SlideShare a Scribd company logo
1 of 67
MEC2-K56- Group 15 Page 1
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MECHANICAL ENGINEERING
Project 1
Designing Chain - Driven System
Supervisor: PhD Dang Bao Lam
PhD Nguyen Tuan Khoa
Class: Mechatronics 2 - K56
Group 15 Students Mai Vฤƒn Quyแบฟt (20110646)
Lรฃ Minh Cรดng (20110087)
MEC2-K56- Group 15 Page 2
Contents
A. Choosing motor and distributing transmission ratio: ............................. 7
1. Work power: ................................................................................. 7
2. Efficiency of driven system:........................................................... 7
3. Necessary power on the motor axis: ............................................... 7
4. Number of revolutions on operating axis: ....................................... 7
5. Choosing the first-aid transmission ratio:........................................ 7
6. First-aid number of revolutions on motor axis................................. 7
7. Calculating synchronous number of revolutions of motor:............... 8
8. Choosing the motor: ...................................................................... 8
9. Distributing transmission ratio: ...................................................... 8
10. Calculating the factors on the axis: ............................................... 8
11. Data Table:.................................................................................. 9
B. Calculating and designing outer transmission โ€“ chain drives: ........Error!
Bookmark notdefined.
1. Choosing the type of chain base on operating condition: .........Error!
Bookmark notdefined.
2. Choosing number of teeth of the sprocket......Error! Bookmark not
defined.
3. Select factors...................................Error! Bookmark notdefined.
4. Select chain drive ............................Error! Bookmark notdefined.
5. Installation parameters .....................Error! Bookmark notdefined.
6. Centre distance calculation...............Error! Bookmark notdefined.
7. Selection of sprocket materials .........Error! Bookmark notdefined.
8. Data of chosen chain........................Error! Bookmark notdefined.
9. Check for chianโ€™s durability .............Error! Bookmark notdefined.
C. Design gear transmission...........................Error! Bookmark notdefined.
MEC2-K56- Group 15 Page 3
1. Design Decision:.......................................Error! Bookmark notdefined.
2. Design Calculation: ...................................Error! Bookmark notdefined.
๏‚ท Pitch diameters:................................Error! Bookmark notdefined.
๏‚ท Bending geometry factor...................Error! Bookmark notdefined.
๏‚ท Velovity factorโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ19
๏‚ท Transmitted loadโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.19
๏‚ท Bending stresses in pinion and gearโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ20
๏‚ท Surface stress in the pinion gearโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.20
๏‚ท Bending- fatigue strengthโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...22
๏‚ท Surface fatigue strengthโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..23
๏‚ท Safety factorsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..24
3. Data table..................................................Error! Bookmark notdefined.
D. Shafts, keys and couplings calculation. ....Error! Bookmark notdefined.
I. Choosing material ...........................Error! Bookmark notdefined.
II. Shaft 1 calculations .............................Error! Bookmark notdefined.
a) Analyze the forces and moment...............................โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...29
b) Diameter calculationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ32
c) Key and testing for shaft Iโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...33
III. Shaft 2 calculationsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ38
a) Analyze the forces and momentsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. ...38
b) Diameter calculationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.40
c) Key and testing for shaft II โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.42
E. Bearing, lubrication, gear boxโ€™s cover and parts structure. ...........Error!
Bookmark notdefined.
1. Shaft 1............................................Error! Bookmark notdefined.
2. Shaft 2............................................Error! Bookmark notdefined.
F. Gearbox's coverโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...49
MEC2-K56- Group 15 Page 4
G. Comparisionof Englishvs Vietnamese documentโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
References:................................................................................................. 66
List of tables
Table 1 Motordata table 10
Table 2 Sprocket materials 13
Table 3 Chain drive data table 14
Table 4 Geardrive data table 25
Table 5 Uncorrectedshaft I diameter data 35
Table 6 CorrectedshaftI diameter data 40
Table 7 Uncorrectedshaft II diameter data 45
Table 8 Correctedshaft II diameter data 50
Table 9 Compare English vs Vietnamese document 55-65
List of figures
Figure 1 Chain lubrication 11
Figure 2 Chain 15
Figure 3 Shaft dimensions 29
Figure 4 Force diagramin shaft I 30
Figure 5 Moment diagram in shaft I 33
MEC2-K56- Group 15 Page 5
F
v
1
2 3
4
5
A
Theo A (c.t.4)
@
z,p
Figure 6 Force diagram in shaft II 40
Figure 7 Moment diagram in shaft II 43
Project 1.15
1.
2. Motor
3. Elastic Clutch
4. Reduction unit
5. Chain trans. Unit
6. Conveyor chain
Fig. 1 Chain-Driven system
Input data:
1. Pulling force of conveyer chain: F = 4220 (N) Driving gear:
2. Conveyor chain speed: v = 1,36 (m/s) Spur -gear
3. Sprocketteeth number of conveyor chain: z = 14 (teeth)
4. Chain pitch of conveyor chain: p = 70 (mm)
5. Service time: lh = 11000 (hours)
6. Number of shifts: soca= 2 (shift)
7. Inclination angle of outer driven ๐›ฝ = 0 (degree)
8. Working characteristic: Mild impact
Shaft for calculating: Input shaft 1
MEC2-K56- Group 15 Page 6
MEC2-K56- Group 15 Page 7
A. Choosing motor and distributing transmission ratio:
1. Work power:
)(7.5
1000
36.14220
1000
.
KW
vF
Plv ๏€ฝ
๏‚ด
๏€ฝ๏€ฝ
2. Efficiency of driven system:
3
. . .br OL x knh h h h h=
Where : Gear performance : โ„Ž ๐‘๐‘Ÿ = 0.96
Chain performance : โ„Ž ๐‘ฅ = 0.9
Bearing performance: โ„Ž ๐‘‚๐ฟ = 0.995
Jointing performance: โ„Ž ๐‘˜๐‘› = 1
85.019.0995.096.0... 33
๏€ฝ๏‚ด๏‚ด๏‚ด๏€ฝ๏€ฝ๏ƒž knxOLbr ๏จ๏จ๏จ๏จ๏จ
3. Necessarypoweron the motor axis:
)(75.6
85.0
7.5
KW
P
P lv
yc ๏€ฝ๏€ฝ๏€ฝ
๏จ
4. Number of revolutions on operating axis:
๐‘› ๐‘๐‘ก =
60000. ๐‘ฃ
๐‘ง. ๐‘
=
6000๏‚ด1.36
14๏‚ด70
= 83.26 (rev/min)
5. Choosing the first-aid transmissionratio (๐’ ๐’”๐’ƒ):
๐’– ๐’”๐’ƒ = ๐’– ๐’™. ๐’– ๐’ƒ๐’“
Follow table B
2.4
21
[1]: Chain ration : ๐’– ๐’™ =2 รท 5
Gear ration : ๐’– ๐’ƒ๐’“ = 3 รท 5
Then:
๐’– ๐’”๐’ƒ ๐’Ž๐’Š๐’= ๐’– ๐’™ ๐’Ž๐’Š๐’. ๐’– ๐’ƒ๐’“ ๐’Ž๐’Š๐’=2๏‚ด 3= 6
๐’– ๐’”๐’ƒ ๐’Ž๐’‚๐’™= ๐’– ๐’™ ๐’Ž๐’‚๐’™. ๐’– ๐’ƒ๐’“ ๐’Ž๐’‚๐’™=5๏‚ด 5= 25
6. First-aid number of revolutions on motor axis
MEC2-K56- Group 15 Page 8
We have : ๐’ ๐’”๐’ƒ = ๐’– ๐’”๐’ƒ. ๐’ ๐’„๐’•
๐’ ๐’”๐’ƒ ๐’Ž๐’Š๐’ = ๐’– ๐’”๐’ƒ ๐’Ž๐’Š๐’. ๐’ ๐’„๐’•= 500 (rev/min)
๐’ ๐’”๐’ƒ ๐’Ž๐’‚๐’™ = ๐’– ๐’”๐’ƒ ๐’Ž๐’‚๐’™. ๐’ ๐’„๐’•= 2081 (rev/min)
We choose ๐’ ๐’”๐’ƒ =1000 (rev/min)
7. Calculating synchronous number of revolutions of motor :
Choosing ๐’ ๐’…๐’ƒ
๐’•
= ๐Ÿ•๐Ÿ“๐ŸŽ (rev/min)
8. Choosing the motor:
Choosethe motor which satisfies: {
๐‘›ฤ‘๐‘ โ‰ˆ ๐‘› ๐‘ ๐‘ = 1000 (rev/min)
๐‘ƒฤ‘๐‘ โ‰ฅ ๐‘ƒ๐‘ฆ๐‘ = 6.75 (๐พ๐‘Š)
We have the motor with the details:
Siemen 1LA7 134-6AA {
๐‘› ๐‘‘๐‘ = 1000 (rev/min)
๐‘ = 7 ๐พ๐‘Š
9. Distributing transmission ratio:
Transmission ratio of the system:
๐’– ๐’„๐’‰ =
๐’ฤ‘๐’„
๐’ ๐’„๐’•
=
๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ
๐Ÿ–๐Ÿ‘.๐Ÿ๐Ÿ”
=12
Choose the transmission ratio of 1st gear box: ๐‘ข ๐‘๐‘Ÿ =5
Transmission ratio of outer driven: ๐‘ข ๐‘ฅ=
๐’– ๐’„๐’‰
๐’– ๐’ƒ๐’“
=
๐Ÿ๐Ÿ
๐Ÿ“
โ‰ˆ ๐Ÿ. ๐Ÿ’
So, we have: {
๐‘ข ๐‘โ„Ž = 12
๐‘ข ๐‘๐‘Ÿ = 5
๐‘ข ๐‘ฅ = 2.4
10. Calculating the factors on the axis:
Power on operating axis: ๐‘ƒ๐‘๐‘ก = ๐‘ƒ๐‘™๐‘ฃ = 5.7 (Kw)
MEC2-K56- Group 15 Page 9
Power on axis II:
๐‘ƒ๐ผ๐ผ =
๐‘ƒ๐‘๐‘ก
๐‘› ๐‘‚๐ฟ.๐‘› ๐‘ฅ
=
5.7
0.995ร—0.9
= 6.36(Kw) (Kw)
Power on axis I:
๐‘ƒ๐ผ =
๐‘ƒ๐‘๐‘ก
๐‘› ๐‘‚๐ฟ.๐‘› ๐‘ฅ
=
6.36
0.995ร—0.96
= 6.66 (Kw)
Power on the motor axis:
๐‘ƒฤ‘๐‘ =
๐‘ƒ ๐ผ
๐‘› ๐‘‚๐ฟ.๐‘› ๐‘˜๐‘›
=
6.66
0.995ร—1
= 6.70 (Kw)
Number of revolutions on the motor axis: ๐‘›ฤ‘๐‘= 1000 (rev/min)
Number of revolutions I:
๐‘›๐ผ =
๐‘›ฤ‘๐‘
๐‘ข ๐‘˜๐‘›
=
1000
1
= 1000 (rev/min)
Number of revolutions II:
๐‘›๐ผ๐ผ =
๐‘› ๐ผ
๐‘ข ๐‘๐‘Ÿ
=
1000
5
= 200 (๐‘Ÿ๐‘’๐‘ฃ/๐‘š๐‘–๐‘›)
Number of revolutions on the operating axis:
๐‘› ๐‘๐‘ก =
๐‘›๐ผ๐ผ
๐‘ข ๐‘ฅ
=
200
2.4
= 83.33 (๐‘Ÿ๐‘’๐‘ฃ/๐‘š๐‘–๐‘›)
Torque on the motor axis:
๐‘‡ฤ‘๐‘ = 9,55.106
.
๐‘ƒฤ‘๐‘
๐‘›ฤ‘๐‘
= 9,55.106
.
6.75
1000
= 64462 (๐‘. ๐‘š๐‘š)
Torque on the axis I:
๐‘‡๐ผ = 9,55.106
.
๐‘ƒ ๐ผ
๐‘› ๐ผ
= 9,55.106
.
6.66
1000
= 63603 ( ๐‘. ๐‘š๐‘š)
Torque on the axis II:
๐‘‡๐ผ๐ผ = 9,55.106
.
๐‘ƒ ๐ผ๐ผ
๐‘›๐ผ๐ผ
= 9,55.106
.
6.36
200
= 303690 ( ๐‘. ๐‘š๐‘š)
Torque on the operating axis:
๐‘‡๐‘๐‘ก = 9,55.106
.
๐‘ƒ๐‘๐‘ก
๐‘› ๐‘๐‘ก
= 9,55.106
.
5.7
83.33
= 653246 (๐‘. ๐‘š๐‘š)
MEC2-K56- Group 15 Page 10
11. Data Table:
FactorsAxis Motor I II Operating
ukn = 1 ubr = 5 ux = 2.4
P(KW) Pฤ‘c= 6.75 PI = 6.66 PII = 6.36 Pct= 5.7
n(rev/min) nฤ‘c= 1000 nI= 1000 nII= 200 nct = 83.33
T(N.mm) Tฤ‘c= 64462 TI = 63603 TII = 303690 Tct = 653246
B.Calculating and designing outer transmission โ€“ chain driver
Data requirements:
{
P = PII = 6.36(KW)
T1 = TII = 303690(N.mm)
n1 = nII = 200 (rpm)
u = ux = 2.4
ฮฒ = 00
1. Choosing the type of chain
We choosethe brushed roller chain.
MEC2-K56- Group 15 Page 11
2. Choosing number of teeth of the sprocket
The number of teeth on driver sprocket:
Z1 = 29 โˆ’ 2 ร— u = 29 โˆ’ 2 ร— 2.4 = 24.2 โ‰ฅ 19, choose Z1 = 24
Therefore the driven number of teeth:
๐‘2 = ๐‘ข ร— ๐‘1 = 2 ร— 24.2 = 48.4 โ‰ค ๐‘ ๐‘š๐‘Ž๐‘ฅ = 140, ๐‘โ„Ž๐‘œ๐‘œ๐‘ ๐‘’ ๐‘2 = 48
3. Selectfactors
Application factor: use the chart 2 (see page 102 Renold Roller Chain Catalogue)
with driver and driven sprockets smoothrunning we have: 1 1f ๏€ฝ
Toothfactor: ๐‘“2 =
19
๐‘1
=
19
24
= 0.79
Selection power = Transmitted power 1 2f f๏‚ด ๏‚ด
= 6.36ร—1ร—0.7 =5.02 (KW)
4. Selectchain drive
According to American Chain Rating Chart (see page 106 Renold Roller
Chain Catalogue) by cross reference power 5.02(KW) and speed 200(rpm),
we will choosethe ANSI Simplex with the chain pitch p = 19.05(mm).
5. Installation parameters
Lubrication โ€“ American Chain Rating Chart (see page 106 Renold Roller
Chain Catalogue) clearly indicates the chain need Oil Bath type 3 lubrication.
MEC2-K56- Group 15 Page 12
Figure 2.1.Chain lubrication.
Now we calculate the chain length (see page 105 Renold Roller Chain Catalogue):
22 1
1 2
( )
2 2
2
Z Z
p
Z Z C p
L
p C
๏€ญ
๏‚ด
๏€ซ ๏‚ด ๏‚ด
๏€ฝ ๏€ซ ๏€ซ
Where:
C is the contemplated center distance in mm and should generally be
between 30-50 pitches. In this case:
C = 19.05ร—40 = 762 (mm)
L = Chain length (pitches)
p = Chain pitch = 19.05(mm)
Z1= 24(teeth)
Z2= 48(teeth)
๐ฟ =
24+48
2
+
2ร—762
19.05
+
(
48โˆ’24
2ร—19.05
)2ร—19.05
762
= 116 (pitches)
MEC2-K56- Group 15 Page 13
6. Centre distance calculation
The center distance of the drive can now be calculated using the
formula below (see page 105 Renold Roller Chain Catalogue):
C =
19.05
8
[2 ร— 116โˆ’ 48 โˆ’ 24 + โˆš(2 ร— 116โˆ’ 48 โˆ’ 24)2 โˆ’ (48 โˆ’ 24)2 ฯ€
3.88
]=
C = 758.5
7. Selectionofsprocketmaterials
Depend on the table (p.104 Renold Roller Chain Catalogue):
Table 2.1.Sprocket materials.
Driver sprocket material is cast iron
Driven sprocket material is EN8 or EN9
๏€จ ๏€ฉ ๏€จ ๏€ฉ
2 2
2 1 2 1 2 12 2
8 3.88
p
C L Z Z L Z Z Z Z
๏ฐ๏ƒฉ ๏ƒน
๏€ฝ ๏‚ด ๏€ญ ๏€ญ ๏€ซ ๏‚ด ๏€ญ ๏€ญ ๏€ญ ๏€ญ๏ƒช ๏ƒบ
๏ƒซ ๏ƒป
MEC2-K56- Group 15 Page 14
8. Data of chosenchain
Following this link:
http://www.renoldchainselector.com/ChainSelector
We will choosethe ANSI 80 (ISO 606) Simplex chain transmission with
conditions:
Environmental condition:
Loading Classification:
Driven Machine: smoothrunning, Moderate Shocks.
Service Conditions: Recommended.
Environnent Condition: Normal environnement, Indoor application.
ExpectedWorking Life of the Chain
๐‘๐ž๐ง๐จ๐ฅ๐ ๐’๐ฒ๐ง๐ž๐ซ๐ ๐ฒ ๐‘ป๐‘ด
Chain: ANSI 80 (ISO 606)Simplex
The working life of the chain is greater than 3000 hours.
After this time:
The chain will reach 3% elongation.
Serial Number: GY80A1
Input Power: P = 6.36 kW Pitch: p = 19.05 mm
Input Speed: n = 200 rpm ISO Breaking Load: Fb = 55600 N
Chain Linear Velocity: v = 2 m/s Bearing Pressure: pr = 24.831 N/mmยฒ
Torque: T = 303.69 Nm Bearing Area: f = 1.78 cmยฒ
Static Force: F = 3129.9 N Weight: q = 2.8 kg/m
MEC2-K56- Group 15 Page 15
Dynamic Force: Fd = 4408.3 N Chain Length: l = 2489.2 mm
Centrifugal Force: Ff = 11.56 N Centre Distance: a = 762mm
Total Force: Fg = 4419.9 N Number of Links: X = 98
Chain Tensioner required
static = 17.8
dynamic = 12.6
Figure 2.2.Chain.
MEC2-K56- Group 15 Page 16
Chain Drive:
Sprocket Driving (Z1) Driven (Z2)
Number of Teeth: 24 48 Ratio: i = 2
Pitch Circle Diameter: 194.597 mm 388.361 mm
Loading
Classification:
Smooth running Moderate
Shocks
Environment Conditions:
Environment
Conditions:
Indoor, Normal
Service Conditions: Recommended
Recommended
Lubrication:
Drip Lubrication
.
9. Check for chainโ€™s durability
Durability factor:
๐’” =
๐‘ธ
๐’Œฤ‘ ๐‘ญ๐’• + ๐‘ญ ๐ŸŽ + ๐‘ญ ๐’—
Where:
๏‚ง Q โ€“ ISO Breaking Load:
Q =31.8(KN)
๏‚ง Chainโ€™s mass:
q = 2.8(kg/m).
MEC2-K56- Group 15 Page 17
๏‚ง F - Static force:
๐น๐‘ก =
1000ร—๐‘ƒ
๐‘ฃ
, ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฃ = 2๐‘š/๐‘ 
๐น๐‘ก =
1000ร—๐‘ƒ
๐‘ฃ
=
1000ร—6.36
2
= 3180(N)
๏‚ง Ff - Centrifugal Force:
๐น๐‘“ = ๐‘ž. ๐‘ฃ2
= 2.8 ร— 22
= 11.2 (๐‘)
๏‚ง F0- The tension caused by the weight of chain:
aqkF f
...81,90
๏€ฝ ,
with:
a - Centre distance: a=762(mm)
kf - Deflection coefficient of chain: because of ๏ข = 0o ๏ƒž kf = 1
๐น0 = 9.81 ร— 1 ร— 2.8 ร— 762ร— 10โˆ’3
= 20.93 (๐‘)
Therefore:
๐’” =
Q
kฤ‘Ft+F0+Fv
with kd is dynamic loading coefficient with
characteristic is Mild: kd=1
๐’” =
๐‘„
๐‘˜ฤ‘ ๐น๐‘ก+๐น0+๐น๐‘ฃ
=
31800
1ร—3180+20.93+11.2
= 9.9
[s] โ€“ Allowed safe factor:
Find in table
5.10
(1)
86
B with p = 19.05(mm); n1 = 200(rpm) we get
[s]=8.2. We find that s>[s] therefore the chain has satisfied safe factor.
MEC2-K56- Group 15 Page 18
MEC2-K56- Group 15 Page 19
C. Design gear transmission .
Data requirement:
{
๐‘ท = ๐‘ท๐‘ฐ = ๐Ÿ”. ๐Ÿ”๐Ÿ” (๐‘ฒ๐‘พ)
๐‘ป = ๐‘ป ๐‘ฐ = ๐Ÿ”๐Ÿ‘๐Ÿ”๐ŸŽ๐Ÿ‘ (๐‘ต. ๐’Ž๐’Ž)
๐’ ๐Ÿ = ๐’๐‘ฐ = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ ( ๐’“๐’‘๐’Ž)
๐’– = ๐’– ๐’ƒ๐’“ = ๐Ÿ“
๐‘ณ ๐’‰ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐’‰
1. Designdecision
๏‚ท Materialselection
Material: Steel C45
๏‚ท Selectdiameter pitch
From Standard Diameter Pitches (Robert L. Norton, Machine Design,
p.645, table 11-2):
Choosep = 8
๏‚ท Selectnumber of teeth (with u=5)
Driving pinion: ๐‘๐‘ = 20 ๐‘ก๐‘’๐‘’๐‘กโ„Ž
Driven gear: 100 teeth
2. Designcalculation
๏‚ท Pitch diameter
Pitch diameter of driving pinion: ๐‘‘ ๐‘ =
๐‘ ๐‘
๐‘
=
20
8
= 2.5 ( ๐‘–๐‘›)
Pitch diameter of driven gear: dg =
100
8
= 12.5 (in)
๏‚ท Bending geometryfactor
MEC2-K56- Group 15 Page 20
The bending geometry factors J for this combination are found in the
RobertL. Norton, Machine Design, p.666, table 11-9, for the highest point
