a b s s −    ≠  + −   uptu 2006,04 Ans 2 2 sin sina at b bt a b − − Question : using the Convolution theorem find ( )( ) 1 2 2 1 4 s L s s −      + +   uptu 2006,04 Ans ( ) 1 cos cos2 3 t t−
  • 19. Question : using the convolution theorem, prove that ( ) 2 1 3 2 1 cos 1 21 t L t s s −    = + −  +   uptu 2005 Question: Using Laplace transformation solve the differential equation uptu 2002 2 2 9 2 , (0) 1, 1 2 d x x t if x x dt π  + = = = −    Ans. [ ] 1 4 12 sin3 1 cos2 cos3 cos2 4cos3 4sin3 5 5 5 3 5 t x t t t t t= + + = + + Question : solve, using Laplace transform method ' " ' (0) 2, (0) 8, 4 4 6 t y y y y y e− = − = + + = uptu 2007 Ans. 2 2 6 8 2t t t y e e te− − − = − − Question : solve 2 ' 2 2 5 sin (0) 1, (0) 1xd x dy y e x where y y dt dx − + + = = = uptu 2004 Ans. ( ) 1 sin sin 2 3 x y e x x− = + Question : apply Laplace transform to solve the equation 2 2 cos2 , 0, 0 0 d x dx y t t t where y for t dt dt + = > = = = Uptu 2005 Ans 5 4 sin sin 2 cos2 9 9 3 t y t t t= − + − Question: solve, by the method of laplace transform, the differential equation ( ) ( )2 2 sin , 0 0D n x a nt x Dx at tα+ = + = = = uptu 2002, 2010 Ans ( )2 sin cos cos sin 2 a x nt nt nt n α α = −  Question : using the laplace transform, solve the differential equation " 2 ' (0) 0 '(0) 1y ty y t when y and y+ − = = = Ans , ( )y t C y t c must bevanish= + = uptu 2003 Question : A particle moves in a line so that its displacement x from the fixed point O at any time t, is given by " 4 ' 5 80sin5x x x t+ + = using Laplace transform, find its displacement at any time t if initially particle is at rest at 0x = . Uptu 2009 Ans. ( ) ( )2 2 cos 7sin 2 cos5 sin5t x e t t t t− = + − +
  • 20. Question : Voltage at Ee is applied at 0t = to a circuit of inductance L and R. show that the current (i) at time t is ( )/at Rt LE e e R aL − − − − . uptu 2007 Question : Solve the simultaneous differential equations by using the laplace transform 3 2 , 0 dx dx dy y t y dt dt dt − = + − = with the condition (0) (0) 0x y= = uptu 2008 Ans 2 22 3 3 3 3 3 3 , 2 2 4 4 2 2 t t t t x e y t e= + − + = + − Question : Solve the simultaneous equation , sin , (0) 1, (0) 0tdx dy y e x t x y dt dt − = + = = = uptu 2006 Ans. 1 1 cos 2sin cos , sin cos sin 2 2 t t x e t t t t y t t e t t   = + + − = − + −    Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by 2 cos2 , 2 sin 2 ,( 0) dx dy y t x t t dt dt − = + = > it is given that at 0, 1 0.t x and y= = = show by using transforms that the particle moves along the curve 2 2 4 4 5 4x xy y+ + = uptu 2003 Ans: ( )2 2 2 2 2 2 4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + = Question : Solve the simultaneous differential equations by Laplace transform 4 0, 2 tdx dy dx y y e dt dt dt + − = + = With the condition (0) (0) 0x y= = uptu 2008 Ans. 3 3 /4 4 1 5 8 1 , 3 7 21 7 t t t t x e e y e e−  = − + = −    Question : solve the simultaneous equations ( ) ( )2 2 3 4 0, 1 0D x y x D y− − = + + = for 0,t > given that 0 2 0 dy dx x y and at t dt dt = = = = = uptu 2004 Ans ( )2 cosh , 1 sinhx t t y t t= = − Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by 2 sin 2 , 2 cos2 ,( 0) dx dy y t y t t dt dt + = − = > it is given that at 0, 1 0.t x and y= = = show by using transforms that the particle moves along the curve 2 2 4 4 5 4x xy y+ + = uptu 2003 Ans: ( )2 2 2 2 2 2 4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