of the single-tooth contact(HPSTC)and are approximately : {
๐ฝ๐‘ = 0.35
๐ฝ ๐บ = 0.43
๏‚ท Velocity factor
The velocity factor is calculated from equations 11.16
and 11.17 (Robert L. Norton, Machine Design, p.665) base on the assumed
gear quality index and pitch-line velocity :
๐‘‰๐‘ก =
๐‘‘ ๐‘
2
ร— ๐œ” ๐‘ =
2.5
2ร—12
ร— (1000๐‘Ÿ๐‘๐‘š)(2๐œ‹) = 654.5(ft/min)
825.0
4
)612(
4
)12( 3/23/2
๏€ฝ
๏€ญ
๏€ฝ
๏€ญ
๏€ฝ v
Q
B
8.59)825.01(5650)1(5650 ๏€ฝ๏€ญ๏€ซ๏€ฝ๏€ญ๏€ซ๏€ฝ BA
๐พ๐‘ฃ = ๐ถ๐‘ฃ = (
๐ด
๐ด + โˆš ๐‘‰๐‘ก
)
๐ต
= (
59.8
59.8+ โˆš654.5
)
0.825
= 0.745
Maximum velocity checking
should be checked against the maximum allowable pitch-line
velocity for this quantity gear using equation 11.18 (Robert L. Norton,
Machine Design, p.668):
๏€จ ๏€ฉ๏› ๏ min)/(84.39433
2
max
ftQvAVt ๏€ฝ๏€ญ๏€ซ๏€ฝ
We can see that maxt tV V๏€ผ , so tV is acceptable.
๏‚ท Transmitted load
( )v vK C
6vQ ๏€ฝ tV
tV
MEC2-K56- Group 15 Page 21
๐‘Š๐‘ก =
33000๐ป
๐‘‰
=
33000ร— 10.32
654.5
= 520.3(๐‘™๐‘)
๏‚ท Bending stressesin pinion and gear
Bending stress can be estimated using equation 11.15 (Robert
L. Norton, Machine Design, p.664):
Where:
is face width can be estimated by this equation (Robert L. Norton,
Machine Design, p.669):
Fโ‰…
12
๐‘ƒ ๐‘‘
=
12
8
= 1.5 in
is application factor. We choose from table
11.17(Robert L. Norton, Machine Design, p.669):
is load distribution factor. We choose from table
11.16 with (Robert L. Norton, Machine Design, p.669).
is size factor and rim bending factor are equal 1 for these small
gears.
Apply all these factors; we can estimate bending stress in:
๐œŽ๐‘ ๐‘
=
๐‘Š๐‘ก ๐‘ ๐‘‘
๐น๐ฝ ๐‘
ร—
๐พ ๐‘Ž ๐พ ๐‘š
๐พ๐‘ฃ
ร— ๐พ๐‘  ๐พ ๐ต ๐พ๐ผ =
520.3ร—8
1.5ร—0.35
ร—
1ร—1.6
0.745
ร— 1 ร— 1 ร— 1 = 17027.40 psi
๐œŽ๐‘ ๐‘”
=
๐‘Š๐‘ก ๐‘ ๐‘‘
๐น๐ฝ ๐‘”
ร—
๐พ ๐‘Ž ๐พ ๐‘š
๐พ๐‘ฃ
ร— ๐พ๐‘  ๐พ ๐ต ๐พ๐ผ =
520.3ร—8
1.5ร—0.43
ร—
1ร—1.6
0.745
ร— 1 ร— 1 ร— 1 = 13859.51 psi
p
t a m
b s B I
v
W p K K
K K K
FJ K
๏ณ ๏€ฝ
F
( )a aK C 1a aK C๏€ฝ ๏€ฝ
( )m mK C 1.6mK ๏€ฝ
2F ๏€ผ
sK BK
MEC2-K56- Group 15 Page 22
๏‚ท Surface stress in the pinion gear
The surface stress in the pinion gear can be estimated by
equation 11.21 (RobertL. Norton, Machine Design, p.672):
t a m
cpg p s f
p v
W C C
C C C
FId C
๏ณ ๏€ฝ
Where:
pC is elastic coefficient accounts for differences in tooth materials
and can be found in table 11.18 (Robert L. Norton, Machine Design,
p.674): 0.5
2300pC psi๏€ฝ for steel on steel.
I is geometry factor can estimated by equation 11.22a (Robert L.
Norton, Machine Design, p.673):
cos
1 1
p
p g
I
d
๏ฆ
๏ฒ ๏ฒ
๏€ฝ
๏ƒฆ ๏ƒถ
๏‚ฑ๏ƒง ๏ƒท๏ƒง ๏ƒท
๏ƒจ ๏ƒธ
Where :
+ ๏ฆ is pressure angle of pinion teeth. We choose 25๏ฆ ๏€ฝ ๏‚ฐ
+ p๏ฒ and g๏ฒ are the radius of curvature of the pinion and gear teeth,
respectively. These factors are calculated from the geometry (Robert L.
Norton, Machine Design, p.673, equation 11.22b):
๐œŒ ๐‘ = โˆš( ๐‘Ÿ๐‘ +
1
๐‘ƒ ๐‘‘
)
2
โˆ’ (๐‘Ÿ๐‘ ๐‘๐‘œ๐‘ โˆ…)2 -
๐œ‹
๐‘ƒ ๐‘‘
๐‘๐‘œ๐‘ โˆ…
MEC2-K56- Group 15 Page 23
๐œŒ ๐‘ = โˆš(1.25 +
1
8
)
2
โˆ’ (1.25๐‘๐‘œ๐‘ 250)2 โˆ’
๐œ‹
8
๐‘๐‘œ๐‘ 250
๏ƒฐ ๐œŒ ๐‘ = 0.33 ๐‘–๐‘›
๐œŒ ๐‘” = ๐ถ๐‘ ๐‘–๐‘›โˆ… โˆ’ ๐œŒ1 = (๐‘Ÿ๐‘ + ๐‘Ÿ๐‘”)๐‘ ๐‘–๐‘›โˆ…โˆ’ ๐œŒ1 = (1.25 +6.25)ร— sin 250
โˆ’ 0.33 =2.84
in
Therefore, geometry factor now can be estimated:
I =
๐‘๐‘œ๐‘ โˆ…
(
1
๐œŒ ๐‘
ยฑ
1
๐‘ ๐‘”
)
=
๐‘๐‘œ๐‘ 250
(
1
0.33
โˆ’
1
2.84
)ร—2.5
= 0.14
fC is surface factor and can be set to 1 for well-finished gears made
by conventional methods.
Apply all these factors, now we can estimate surface stress in the gear
mesh:
t a m
cpg p s f
p v
W C C
C C C
FId C
๏ณ ๏€ฝ
=2300โˆš
520.3
1.5ร—0.14ร—2.5
ร—
1ร—1.6
0.745
ร— 1 ร— 1 = 106079.6 psi
๏‚ท Bending-fatigue strength
The correction (or corrected) bending -fatigue strength of gears can
be computed using formula 11.24 (Robert L. Norton, Machine Design,
p.678):
MEC2-K56- Group 15 Page 24
'
L
fb fb
T R
K
S S
K K
๏€ฝ
Where:
lK is life factor which is found from the appropriate equation in
Figure 11.24(Robert L. Norton, Machine Design, p.679) based on the
required number of cycles in the life of the gears. The pinion sees the
largest number of repeat tooth-loadings, so we calculate the life based
on it. First, calculate the number of cycles N for the required life of
16000h, one shift:
N = 1000rpm (
60๐‘š๐‘–๐‘›
โ„Ž๐‘Ÿ
) ร— 11000โ„Ž๐‘Ÿ = 0.66 ร— 109
(๐‘๐‘ฆ๐‘๐‘™es)
then calculate the life factor:
๐พ๐ฟ = 1.3558ร— ๐‘โˆ’0.0178
= 1.3558ร— (0.66ร— 109)โˆ’0.0178
= 0.906
TK is temperature factor. At the normal condition, 1TK ๏€ฝ .
The gear-material data are all taken at a reliability level of 99%. This
is satisfactory in this case, making 1RK ๏€ฝ
'fbS is uncorrected bending-fatigue strength can be made from the
curves of Figure 11.25(Robert L. Norton, Machine Design, p.681). We
will try an AGMA Grade 1 steel, through hardened to 250 HB. The
uncorrected bending-fatigue strength is found from the lower curve of
the figure:
2
'
2
274 167 0.152
274 167 240 0.152 240 31051
fbS HB HB
psi
๏€ฝ ๏€ญ ๏€ซ ๏€ญ
๏€ฝ ๏€ญ ๏€ซ ๏‚ด ๏€ญ ๏‚ด ๏€ฝ
MEC2-K56- Group 15 Page 25
Apply all these factors, now we can calculate the corrected bending-
fatigue strength:
๐‘†๐‘“๐‘ =
๐พ๐ฟ
๐พ ๐‘‡ ๐พ ๐‘…
๐‘†๐‘“๐‘โ€ฒ =
0.906
1
ร— 31051 = 28132๐‘๐‘ ๐‘–
๏‚ท Surface fatigue strength
The correction (or corrected) surface-fatigue strength of gears can be
computed using formula 11.25 (Robert L. Norton, Machine Design,
p.679):
'
L H
fc fc
T R
C C
S S
C C
๏€ฝ
Where:
lC is life factor which is found from the appropriate equation in
Figure 11.25(Robert L. Norton, Machine Design, p.679) based on the
required number of cycles in the life of the gears. The pinion sees the
largest number of repeat tooth-loadings, so we calculate the life based
on it. First, calculate the number of cycles N found above:
๐‘† ๐‘“๐‘โ€ฒ = 2600+ 327๐ป๐ต = 2600+ 327(240) = 104480 psi
๐ถ๐ฟ = 1.4488๐‘โˆ’0.023
= 1.4488ร— (0.66 ร— 109
)โˆ’.0023
= 0.908
1๏€ฝ๏€ฝ TT KC and 1๏€ฝ๏€ฝ RR KC
Since the gears and pinion are of the same hardness material in this
case, 1HC ๏€ฝ .
Apply all these factors, now we can calculate the corrected surface-
fatigue strength:
MEC2-K56- Group 15 Page 26
๐‘†๐‘“๐‘ =
๐ถ๐ฟ ๐ถ ๐ป
๐ถ ๐‘‡ ๐ถ ๐‘…
๐‘†๐‘“๐‘โ€ฒ =
0.908 ร— 1
1 ร— 1
ร— 104480 = 94867.84๐‘๐‘ ๐‘–
๏‚ท Safety factors
The safety factors against bending failure are found by comparing the
corrected bending strength to the bending stress for each gear in the
mesh:
๐‘๐‘ ๐‘
=
๐‘†๐‘“๐‘
๐œŽ๐‘ ๐‘
=
28132
17027.40
= 1.65
๐‘๐‘ ๐‘”
=
๐‘†๐‘“๐‘
๐œŽ๐‘ ๐‘”
=
28132
13859.51
= 2.03
The safety factor against surface failure is found by comparing the
actual load to the load that would produce a stress equal to the
materialโ€™s corrected surface strength. Because surface stress is related to
the squarer root of the load, the surface-fatigue safety factor can be
calculated as the quotient of the square of the corrected surface strength
divided by the square of the surface stress for each gear in the mesh:
๐‘๐ถ ๐‘โˆ’๐‘”
= (
๐‘† ๐‘“๐‘
๐œŽ ๐‘ ๐‘๐‘–๐‘›๐‘–๐‘œ๐‘›
)
2
= (
94867.84
106079.6
)
2
=0.8
MEC2-K56- Group 15 Page 27
3. Data table
Gear details Symbol Value
Diametral pitch dp 8
Pressure angle ๏ฆ 25๏‚ฐ
Tangential force tW 520.3(lb)
Number of teeth on pinion pN
20
Number of teeth on gear gN
100
Pitch diameter of pinion pd
2.5 (in)
Pitch diameter of gear gd
12.5 (in)
Pitch-line velocity tV 654.5(ft/min)
Bending stress-pinion tooth pb๏ณ 17027.40psi
Bending stress-gear tooth gb๏ณ 13859.51psi
Surface stress in pinion and gear cpg๏ณ
106079.6psi
Uncorrected bending strength '
fb
S
31051psi
Corrected bending strength fbS
28132psi
Uncorrected surface strength '
fc
S
104480psi
Corrected surface strength fc
S
94867.84psi
Bending safety factor for pinion bpN
1.65
Bending safety factor for gear bgN
2.03
Surface safety factor for mesh p gcN ๏€ญ 0.8
Table 3.1.Gear data table.
MEC2-K56- Group 15 Page 28
D. Shafts, keys and coupling calculation
I. Choosing material
In order to minimize the deflections, we try an inexpensive, low-carbon,
cold-rolled steel such as SAE 1040 with 86utS kpsi๏€ฝ and 54yS kpsi๏€ฝ . Though
not exceptionally strong, this material has low notch sensitivity, which will
be an advantage given the large stress concentration.
The endurance limit strength can be estimated using equation 6.6 (Robert L.
Norton, Machine Design, p326):
'e load size surf temp reliab e
S C C C C C S๏€ฝ ๏‚ด ๏‚ด ๏‚ด ๏‚ด ๏‚ด
Where:
1loadC ๏€ฝ because the loading is bending and torsion.
1sizeC ๏€ฝ because we do not know the part size, therefore sizeC is temporarily
assumed and will be adjusted later.
surfC is approximate surface factor and can be estimated using
equation 6.7e (Robert L. Norton, Machine Design, p329): ( )b
surf utC A S๏€ฝ ๏‚ด
with A= 2.7 and b= -0.265 are found in table 6.3 (Robert L. Norton,
Machine Design, p329). Calculate above equation with given factors, we
have:
๐‘ช ๐’”๐’–๐’“๐’‡ = ๐‘จ ร— (๐‘บ ๐’–๐’•) ๐’ƒ
= ๐Ÿ. ๐Ÿ• ร— (๐Ÿ–๐Ÿ”)โˆ’๐ŸŽ.๐Ÿ๐Ÿ”๐Ÿ“
=0.83<1 (satisfied)
1tempC ๏€ฝ since temperature is not evaluated.
1reliabC ๏€ฝ while we assume 50% reliability at this preliminary design
stage.
MEC2-K56- Group 15 Page 29
'
e
S is uncorrected endurance strength and calculated using equation 6.5a
(Robert L. Norton, Machine Design, p324) for 200utS kpsi๏€ผ :
' 0.5 0.5 86000 43000ute
S S psi๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
Apply all above factor, now we can calculate the corrected endurance
strength:
'e load size surf temp reliab e
S C C C C C S๏€ฝ ๏‚ด ๏‚ด ๏‚ด ๏‚ด ๏‚ด
= 1ร— ๐Ÿ ร— ๐ŸŽ. ๐Ÿ–๐Ÿ‘ ร— ๐Ÿ ร— ๐Ÿ ร— ๐Ÿ’๐Ÿ‘๐ŸŽ๐ŸŽ๐ŸŽ = ๐Ÿ‘๐Ÿ“๐Ÿ”๐Ÿ—๐ŸŽ psi
Another factor of material is notch sensitivity which is found from equation
6.13 (Robert L. Norton, Machine Design, p339) or figure 6.36 (Robert L.
Norton, Machine Design, p340-341):
๐’’ ๐’ƒ๐’†๐’๐’…๐’Š๐’๐’ˆ = ๐ŸŽ. ๐Ÿ”
๐’’๐’•๐’๐’“๐’”๐’Š๐’๐’ = ๐ŸŽ. ๐Ÿ–๐Ÿ“
The fatigue stress-concentration factor is found from equation 6.11b
(Robert L. Norton, Machine Design, p339) using the assumed geometric
stress-concentration factor noted above: {
๐‘ฒ ๐’• = ๐Ÿ. ๐Ÿ“
๐‘ฒ ๐’‡๐’” = ๐Ÿ. ๐Ÿ–
The fatigue stress concentration factor for bending stress at section 1:
๐‘ฒ ๐’‡ = ๐Ÿ + ๐’’ ร— ( ๐‘ฒ ๐’• โˆ’ ๐Ÿ) = ๐Ÿ + ๐ŸŽ. ๐Ÿ” ร— ( ๐Ÿ. ๐Ÿ“ โˆ’ ๐Ÿ) = ๐Ÿ. ๐Ÿ—
The fatigue stress concentration factor for torsion at section 1:
๐‘ฒ ๐’‡๐’” = ๐Ÿ + ๐’’ ร— ( ๐‘ฒ ๐’•๐’” โˆ’ ๐Ÿ) = ๐Ÿ + ๐ŸŽ. ๐Ÿ–๐Ÿ“ ร— ( ๐Ÿ. ๐Ÿ– โˆ’ ๐Ÿ) = ๐Ÿ. ๐Ÿ”๐Ÿ–
MEC2-K56- Group 15 Page 30
From equation 6.17 (Robert L. Norton, Machine Design, p360), we find
that in this case, the same factor should be used on the mean torsional stress
component: ๐‘ฒ ๐’‡๐’Ž๐’” = ๐‘ฒ ๐’‡๐’”= 1.68
II. Shaft 1 calculations
Given ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™
= 520.3 ( ๐‘™๐‘)
๐‘‡1 = 63603 (๐‘. ๐‘š๐‘š)
Figure 4.1.Shaft dimensions.
We choosediameter of shaft I is 1 25( )ed mm๏€ฝ , according to the standard of
the SKF bearing manufacture, the width of roller-bearing 01 17( )b mm๏€ฝ . And
1 2 310, 15, 20nk k k h๏€ฝ ๏€ฝ ๏€ฝ ๏€ฝ .
๏‚ท Length of the gear hub: 13 11.2 1.2 25 37.5( )m el d mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
๏‚ท Length of the hub of a haft coupling: 12 12 2 25 50( )m el d mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
๏‚ท 12 12 01 30.5 ( ) 0.5 (50 17) 15 20 68.5( )c m nl l b k h mm๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ
๏‚ท 13 13 01 1 20.5 ( ) 0.5 (30 17) 10 10 43.5( )ml l b k k mm๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ
๏‚ท 12 12 68.5( )cl l mm๏€ฝ ๏€ญ ๏€ฝ ๏€ญ
MEC2-K56- Group 15 Page 31
๏‚ท 11 132 2 43.5 87( )l l mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
a) Analyze the forces and moments
We assume that ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” = 0.2 ร— ๐‘Š๐‘ก = 0.2 ร— 520.3 = 104.06 (๐‘™๐‘), according
Figure 4.2.Force diagram of shaft 1.
The tangential force on gear is found from the torque and its radius. The
tangential force at the spur-gear tooth as shown in part C:
๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™
= 520.3 (๐‘™๐‘)
The spur gear has a 250 pressure angle, which means that there will also be
a radial component of force that gear tooth of:
๐น๐‘” ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž ๐‘™
= ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™
ร— tan(25 ๐‘œ) = 520.3 ร— tan(25 ๐‘œ) = 242.6 (๐‘™๐‘)
Solve the reaction forces in the xz and yz planes using 0, 0x xF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ
and 0, 0y yF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ with the beam dimensions as above:
MEC2-K56- Group 15 Page 32
0 2 1 2 1 1 2 3
2
2
`0 2
0 2
( ) F F ( ) 0
(87 68.5) R 87 (87 68.5 43.5) 0
(87 199 )
0.56 1.28
155.5
0
g coupling
g coupling
g coupling
g coupling
g coupling
g coupling g coupli
M R l l l l l l
F F
F F
R F F
F R F F R
R F F R F F
๏ƒฅ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ฝ
๏ƒž ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏‚ด ๏€ฝ
๏€ญ ๏‚ด ๏€ซ ๏‚ด
๏ƒž ๏€ฝ ๏€ฝ ๏€ญ ๏‚ด ๏€ญ ๏‚ด
๏ƒฅ ๏€ฝ ๏€ซ ๏€ซ ๏€ซ ๏€ฝ
๏ƒž ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ( 0.56 1.28 )
0.44 2.28
ng g coupling
g coupling
F F
F F
๏€ญ ๏€ญ ๏‚ด ๏€ญ ๏‚ด
๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏‚ด
Above equations can be solved for ๐‘…0 and 2R in each plane, using the
approximate components of the apply load gF and couplingF :
๐‘…0 ๐‘ฅ
= โˆ’0.44 ร— ๐น๐‘” ๐‘ฅ
+ 2.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฅ
= โˆ’0.44 ร— 242.6 + 2.28 ร— 104.06
= 130.5 ( ๐‘™๐‘)
๐‘…0 ๐‘ฆ
= โˆ’0.44 ร— ๐น๐‘” ๐‘ฆ
+ 2.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฆ
= โˆ’0.44 ร— (โˆ’520.3)+ 2.28 ร— 0 = 228.93 ( ๐‘™๐‘)
๐‘…2 ๐‘ฅ
= โˆ’0.56 ร— ๐น๐‘” ๐‘ฅ
โˆ’ 1.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฅ
= โˆ’0.56 ร— 242.6 โˆ’ 1.28 ร— 104.06
= โˆ’269.05( ๐‘™๐‘)
๐‘…2 ๐‘ฆ
= โˆ’0.56 ร— ๐น๐‘” ๐‘ฆ
โˆ’ 1.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฆ
= โˆ’0.56 ร— (โˆ’520.3)โˆ’ 1.28 ร— 0 = 291.37 (๐‘™๐‘)
Moment calculations:
At point 0:
๐‘€ ๐‘ฅ
(0)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(0)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(1)
= 556.5(๐‘™๐‘. ๐‘–๐‘›)
At point 1:
๐‘€ ๐‘ฅ
(1)
= ๐‘…0 ๐‘ฅ
ร— ๐‘™1 = 130.5 ร— 3.4 = 443.7( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(1)
= ๐‘…0 ๐‘ฆ
ร— ๐‘™1 = 228.93 ร— 3.4 = 778.36( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(1)
= 556.5(๐‘™๐‘. ๐‘–๐‘›)
MEC2-K56- Group 15 Page 33
At point 2:
๐‘€๐‘ฅ
(2)
= ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ร— ๐‘™3 = 104.06ร— 1.71 = 177.94( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(2)
= ๐‘…0 ๐‘ฆ
ร— (๐‘™1 + ๐‘™2) โˆ’ ๐น๐‘” ๐‘ฆ
ร— ๐‘™2 = 228.93ร— 6.1โˆ’ 520.3 ร— 2.69
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(2)
= 556.5(๐‘™๐‘. ๐‘–๐‘›)
At point 3:
๐‘€๐‘ฅ
(3)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(3)
= 556.5(๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(3)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
MEC2-K56- Group 15 Page 34
Figure 4.3.Moment diagram of shaft 1.
MEC2-K56- Group 15 Page 35
b) Diameter calculation
Firstly, we choosethe safety factor equal to 2.5
Apply the equation 9.6a (Robert L. Norton, Machine Design, p.512) to
determine the diameter of the shaftโ€™s section:
1/31/22 2
32 3
4
f a m
f fsm
f y
N M T
d K K
S S๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏‚ด ๏€ซ ๏‚ด ๏‚ด๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
Consider the section I-0 at the point 0 of the 1st bearing:
0( . ),T 891.60(lb.in)aM lbin๏€ฝ ๏€ฝ , the minimum recommended diameter 0 :d
๐‘‘0 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
0
35690
)
2
+
3
4
(1.68 ร—
556.5
54000
)
2
]
1
2
}
1
3
= 0.73(๐‘–๐‘›)
Consider the section I-1 at the point 1 of the gear:
๐‘€ ๐‘Ž = 895.94( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 1 :d
๐‘‘1 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
895.94
35690
)
2
+
3
4
(1.68 ร—
556.5
54000
)
2
]
1
2
}
1
3
= 1.08(๐‘–๐‘›)
Consider the section I-2 at the point 2 of the 2nd bearing position:
๐‘€ ๐‘Ž = 177.96( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 2 :d
๐‘‘2 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
177.96
35690
)
2
+
3
4
(1.68 ร—
556.5
54000
)
2
]
1
2
}
1
3
= 0.77(๐‘–๐‘›)
Consider the section I-3 at the point 3 of the coupling position:
๐‘€ ๐‘Ž = 0( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 3 :d
MEC2-K56- Group 15 Page 36
๐‘‘3 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
0
35690
)
2
+
3
4
(1.68 ร—
556.5
54000
)
2
]
1
2
}
1
3
= 0.73(๐‘–๐‘›)
From these preliminary calculations, we can determine reasonable sizes for
the four step diameters d0, d1, d2, d3:
Position Symbol Minimum(in) Standard(in) Standard(mm)
1stbearing d0 0.73 0.98 25
Gearing d1 1.08 1.18 30
2ndbearing d2 0.77 0.98 25
Coupling d3 0.73 0.89 22
Table 4.1.Uncorrected shaft 1 data.
c) Key and testing for shaft I
Assuming use square, parallel keys with end-milked keyways. Low-carbon
steel, SAE 1040 with 86 , 54ut yS kpsi S kpsi๏€ฝ ๏€ฝ will be used. 35690eS psi๏€ฝ as
calculated above, stress-concentration factor can be seen in figure 9.16
(Robert L. Norton, Machine Design, p.529).
These are 2 locations with keys on this shaft, at point 1 and 3. The design
diameters chosen for these sections were 1 30 (1.18 )d mm in๏€ฝ and ๐‘‘3 =
22๐‘š๐‘š (0.89๐‘–๐‘›). Table 9.2 (RobertL. Norton, Machine Design, p.525) shows
that the standard key width for d1 is 0.250(in) and for d3 is 0.187(in).
At point 1, the mean and alternating components of force on the key are
found from the torque component divided by the shaft radius at that point:
๐น๐‘Ž =
๐‘‡๐‘Ž
๐‘Ÿ
=
556.5
0.59
= 943.22๐‘™๐‘
MEC2-K56- Group 15 Page 37
๐น๐‘š =
๐‘‡ ๐‘š
๐‘Ÿ
=
556.5
0.59
= 943.22๐‘™๐‘
Assuming a key length of 1 in and calculate the alternating and mean shear
stress components from equation 4.9 (Robert L. Norton, Machine Design,
p.151):
๐œ ๐‘Ž = ๐œ ๐‘š =
๐น๐‘Ž
๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ
=
943.22
1 ร— 0.25
= 3772.88 ๐‘๐‘ ๐‘–
To find the safety factor for shear fatigue of the key, compute the Von
Mises equivalent stresses for each these components from equation 5.7d
(Robert L. Norton, Machine Design, p.245):
๐œŽ๐‘Ž
โ€ฒ
= ๐œŽ ๐‘š
โ€ฒ
= โˆš ๐œŽ๐‘ฅ
2 + ๐œŽ๐‘ฆ
2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ
2 = โˆš3 ร— 3772.882 = 6534.8 ๐‘๐‘ ๐‘–
Then use them in equation 6.18e (Robert L. Norton, Machine Design,
p.364):
๐‘๐‘“ =
1
๐œŽ ๐‘Ž
โ€ฒ
๐‘† ๐‘’
+
๐œŽ ๐‘š
โ€ฒ
๐‘† ๐‘ข๐‘ก
=
1
6534.8
35690
+
6534.8
86000
= 3.86
At point 3, the mean and alternating components of force on the key are
found from the torque component divided by the shaft radius at that point:
๐น๐‘Ž = ๐น๐‘š =
๐‘‡๐‘Ž
๐‘Ÿ
=
556.5
0.445
= 1250.56๐‘™๐‘
Assuming a key length of 0.5 in and calculate the alternating and mean
shear stress components from:
๐œ ๐‘Ž = ๐œ ๐‘š =
๐น๐‘Ž
๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ
=
1250.56
0.5 ร— 0.187
= 13375 ๐‘๐‘ ๐‘–
MEC2-K56- Group 15 Page 38
To find the safety factor for shear fatigue of the key, compute the Von
Mises equivalent stresses for each these components from equation 5.7d
(Robert L. Norton, Machine Design, p.245):
๐œŽ๐‘Ž
โ€ฒ
= ๐œŽ ๐‘š
โ€ฒ
= โˆš ๐œŽ๐‘ฅ
2 + ๐œŽ๐‘ฆ
2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ
2 = โˆš3 ร— 133752 = 23166.2 ๐‘๐‘ ๐‘–
Then use them in equation 6.18e (Robert L. Norton, Machine Design,
p.364):
๐‘๐‘“ =
1
๐œŽ ๐‘Ž
โ€ฒ
๐‘† ๐‘’
+
๐œŽ ๐‘š
โ€ฒ
๐‘† ๐‘ข๐‘ก
=
1
23166.2
35690
+
23166.2
86000
= 1.09
End-mill radius versus shaft diameter ratio:
๏‚ท At point 1:
1
0.02
0.017
1.18
r
d
๏€ฝ ๏€ฝ
๏‚ท At point 3:
3
0.02
0.023
0.89
r
d
๏€ฝ ๏€ฝ
The corresponding stress-concentration factors are read from figure 9.16
(Robert L. Norton, Machine Design, p.529):
๏‚ท At point 1:
2.25
3.15
t
ts
K
K
๏€ฝ๏ƒฌ
๏ƒญ
๏€ฝ๏ƒฎ
๏‚ท At point 3:
2.10
2.85
t
ts
K
K
๏€ฝ๏ƒฌ
๏ƒญ
๏€ฝ๏ƒฎ
These are used to obtain the fatigue stress concentration factors, which for
materials notch sensitivity q=0.65 are:
๏‚ท At point 1:
1 ( 1) 1 0.65 (2.25 1) 1.81
1 ( 1) 1 0.65 (3.15 1) 2.39
f t
fs ts
K q K
K q K
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
๏‚ท At point 3:
1 ( 1) 1 0.65 (2.10 1) 1.71
1 ( 1) 1 0.65 (2.85 1) 2.20
f t
fs ts
K q K
K q K
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
MEC2-K56- Group 15 Page 39
For both point f fm
fsm fs
K K
K K
๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ๏ƒฏ๏ƒฎ
The new safety factors are then calculated using equation 9.8 (Robert L.
Norton, Machine Design, p.514) with the data from equations (b) and (c)
with the design values for shaft diameter and above stress-concentration
values inserted:
๏‚ท At point 1:
1
3
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
f a fs a
ff
fm m fsm m
ut
k M k T
SN
d
k M K T
S
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
1.18 =
{
32 ร— ๐‘๐‘“
๐œ‹
[
โˆš(1.81ร— 895.94)2 +
3
4
(2.39 ร— 556.5)2
35690
+
โˆš(1.81 ร— 895.94)2 +
3
4
(2.39 ร— 556.5)2
86000
]}
1
3
โ†’ ๐‘๐‘“ = 2.05
๏‚ท At point 3:
MEC2-K56- Group 15 Page 40
1
3
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
f a fs a
ff
fm m fsm m
ut
k M k T
SN
d
k M K T
S
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
0.89 =
{
32 ร— ๐‘๐‘“
๐œ‹
[
โˆš(1.71 ร— 0)2 +
3
4
(2.20 ร— 556.5)2
35690
+
โˆš(1.71 ร— 0)2 +
3
4
(2.20 ร— 556.5)2
86000
]}
1
3
โ†’ ๐‘๐‘“ = 1.65
At both point, the safety factor are smaller than specified valued of 2.5. So
we retry the above step with different diameter we find:
Increasing the diameter at point 1 to 1.57 in (35mm) gives a safety factor of
4.33.
Increasing the diameter at point 3 to 1.18 in (25mm) gives a safety factor of
2.53.
According to this change, all diameters of shaft I now become:
Position Symbol
Minimum
(in)
Standard
(in)
Standard
(mm)
1stbearing d0 0.720 1.180 30
Gearing d1 0.865 1.181 35
MEC2-K56- Group 15 Page 41
2ndbearing d2 0.680 1.180 30
Coupling d3 0.720 0.984 25
Width(in) Length(in)
Key
Point 1 0.375 1.0
Point 3 0.250 0.5
Table 4.2.Corrected shaft 1 data.
III. Shaft 2 calculations
a) Analyze the forces and moments
Figure 4.4.Force diagram of shaft 2.
Choose diameter of shaft 2 is de2=30(mm), according to the standard of the
SKF bearing manufacture, the width of roller bearing is b02= 19mm.
๐‘™1 = ๐‘™2 = 43.5( ๐‘š๐‘š) = 1.71( ๐‘–๐‘›)
๐‘™3 = 68.5( ๐‘š๐‘š) = 2.69( ๐‘–๐‘›)
๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™
= 520.3( ๐‘™๐‘)
๐น๐‘” ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™
= 242.6(๐‘™๐‘)
MEC2-K56- Group 15 Page 42
๐น = 4419.9(๐‘)๏ƒž ๐น๐‘ฅ = ๐น ร— ๐‘๐‘œ๐‘ 60 ๐‘œ
= 4419.9 ร— ๐‘๐‘œ๐‘ 60 ๐‘œ
= 2209.95( ๐‘) = 491.1(๐‘™๐‘)
๐น๐‘ฆ = ๐น ร— ๐‘ ๐‘–๐‘›60 ๐‘œ
= 4419.9 ร— ๐‘ ๐‘–๐‘›60 ๐‘œ
= 3827.75( ๐‘) = 850.6(๐‘™๐‘)
๐‘‡๐ผ๐ผ = 303690( ๐‘. ๐‘š๐‘š) = 2656.95(๐‘™๐‘. ๐‘–๐‘›)
Solve the reaction forces in the xz and yz planes using 0, 0x xF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ
and 0, 0y yF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ with the beam dimensions as above:
0 6 1 2 1 1 2 3
6
6
`4 6
4 6
( ) F F ( ) 0
(43.5 43.5) R 43.5 (43.5 43.5. 68.5) 0
(43.5 155.5 ) 155.5
0.5
87 87
0
155.5
( 0.5 )
87
68.5
0.5
87
g
g
g
g
g
g g g
g
M R l l l l l l
F F
F F
R F F
F R F F R
R F F R F F F F
F F
๏ƒฅ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ฝ
๏ƒž ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏‚ด ๏€ฝ
๏€ญ ๏‚ด ๏€ญ ๏‚ด
๏ƒž ๏€ฝ ๏€ฝ ๏€ญ ๏‚ด ๏€ญ ๏‚ด
๏ƒฅ ๏€ฝ ๏€ซ ๏€ซ ๏€ซ ๏€ฝ
๏ƒž ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏‚ด ๏€ญ ๏‚ด
๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏‚ด
Above equations can be solved for 1R and 2R in each plane, using the
approximate components of the apply load gF and couplingF :
๐‘…4 ๐‘ฅ
= โˆ’0.5 ร— ๐น๐‘” ๐‘ฅ
+
68.5
87
ร— ๐น๐‘ฅ = โˆ’0.5 ร— 242.6 +
68.5
87
ร— 491.1 = 265.37(๐‘™๐‘)
๐‘…4 ๐‘ฆ
= โˆ’0.5 ร— ๐น๐‘” ๐‘ฆ
+
68.5
87
ร— ๐น๐‘ฆ = โˆ’0.5 ร— (โˆ’520.3)+
68.5
87
ร— 850.6 = 929.87(๐‘™๐‘)
๐‘…6 ๐‘ฅ
= โˆ’0.5 ร— ๐น๐‘” ๐‘ฅ
+
68.5
87
ร— ๐น๐‘ฅ = โˆ’0.5 ร— 242.6 โˆ’
155.5
87
ร— 491.1 = โˆ’999.07(๐‘™๐‘)
๐‘…6 ๐‘ฆ
= โˆ’0.5 ร— ๐น๐‘” ๐‘ฆ
+
68.5
87
ร— ๐น๐‘ฆ = โˆ’0.5 ร— (โˆ’520.3)โˆ’
155.5
87
ร— 850.6 = โˆ’1260.2(๐‘™๐‘)
Moment calculations:
๏‚ท At point 4:
๐‘€ ๐‘ฅ
(4)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(4)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(4)
= 2656.95(๐‘™๐‘. ๐‘–๐‘›)
MEC2-K56- Group 15 Page 43
๏‚ท At point 5:
๐‘€ ๐‘ฅ
(5)
= ๐‘…4 ๐‘ฅ
ร— ๐‘™1 = 491.1 ร— 1.71 = 839.8( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(6)
= ๐‘…4 ๐‘ฆ
ร— ๐‘™1 = 850.6 ร— 1.71 = 1454.5( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(6)
= 2656.95(๐‘™๐‘. ๐‘–๐‘›)
At point 6:
๐‘€ ๐‘ฅ
(6)
= ๐น๐‘ฅ ร— ๐‘™3 = 491.1 ร— 2.69 = 1321.1( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(6)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(6)
= 2656.95(๐‘™๐‘. ๐‘–๐‘›)
๏‚ท At point 7:
๐‘€ ๐‘ฅ
(7)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘€ ๐‘ฆ
(7)
= 0( ๐‘™๐‘. ๐‘–๐‘›)
๐‘‡(7)
= 2656.95(๐‘™๐‘. ๐‘–๐‘›)
MEC2-K56- Group 15 Page 44
Figure 4.5.Moment diagram of shaft 2.
MEC2-K56- Group 15 Page 45
b) Diameter calculation
Firstly, we choosethe safety factor equal to 2.5
Apply the equation 9.56a (Robert L. Norton, Machine Design, p.512)
to determine the diameter of the shaftโ€™s section:
Consider the section II-4 at the point 4 of the 1st bearing:
๐‘€ ๐‘Ž = 0( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95( ๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter
๐‘‘0 = {
32ร— 2.5
๐œ‹
[(1.9 ร—
0
35690
)
2
+
3
4
(1.68 ร—
2656.95
54000
)
2
]
1
2
}
1
3
= 1.22(๐‘–๐‘›)
Consider the section II-5 at the point 5 of the gear:
๐‘€ ๐‘Ž = 1679.5(๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter
๐‘‘1 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
1679.5
35690
)
2
+
3
4
(1.68 ร—
2656.95
54000
)
2
]
1
2
}
1
3
= 1.43(๐‘–๐‘›)
Consider the section II-6 at the point 6 of the 2nd bearing position:
๐‘€ ๐‘Ž = 1321.1(๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter
๐‘‘2 = {
32 ร— 2.5
๐œ‹
[(1.9 ร—
1321.1
35690
)
2
+
3
4
(1.68 ร—
2656.95
54000
)
2
]
1
2
}
1
3
= 1.37(๐‘–๐‘›)
Consider the section II-7 at the point 7 position:
0( . ),T 3385.74(lb.in)aM lbin๏€ฝ ๏€ฝ , the minimum recommended diameter
1/31/22 2
32 3
4
f a m
f fsm
f y
N M T
d K K
S S๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏‚ด ๏€ซ ๏‚ด ๏‚ด๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
0 :d
1 :d
2 :d
3 :d
MEC2-K56- Group 15 Page 46
๐‘‘3 = {
32ร— 2.5
๐œ‹
[(1.9 ร—
0
35690
)
2
+
3
4
(1.68 ร—
2656.95
54000
)
2
]
1
2
}
1
3
= 1.22(๐‘–๐‘›)
From these preliminary calculations, we can determine reasonable sizes for
the four step diameters d0, d1, d2, d3:
Position Symbol Minimum(in) Standard(in) Standard(mm)
1stbearing d0 1.22 1.57 40
Gearing d1 1.43 1.77 45
2ndbearing d2 1.37 1.57 40
Chain d3 1.22 1.37 35
Table 4.3.Uncorreted shaft II data.
c) Key and testing for shaft II
Assuming use square, parallel keys with end-milked keyways. Low-
carbonsteel, SAE 1040 with will be used.
as calculated above, stress-concentration factor can be seen in figure 9.16
(Robert L. Norton, Machine Design, p.529).
These are 2 locations with keys on this shaft, at point 5 and 7. The
design diameters chosenfor these sections were 1 30 (1.5 )d mm in๏€ฝ and
3 20 (0.72 )d mm in๏€ฝ . Table 9.2 (RobertL. Norton, Machine Design, p.525)
shows that the standard key width for d1 is 0.500(in) and for d3 is 0.312(in).
At point 5, the mean and alternating components of force on the key
are found from the torque componentdivided by the shaft radius at that point:
86 , 54ut yS kpsi S kpsi๏€ฝ ๏€ฝ 35690eS psi๏€ฝ
MEC2-K56- Group 15 Page 47
๐น๐‘Ž =
๐‘‡๐‘Ž
๐‘Ÿ
=
2656.95
0.885
= 3002.2( ๐‘™๐‘)
๐น๐‘š =
๐‘‡ ๐‘š
๐‘Ÿ
=
2656.95
0.885
= 3002.2(๐‘™๐‘)
Assuming a key length of 1in and calculate the alternating and mean shear
stress components from equation 4.9 (Robert L. Norton, Machine Design,
p.151):
๐œ ๐‘Ž = ๐œ ๐‘š =
๐น๐‘Ž
๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ
=
2656.95
1 ร— 0.5
= 5313.9 ๐‘๐‘ ๐‘–
To find the safety factor for shear fatigue of the key, compute the Von
Mises equivalent stresses for each these components from equation 5.7d
(Robert L. Norton, Machine Design, p.245):
๐œŽ๐‘Ž
โ€ฒ
= ๐œŽ ๐‘š
โ€ฒ
= โˆš ๐œŽ๐‘ฅ
2 + ๐œŽ๐‘ฆ
2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ
2 = โˆš3 ร— 5313.92 = 9204 ๐‘๐‘ ๐‘–
Then use them in equation 6.18e (Robert L. Norton, Machine Design,
p.364):
๐‘๐‘“ =
1
๐œŽ ๐‘Ž
โ€ฒ
๐‘† ๐‘’
+
๐œŽ ๐‘š
โ€ฒ
๐‘† ๐‘ข๐‘ก
=
1
9204
35690
+
9204
86000
= 2.74
At point 7, the mean and alternating components of force on the key are
found from the torque component divided by the shaft radius at that point:
๐น๐‘Ž = ๐น๐‘š =
๐‘‡๐‘Ž
๐‘Ÿ
=
2656.95
0.685
= 3878.76๐‘™๐‘
Assuming a key length of 1 in and calculate the alternating and mean shear
stress components from:
๐œ ๐‘Ž = ๐œ ๐‘š =
๐น๐‘Ž
๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ
=
3878.76
1 ร— 0.312
= 12431.92 ๐‘๐‘ ๐‘–
MEC2-K56- Group 15 Page 48
To find the safety factor for shear fatigue of the key, compute the Von
Mises equivalent stresses for each these components from equation 5.7d
(Robert L. Norton, Machine Design, p.245):
๐œŽ๐‘Ž
โ€ฒ
= ๐œŽ ๐‘š
โ€ฒ
= โˆš ๐œŽ๐‘ฅ
2 + ๐œŽ๐‘ฆ
2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ
2 = โˆš3 ร— 12431.922 = 21532.72 ๐‘๐‘ ๐‘–
Then use them in equation 6.18e (Robert L. Norton, Machine Design,
p.364):
๐‘๐‘“ =
1
๐œŽ ๐‘Ž
โ€ฒ
๐‘† ๐‘’
+
๐œŽ ๐‘š
โ€ฒ
๐‘† ๐‘ข๐‘ก
=
1
21532.72
35690
+
21532.72
86000
= 1.17
End-mill radius versus shaft diameter ratio:
๏‚ท At point 5:
1
0.02
0.005
3.93
r
d
๏€ฝ ๏€ฝ
๏‚ท At point 7:
3
0.02
0.005
3.54
r
d
๏€ฝ ๏€ฝ
The corresponding stress-concentration factors are read from figure 9.16
(Robert L. Norton, Machine Design, p.529):
๏‚ท At point 5:
4.00
4.00
t
ts
K
K
๏€ฝ๏ƒฌ
๏ƒญ
๏€ฝ๏ƒฎ
๏‚ท At point 7:
4.00
4.00
t
ts
K
K
๏€ฝ๏ƒฌ
๏ƒญ
๏€ฝ๏ƒฎ
These are used to obtain the fatigue stress concentration factors, which for
materials notch sensitivity q=0.65 are:
๏‚ท At point5:
1 ( 1) 1 0.65 (4.00 1) 2.95
1 ( 1) 1 0.65 (4.00 1) 2.95
f t
fs ts
K q K
K q K
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
MEC2-K56- Group 15 Page 49
๏‚ท At point 7:
1 ( 1) 1 0.65 (4.00 1) 2.95
1 ( 1) 1 0.65 (4.00 1) 2.95
f t
fs ts
K q K
K q K
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
For both point
The new safety factors are then calculated using equation 9.8 (Robert L.
Norton, Machine Design, p.514) with the data from equations (b) and (c)
with the design values for shaft diameter and above stress-concentration
values inserted:
๏‚ท At point 5:
1
3
2 2
2 2
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
3
(2.95 2150.7) (2.95 3385.74)
4
32 35690
1.77
3
(2.95 2150.7) (2.95 3385.74)
4
86000
f a fs a
ff
fm m fsm m
ut
f
k M k T
SN
d
k M K T
S
N
๏ฐ
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒช ๏ƒบ
๏ƒช ๏ƒบ
๏‚ด ๏ƒช ๏ƒบ๏€ฝ
๏ƒช ๏ƒบ
๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด
๏ƒช๏€ซ
๏ƒช๏ƒซ ๏ƒป
1
3
3.32fN
๏ƒฌ ๏ƒผ
๏ƒฏ ๏ƒฏ
๏ƒฏ ๏ƒฏ
๏ƒฏ ๏ƒฏ
๏ƒญ ๏ƒฝ
๏ƒฏ ๏ƒฏ
๏ƒฏ ๏ƒฏ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒบ๏ƒฎ ๏ƒพ
๏ƒž ๏€ฝ
1
3
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
f a fs a
ff
fm m fsm m
ut
k M k T
SN
d
k M K T
S
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
f fm
fsm fs
K K
K K
๏€ฝ๏ƒฌ๏ƒฏ
๏ƒญ
๏€ฝ๏ƒฏ๏ƒฎ
MEC2-K56- Group 15 Page 50