  • 21. UNIT- V APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS Question: Explain the method of separation of variables. Uptu 2007 Question: Solve the following equation 2 2 2 0 z z z x x y ∂ ∂ ∂ − + = ∂ ∂ ∂ by the separation of variables method. Ans. ( ) ( ) { }1 1 1 1 1 2 3 K x K x Ky z C e C e C e + + − + − = + uptu 2006 Question : Using the method of separation of variables, solve 3 2 ( ,0) 6 xu u u whereu x e x t −∂ ∂ = + = ∂ ∂ Ans. 3 2 6 x t u e− − = uptu 2006 Question : solve the following equation by the method of separation of variables 2 costu e x x t −∂ = ∂ ∂ Given that 0u = when 0t = and 0 0 u when x t ∂ = = ∂ Ans. ( )1 1 sinu e x− = − uptu 2008 Question : Drive the one Dimensional wave equation 2 2 2 2 2 y y a t x ∂ ∂ = ∂ ∂ . uptu 2007 Question : Solve completely the equation 2 2 2 2 2 y y a t x ∂ ∂ = ∂ ∂ ,representing the vibrations of a string of length l, fixed at both the ends, given that (0, ) 0, ( , ) 0, ( ,0) ( )y t y l t y x f x= = = and ( ,0) 0,0 .y x x l t ∂ = < < ∂ Ans. sin cosn n x n ct y b l l π π = uptu 2005 Question : A string is stretched and fastened to two points ݈ apart. Motion is started by displacing the string in the form sin x y a l π  =     from which it is released at a time 0t = show tat the displacement of any point at a distance x from one end at time t is given by ( , ) sin cosn x ct y x t b l l π π    =         uptu 2004, 09
  • 22. Question: If a string of the length ݈ is initially at rest in equilibrium position and each of its points is given the velocity 3 0 sin t y x b t l π = ∂  =  ∂  , find the displacement ( , )y x t . Ans: 3 3 ( , ) 9sin sin sin sin 12 bl x cl x ct y x t c l l l l π π π π π   = −   uptu 2001,06 Question : find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the initial temperature is 5 sin 3sin 2 2 x xπ π + Ans 2 2 2 2 25 4 4 5 sin 3sin 2 2 t t c c x x u e e π π π π− − = + uptu 2007,09 Question : An insulated of of length ݈ has its ends A and B maintained at 0 0 C and 0 100 C respected until steady conditions prevail. If B is suddenly reduced to 0 0 C and maintained at 0 0 C, find the temperature at a distance x from A at time t. Ans : ( ) 2 2 2 21 200 1 . sin t n c n l n x u e n l π π π − + = − uptu 2004,05 Question: Solve 2 2 2 2 0 u u x y ∂ ∂ + = ∂ ∂ which satisfies the conditions (0, ) (0, ) ( ,0) 0u y u y u x= = = and ( , ) sin n x u x a l π  =     Ans. sinh sin sinh n y n x l u n al l π π π        =          uptu 2004 Question : Solve 2 2 2 2 0,0 ,0 u u x y x y π π ∂ ∂ + = < < < < ∂ ∂ , which satisfies the conditions 2 (0, ) ( , ) ( , ) 0 ( ,0) sinu y u y u x and u x xπ π= = = = Ans. 2 1,3,5,.. 8 sin sinh ( ) ( 4)sinhn nx n y u n n n π π π ∞ = − − = − ∑ (from AKTU Question Bank