1.77 =
{
32 ร— ๐‘๐‘“
๐œ‹
[
โˆš(2.95 ร— 1679.5)2 +
3
4
(2.95 ร— 2656.95)2
35690
+
โˆš(2.95 ร— 1679.5)2 +
3
4
(2.95 ร— 2656.95)2
86000
]}
1
3
โ†’ ๐‘๐‘“ = 1.63
๏‚ท At point 7:
1
3
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
f a fs a
ff
fm m fsm m
ut
k M k T
SN
d
k M K T
S
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
1
3
2 2
2 2
3
(2.95 0) (2.95 3385.74)
4
32 35690
1.37
3
(2.95 0) (2.95 3385.74)
4
86000
fN
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
2.52fN๏ƒž ๏€ฝ
1
3
2 2
2 2
3
( ) ( )
4
32
3
( ) ( )
4
f a fs a
ff
fm m fsm m
ut
k M k T
SN
d
k M K T
S
๏ฐ
๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน
๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ
๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
MEC2-K56- Group 15 Page 51
1.37 =
{
32 ร— ๐‘๐‘“
๐œ‹
[
โˆš(2.95ร— 0)2 +
3
4
(2.95 ร— 2656.95)2
35690
+
โˆš(2.95 ร— 0)2 +
3
4
(2.95 ร— 2656.95)2
86000
]}
1
3
โ†’ ๐‘๐‘“ = 0.94
Position Symbol
Minimum
(in)
Standard
(in)
Standard
(mm)
1stbearing d0 1.22 1.57 40
Gearing d1 1.43 1.77 45
2ndbearing d2 1.37 1.57 40
Chain d3 1.22 1.37 35
Width(in) Length(in)
Key
Point 5 0.500 1.0
Point 7 0.500 1.0
Table 4.4.Corrected shaft II data.
E. Bearing and lubricant
We select roller bearings for the designed shafts.
1. Shaft 1: d0 =35 mm = 1.37 in
MEC2-K56- Group 15 Page 52
From figure 10.23(Robert L. Norton, Machine Design, p615), choose
a #6306 bearing with 35 mm inside diameter. Its dynamic load rating factor is
C=5700 lb, the static load rating C0 = 4000 lb. The static applied load of
86.94 lb (at 1st bearing) and 70.61 lb (at 2nd bearing) is obviously well below
the bearingโ€™s static rating.
From table 10.5(Robert L. Norton, Machine Design, p614), choose
the factor for a 5% failure rate: KR =0.62
Calculate the projected life with equation 10.20a and 10.19 or their
combination, equation 10.20d (Robert L. Norton, Machine Design, p615).
Note that the equivalent load in this case is simply the applied radial load due
to the absence of any thrust load. For the reaction load of 86.94 lb at 1st
bearing:
10 10
3 35700
0.62 704545( )
86.94
p p
C
L K revs
P
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
For the reaction load of 70.61 lb at 2nd bearing:
10 10
3 35700
0.62 1409571( )
70.61
p p
C
L K revs
P
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
There bearing are obviously very light loaded, but their size was
dictated by considerations of stresses in the shaft that defined the shaft
diameter.
From figure 10.23 (Robert L. Norton, Machine Design, p615), this
bearingโ€™s limiting speed is 8500 rpm, well above the operating speed of
shaft 960 rpm.
2. Shaft 2: d0 =50 mm = 1.96 in
From figure 10.23(Robert L. Norton, Machine Design, p615), choose
a #6308 bearing with 50 mm inside diameter. Its dynamic load rating factor is
MEC2-K56- Group 15 Page 53
C=10600 lb, the static load rating C0 = 8150 lb. The static applied load of
226.57 lb (at 1st bearing) and 358.31 lb (at 2nd bearing) is obviously well
below the bearingโ€™s static rating.
From table 10.5(Robert L. Norton, Machine Design, p614), choose
the factor for a 5% failure rate: KR =0.62
Calculate the projected life with equation 10.20a and 10.19 or their
combination, equation 10.20d (Robert L. Norton, Machine Design, p615).
Note that the equivalent load in this case is simply the applied radial load due
to the absence of any thrust load. For the reaction load of 226.57 lb at 1st
bearing:
10 10
3 310600
0.62 228772( )
226.57
p p
C
L K revs
P
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
For the reaction load of 358.31 lb at 2nd bearing:
10 10
3 310600
358.31
0.62 49645( )p p
C
L K revs
P
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
There bearing are obviously very light loaded, but their size was
dictated by considerations of stresses in the shaft that defined the shaft
diameter.
From figure 10.23 (Robert L. Norton, Machine Design, p615), this
bearingโ€™s limiting speed is 6000 rpm, well above the operating speed of shaft
320 rpm.
We choose the petroleum oils for lubricant for the work characteristic
very mild impact of system.
We choose Rzeppar coupling for its characteristic constant velocity.
MEC2-K56- Group 15 Page 54
F. Gearboxโ€™s cover
๏‚ท Box cover has responsibility of maintaining the relative position among
machine parts and machine elements. It receives loads from part that attached
in box cover, contains lubricating oil, protects inside element from dirt and
dust.
๏‚ท Material: gray cast iron GX 15-32
๏‚ท Assembling surface go through shaftโ€™s center line in order assemble
machine element conveniently.
๏‚ท The cap surface and the black rubber or grinded in order to make
interference fit, when fitting there are a layer of liquid coat or special coat.
๏‚ท The bottom surface inclines to the oil outlet about 1degree.
๏‚ท We have table of structure and dimensions of the gear box cover:
Name Value
Thickness:
1
( )
( )
Body
Cap
๏ค
๏ค
1
1
0.03 3 0.03 120.47 3 6.61( )
7 6( )
0.9 0.9 7 6.3( )
7 6( )
a mm
mm
mm
mm
๏ค
๏ค
๏ค ๏ค
๏ค
๏€ฝ ๏‚ด ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ฝ
๏ƒž ๏€ฝ ๏€พ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
๏ƒž ๏€ฝ ๏€พ
Reinforcing rib:
( )
( )
Depth e
Height h
Slope
(0.8 1) (0.8 1) 7 5.6 7( ) 7
5 5 7 35( ) 30
2
e mm e mm
h mm h mm
About
๏ค
๏ค
๏€ฝ ๏‚ธ ๏€ฝ ๏‚ธ ๏‚ด ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ผ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏ƒž ๏€ฝ
๏‚ฐ
Diameter:
Foundation bolt 1( )d
Side bolt 2( )d
Assembly cap and body
bolt 3( )d
Cap connecting screw
4( )d
Oil outlet cap
connecting screw 5( )d
1
1
2 1 2
3 2 3
4 2 4
5 2 5
0.04 10 0.04 120.47 10 14.81( )
16
(0.7 0.8)d 12
(0.8 0.9)d 10
(0.6 0.7)d 6
(0.5 0.6)d 6
d a mm
d mm
d d mm
d d mm
d d mm
d d mm
๏€พ ๏‚ด ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ฝ
๏ƒž ๏€ฝ
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
MEC2-K56- Group 15 Page 55
Bearing dimension:
Width of the assembly
surface of drive side
bolt: K2
Center of drive side
bolt: E2
Distance between bolt
center and hole side (k)
2 2
2 2
2 2 2
2
3 2
1.6 1.6 12 19.2( )
1.3 1.3 12 15.6( )
(3 5) 19.2 15.6 3 37.8( )
38
/ 2with k 1,2 d 7.2( )
E d mm
R d mm
K E R mm
K mm
C D mm
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ
๏€ฝ ๏€ซ ๏€ซ ๏‚ธ ๏€ฝ ๏€ซ ๏€ซ ๏€ฝ
๏ƒž ๏€ฝ
๏‚ป ๏‚ณ ๏‚ด ๏€ฝ
Cap and body connecting
flange:
Body depth 3( )S
Cap depth 4( )S
Flange width 3(K )
3 3 3
4 3 4
3 2 3
(1.4 1.5) 14
(0.9 1)S 13
(3 5) 35
S d S mm
S S mm
K K K mm
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏€ฝ ๏€ญ ๏‚ธ ๏ƒž ๏€ฝ
Cover box foundation
surface:
Depth: without stub S1
Width of box
foundation: K1 and q
1 1 1
1
1
(1.3 1.5) 22
3 1 3 15 45
2 45 2 7 59
S d S mm
K d mm
q K mm๏ค
๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
๏‚ป ๏‚ด ๏‚ป ๏‚ด ๏€ฝ
๏€ฝ ๏€ซ ๏€ฝ ๏€ซ ๏‚ด ๏€ฝ
Clearance among
elements:
Between gear and inside
wall of box.
Between gear top and
box bottom.
Between gearโ€™s sides.
1 1
2 2
(1 2) 10
(3 5) 30
8
mm
mm
mm
๏ค
๏ค
๏ค
๏„ ๏‚ณ ๏‚ธ ๏ƒž ๏„ ๏€ฝ
๏„ ๏‚ณ ๏‚ธ ๏ƒž ๏„ ๏€ฝ
๏„ ๏‚ณ ๏ƒž ๏„ ๏€ฝ
Number of foundation bolt ( ) / (200 300) Z 4Z L B๏€ฝ ๏€ซ ๏‚ธ ๏ƒž ๏€ฝ
MEC2-K56- Group 15 Page 56
G. Comparisons of Designing chain - Driven system between Using
Vietnamese Document and English Document
Vietnamese Document English Document
In part A: Choosing motor and
distributing transmissionratio are
nearly similar to English
Document
-Vietnamese and English
documents use the same input data
-work power
.
1000
lv
F v
P ๏€ฝ
-The same Efficiency of gear
train,chain gear,bearing,coupling
-the similar way to calculate the
necessarypoweror the revolutions
-According to Vietnamese
Document,Choosing motor can be
from 200rpm to 4000rpm
-the distributing transmissionratio
and torque on the axis is calculated
in the same way for Vietnamese
and English document
- Using โ€œTinh Toan He Dan Dong
Co Khiโ€ to choosethe motor.
In part A: Choosing motor and
distributing transmissionratio are
nearly similar to the Vietnamese
Document.
-Input data: Pulling force of
conveyor chain, conveyor speed
chainโ€ฆ
-work power
.
1000
lv
F v
P ๏€ฝ
-The necessary power lv
yc
P
P
๏จ
๏€ฝ
-the revolutions
60000.
.
ct
v
n
z p
๏€ฝ
-in English Document, manufacturer
only provide motors from 500rpm to
2081rpm which are very commom in
industry
-Using Siemens or Toshiba catalogue
to choosemotor.
In part B: Calculating and designing
outer transmission โ€“ chain drives
In part B: Calculating and designing
MEC2-K56- Group 15 Page 57
- Vietnamese version: Ux=2.19 =>
choose:
Z1 = 25
Z2 = 55
-Both of document have choosing
number of teeth of the sprocket
-Vietnamese and English document
use the same factor to determine the
chain step
-Selecting the chain drive by
calculating center distance and force
-Vietnamese and English also have
testing chain durability
outer transmission โ€“ chain drives
-English version: Ux=2.4 =>
choose:
Z1=24
Z2=48
-kz โ€“Toothfactor
-kn โ€“ Rotating factor
-Using selection factor
F1,F2,F3,F4,F5,F6
-English document use Toothfactor
and speed to select the chain drive in
catalogue
-Using wrecking load
-Testing chain is more difficult in
English Document.
In part C: Design gear transmission
-Vietnamese version:Ubr=4 =>
choose : Ppinion=60.08(mm)
PGear = 237.92(mm)
-The same input data
-in Vietnamese Document,we choose
material for gear before we
calculated pitch
-both of documents calculated pitch
diameter,number of teeth,pitch
diameter,distance,but using different
formula and factor
-Using bothtorque and transmission
In part C: Design gear transmission
- English version: Ubr=5 => choose:
Ppinion=8.4(mm)
PGear = 72.2(mm)
-power,number of shift,transmission
ratioโ€ฆ
-we finished for calculating
pitch,choosing material is at the end
of the process
-using look up table for choosing
quality,the tooth form,bending
geometry factor,size factor,rim
thickness factor,velocity
MEC2-K56- Group 15 Page 58
power to calculate
-Vietnamese have testing for gear
transmission
-in Vietnamese document,we
calculate for diameter of teeth
distinctly with gear
factor,overload factorโ€ฆ
-using only transmission power to
calculate
-in English document,we adjust the
contact stress to check
-Englisht documents donโ€™tcalculate
for teeth,we use look up table for
choosing gear and teeth
In part D. Shafts, keys and couplings
calculation
-the same input Data
-At first,coupling is calculated by
using transmission momment and
diameter of motorโ€™s shaft
-The same way to calculate shaft
diameter
-the similar way to calculate length
of the gear hub
-Vietnamese documents name KnF
instead of couplingF in English document
-the different formular for
calculating the diameter of the shaftโ€™
s section.
1
3
0,1[ ]
tdM
d
๏ณ
๏€ฝ
-in Vietnamese document,the shaft
In part D. Shafts, keys and couplings
calculation
- dcT , T , IIT โ€ฆ
-At first,the material is choosenby
using working charact
-
๏› ๏
300
10,2
IT
d
๏ด
๏€ฝ
- 13ml , 12l , 11l โ€ฆ
- couplingF
-according to norton book
3
1
2
1
22
..
4
3
.
32
๏ƒฏ
๏ƒฏ
๏ƒพ
๏ƒฏ๏ƒฏ
๏ƒฝ
๏ƒผ
๏ƒฏ
๏ƒฏ
๏ƒฎ
๏ƒฏ๏ƒฏ
๏ƒญ
๏ƒฌ
๏ƒบ
๏ƒบ
๏ƒป
๏ƒน
๏ƒช
๏ƒช
๏ƒซ
๏ƒฉ
๏ƒท
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒง
๏ƒจ
๏ƒฆ
๏€ซ
๏ƒท
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ
y
m
fsm
f
a
f
f
S
T
k
S
M
K
N
d
๏ฐ
-in English Document,the shaft
diameter is smaller because we chose
material which has higher hardness
than Vietnamese Document
MEC2-K56- Group 15 Page 59
diameter is greater than English
Document
-in Vietnamese document using
safety factor and stress
-in english document,Testing for
shaft using Torque,forceand safety
factor
E.Bearing and lubricant,Designโ€™s
box cover,the oil diptick
E.Bearing and lubricant,Designโ€™s
box cover,the oil diptick
I. Data Table
a. English document
FactorsAxis Motor I II Operating
ukn = 1 ubr = 5 ux = 2.4
P(KW) Pฤ‘c= 6.75 PI = 6.66 PII = 6.36 Pct= 5.7
n(rev/min) nฤ‘c= 1000 nI= 1000 nII= 200 nct = 83.33
T(N.mm) Tฤ‘c= 64462 TI = 63603 TII = 303690 Tct = 653246
b. Vietnamese document
Thรดng
sแป‘Trแปฅc
ฤแป™ng cฦก I II Cรดng tรกc
ukn = 0.99 ubr = 4 ux = 2.19
P(KW) Pฤ‘c=4.4 PI=4.33 PII=4.09 Pct=3.74
n(v/ph) nฤ‘c=716 nI=716 nII=179 nct=327
MEC2-K56- Group 15 Page 60
T(N.mm) Tฤ‘c=58687 TI=57753 TII=218209 Tct=109225
๏ƒฐ we can see the different about the way we chooseubr and ux, that make the
different design.
II. Calculating and designing outer transmission โ€“ chain drives:
- English document: Ux=2.4 => choose: Z1 = 24
Z2 = 48
- Vietnamese document: Ux=2.19 => choose: Z1 = 25
Z2 = 55
III. Design gear transmission.
- English document: Ubr= 5 => choose: Ppinion = 8.4(mm)
PGear = 72.2(mm)
- English document: Ubr=4 => choose: Ppinion = 60.08(mm)
PGear = 237.92(mm)
We have Data of gear transmission:
a. English document
Gear details Symbol Value
Diametral pitch ๐‘‘ ๐‘ 8
Pressure angle ๏ฆ 25o
MEC2-K56- Group 15 Page 61
Tangential force tW 520.3(lb)
No. of teeth on pinion pinionN 20
No. of teeth on gear gearN 100
Pitch diameter of pinion piniond 2.5(in)
Pitch diameter of gear geard 12.5(in)
Pitch-line velocity tV 654.5(ft/min)
Bending stress-pinion tooth bpinion๏ณ 17027.40psi
Bending stress-gear tooth bgear๏ณ 13859.51psi
Surface stress in pinion and
gear
cpinion๏ณ 106079.6psi
Uncorrected bending strength '
fb
S 31051psi
Corrected bending strength '
fb
S 28132psi
Uncorrected surface strength '
fc
S 104480psi
Corrected surface strength fc
S 94867.84psi
MEC2-K56- Group 15 Page 62
Bending safety factor for
pinion
bpN 1.65
Bending safety factor for gear bgN 2.03
Surface safety factor for mesh cpN 0.8
MEC2-K56- Group 15 Page 63
b. Vietnamese document
Information Symbol Value
Spindle diameter aw 149(mm)
Z1 24
Z2 95
Rolling diameter d1 60(mm)
d2 237.5(mm)
Peak diameter dw1 60.08(mm)
dw2 237.92(mm)
Bottom diameter da1 65(mm)
da2 232.5(mm)
Base diameter df1 53.75(mm)
df2 231.25(mm)
Moving ratio db1 56.38(mm)
MEC2-K56- Group 15 Page 64
db2 223.18(mm)
Profin angle
x1 0
Profin Gearโ€™s angle x2 0
Relative angle ๏ก 25o
Coincidental ratio ๏กw 35 o
Mode ๏ฅ๏ก 1.7
Band wide (mm) m 2.5(mm)
Coincidental force bw1 50
bw2 45
Dividing diameter Ft 1725.73(N)
Fr 1812.02 (N)
MEC2-K56- Group 15 Page 65
Diameter of the shaftโ€™ s section.
-English version : Using this equation to calculate
3
1
2
1
22
..
4
3
.
32
๏ƒฏ
๏ƒฏ
๏ƒพ
๏ƒฏ๏ƒฏ
๏ƒฝ
๏ƒผ
๏ƒฏ
๏ƒฏ
๏ƒฎ
๏ƒฏ๏ƒฏ
๏ƒญ
๏ƒฌ
๏ƒบ
๏ƒบ
๏ƒป
๏ƒน
๏ƒช
๏ƒช
๏ƒซ
๏ƒฉ
๏ƒท
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒง
๏ƒจ
๏ƒฆ
๏€ซ
๏ƒท
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ
y
m
fsm
f
a
f
f
S
T
k
S
M
K
N
d
๏ฐ
Position Notion Minimum
diameter
( in)
Standard
diameter is
choosen (mm)
Standard
diameter is
choosen (inch)
1st bearing d0 0.73 25 0.98
2nd bearing d1 1.08 30 1.18
Coupling d2 0.77 25 0.98
Gearing d3 0.73 22 0.89
MEC2-K56- Group 15 Page 66
-Vietnamese version : Using this equation to calculate
3
0.1[ ]
tdj
j
M
d
๏ณ
๏€ฝ 2 2
j0.75tdj jM M T๏€ฝ ๏€ซ 2 2
yjj xjM M M๏€ฝ ๏€ซ
Position Notion Minimum
diameter
( calculated)
Standard
diameter is
choosen (mm)
Standard
diameter is
choosen (inch)
1st bearing d0 19.5 25 0.98
2nd bearing d1 22.5 25 0.98
Coupling d2 19.95 20 0.79
Gearing d3 20.27 30 1.18
MEC2-K56- Group 15 Page 67
References:
1. Trแป‹nhChแบฅt, LรชVฤƒnUyแปƒn โ€“ Tรญnhtoรกnthiแบฟtkแบฟhแป‡dแบซnฤ‘แป™ngcฦกkhรญ, tแบญp 1. NXB Giรกodแปฅc,
2005
2. http://www.renoldchainselector.com/ChainSelector
3. Siemens Cooperation, Siemens motor choosing document.
4. Dudley's Handbook of Practical Gear Design and Manufacture
5. Robert L. Norton, Machine design.

More Related Content

What's hot

86202008
8620200886202008
86202008IJRAT
ย 
AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointMrreynon
ย 
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...ufjjsjekksekmm
ย 
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...ufjjsjekksekmm
ย 
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...ujdfjjjdfkkskemm
ย 
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...ufjjsjekksekmm
ย 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET Journal
ย 
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปc
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปcฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปc
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปchttps://www.facebook.com/garmentspace
ย 

What's hot (9)

B012460814
B012460814B012460814
B012460814
ย 
86202008
8620200886202008
86202008
ย 
AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 Powerpoint
ย 
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
ย 
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.90 fpt nef tier 4 b combine harvesters service repair manual ...
ย 
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
New holland tc5.90 hillside fpt nef tier 4 b combine harvesters service repai...
ย 
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...
New holland tc5.80 fpt nef tier 4 b combine harvesters service repair manual ...
ย 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...
ย 
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปc
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปcฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปc
ฤ‘แป“ รกN chi tiแบฟt mรกy tรญnh toรกn ฤ‘แป™ng hแปc
ย 

Similar to Machine design-2

Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃi
Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃiThuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃi
Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃihttps://www.facebook.com/garmentspace
ย 
Vehicle dynamics final project
Vehicle dynamics final project  Vehicle dynamics final project
Vehicle dynamics final project Mohammad Molani
ย 
Vertical Screw Conveyor - Design Project
Vertical Screw Conveyor - Design ProjectVertical Screw Conveyor - Design Project
Vertical Screw Conveyor - Design ProjectPoorna Hewapathirana
ย 
2. motor drive dynamic
2. motor drive dynamic2. motor drive dynamic
2. motor drive dynamicbenson215
ย 
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi nguyแป…n hแปฏu chรญ
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi   nguyแป…n hแปฏu chรญฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi   nguyแป…n hแปฏu chรญ
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi nguyแป…n hแปฏu chรญhttps://www.facebook.com/garmentspace
ย 
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)Dinesh Rawal
ย 
I0413049055
I0413049055I0413049055
I0413049055ijceronline
ย 
Mechanical Engineering Standard Design Data Book
Mechanical Engineering Standard Design Data BookMechanical Engineering Standard Design Data Book
Mechanical Engineering Standard Design Data BookHiten Bhadja
ย 
Solved Examples for Three - Phase Induction Motors
Solved  Examples for Three - Phase Induction MotorsSolved  Examples for Three - Phase Induction Motors
Solved Examples for Three - Phase Induction MotorsAli Altahir
ย 
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed KF KAF Series Flange Mounted Helical Bevel Gearbox Designed
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed Lance Shi NER GROUP
ย 
Bonfiglioli kf series precision right angle gearbox
Bonfiglioli  kf series  precision right angle gearboxBonfiglioli  kf series  precision right angle gearbox
Bonfiglioli kf series precision right angle gearboxLance Shi NER GROUP
ย 
CIM report - final
CIM report - finalCIM report - final
CIM report - finalSaurabh Dhuri
ย 
CIM report - final
CIM report - finalCIM report - final
CIM report - finalPraveen S R
ย 
AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_XiangXIANG Gao
ย 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"Atin Kumar
ย 
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกy
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกyTiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกy
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกyhttps://www.facebook.com/garmentspace
ย 
ME 6061 important ques
ME 6061 important quesME 6061 important ques
ME 6061 important quesGopinath Guru
ย 

Similar to Machine design-2 (20)

Gearbox design
Gearbox designGearbox design
Gearbox design
ย 
Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃi
Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃiThuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃi
Thuyแบฟt minh ฤ‘แป“ รกn mรดn chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng xรญch tแบฃi
ย 
Vehicle dynamics final project
Vehicle dynamics final project  Vehicle dynamics final project
Vehicle dynamics final project
ย 
Vertical Screw Conveyor - Design Project
Vertical Screw Conveyor - Design ProjectVertical Screw Conveyor - Design Project
Vertical Screw Conveyor - Design Project
ย 
2. motor drive dynamic
2. motor drive dynamic2. motor drive dynamic
2. motor drive dynamic
ย 
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi nguyแป…n hแปฏu chรญ
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi   nguyแป…n hแปฏu chรญฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi   nguyแป…n hแปฏu chรญ
ฤ‘แป“ รกN chi tiแบฟt mรกy thiแบฟt kแบฟ trแบกm dแบซn ฤ‘แป™ng bฤƒng tแบฃi nguyแป…n hแปฏu chรญ
ย 
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)
inclined car parking lift mechanism system by 070 batch (IOE Pulchowk)
ย 
I0413049055
I0413049055I0413049055
I0413049055
ย 
Mechanical Engineering Standard Design Data Book
Mechanical Engineering Standard Design Data BookMechanical Engineering Standard Design Data Book
Mechanical Engineering Standard Design Data Book
ย 
Solved Examples for Three - Phase Induction Motors
Solved  Examples for Three - Phase Induction MotorsSolved  Examples for Three - Phase Induction Motors
Solved Examples for Three - Phase Induction Motors
ย 
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed KF KAF Series Flange Mounted Helical Bevel Gearbox Designed
KF KAF Series Flange Mounted Helical Bevel Gearbox Designed
ย 
Bonfiglioli kf series precision right angle gearbox
Bonfiglioli  kf series  precision right angle gearboxBonfiglioli  kf series  precision right angle gearbox
Bonfiglioli kf series precision right angle gearbox
ย 
CIM report - final
CIM report - finalCIM report - final
CIM report - final
ย 
CIM report - final
CIM report - finalCIM report - final
CIM report - final
ย 
CIM Report
CIM ReportCIM Report
CIM Report
ย 
AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_Xiang
ย 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
ย 
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกy
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกyTiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกy
Tiแปƒu luแบญn kแปน thuแบญt cฦก khรญ thiแบฟt kแบฟ ฤ‘แป“ รกn chi tiแบฟt mรกy
ย 
ME 6061 important ques
ME 6061 important quesME 6061 important ques
ME 6061 important ques
ย 
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
ย 

Recently uploaded

Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`dajasot375
ย 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpmainac1
ย 
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏ
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏ
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏnhjeo1gg
ย 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
ย 
3D Printing And Designing Final Report.pdf
3D Printing And Designing Final Report.pdf3D Printing And Designing Final Report.pdf
3D Printing And Designing Final Report.pdfSwaraliBorhade
ย 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back17lcow074
ย 
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Revit Understanding Reference Planes and Reference lines in Revit for Family ...
Revit Understanding Reference Planes and Reference lines in Revit for Family ...Revit Understanding Reference Planes and Reference lines in Revit for Family ...
Revit Understanding Reference Planes and Reference lines in Revit for Family ...Narsimha murthy
ย 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
ย 
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€lvtagr7
ย 
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”soniya singh
ย 
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€Fi sss
ย 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryWilliamVickery6
ย 
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full NightCall Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
ย 
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€Fi L
ย 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
ย 

Recently uploaded (20)

Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
ย 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUp
ย 
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏ
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏ
ๅœจ็บฟๅŠž็†ohioๆฏ•ไธš่ฏไฟ„ไบฅไฟ„ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•็•™ไฟกๅญฆๅŽ†่ฎค่ฏ
ย 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
ย 
Cheap Rate Call girls Kalkaji 9205541914 shot 1500 night
Cheap Rate Call girls Kalkaji 9205541914 shot 1500 nightCheap Rate Call girls Kalkaji 9205541914 shot 1500 night
Cheap Rate Call girls Kalkaji 9205541914 shot 1500 night
ย 
3D Printing And Designing Final Report.pdf
3D Printing And Designing Final Report.pdf3D Printing And Designing Final Report.pdf
3D Printing And Designing Final Report.pdf
ย 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back
ย 
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Harsh Vihar (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Call Girls Service Mukherjee Nagar @9999965857 Delhi ๐Ÿซฆ No Advance VVIP ๐ŸŽ SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi ๐Ÿซฆ No Advance  VVIP ๐ŸŽ SER...Call Girls Service Mukherjee Nagar @9999965857 Delhi ๐Ÿซฆ No Advance  VVIP ๐ŸŽ SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi ๐Ÿซฆ No Advance VVIP ๐ŸŽ SER...
ย 
Revit Understanding Reference Planes and Reference lines in Revit for Family ...
Revit Understanding Reference Planes and Reference lines in Revit for Family ...Revit Understanding Reference Planes and Reference lines in Revit for Family ...
Revit Understanding Reference Planes and Reference lines in Revit for Family ...
ย 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
ย 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
ย 
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฎšๅˆถ(RMITๆฏ•ไธš่ฏไนฆ)ๆพณๆดฒๅขจๅฐ”ๆœฌ็š‡ๅฎถ็†ๅทฅๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ย 
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”
Call Girls in Okhla Delhi ๐Ÿ’ฏCall Us ๐Ÿ”8264348440๐Ÿ”
ย 
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
(ๅŠž็†ๅญฆไฝ่ฏ)ๅŸƒ่ฟชๆ–ฏ็ง‘ๆ–‡ๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ย 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William Vickery
ย 
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full NightCall Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
ย 
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅŠž็†ๅญฆไฝ่ฏ(TheAuckland่ฏไนฆ)ๆ–ฐ่ฅฟๅ…ฐๅฅฅๅ…‹ๅ…ฐๅคงๅญฆๆฏ•ไธš่ฏๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ย 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
ย 
young call girls in Pandav nagar ๐Ÿ” 9953056974 ๐Ÿ” Delhi escort Service
young call girls in Pandav nagar ๐Ÿ” 9953056974 ๐Ÿ” Delhi escort Serviceyoung call girls in Pandav nagar ๐Ÿ” 9953056974 ๐Ÿ” Delhi escort Service
young call girls in Pandav nagar ๐Ÿ” 9953056974 ๐Ÿ” Delhi escort Service
ย 