  • 23. SERIES SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATIONS Question : solve the series the legendre’s equation of order one ( )2 1 " 2 ' 2 0 ................ (1)x y xy y− − + = Solution : here x=0 is an ordinary point. Let a trial solution of (1) in the form ogf series in x be 2 3 0 1 2 3 .............. .... (2)n ny c c x c x c x c x= + + + + + + − − − − − − Different equation (2) we get 2 1 2 3 2 2 3 4 ' 2 3 .............. " 2 6 12 .......... y c c x c x y c c x c x = + + + = + + + On putting the values of y,y’ and y” in equation (1) we get ( )( ) ( ) ( )2 2 2 2 3 2 3 4 1 2 3 0 1 2 31 2 6 12 ..... 2 2 3 ..... 2 ..... 0x c c x c x x c c x c x c c x c x c x− + + + − + + + + + + + + = ( ) ( ) ( ) ( )2 3 2 0 3 1 1 4 2 2 2 5 3 3 32 2 6 2 2 12 2 4 2 20 6 6 2 .... 0c c c c c x c c c c x c c c c x+ + − + + − − + + − − + + = on equating the powers of x to zero we get 2 0 3 4 2 0 5 7 9 6 0 1 1 1 , 0, , 0 3 3 5 c c c c c c c c c and c c= − = = = − = = = = − On substitute these above values in equation (2) we get 2 4 6 0 1 0 0 0 2 4 6 0 1 1 1 ...... 3 5 1 1 1 .... 3 5 y c c x c x c x c x y c x x x c x = + − − − −   = − − − − +    Question : Using the Frobenius method, obtain a series solution in powers of x for differential equation ( ) ( ) 2 2 2 1 1 3 0 d y dy x x x y dx dx − + − + = UPTU 2010 Solution : we have ( ) ( ) 2 2 2 1 1 3 0 (1) d y dy x x x y dx dx − + − + = − − − − − − − Here 2 1 2( ) ( )xP x and x P x are analytic at x=0. So x=0 is a regular singular point, as assume the solution in the form
  • 24. ( ) ( )( ) 0 1 0 2 2 2 0 1 m k k k m k k k m k k k y a x dy a m k x dx d y a m k m k x dx ∞ + = ∞ + − = ∞ + − = = = + = + + − ∑ ∑ ∑ On putting the values of 2 2 , , dy d y y dx dx in equation (1) we get ( ) ( )( ) ( ) ( )2 1 0 0 0 2 1 1 1 3 0m k m k m k k k k k k k x x a m k m k x x a m k x a x ∞ ∞ ∞ + − + − + = = = − + + − + − + + =∑ ∑ ∑ ( )( ) ( )( ) ( ) ( )1 1 0 0 0 0 0 2 1 2 1 3 0 m k km k m k m k k k k k k k k m k k k a m k x a m k m k x a m k m k x a m k x a x +∞ ∞ ∞ ∞ + − + + − = = = = ∞ + = + + + − − + + − + + − + = ∑ ∑ ∑ ∑ ∑ We can rewrite as 2 2 0 2 2 1 0 2 2 2 2 2 2 3 2 2 2 2 2 2 0 m k k k m k k k a m mk m mk k k m k x a m mk m mk k k m k x ∞ + = ∞ + − =  − − + − − + − − +   + + − + + − + + =  ∑ ∑ ( )2 2 2 2 1 0 0 2 4 2 3 2 4 1 2 0m k m k k k k k a m mk m k k x a m k m k k x ∞ ∞ + + − = =    − − + − + + + + − + − =   ∑ ∑ ( )[ ] ( )[ ] 1 0 0 1 2 2 3 2 2 1 0 (2)m k m k k k k k a m k m k x a m k m k x ∞ ∞ + + − = = + − − − + + + + − = − − −∑ ∑ The coefficient of the lowest degree term 1m x − in equation (2) is obtain by substituting k=0 in second summation of (2) only equating it by zero we get ( )0 02 1 0 0, 1/ 2, 0a m m m a− = ⇒ = = ≠ The coefficient of the next lowest degree term m x in (2) is obtained by substituting k=0 in first summation and k=1 in the second summation, we get ( )( ) ( )( )0 11 2 3 1 2 1 0a m m a m m+ − + + + + =