Machine design-2

  • 1. MEC2-K56- Group 15 Page 1 HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MECHANICAL ENGINEERING Project 1 Designing Chain - Driven System Supervisor: PhD Dang Bao Lam PhD Nguyen Tuan Khoa Class: Mechatronics 2 - K56 Group 15 Students Mai Vฤƒn Quyแบฟt (20110646) Lรฃ Minh Cรดng (20110087)
  • 2. MEC2-K56- Group 15 Page 2 Contents A. Choosing motor and distributing transmission ratio: ............................. 7 1. Work power: ................................................................................. 7 2. Efficiency of driven system:........................................................... 7 3. Necessary power on the motor axis: ............................................... 7 4. Number of revolutions on operating axis: ....................................... 7 5. Choosing the first-aid transmission ratio:........................................ 7 6. First-aid number of revolutions on motor axis................................. 7 7. Calculating synchronous number of revolutions of motor:............... 8 8. Choosing the motor: ...................................................................... 8 9. Distributing transmission ratio: ...................................................... 8 10. Calculating the factors on the axis: ............................................... 8 11. Data Table:.................................................................................. 9 B. Calculating and designing outer transmission โ€“ chain drives: ........Error! Bookmark notdefined. 1. Choosing the type of chain base on operating condition: .........Error! Bookmark notdefined. 2. Choosing number of teeth of the sprocket......Error! Bookmark not defined. 3. Select factors...................................Error! Bookmark notdefined. 4. Select chain drive ............................Error! Bookmark notdefined. 5. Installation parameters .....................Error! Bookmark notdefined. 6. Centre distance calculation...............Error! Bookmark notdefined. 7. Selection of sprocket materials .........Error! Bookmark notdefined. 8. Data of chosen chain........................Error! Bookmark notdefined. 9. Check for chianโ€™s durability .............Error! Bookmark notdefined. C. Design gear transmission...........................Error! Bookmark notdefined.
  • 3. MEC2-K56- Group 15 Page 3 1. Design Decision:.......................................Error! Bookmark notdefined. 2. Design Calculation: ...................................Error! Bookmark notdefined. ๏‚ท Pitch diameters:................................Error! Bookmark notdefined. ๏‚ท Bending geometry factor...................Error! Bookmark notdefined. ๏‚ท Velovity factorโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ19 ๏‚ท Transmitted loadโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.19 ๏‚ท Bending stresses in pinion and gearโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ20 ๏‚ท Surface stress in the pinion gearโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.20 ๏‚ท Bending- fatigue strengthโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...22 ๏‚ท Surface fatigue strengthโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..23 ๏‚ท Safety factorsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..24 3. Data table..................................................Error! Bookmark notdefined. D. Shafts, keys and couplings calculation. ....Error! Bookmark notdefined. I. Choosing material ...........................Error! Bookmark notdefined. II. Shaft 1 calculations .............................Error! Bookmark notdefined. a) Analyze the forces and moment...............................โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...29 b) Diameter calculationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ32 c) Key and testing for shaft Iโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...33 III. Shaft 2 calculationsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ38 a) Analyze the forces and momentsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. ...38 b) Diameter calculationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.40 c) Key and testing for shaft II โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.42 E. Bearing, lubrication, gear boxโ€™s cover and parts structure. ...........Error! Bookmark notdefined. 1. Shaft 1............................................Error! Bookmark notdefined. 2. Shaft 2............................................Error! Bookmark notdefined. F. Gearbox's coverโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...49
  • 4. MEC2-K56- Group 15 Page 4 G. Comparisionof Englishvs Vietnamese documentโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ References:................................................................................................. 66 List of tables Table 1 Motordata table 10 Table 2 Sprocket materials 13 Table 3 Chain drive data table 14 Table 4 Geardrive data table 25 Table 5 Uncorrectedshaft I diameter data 35 Table 6 CorrectedshaftI diameter data 40 Table 7 Uncorrectedshaft II diameter data 45 Table 8 Correctedshaft II diameter data 50 Table 9 Compare English vs Vietnamese document 55-65 List of figures Figure 1 Chain lubrication 11 Figure 2 Chain 15 Figure 3 Shaft dimensions 29 Figure 4 Force diagramin shaft I 30 Figure 5 Moment diagram in shaft I 33
  • 5. MEC2-K56- Group 15 Page 5 F v 1 2 3 4 5 A Theo A (c.t.4) @ z,p Figure 6 Force diagram in shaft II 40 Figure 7 Moment diagram in shaft II 43 Project 1.15 1. 2. Motor 3. Elastic Clutch 4. Reduction unit 5. Chain trans. Unit 6. Conveyor chain Fig. 1 Chain-Driven system Input data: 1. Pulling force of conveyer chain: F = 4220 (N) Driving gear: 2. Conveyor chain speed: v = 1,36 (m/s) Spur -gear 3. Sprocketteeth number of conveyor chain: z = 14 (teeth) 4. Chain pitch of conveyor chain: p = 70 (mm) 5. Service time: lh = 11000 (hours) 6. Number of shifts: soca= 2 (shift) 7. Inclination angle of outer driven ๐›ฝ = 0 (degree) 8. Working characteristic: Mild impact Shaft for calculating: Input shaft 1
  • 7. MEC2-K56- Group 15 Page 7 A. Choosing motor and distributing transmission ratio: 1. Work power: )(7.5 1000 36.14220 1000 . KW vF Plv ๏€ฝ ๏‚ด ๏€ฝ๏€ฝ 2. Efficiency of driven system: 3 . . .br OL x knh h h h h= Where : Gear performance : โ„Ž ๐‘๐‘Ÿ = 0.96 Chain performance : โ„Ž ๐‘ฅ = 0.9 Bearing performance: โ„Ž ๐‘‚๐ฟ = 0.995 Jointing performance: โ„Ž ๐‘˜๐‘› = 1 85.019.0995.096.0... 33 ๏€ฝ๏‚ด๏‚ด๏‚ด๏€ฝ๏€ฝ๏ƒž knxOLbr ๏จ๏จ๏จ๏จ๏จ 3. Necessarypoweron the motor axis: )(75.6 85.0 7.5 KW P P lv yc ๏€ฝ๏€ฝ๏€ฝ ๏จ 4. Number of revolutions on operating axis: ๐‘› ๐‘๐‘ก = 60000. ๐‘ฃ ๐‘ง. ๐‘ = 6000๏‚ด1.36 14๏‚ด70 = 83.26 (rev/min) 5. Choosing the first-aid transmissionratio (๐’ ๐’”๐’ƒ): ๐’– ๐’”๐’ƒ = ๐’– ๐’™. ๐’– ๐’ƒ๐’“ Follow table B 2.4 21 [1]: Chain ration : ๐’– ๐’™ =2 รท 5 Gear ration : ๐’– ๐’ƒ๐’“ = 3 รท 5 Then: ๐’– ๐’”๐’ƒ ๐’Ž๐’Š๐’= ๐’– ๐’™ ๐’Ž๐’Š๐’. ๐’– ๐’ƒ๐’“ ๐’Ž๐’Š๐’=2๏‚ด 3= 6 ๐’– ๐’”๐’ƒ ๐’Ž๐’‚๐’™= ๐’– ๐’™ ๐’Ž๐’‚๐’™. ๐’– ๐’ƒ๐’“ ๐’Ž๐’‚๐’™=5๏‚ด 5= 25 6. First-aid number of revolutions on motor axis
  • 8. MEC2-K56- Group 15 Page 8 We have : ๐’ ๐’”๐’ƒ = ๐’– ๐’”๐’ƒ. ๐’ ๐’„๐’• ๐’ ๐’”๐’ƒ ๐’Ž๐’Š๐’ = ๐’– ๐’”๐’ƒ ๐’Ž๐’Š๐’. ๐’ ๐’„๐’•= 500 (rev/min) ๐’ ๐’”๐’ƒ ๐’Ž๐’‚๐’™ = ๐’– ๐’”๐’ƒ ๐’Ž๐’‚๐’™. ๐’ ๐’„๐’•= 2081 (rev/min) We choose ๐’ ๐’”๐’ƒ =1000 (rev/min) 7. Calculating synchronous number of revolutions of motor : Choosing ๐’ ๐’…๐’ƒ ๐’• = ๐Ÿ•๐Ÿ“๐ŸŽ (rev/min) 8. Choosing the motor: Choosethe motor which satisfies: { ๐‘›ฤ‘๐‘ โ‰ˆ ๐‘› ๐‘ ๐‘ = 1000 (rev/min) ๐‘ƒฤ‘๐‘ โ‰ฅ ๐‘ƒ๐‘ฆ๐‘ = 6.75 (๐พ๐‘Š) We have the motor with the details: Siemen 1LA7 134-6AA { ๐‘› ๐‘‘๐‘ = 1000 (rev/min) ๐‘ = 7 ๐พ๐‘Š 9. Distributing transmission ratio: Transmission ratio of the system: ๐’– ๐’„๐’‰ = ๐’ฤ‘๐’„ ๐’ ๐’„๐’• = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ ๐Ÿ–๐Ÿ‘.๐Ÿ๐Ÿ” =12 Choose the transmission ratio of 1st gear box: ๐‘ข ๐‘๐‘Ÿ =5 Transmission ratio of outer driven: ๐‘ข ๐‘ฅ= ๐’– ๐’„๐’‰ ๐’– ๐’ƒ๐’“ = ๐Ÿ๐Ÿ ๐Ÿ“ โ‰ˆ ๐Ÿ. ๐Ÿ’ So, we have: { ๐‘ข ๐‘โ„Ž = 12 ๐‘ข ๐‘๐‘Ÿ = 5 ๐‘ข ๐‘ฅ = 2.4 10. Calculating the factors on the axis: Power on operating axis: ๐‘ƒ๐‘๐‘ก = ๐‘ƒ๐‘™๐‘ฃ = 5.7 (Kw)
  • 9. MEC2-K56- Group 15 Page 9 Power on axis II: ๐‘ƒ๐ผ๐ผ = ๐‘ƒ๐‘๐‘ก ๐‘› ๐‘‚๐ฟ.๐‘› ๐‘ฅ = 5.7 0.995ร—0.9 = 6.36(Kw) (Kw) Power on axis I: ๐‘ƒ๐ผ = ๐‘ƒ๐‘๐‘ก ๐‘› ๐‘‚๐ฟ.๐‘› ๐‘ฅ = 6.36 0.995ร—0.96 = 6.66 (Kw) Power on the motor axis: ๐‘ƒฤ‘๐‘ = ๐‘ƒ ๐ผ ๐‘› ๐‘‚๐ฟ.๐‘› ๐‘˜๐‘› = 6.66 0.995ร—1 = 6.70 (Kw) Number of revolutions on the motor axis: ๐‘›ฤ‘๐‘= 1000 (rev/min) Number of revolutions I: ๐‘›๐ผ = ๐‘›ฤ‘๐‘ ๐‘ข ๐‘˜๐‘› = 1000 1 = 1000 (rev/min) Number of revolutions II: ๐‘›๐ผ๐ผ = ๐‘› ๐ผ ๐‘ข ๐‘๐‘Ÿ = 1000 5 = 200 (๐‘Ÿ๐‘’๐‘ฃ/๐‘š๐‘–๐‘›) Number of revolutions on the operating axis: ๐‘› ๐‘๐‘ก = ๐‘›๐ผ๐ผ ๐‘ข ๐‘ฅ = 200 2.4 = 83.33 (๐‘Ÿ๐‘’๐‘ฃ/๐‘š๐‘–๐‘›) Torque on the motor axis: ๐‘‡ฤ‘๐‘ = 9,55.106 . ๐‘ƒฤ‘๐‘ ๐‘›ฤ‘๐‘ = 9,55.106 . 6.75 1000 = 64462 (๐‘. ๐‘š๐‘š) Torque on the axis I: ๐‘‡๐ผ = 9,55.106 . ๐‘ƒ ๐ผ ๐‘› ๐ผ = 9,55.106 . 6.66 1000 = 63603 ( ๐‘. ๐‘š๐‘š) Torque on the axis II: ๐‘‡๐ผ๐ผ = 9,55.106 . ๐‘ƒ ๐ผ๐ผ ๐‘›๐ผ๐ผ = 9,55.106 . 6.36 200 = 303690 ( ๐‘. ๐‘š๐‘š) Torque on the operating axis: ๐‘‡๐‘๐‘ก = 9,55.106 . ๐‘ƒ๐‘๐‘ก ๐‘› ๐‘๐‘ก = 9,55.106 . 5.7 83.33 = 653246 (๐‘. ๐‘š๐‘š)
  • 10. MEC2-K56- Group 15 Page 10 11. Data Table: FactorsAxis Motor I II Operating ukn = 1 ubr = 5 ux = 2.4 P(KW) Pฤ‘c= 6.75 PI = 6.66 PII = 6.36 Pct= 5.7 n(rev/min) nฤ‘c= 1000 nI= 1000 nII= 200 nct = 83.33 T(N.mm) Tฤ‘c= 64462 TI = 63603 TII = 303690 Tct = 653246 B.Calculating and designing outer transmission โ€“ chain driver Data requirements: { P = PII = 6.36(KW) T1 = TII = 303690(N.mm) n1 = nII = 200 (rpm) u = ux = 2.4 ฮฒ = 00 1. Choosing the type of chain We choosethe brushed roller chain.
  • 11. MEC2-K56- Group 15 Page 11 2. Choosing number of teeth of the sprocket The number of teeth on driver sprocket: Z1 = 29 โˆ’ 2 ร— u = 29 โˆ’ 2 ร— 2.4 = 24.2 โ‰ฅ 19, choose Z1 = 24 Therefore the driven number of teeth: ๐‘2 = ๐‘ข ร— ๐‘1 = 2 ร— 24.2 = 48.4 โ‰ค ๐‘ ๐‘š๐‘Ž๐‘ฅ = 140, ๐‘โ„Ž๐‘œ๐‘œ๐‘ ๐‘’ ๐‘2 = 48 3. Selectfactors Application factor: use the chart 2 (see page 102 Renold Roller Chain Catalogue) with driver and driven sprockets smoothrunning we have: 1 1f ๏€ฝ Toothfactor: ๐‘“2 = 19 ๐‘1 = 19 24 = 0.79 Selection power = Transmitted power 1 2f f๏‚ด ๏‚ด = 6.36ร—1ร—0.7 =5.02 (KW) 4. Selectchain drive According to American Chain Rating Chart (see page 106 Renold Roller Chain Catalogue) by cross reference power 5.02(KW) and speed 200(rpm), we will choosethe ANSI Simplex with the chain pitch p = 19.05(mm). 5. Installation parameters Lubrication โ€“ American Chain Rating Chart (see page 106 Renold Roller Chain Catalogue) clearly indicates the chain need Oil Bath type 3 lubrication.
  • 12. MEC2-K56- Group 15 Page 12 Figure 2.1.Chain lubrication. Now we calculate the chain length (see page 105 Renold Roller Chain Catalogue): 22 1 1 2 ( ) 2 2 2 Z Z p Z Z C p L p C ๏€ญ ๏‚ด ๏€ซ ๏‚ด ๏‚ด ๏€ฝ ๏€ซ ๏€ซ Where: C is the contemplated center distance in mm and should generally be between 30-50 pitches. In this case: C = 19.05ร—40 = 762 (mm) L = Chain length (pitches) p = Chain pitch = 19.05(mm) Z1= 24(teeth) Z2= 48(teeth) ๐ฟ = 24+48 2 + 2ร—762 19.05 + ( 48โˆ’24 2ร—19.05 )2ร—19.05 762 = 116 (pitches)
  • 13. MEC2-K56- Group 15 Page 13 6. Centre distance calculation The center distance of the drive can now be calculated using the formula below (see page 105 Renold Roller Chain Catalogue): C = 19.05 8 [2 ร— 116โˆ’ 48 โˆ’ 24 + โˆš(2 ร— 116โˆ’ 48 โˆ’ 24)2 โˆ’ (48 โˆ’ 24)2 ฯ€ 3.88 ]= C = 758.5 7. Selectionofsprocketmaterials Depend on the table (p.104 Renold Roller Chain Catalogue): Table 2.1.Sprocket materials. Driver sprocket material is cast iron Driven sprocket material is EN8 or EN9 ๏€จ ๏€ฉ ๏€จ ๏€ฉ 2 2 2 1 2 1 2 12 2 8 3.88 p C L Z Z L Z Z Z Z ๏ฐ๏ƒฉ ๏ƒน ๏€ฝ ๏‚ด ๏€ญ ๏€ญ ๏€ซ ๏‚ด ๏€ญ ๏€ญ ๏€ญ ๏€ญ๏ƒช ๏ƒบ ๏ƒซ ๏ƒป
  • 14. MEC2-K56- Group 15 Page 14 8. Data of chosenchain Following this link: http://www.renoldchainselector.com/ChainSelector We will choosethe ANSI 80 (ISO 606) Simplex chain transmission with conditions: Environmental condition: Loading Classification: Driven Machine: smoothrunning, Moderate Shocks. Service Conditions: Recommended. Environnent Condition: Normal environnement, Indoor application. ExpectedWorking Life of the Chain ๐‘๐ž๐ง๐จ๐ฅ๐ ๐’๐ฒ๐ง๐ž๐ซ๐ ๐ฒ ๐‘ป๐‘ด Chain: ANSI 80 (ISO 606)Simplex The working life of the chain is greater than 3000 hours. After this time: The chain will reach 3% elongation. Serial Number: GY80A1 Input Power: P = 6.36 kW Pitch: p = 19.05 mm Input Speed: n = 200 rpm ISO Breaking Load: Fb = 55600 N Chain Linear Velocity: v = 2 m/s Bearing Pressure: pr = 24.831 N/mmยฒ Torque: T = 303.69 Nm Bearing Area: f = 1.78 cmยฒ Static Force: F = 3129.9 N Weight: q = 2.8 kg/m
  • 15. MEC2-K56- Group 15 Page 15 Dynamic Force: Fd = 4408.3 N Chain Length: l = 2489.2 mm Centrifugal Force: Ff = 11.56 N Centre Distance: a = 762mm Total Force: Fg = 4419.9 N Number of Links: X = 98 Chain Tensioner required static = 17.8 dynamic = 12.6 Figure 2.2.Chain.