  • 25. ( )( ) ( )( ) ( ) ( ) 1 1 1 2 3 1 2 1 2 3 2 1 m m a m m m a m + − + = − + + − = − + On equating the coefficient of 2 x On putting 1k k→ + in second summation of (2) we get the coefficient of m x and equating to zero we get ( )( ) ( )( ) ( ) ( ) ( ) 1 1 1 1 2 2 3 1 2 2 1 0 2 2 3 2 2 1 2 2 3 2 2 1 k k k k k k a m k m k a m k m k m k a a m k m k a a m k + + + + + − + + + + + + + = − + + = − + + − − = + + ( ) ( ) 1 0 2 1 2 2 3 0 2 2 1 2 2 3 1 2 2 1 m k if k a a m k m k if k a a m k − − = = + + − − = = + + ( ) ( ) ( ) 3 2 4 3 5 4 2 2 3 2 2 2 1 2 2 3 3 2 2 1 2 2 3 4 2 2 1 m k if k a a m k m k if k a a m k m k if k a a m k − − = = + + − − = = + + − − = = + + m=0 M=1/2 ( ) 1 0 2 1 0 0 3 2 0 4 3 0 0 5 4 0 0 2 3 4 5 1 0 2 3 4 5 1 0 3 1 1 3 3 3 1 1 5 5 3 3 1 3 7 7 5 35 5 5 3 1 9 9 35 21 1 3 1 1 3 .... 5 35 21 3 3 3 3 1 3 .... 1.3 3.5 5.7 7.9 a a a a a a a a a a a a a a a a a y a x x x x x x y a x x x x = − = − = − − = = =   = = =      = = =      = − + + + + +      = − + + + + +    ( ) 1 0 0 2 1 3 4 5 1 3 2 2 2 0 0 2 0 1 2 3 2 1 2 1 2 1 2 1 2 0 1 2 3 2 ...... 0 1 a a a a a a a a y a x a x y a x x   −   = = −   +      −   = =   +    = = = = = − = −
  • 26. General solution ( ) 2 3 4 5 0 3 3 3 3 1 3 .... 1 1.3 3.5 5.7 7.9 x y A x x x x Ba x x   = − + + + + + + −    Ans Question: using extended power series method find one solution of the differential equation 2 " ' 0xy y x y+ + = . Indicate the form of a second solution which is linearly independent of the first obtained above . (UPTU 2007 Solution: we have 2 ( ) ( )xP x and x Q x are analytic therefore x=0 is a regular singular point of the equation 2 2 2 0 d y dy x x y dx dx + + = Suppose ( ) 1 2 2 2 ( ) ( ) 1 m k k m k k m k k y a x dy a m k x dx d y a m k m k x dx + + − + − = = + = + + − ∑ ∑ ∑ On putting all these above values of y , y’ and y” in (1) we get ( ) ( ) ( ) ( ){ } { } 2 1 2 1 1 2 1 2 1 2 1 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 1 0 ( ) 1 1 m k m k m k k k k m k m k m k k k k m k m k k k m k m k k k m k k k x a m k m k x a m k x x a x a m k m k x a m k x a x a m k m k m k x a x a m k m k x a x a m k m k x a x + − + − + + − + − + + + − + + + − + + + − + + − + + + = + + − + + + =  + + − + + + =   + + − + + =   + + − + +  ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ( ) 2 1 2 2 1 2 0 ( ) 0 ( ) 0 (2) m k m k m k k k m k m k k k a m k m k x a x a m k x a x + + + − + + + − + + =  + + + =   + + = − − − − − − − −  ∑ ∑ ∑ ∑ ∑ The coefficient of the lowest degree term 1m x − in (2) is obtained by the putting k=0 in the first summation of (2) only and equating it to zero. Then the indicial equation is 2 2 0 0 0 0,0a m m m= ⇒ = ⇒ =
  • 27. Coefficient of next lowest degree term m x in (2) is obtained putting k=1 in the first summation only and equating it to zero ( ) 2 1 11 0 0a m a+ = ⇒ Equating the cifficient of 1m x + for k =2 we get ( ) 2 2 22 0 0a m a+ = ⇒ Now on equating the coefficient of 2m k x + + to zero we have ( ) ( ) 2 3 3 2 3 0 3 k k k k a m k a a a m k + + + + + = = − + + I ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 02 4 1 7 102 5 2 8 112 6 3 02 2 2 9 6 02 2 2 2 3 6 9 0 2 2 2 2 2 2 1 0 3 1 1 0, 0 4 1 2 0, 0 5 1 1 3 6 3 6 1 1 9 3 6 9 1 ............. (3) 3 3 6 3 6 9 m if k a a m if k a a a a m if k a a a a m if k a a a m m m a a a m m m m x x x y x a m m m m m m = = − + = = − = = = + = = − = = = + = = − = + + + = − = + + + +   = − + − + − − − − − −  + + + + + +   For m=0 To find the first solution , put m=0 in (3) we get ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 1 0 2 2 2 2 2 2 1 ............. (4) 3 3 6 3 6 9 x x x y a   = − + − + − − − − −     To find the second independent solution, differentiate (3) w.r.t m then
  • 28. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 (5) 2 2 ............. 3 6 9 3 6 9 m m y x x x x x a m m m m m m m x x x x m m m m m m m m x a x x m m m m m m  ∂ = − + − +  ∂ + + + + + +     − − +  + + + + + + + +  + − − − − −   + +  + + + + + +  putting m=0 in equation (5) we get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 2 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 (6) 2 2 ............. 3 6 9 3 6 9 x x x y x a x x x x a x x   = − + − +       − − +    + − − − − −   + +    hence, the general solution is given by (4) and (6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 6 9 3 6 9 1 0 2 02 2 2 2 2 2 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 2 0 9 9 2 3 2 2 3 3 1 ............. log 1 .......... 3 3 6 3 6 9 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 2 2 ............. 3 6 9 3 6 9 y c y c y x x x x x x y c a c x a x x x x c a x x y c = +    = − + − + + − + − +          − − +    +    + +    = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 1 2 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 3 3 6 3 6 3 6 9 2. ............. 3 6 9 3 6 9 x x x c x a x x x x c a Ans x x   + − + − + +       − − +       + +   
  • 29. Question : solve the differential equation 2 2 0 d y dy x y dx dx + − = (UPTU C.O, 2003 Solution : on comparing with the equation 2 2 ( ) ( ) 0 1 1( ) ( ) d y dy P x Q x y wehave dx dx P x and Q x x x + + = −= = Because at x=0 both ( )P x and ( )Q x are not analytic 0x∴ = is a singular point Also ( ) 1xP x = and 2 ( )x Q x x=− Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... " 1 1 2 1 3 2 ....... m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + On substituting the all these above values in given equation we will get ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 1 1 0 1 2 3 1 1 2 0 1 2 3 1 2 3 0 1 2 3 1 1 2 1 3 2 ....... 1 2 3 ...... ....... 0 m m m m m m m m m m m m x m m a x m m a x m m a x m m a x ma x m a x m a x m a x a x a x a x a x − − + − + + + + +  − + + + + + + + + +  + + + + + + + + − + + + + = The coefficient of 1m x − =0 Then the indicial equation is ( ) 0 01 0 0,0m m a ma m− + = ⇒ = which are equal Coefficient of next lowest degree term 0m x = ( ) ( ) ( ) ( ) 2 1 1 0 1 0 0 1 2 1 1 0 1 1 m ma m a a m a a a a m + + + − = ⇒ + = = + Equating the coefficient of 1 0m x + = ( )( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 2 1 01 2 2 2 2 2 1 2 0 2 2 1 2 m m a m a a m a a aa a m m m + + + + − = ⇒ + = = = + + +