  • 16. MEC2-K56- Group 15 Page 16 Chain Drive: Sprocket Driving (Z1) Driven (Z2) Number of Teeth: 24 48 Ratio: i = 2 Pitch Circle Diameter: 194.597 mm 388.361 mm Loading Classification: Smooth running Moderate Shocks Environment Conditions: Environment Conditions: Indoor, Normal Service Conditions: Recommended Recommended Lubrication: Drip Lubrication . 9. Check for chainโ€™s durability Durability factor: ๐’” = ๐‘ธ ๐’Œฤ‘ ๐‘ญ๐’• + ๐‘ญ ๐ŸŽ + ๐‘ญ ๐’— Where: ๏‚ง Q โ€“ ISO Breaking Load: Q =31.8(KN) ๏‚ง Chainโ€™s mass: q = 2.8(kg/m).
  • 17. MEC2-K56- Group 15 Page 17 ๏‚ง F - Static force: ๐น๐‘ก = 1000ร—๐‘ƒ ๐‘ฃ , ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฃ = 2๐‘š/๐‘  ๐น๐‘ก = 1000ร—๐‘ƒ ๐‘ฃ = 1000ร—6.36 2 = 3180(N) ๏‚ง Ff - Centrifugal Force: ๐น๐‘“ = ๐‘ž. ๐‘ฃ2 = 2.8 ร— 22 = 11.2 (๐‘) ๏‚ง F0- The tension caused by the weight of chain: aqkF f ...81,90 ๏€ฝ , with: a - Centre distance: a=762(mm) kf - Deflection coefficient of chain: because of ๏ข = 0o ๏ƒž kf = 1 ๐น0 = 9.81 ร— 1 ร— 2.8 ร— 762ร— 10โˆ’3 = 20.93 (๐‘) Therefore: ๐’” = Q kฤ‘Ft+F0+Fv with kd is dynamic loading coefficient with characteristic is Mild: kd=1 ๐’” = ๐‘„ ๐‘˜ฤ‘ ๐น๐‘ก+๐น0+๐น๐‘ฃ = 31800 1ร—3180+20.93+11.2 = 9.9 [s] โ€“ Allowed safe factor: Find in table 5.10 (1) 86 B with p = 19.05(mm); n1 = 200(rpm) we get [s]=8.2. We find that s>[s] therefore the chain has satisfied safe factor.
  • 19. MEC2-K56- Group 15 Page 19 C. Design gear transmission . Data requirement: { ๐‘ท = ๐‘ท๐‘ฐ = ๐Ÿ”. ๐Ÿ”๐Ÿ” (๐‘ฒ๐‘พ) ๐‘ป = ๐‘ป ๐‘ฐ = ๐Ÿ”๐Ÿ‘๐Ÿ”๐ŸŽ๐Ÿ‘ (๐‘ต. ๐’Ž๐’Ž) ๐’ ๐Ÿ = ๐’๐‘ฐ = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ ( ๐’“๐’‘๐’Ž) ๐’– = ๐’– ๐’ƒ๐’“ = ๐Ÿ“ ๐‘ณ ๐’‰ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐’‰ 1. Designdecision ๏‚ท Materialselection Material: Steel C45 ๏‚ท Selectdiameter pitch From Standard Diameter Pitches (Robert L. Norton, Machine Design, p.645, table 11-2): Choosep = 8 ๏‚ท Selectnumber of teeth (with u=5) Driving pinion: ๐‘๐‘ = 20 ๐‘ก๐‘’๐‘’๐‘กโ„Ž Driven gear: 100 teeth 2. Designcalculation ๏‚ท Pitch diameter Pitch diameter of driving pinion: ๐‘‘ ๐‘ = ๐‘ ๐‘ ๐‘ = 20 8 = 2.5 ( ๐‘–๐‘›) Pitch diameter of driven gear: dg = 100 8 = 12.5 (in) ๏‚ท Bending geometryfactor
  • 20. MEC2-K56- Group 15 Page 20 The bending geometry factors J for this combination are found in the RobertL. Norton, Machine Design, p.666, table 11-9, for the highest point of the single-tooth contact(HPSTC)and are approximately : { ๐ฝ๐‘ = 0.35 ๐ฝ ๐บ = 0.43 ๏‚ท Velocity factor The velocity factor is calculated from equations 11.16 and 11.17 (Robert L. Norton, Machine Design, p.665) base on the assumed gear quality index and pitch-line velocity : ๐‘‰๐‘ก = ๐‘‘ ๐‘ 2 ร— ๐œ” ๐‘ = 2.5 2ร—12 ร— (1000๐‘Ÿ๐‘๐‘š)(2๐œ‹) = 654.5(ft/min) 825.0 4 )612( 4 )12( 3/23/2 ๏€ฝ ๏€ญ ๏€ฝ ๏€ญ ๏€ฝ v Q B 8.59)825.01(5650)1(5650 ๏€ฝ๏€ญ๏€ซ๏€ฝ๏€ญ๏€ซ๏€ฝ BA ๐พ๐‘ฃ = ๐ถ๐‘ฃ = ( ๐ด ๐ด + โˆš ๐‘‰๐‘ก ) ๐ต = ( 59.8 59.8+ โˆš654.5 ) 0.825 = 0.745 Maximum velocity checking should be checked against the maximum allowable pitch-line velocity for this quantity gear using equation 11.18 (Robert L. Norton, Machine Design, p.668): ๏€จ ๏€ฉ๏› ๏ min)/(84.39433 2 max ftQvAVt ๏€ฝ๏€ญ๏€ซ๏€ฝ We can see that maxt tV V๏€ผ , so tV is acceptable. ๏‚ท Transmitted load ( )v vK C 6vQ ๏€ฝ tV tV
  • 21. MEC2-K56- Group 15 Page 21 ๐‘Š๐‘ก = 33000๐ป ๐‘‰ = 33000ร— 10.32 654.5 = 520.3(๐‘™๐‘) ๏‚ท Bending stressesin pinion and gear Bending stress can be estimated using equation 11.15 (Robert L. Norton, Machine Design, p.664): Where: is face width can be estimated by this equation (Robert L. Norton, Machine Design, p.669): Fโ‰… 12 ๐‘ƒ ๐‘‘ = 12 8 = 1.5 in is application factor. We choose from table 11.17(Robert L. Norton, Machine Design, p.669): is load distribution factor. We choose from table 11.16 with (Robert L. Norton, Machine Design, p.669). is size factor and rim bending factor are equal 1 for these small gears. Apply all these factors; we can estimate bending stress in: ๐œŽ๐‘ ๐‘ = ๐‘Š๐‘ก ๐‘ ๐‘‘ ๐น๐ฝ ๐‘ ร— ๐พ ๐‘Ž ๐พ ๐‘š ๐พ๐‘ฃ ร— ๐พ๐‘  ๐พ ๐ต ๐พ๐ผ = 520.3ร—8 1.5ร—0.35 ร— 1ร—1.6 0.745 ร— 1 ร— 1 ร— 1 = 17027.40 psi ๐œŽ๐‘ ๐‘” = ๐‘Š๐‘ก ๐‘ ๐‘‘ ๐น๐ฝ ๐‘” ร— ๐พ ๐‘Ž ๐พ ๐‘š ๐พ๐‘ฃ ร— ๐พ๐‘  ๐พ ๐ต ๐พ๐ผ = 520.3ร—8 1.5ร—0.43 ร— 1ร—1.6 0.745 ร— 1 ร— 1 ร— 1 = 13859.51 psi p t a m b s B I v W p K K K K K FJ K ๏ณ ๏€ฝ F ( )a aK C 1a aK C๏€ฝ ๏€ฝ ( )m mK C 1.6mK ๏€ฝ 2F ๏€ผ sK BK
  • 22. MEC2-K56- Group 15 Page 22 ๏‚ท Surface stress in the pinion gear The surface stress in the pinion gear can be estimated by equation 11.21 (RobertL. Norton, Machine Design, p.672): t a m cpg p s f p v W C C C C C FId C ๏ณ ๏€ฝ Where: pC is elastic coefficient accounts for differences in tooth materials and can be found in table 11.18 (Robert L. Norton, Machine Design, p.674): 0.5 2300pC psi๏€ฝ for steel on steel. I is geometry factor can estimated by equation 11.22a (Robert L. Norton, Machine Design, p.673): cos 1 1 p p g I d ๏ฆ ๏ฒ ๏ฒ ๏€ฝ ๏ƒฆ ๏ƒถ ๏‚ฑ๏ƒง ๏ƒท๏ƒง ๏ƒท ๏ƒจ ๏ƒธ Where : + ๏ฆ is pressure angle of pinion teeth. We choose 25๏ฆ ๏€ฝ ๏‚ฐ + p๏ฒ and g๏ฒ are the radius of curvature of the pinion and gear teeth, respectively. These factors are calculated from the geometry (Robert L. Norton, Machine Design, p.673, equation 11.22b): ๐œŒ ๐‘ = โˆš( ๐‘Ÿ๐‘ + 1 ๐‘ƒ ๐‘‘ ) 2 โˆ’ (๐‘Ÿ๐‘ ๐‘๐‘œ๐‘ โˆ…)2 - ๐œ‹ ๐‘ƒ ๐‘‘ ๐‘๐‘œ๐‘ โˆ…
  • 23. MEC2-K56- Group 15 Page 23 ๐œŒ ๐‘ = โˆš(1.25 + 1 8 ) 2 โˆ’ (1.25๐‘๐‘œ๐‘ 250)2 โˆ’ ๐œ‹ 8 ๐‘๐‘œ๐‘ 250 ๏ƒฐ ๐œŒ ๐‘ = 0.33 ๐‘–๐‘› ๐œŒ ๐‘” = ๐ถ๐‘ ๐‘–๐‘›โˆ… โˆ’ ๐œŒ1 = (๐‘Ÿ๐‘ + ๐‘Ÿ๐‘”)๐‘ ๐‘–๐‘›โˆ…โˆ’ ๐œŒ1 = (1.25 +6.25)ร— sin 250 โˆ’ 0.33 =2.84 in Therefore, geometry factor now can be estimated: I = ๐‘๐‘œ๐‘ โˆ… ( 1 ๐œŒ ๐‘ ยฑ 1 ๐‘ ๐‘” ) = ๐‘๐‘œ๐‘ 250 ( 1 0.33 โˆ’ 1 2.84 )ร—2.5 = 0.14 fC is surface factor and can be set to 1 for well-finished gears made by conventional methods. Apply all these factors, now we can estimate surface stress in the gear mesh: t a m cpg p s f p v W C C C C C FId C ๏ณ ๏€ฝ =2300โˆš 520.3 1.5ร—0.14ร—2.5 ร— 1ร—1.6 0.745 ร— 1 ร— 1 = 106079.6 psi ๏‚ท Bending-fatigue strength The correction (or corrected) bending -fatigue strength of gears can be computed using formula 11.24 (Robert L. Norton, Machine Design, p.678):
  • 24. MEC2-K56- Group 15 Page 24 ' L fb fb T R K S S K K ๏€ฝ Where: lK is life factor which is found from the appropriate equation in Figure 11.24(Robert L. Norton, Machine Design, p.679) based on the required number of cycles in the life of the gears. The pinion sees the largest number of repeat tooth-loadings, so we calculate the life based on it. First, calculate the number of cycles N for the required life of 16000h, one shift: N = 1000rpm ( 60๐‘š๐‘–๐‘› โ„Ž๐‘Ÿ ) ร— 11000โ„Ž๐‘Ÿ = 0.66 ร— 109 (๐‘๐‘ฆ๐‘๐‘™es) then calculate the life factor: ๐พ๐ฟ = 1.3558ร— ๐‘โˆ’0.0178 = 1.3558ร— (0.66ร— 109)โˆ’0.0178 = 0.906 TK is temperature factor. At the normal condition, 1TK ๏€ฝ . The gear-material data are all taken at a reliability level of 99%. This is satisfactory in this case, making 1RK ๏€ฝ 'fbS is uncorrected bending-fatigue strength can be made from the curves of Figure 11.25(Robert L. Norton, Machine Design, p.681). We will try an AGMA Grade 1 steel, through hardened to 250 HB. The uncorrected bending-fatigue strength is found from the lower curve of the figure: 2 ' 2 274 167 0.152 274 167 240 0.152 240 31051 fbS HB HB psi ๏€ฝ ๏€ญ ๏€ซ ๏€ญ ๏€ฝ ๏€ญ ๏€ซ ๏‚ด ๏€ญ ๏‚ด ๏€ฝ
  • 25. MEC2-K56- Group 15 Page 25 Apply all these factors, now we can calculate the corrected bending- fatigue strength: ๐‘†๐‘“๐‘ = ๐พ๐ฟ ๐พ ๐‘‡ ๐พ ๐‘… ๐‘†๐‘“๐‘โ€ฒ = 0.906 1 ร— 31051 = 28132๐‘๐‘ ๐‘– ๏‚ท Surface fatigue strength The correction (or corrected) surface-fatigue strength of gears can be computed using formula 11.25 (Robert L. Norton, Machine Design, p.679): ' L H fc fc T R C C S S C C ๏€ฝ Where: lC is life factor which is found from the appropriate equation in Figure 11.25(Robert L. Norton, Machine Design, p.679) based on the required number of cycles in the life of the gears. The pinion sees the largest number of repeat tooth-loadings, so we calculate the life based on it. First, calculate the number of cycles N found above: ๐‘† ๐‘“๐‘โ€ฒ = 2600+ 327๐ป๐ต = 2600+ 327(240) = 104480 psi ๐ถ๐ฟ = 1.4488๐‘โˆ’0.023 = 1.4488ร— (0.66 ร— 109 )โˆ’.0023 = 0.908 1๏€ฝ๏€ฝ TT KC and 1๏€ฝ๏€ฝ RR KC Since the gears and pinion are of the same hardness material in this case, 1HC ๏€ฝ . Apply all these factors, now we can calculate the corrected surface- fatigue strength:
  • 26. MEC2-K56- Group 15 Page 26 ๐‘†๐‘“๐‘ = ๐ถ๐ฟ ๐ถ ๐ป ๐ถ ๐‘‡ ๐ถ ๐‘… ๐‘†๐‘“๐‘โ€ฒ = 0.908 ร— 1 1 ร— 1 ร— 104480 = 94867.84๐‘๐‘ ๐‘– ๏‚ท Safety factors The safety factors against bending failure are found by comparing the corrected bending strength to the bending stress for each gear in the mesh: ๐‘๐‘ ๐‘ = ๐‘†๐‘“๐‘ ๐œŽ๐‘ ๐‘ = 28132 17027.40 = 1.65 ๐‘๐‘ ๐‘” = ๐‘†๐‘“๐‘ ๐œŽ๐‘ ๐‘” = 28132 13859.51 = 2.03 The safety factor against surface failure is found by comparing the actual load to the load that would produce a stress equal to the materialโ€™s corrected surface strength. Because surface stress is related to the squarer root of the load, the surface-fatigue safety factor can be calculated as the quotient of the square of the corrected surface strength divided by the square of the surface stress for each gear in the mesh: ๐‘๐ถ ๐‘โˆ’๐‘” = ( ๐‘† ๐‘“๐‘ ๐œŽ ๐‘ ๐‘๐‘–๐‘›๐‘–๐‘œ๐‘› ) 2 = ( 94867.84 106079.6 ) 2 =0.8
  • 27. MEC2-K56- Group 15 Page 27 3. Data table Gear details Symbol Value Diametral pitch dp 8 Pressure angle ๏ฆ 25๏‚ฐ Tangential force tW 520.3(lb) Number of teeth on pinion pN 20 Number of teeth on gear gN 100 Pitch diameter of pinion pd 2.5 (in) Pitch diameter of gear gd 12.5 (in) Pitch-line velocity tV 654.5(ft/min) Bending stress-pinion tooth pb๏ณ 17027.40psi Bending stress-gear tooth gb๏ณ 13859.51psi Surface stress in pinion and gear cpg๏ณ 106079.6psi Uncorrected bending strength ' fb S 31051psi Corrected bending strength fbS 28132psi Uncorrected surface strength ' fc S 104480psi Corrected surface strength fc S 94867.84psi Bending safety factor for pinion bpN 1.65 Bending safety factor for gear bgN 2.03 Surface safety factor for mesh p gcN ๏€ญ 0.8 Table 3.1.Gear data table.
  • 28. MEC2-K56- Group 15 Page 28 D. Shafts, keys and coupling calculation I. Choosing material In order to minimize the deflections, we try an inexpensive, low-carbon, cold-rolled steel such as SAE 1040 with 86utS kpsi๏€ฝ and 54yS kpsi๏€ฝ . Though not exceptionally strong, this material has low notch sensitivity, which will be an advantage given the large stress concentration. The endurance limit strength can be estimated using equation 6.6 (Robert L. Norton, Machine Design, p326): 'e load size surf temp reliab e S C C C C C S๏€ฝ ๏‚ด ๏‚ด ๏‚ด ๏‚ด ๏‚ด Where: 1loadC ๏€ฝ because the loading is bending and torsion. 1sizeC ๏€ฝ because we do not know the part size, therefore sizeC is temporarily assumed and will be adjusted later. surfC is approximate surface factor and can be estimated using equation 6.7e (Robert L. Norton, Machine Design, p329): ( )b surf utC A S๏€ฝ ๏‚ด with A= 2.7 and b= -0.265 are found in table 6.3 (Robert L. Norton, Machine Design, p329). Calculate above equation with given factors, we have: ๐‘ช ๐’”๐’–๐’“๐’‡ = ๐‘จ ร— (๐‘บ ๐’–๐’•) ๐’ƒ = ๐Ÿ. ๐Ÿ• ร— (๐Ÿ–๐Ÿ”)โˆ’๐ŸŽ.๐Ÿ๐Ÿ”๐Ÿ“ =0.83<1 (satisfied) 1tempC ๏€ฝ since temperature is not evaluated. 1reliabC ๏€ฝ while we assume 50% reliability at this preliminary design stage.
  • 29. MEC2-K56- Group 15 Page 29 ' e S is uncorrected endurance strength and calculated using equation 6.5a (Robert L. Norton, Machine Design, p324) for 200utS kpsi๏€ผ : ' 0.5 0.5 86000 43000ute S S psi๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ Apply all above factor, now we can calculate the corrected endurance strength: 'e load size surf temp reliab e S C C C C C S๏€ฝ ๏‚ด ๏‚ด ๏‚ด ๏‚ด ๏‚ด = 1ร— ๐Ÿ ร— ๐ŸŽ. ๐Ÿ–๐Ÿ‘ ร— ๐Ÿ ร— ๐Ÿ ร— ๐Ÿ’๐Ÿ‘๐ŸŽ๐ŸŽ๐ŸŽ = ๐Ÿ‘๐Ÿ“๐Ÿ”๐Ÿ—๐ŸŽ psi Another factor of material is notch sensitivity which is found from equation 6.13 (Robert L. Norton, Machine Design, p339) or figure 6.36 (Robert L. Norton, Machine Design, p340-341): ๐’’ ๐’ƒ๐’†๐’๐’…๐’Š๐’๐’ˆ = ๐ŸŽ. ๐Ÿ” ๐’’๐’•๐’๐’“๐’”๐’Š๐’๐’ = ๐ŸŽ. ๐Ÿ–๐Ÿ“ The fatigue stress-concentration factor is found from equation 6.11b (Robert L. Norton, Machine Design, p339) using the assumed geometric stress-concentration factor noted above: { ๐‘ฒ ๐’• = ๐Ÿ. ๐Ÿ“ ๐‘ฒ ๐’‡๐’” = ๐Ÿ. ๐Ÿ– The fatigue stress concentration factor for bending stress at section 1: ๐‘ฒ ๐’‡ = ๐Ÿ + ๐’’ ร— ( ๐‘ฒ ๐’• โˆ’ ๐Ÿ) = ๐Ÿ + ๐ŸŽ. ๐Ÿ” ร— ( ๐Ÿ. ๐Ÿ“ โˆ’ ๐Ÿ) = ๐Ÿ. ๐Ÿ— The fatigue stress concentration factor for torsion at section 1: ๐‘ฒ ๐’‡๐’” = ๐Ÿ + ๐’’ ร— ( ๐‘ฒ ๐’•๐’” โˆ’ ๐Ÿ) = ๐Ÿ + ๐ŸŽ. ๐Ÿ–๐Ÿ“ ร— ( ๐Ÿ. ๐Ÿ– โˆ’ ๐Ÿ) = ๐Ÿ. ๐Ÿ”๐Ÿ–
  • 30. MEC2-K56- Group 15 Page 30 From equation 6.17 (Robert L. Norton, Machine Design, p360), we find that in this case, the same factor should be used on the mean torsional stress component: ๐‘ฒ ๐’‡๐’Ž๐’” = ๐‘ฒ ๐’‡๐’”= 1.68 II. Shaft 1 calculations Given ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™ = 520.3 ( ๐‘™๐‘) ๐‘‡1 = 63603 (๐‘. ๐‘š๐‘š) Figure 4.1.Shaft dimensions. We choosediameter of shaft I is 1 25( )ed mm๏€ฝ , according to the standard of the SKF bearing manufacture, the width of roller-bearing 01 17( )b mm๏€ฝ . And 1 2 310, 15, 20nk k k h๏€ฝ ๏€ฝ ๏€ฝ ๏€ฝ . ๏‚ท Length of the gear hub: 13 11.2 1.2 25 37.5( )m el d mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏‚ท Length of the hub of a haft coupling: 12 12 2 25 50( )m el d mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏‚ท 12 12 01 30.5 ( ) 0.5 (50 17) 15 20 68.5( )c m nl l b k h mm๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ท 13 13 01 1 20.5 ( ) 0.5 (30 17) 10 10 43.5( )ml l b k k mm๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏‚ท 12 12 68.5( )cl l mm๏€ฝ ๏€ญ ๏€ฝ ๏€ญ