  • 30. ( ) ( ) ( ) 0 3 2 2 2 1 2 3 a a m m m = + + + Using equation (1) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 0 2 2 2 2 2 2 1 .......... (2) 1 1 2 1 2 3 m x x x y a x m m m m m m   = + + + + − − − −  + + + + + +   ( ) ( ) 2 3 1 0 0 2 2 ( ) 1 .......... (3) 2! 3! m x x y y a x x=   = = + + + + − − − −     To find the second independent solution, partially differentiate (1) w.r.t m then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 9 0 2 2 2 2 2 2 2 3 2 2 0 3 2 2 2 log 1 ............. 1 1 2 1 2 3 2 2 1 1 1 21 1 2 2 1 1 1 ..... 1 2 31 2 3 m m y x x x a x x m m m m m m m x x m mm m m x a x m m mm m m  ∂ = + + + +  ∂ + + + + + +       − − +   + ++ + +     +       − + + −  + + ++ + +     Now the second solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 3 2 0 02 2 2 2 0 2 3 1 0 2 2 1 1 1 1 1 log 1 ............. 2 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 2 1 1 ...... 2 2 32! 3! m y x x y a x x a x x x m y x a x x x =    ∂      = = + + + + − + + + + + −        ∂                 = − + + + + + −           Hence the complete solution is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 2 3 2 3 1 2 0 2 02 2 2 2 2 3 2 2 2 2 2 1 1 1 1 1 log 1 .......... 2. 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 1 .......... 2. 1 1 2 2 32! 3! 2! 3! y c y c y x x y c c x a x c a x x x x x y A B x x B x x = +        = + + + + + − + + + + + −                       = + + + + + − + + + + +           3 ......x Ans   −     Question: Solve in the series the differential equation 2 2 2 2 5 0 d y x x x y dx + + = UPTU 2002
  • 31. Solution : we have 2 2 2 2 5 0 d y x x x y dx + + = on comparing above given differential equation with 2 2 ( ) ( ) 0 5( ) ( ) 1 d y dy P x Q x y wehave dx dx P x and Q x x + + = = = Because at x=0 both ( )P x and ( )Q x are not analytic 0x∴ = is a singular point Also ( ) 5xP x = and 2 2 ( )x Q x x= Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... (2) " 1 1 2 1 3 2 ....... (3) m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + − − On substituting the all these above values in given equation we will get ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) 2 2 1 0 1 2 1 1 0 1 2 2 1 2 3 0 1 2 3 1 1 2 1 ....... 5 1 2 ...... ....... 0 (4) m m m m m m m m m m x m m a x m m a x m m a x x ma x m a x m a x x a x a x a x a x − − − + + + +  − + + + + + +  + + + + + + + + + + + = − − − − − − The coefficient of m x =0 Then the indicial equation is ( ) ( ) ( ) 0 0 2 0 0 1 5 0 4 0 4 0 0, 4 m m a ma m m a m m a m − + = + = + = = − which are distinct Coefficient of next lowest degree term 1 0m x + = ( ) ( ) ( )( )1 1 1 1 1 5 1 0 5 1 0 0 (5) [ 5, 1 m ma m a m m a a m + + + = ⇒ + + = = − − − − − − ≠− − Equating the coefficient of 2 0m x + =
  • 32. ( )( ) ( ) ( )( ) ( )( ) 2 2 0 2 0 0 2 2 1 5 2 0 2 6 0 (6) 1 6 m m a m a a m m a a a a m m + + + + + = + + + = − = − − − − − − + + Equating the coefficient of 2 0m x + = ( ) ( ) ( ) 3 3 1 3 1 1 3 2 2 2 3 5 7 9 ( 3)( 2) 5( 3) 0 ( 3)( 7) 0 1 2 3 0 0 (7) m m a m a a m m a a a a m m m a similarly a a a + + + + + = + + + = − = + + + = = = = − − − − − − Coefficient of 4 0m x + = 4 4 2 4 2 02 4 ( 4)( 3) 5( 3) 0 ( 4)( 8) . (8) ( 4)( 8) ( 2)( 4)( 6)( 8) m m a m a a m m a a aa a etc m m m m m m + + + + + = + + = − − = = − − − − − + + + + + + These give ( )( ) ( )( )( )( ) 2 3 0 1 .......... (9) 2 6 2 4 6 8 m x x y a x m m m m m m   = − + + − − − −  + + + + + +   On putting 0m = in eq (9) we get 2 4 1 0 0( ) 1 .......... (10) 2.6 2.4.6.8 m x x y y a=   = = − + + − − − −    On putting 4m = − in the series given by equation (9). The coefficients becomes infinite. To skip this problem we will put 0 0 ( 4)a b m= + so that ( ) ( ) ( )( ) ( )( )( ) 2 3 0 4 4 .......... (11) 2 6 2 6 8 m m x x y b x m m m m m m  + = + − + + − − − −  + + + + +   ( ) ( ) ( ) ( ) 22 2 4 0 2 2 2 3 2 3 32 768 20 log 1 ............. 8 12 16 76 96 m m my m m b x x x x m m m m m m  + +∂ + + = + − +  ∂ + + + + + 
  • 33. Now the second solution ( ) ( ) ( ) 2 4 4 2 0 4 4 6 2 4 4 4 2 0 0 4 4 6 4 2 0 4 log 1 ............. 4 4 log 0 0 ... 1 .... ( 2)(2)(4) 16 ( 2)(2)(4) 16 log ..... 16 16 m m m y x x y b x x m y x x x x y b x x b x m y x x y b x x m − =− − − =− − =−  ∂  = = + − +    ∂       ∂  = = − + − + + + − +      ∂ − −       ∂ −  = = − − +   ∂    2 4 4 0 1 ... (4) 4 x x b x−   + − +    Hence the Hence complete solution is ( ) ( ) 1 1 2 2 2 4 4 6 2 4 4 4 1 0 2 0 2 0 2 4 2 4 6 4 1 .......... log ..... 1 ... 2.6 2.4.6.8 16 16 (4) 4 1 1 .......... 1 ... log ..... 12 384 (4) 4 16 16 y c y c y x x x x x x y c a c b x x c b x x x x x x y A Bx B x An − − − = +       = − + + + − − − + + − +                 = − + + + + − + − + +           s Question : solve the given differential equation " 2 ' 0xy y xy+ + = UPTUU 2003 Solution : we have " 2 ' 0xy y xy+ + = on comparing above given differential equation with 2 2 ( ) ( ) 0 2( ) ( ) 1 d y dy P x Q x y wehave dx dx P x and Q x x + + = = = Because at x=0 ( )P x 0x∴ = is a singular point Also ( ) 2xP x = and 2 2 ( )x Q x x= Both at x=0 ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... (2) " 1 1 2 1 3 2 ....... (3) m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + − − On substituting the all these above values in given equation we will get
  • 34. ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 1 1 0 1 2 3 1 1 2 0 1 2 3 1 2 3 0 1 2 3 1 1 2 1 3 2 ....... 2 1 2 3 ...... ....... 0 m m m m m m m m m m m m x m m a x m m a x m m a x m m a x ma x m a x m a x m a x x a x a x a x a x − − + − + + + + +  − + + + + + + + + +  + + + + + + + + + + + + + = The coefficient of 1m x − =0 Then the indicial equation is ( ) ( ) 0 0 2 0 2 1 2 0 0 0 0, 1 m m a ma m m a m m m − + = + = + = = − which are distinct Coefficient of next lowest degree term 0m x = ( ) ( ) ( )( ) ( ) 1 1 1 1 1 2 1 0 1 2 0 1 0 m ma m a m m a m a + + + = + + = + = Since m+1 may be zero ,hence 1a is arbitrary ( 1a becomes in determinant) Hence the solution will contain 0a and 1a as arbitrary constants. The complete solution will be given by the putting 1m = − in y Equating the coefficient of 1 0m x + = ( )( ) ( ) ( )( ) ( )( ) 2 2 0 2 0 0 2 2 1 2 0 2 3 0 3 2 m m a m a a m m a a a a m m + + + + + = ⇒ + + + = − = + + Equating the coefficient of 2 0m x + = ( )( ) 3 3 1 3 1 1 3 ( 3)( 2) 2( 3) 0 ( 3)( 4) 0 3 4 m m a m a a m m a a a a m m + + + + + = + + + = − = + + Equating the coefficient of 3 0m x + =
  • 35. 4 4 2 4 2 2 4 0 4 ( 4)( 3) 2( 4) 0 ( 4)( 5) 0 ( 4)( 5) ( 2)( 3)( 4)( 5) m m a m a a m m a a a a m m a a m m m m + + + + + = + + + = − = + + = + + + + Equating the coefficient of 4 0m x + = 5 5 3 5 3 5 3 3 5 1 5 ( 5)( 4) 2( 5) 0 ( 5)( 6) 0 ( 5)( 6) ( 5)( 6) ( 3)( 4)( 5)( 6) m m a m a a m m a a m m a a a a m m a a so on m m m m + + + + + = + + + = + + = − − = + + = + + + + On putting all above values in equation (1) we get ( )( ) ( )( ) 2 3 40 01 0 1 51 3 2 3 4 ( 2)( 3)( 4)( 5) ( 3)( 4)( 5)( 6) m a aa a a x x x x m m m m m m m m y x a x m m m m   + − − + + + + + + + + +  =   +  + + + +  ( )( ) ( )( ) ( ) 2 4 0 3 5 1 2 4 3 5 1 0 11 1 ... 3 2 ( 2)( 3)( 4)( 5) .... 3 4 ( 3)( 4)( 5)( 6) 1 ... .... 1.2 1.2.3.4. 2.3 2.3.4.5 m m x x a m m m m m m y x x x a x m m m m m m Now x x x x y x a a x− =−     − + −   + + + + + +    =      − + −  + + + + + +         = − + − + − + −          Hence the solution is ( ) ( ) 1 0 1 1 cos sin m y y y a x a x x =− = = +
  • 36. ( ) ( ) ( ) 0 3 2 2 2 1 2 3 a a m m m = + + + Using equation (1) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 0 2 2 2 2 2 2 1 .......... (2) 1 1 2 1 2 3 m x x x y a x m m m m m m   = + + + + − − − −  + + + + + +   ( ) ( ) 2 3 1 0 0 2 2 ( ) 1 .......... (3) 2! 3! m x x y y a x x=   = = + + + + − − − −     To find the second independent solution, partially differentiate (1) w.r.t m then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 9 0 2 2 2 2 2 2 2 3 2 2 0 3 2 2 2 log 1 ............. 1 1 2 1 2 3 2 2 1 1 1 21 1 2 2 1 1 1 ..... 1 2 31 2 3 m m y x x x a x x m m m m m m m x x m mm m m x a x m m mm m m  ∂ = + + + +  ∂ + + + + + +       − − +   + ++ + +     +       − + + −  + + ++ + +     Now the second solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 3 2 0 02 2 2 2 0 2 3 1 0 2 2 1 1 1 1 1 log 1 ............. 2 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 2 1 1 ...... 2 2 32! 3! m y x x y a x x a x x x m y x a x x x =    ∂      = = + + + + − + + + + + −        ∂                 = − + + + + + −           Hence the complete solution is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 2 3 2 3 1 2 0 2 02 2 2 2 2 3 2 2 2 2 2 1 1 1 1 1 log 1 .......... 2. 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 1 .......... 2. 1 1 2 2 32! 3! 2! 3! y c y c y x x y c c x a x c a x x x x x y A B x x B x x = +        = + + + + + − + + + + + −                       = + + + + + − + + + + +           3 ......x Ans   −    