  • 31. MEC2-K56- Group 15 Page 31 ๏‚ท 11 132 2 43.5 87( )l l mm๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ a) Analyze the forces and moments We assume that ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” = 0.2 ร— ๐‘Š๐‘ก = 0.2 ร— 520.3 = 104.06 (๐‘™๐‘), according Figure 4.2.Force diagram of shaft 1. The tangential force on gear is found from the torque and its radius. The tangential force at the spur-gear tooth as shown in part C: ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™ = 520.3 (๐‘™๐‘) The spur gear has a 250 pressure angle, which means that there will also be a radial component of force that gear tooth of: ๐น๐‘” ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž ๐‘™ = ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™ ร— tan(25 ๐‘œ) = 520.3 ร— tan(25 ๐‘œ) = 242.6 (๐‘™๐‘) Solve the reaction forces in the xz and yz planes using 0, 0x xF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ and 0, 0y yF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ with the beam dimensions as above:
  • 32. MEC2-K56- Group 15 Page 32 0 2 1 2 1 1 2 3 2 2 `0 2 0 2 ( ) F F ( ) 0 (87 68.5) R 87 (87 68.5 43.5) 0 (87 199 ) 0.56 1.28 155.5 0 g coupling g coupling g coupling g coupling g coupling g coupling g coupli M R l l l l l l F F F F R F F F R F F R R F F R F F ๏ƒฅ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ฝ ๏ƒž ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏‚ด ๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏‚ด ๏ƒž ๏€ฝ ๏€ฝ ๏€ญ ๏‚ด ๏€ญ ๏‚ด ๏ƒฅ ๏€ฝ ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏ƒž ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ( 0.56 1.28 ) 0.44 2.28 ng g coupling g coupling F F F F ๏€ญ ๏€ญ ๏‚ด ๏€ญ ๏‚ด ๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏‚ด Above equations can be solved for ๐‘…0 and 2R in each plane, using the approximate components of the apply load gF and couplingF : ๐‘…0 ๐‘ฅ = โˆ’0.44 ร— ๐น๐‘” ๐‘ฅ + 2.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฅ = โˆ’0.44 ร— 242.6 + 2.28 ร— 104.06 = 130.5 ( ๐‘™๐‘) ๐‘…0 ๐‘ฆ = โˆ’0.44 ร— ๐น๐‘” ๐‘ฆ + 2.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฆ = โˆ’0.44 ร— (โˆ’520.3)+ 2.28 ร— 0 = 228.93 ( ๐‘™๐‘) ๐‘…2 ๐‘ฅ = โˆ’0.56 ร— ๐น๐‘” ๐‘ฅ โˆ’ 1.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฅ = โˆ’0.56 ร— 242.6 โˆ’ 1.28 ร— 104.06 = โˆ’269.05( ๐‘™๐‘) ๐‘…2 ๐‘ฆ = โˆ’0.56 ร— ๐น๐‘” ๐‘ฆ โˆ’ 1.28 ร— ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ๐‘ฆ = โˆ’0.56 ร— (โˆ’520.3)โˆ’ 1.28 ร— 0 = 291.37 (๐‘™๐‘) Moment calculations: At point 0: ๐‘€ ๐‘ฅ (0) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (0) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(1) = 556.5(๐‘™๐‘. ๐‘–๐‘›) At point 1: ๐‘€ ๐‘ฅ (1) = ๐‘…0 ๐‘ฅ ร— ๐‘™1 = 130.5 ร— 3.4 = 443.7( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (1) = ๐‘…0 ๐‘ฆ ร— ๐‘™1 = 228.93 ร— 3.4 = 778.36( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(1) = 556.5(๐‘™๐‘. ๐‘–๐‘›)
  • 33. MEC2-K56- Group 15 Page 33 At point 2: ๐‘€๐‘ฅ (2) = ๐น๐‘๐‘œ๐‘ข๐‘๐‘™๐‘–๐‘›๐‘” ร— ๐‘™3 = 104.06ร— 1.71 = 177.94( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (2) = ๐‘…0 ๐‘ฆ ร— (๐‘™1 + ๐‘™2) โˆ’ ๐น๐‘” ๐‘ฆ ร— ๐‘™2 = 228.93ร— 6.1โˆ’ 520.3 ร— 2.69 = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(2) = 556.5(๐‘™๐‘. ๐‘–๐‘›) At point 3: ๐‘€๐‘ฅ (3) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(3) = 556.5(๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (3) = 0( ๐‘™๐‘. ๐‘–๐‘›)
  • 34. MEC2-K56- Group 15 Page 34 Figure 4.3.Moment diagram of shaft 1.
  • 35. MEC2-K56- Group 15 Page 35 b) Diameter calculation Firstly, we choosethe safety factor equal to 2.5 Apply the equation 9.6a (Robert L. Norton, Machine Design, p.512) to determine the diameter of the shaftโ€™s section: 1/31/22 2 32 3 4 f a m f fsm f y N M T d K K S S๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏‚ด ๏€ซ ๏‚ด ๏‚ด๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ Consider the section I-0 at the point 0 of the 1st bearing: 0( . ),T 891.60(lb.in)aM lbin๏€ฝ ๏€ฝ , the minimum recommended diameter 0 :d ๐‘‘0 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 0 35690 ) 2 + 3 4 (1.68 ร— 556.5 54000 ) 2 ] 1 2 } 1 3 = 0.73(๐‘–๐‘›) Consider the section I-1 at the point 1 of the gear: ๐‘€ ๐‘Ž = 895.94( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 1 :d ๐‘‘1 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 895.94 35690 ) 2 + 3 4 (1.68 ร— 556.5 54000 ) 2 ] 1 2 } 1 3 = 1.08(๐‘–๐‘›) Consider the section I-2 at the point 2 of the 2nd bearing position: ๐‘€ ๐‘Ž = 177.96( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 2 :d ๐‘‘2 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 177.96 35690 ) 2 + 3 4 (1.68 ร— 556.5 54000 ) 2 ] 1 2 } 1 3 = 0.77(๐‘–๐‘›) Consider the section I-3 at the point 3 of the coupling position: ๐‘€ ๐‘Ž = 0( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 556.5(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter 3 :d
  • 36. MEC2-K56- Group 15 Page 36 ๐‘‘3 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 0 35690 ) 2 + 3 4 (1.68 ร— 556.5 54000 ) 2 ] 1 2 } 1 3 = 0.73(๐‘–๐‘›) From these preliminary calculations, we can determine reasonable sizes for the four step diameters d0, d1, d2, d3: Position Symbol Minimum(in) Standard(in) Standard(mm) 1stbearing d0 0.73 0.98 25 Gearing d1 1.08 1.18 30 2ndbearing d2 0.77 0.98 25 Coupling d3 0.73 0.89 22 Table 4.1.Uncorrected shaft 1 data. c) Key and testing for shaft I Assuming use square, parallel keys with end-milked keyways. Low-carbon steel, SAE 1040 with 86 , 54ut yS kpsi S kpsi๏€ฝ ๏€ฝ will be used. 35690eS psi๏€ฝ as calculated above, stress-concentration factor can be seen in figure 9.16 (Robert L. Norton, Machine Design, p.529). These are 2 locations with keys on this shaft, at point 1 and 3. The design diameters chosen for these sections were 1 30 (1.18 )d mm in๏€ฝ and ๐‘‘3 = 22๐‘š๐‘š (0.89๐‘–๐‘›). Table 9.2 (RobertL. Norton, Machine Design, p.525) shows that the standard key width for d1 is 0.250(in) and for d3 is 0.187(in). At point 1, the mean and alternating components of force on the key are found from the torque component divided by the shaft radius at that point: ๐น๐‘Ž = ๐‘‡๐‘Ž ๐‘Ÿ = 556.5 0.59 = 943.22๐‘™๐‘
  • 37. MEC2-K56- Group 15 Page 37 ๐น๐‘š = ๐‘‡ ๐‘š ๐‘Ÿ = 556.5 0.59 = 943.22๐‘™๐‘ Assuming a key length of 1 in and calculate the alternating and mean shear stress components from equation 4.9 (Robert L. Norton, Machine Design, p.151): ๐œ ๐‘Ž = ๐œ ๐‘š = ๐น๐‘Ž ๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ = 943.22 1 ร— 0.25 = 3772.88 ๐‘๐‘ ๐‘– To find the safety factor for shear fatigue of the key, compute the Von Mises equivalent stresses for each these components from equation 5.7d (Robert L. Norton, Machine Design, p.245): ๐œŽ๐‘Ž โ€ฒ = ๐œŽ ๐‘š โ€ฒ = โˆš ๐œŽ๐‘ฅ 2 + ๐œŽ๐‘ฆ 2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ 2 = โˆš3 ร— 3772.882 = 6534.8 ๐‘๐‘ ๐‘– Then use them in equation 6.18e (Robert L. Norton, Machine Design, p.364): ๐‘๐‘“ = 1 ๐œŽ ๐‘Ž โ€ฒ ๐‘† ๐‘’ + ๐œŽ ๐‘š โ€ฒ ๐‘† ๐‘ข๐‘ก = 1 6534.8 35690 + 6534.8 86000 = 3.86 At point 3, the mean and alternating components of force on the key are found from the torque component divided by the shaft radius at that point: ๐น๐‘Ž = ๐น๐‘š = ๐‘‡๐‘Ž ๐‘Ÿ = 556.5 0.445 = 1250.56๐‘™๐‘ Assuming a key length of 0.5 in and calculate the alternating and mean shear stress components from: ๐œ ๐‘Ž = ๐œ ๐‘š = ๐น๐‘Ž ๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ = 1250.56 0.5 ร— 0.187 = 13375 ๐‘๐‘ ๐‘–
  • 38. MEC2-K56- Group 15 Page 38 To find the safety factor for shear fatigue of the key, compute the Von Mises equivalent stresses for each these components from equation 5.7d (Robert L. Norton, Machine Design, p.245): ๐œŽ๐‘Ž โ€ฒ = ๐œŽ ๐‘š โ€ฒ = โˆš ๐œŽ๐‘ฅ 2 + ๐œŽ๐‘ฆ 2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ 2 = โˆš3 ร— 133752 = 23166.2 ๐‘๐‘ ๐‘– Then use them in equation 6.18e (Robert L. Norton, Machine Design, p.364): ๐‘๐‘“ = 1 ๐œŽ ๐‘Ž โ€ฒ ๐‘† ๐‘’ + ๐œŽ ๐‘š โ€ฒ ๐‘† ๐‘ข๐‘ก = 1 23166.2 35690 + 23166.2 86000 = 1.09 End-mill radius versus shaft diameter ratio: ๏‚ท At point 1: 1 0.02 0.017 1.18 r d ๏€ฝ ๏€ฝ ๏‚ท At point 3: 3 0.02 0.023 0.89 r d ๏€ฝ ๏€ฝ The corresponding stress-concentration factors are read from figure 9.16 (Robert L. Norton, Machine Design, p.529): ๏‚ท At point 1: 2.25 3.15 t ts K K ๏€ฝ๏ƒฌ ๏ƒญ ๏€ฝ๏ƒฎ ๏‚ท At point 3: 2.10 2.85 t ts K K ๏€ฝ๏ƒฌ ๏ƒญ ๏€ฝ๏ƒฎ These are used to obtain the fatigue stress concentration factors, which for materials notch sensitivity q=0.65 are: ๏‚ท At point 1: 1 ( 1) 1 0.65 (2.25 1) 1.81 1 ( 1) 1 0.65 (3.15 1) 2.39 f t fs ts K q K K q K ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ ๏‚ท At point 3: 1 ( 1) 1 0.65 (2.10 1) 1.71 1 ( 1) 1 0.65 (2.85 1) 2.20 f t fs ts K q K K q K ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
  • 39. MEC2-K56- Group 15 Page 39 For both point f fm fsm fs K K K K ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ๏ƒฏ๏ƒฎ The new safety factors are then calculated using equation 9.8 (Robert L. Norton, Machine Design, p.514) with the data from equations (b) and (c) with the design values for shaft diameter and above stress-concentration values inserted: ๏‚ท At point 1: 1 3 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 f a fs a ff fm m fsm m ut k M k T SN d k M K T S ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ 1.18 = { 32 ร— ๐‘๐‘“ ๐œ‹ [ โˆš(1.81ร— 895.94)2 + 3 4 (2.39 ร— 556.5)2 35690 + โˆš(1.81 ร— 895.94)2 + 3 4 (2.39 ร— 556.5)2 86000 ]} 1 3 โ†’ ๐‘๐‘“ = 2.05 ๏‚ท At point 3:
  • 40. MEC2-K56- Group 15 Page 40 1 3 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 f a fs a ff fm m fsm m ut k M k T SN d k M K T S ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ 0.89 = { 32 ร— ๐‘๐‘“ ๐œ‹ [ โˆš(1.71 ร— 0)2 + 3 4 (2.20 ร— 556.5)2 35690 + โˆš(1.71 ร— 0)2 + 3 4 (2.20 ร— 556.5)2 86000 ]} 1 3 โ†’ ๐‘๐‘“ = 1.65 At both point, the safety factor are smaller than specified valued of 2.5. So we retry the above step with different diameter we find: Increasing the diameter at point 1 to 1.57 in (35mm) gives a safety factor of 4.33. Increasing the diameter at point 3 to 1.18 in (25mm) gives a safety factor of 2.53. According to this change, all diameters of shaft I now become: Position Symbol Minimum (in) Standard (in) Standard (mm) 1stbearing d0 0.720 1.180 30 Gearing d1 0.865 1.181 35
  • 41. MEC2-K56- Group 15 Page 41 2ndbearing d2 0.680 1.180 30 Coupling d3 0.720 0.984 25 Width(in) Length(in) Key Point 1 0.375 1.0 Point 3 0.250 0.5 Table 4.2.Corrected shaft 1 data. III. Shaft 2 calculations a) Analyze the forces and moments Figure 4.4.Force diagram of shaft 2. Choose diameter of shaft 2 is de2=30(mm), according to the standard of the SKF bearing manufacture, the width of roller bearing is b02= 19mm. ๐‘™1 = ๐‘™2 = 43.5( ๐‘š๐‘š) = 1.71( ๐‘–๐‘›) ๐‘™3 = 68.5( ๐‘š๐‘š) = 2.69( ๐‘–๐‘›) ๐น๐‘” ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก๐‘Ž๐‘™ = 520.3( ๐‘™๐‘) ๐น๐‘” ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ = 242.6(๐‘™๐‘)
  • 42. MEC2-K56- Group 15 Page 42 ๐น = 4419.9(๐‘)๏ƒž ๐น๐‘ฅ = ๐น ร— ๐‘๐‘œ๐‘ 60 ๐‘œ = 4419.9 ร— ๐‘๐‘œ๐‘ 60 ๐‘œ = 2209.95( ๐‘) = 491.1(๐‘™๐‘) ๐น๐‘ฆ = ๐น ร— ๐‘ ๐‘–๐‘›60 ๐‘œ = 4419.9 ร— ๐‘ ๐‘–๐‘›60 ๐‘œ = 3827.75( ๐‘) = 850.6(๐‘™๐‘) ๐‘‡๐ผ๐ผ = 303690( ๐‘. ๐‘š๐‘š) = 2656.95(๐‘™๐‘. ๐‘–๐‘›) Solve the reaction forces in the xz and yz planes using 0, 0x xF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ and 0, 0y yF M๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ with the beam dimensions as above: 0 6 1 2 1 1 2 3 6 6 `4 6 4 6 ( ) F F ( ) 0 (43.5 43.5) R 43.5 (43.5 43.5. 68.5) 0 (43.5 155.5 ) 155.5 0.5 87 87 0 155.5 ( 0.5 ) 87 68.5 0.5 87 g g g g g g g g g M R l l l l l l F F F F R F F F R F F R R F F R F F F F F F ๏ƒฅ ๏€ฝ ๏‚ด ๏€ซ ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ฝ ๏ƒž ๏€ซ ๏‚ด ๏€ซ ๏‚ด ๏€ซ ๏€ซ ๏€ซ ๏‚ด ๏€ฝ ๏€ญ ๏‚ด ๏€ญ ๏‚ด ๏ƒž ๏€ฝ ๏€ฝ ๏€ญ ๏‚ด ๏€ญ ๏‚ด ๏ƒฅ ๏€ฝ ๏€ซ ๏€ซ ๏€ซ ๏€ฝ ๏ƒž ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ฝ ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏‚ด ๏€ญ ๏‚ด ๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏‚ด Above equations can be solved for 1R and 2R in each plane, using the approximate components of the apply load gF and couplingF : ๐‘…4 ๐‘ฅ = โˆ’0.5 ร— ๐น๐‘” ๐‘ฅ + 68.5 87 ร— ๐น๐‘ฅ = โˆ’0.5 ร— 242.6 + 68.5 87 ร— 491.1 = 265.37(๐‘™๐‘) ๐‘…4 ๐‘ฆ = โˆ’0.5 ร— ๐น๐‘” ๐‘ฆ + 68.5 87 ร— ๐น๐‘ฆ = โˆ’0.5 ร— (โˆ’520.3)+ 68.5 87 ร— 850.6 = 929.87(๐‘™๐‘) ๐‘…6 ๐‘ฅ = โˆ’0.5 ร— ๐น๐‘” ๐‘ฅ + 68.5 87 ร— ๐น๐‘ฅ = โˆ’0.5 ร— 242.6 โˆ’ 155.5 87 ร— 491.1 = โˆ’999.07(๐‘™๐‘) ๐‘…6 ๐‘ฆ = โˆ’0.5 ร— ๐น๐‘” ๐‘ฆ + 68.5 87 ร— ๐น๐‘ฆ = โˆ’0.5 ร— (โˆ’520.3)โˆ’ 155.5 87 ร— 850.6 = โˆ’1260.2(๐‘™๐‘) Moment calculations: ๏‚ท At point 4: ๐‘€ ๐‘ฅ (4) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (4) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(4) = 2656.95(๐‘™๐‘. ๐‘–๐‘›)
  • 43. MEC2-K56- Group 15 Page 43 ๏‚ท At point 5: ๐‘€ ๐‘ฅ (5) = ๐‘…4 ๐‘ฅ ร— ๐‘™1 = 491.1 ร— 1.71 = 839.8( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (6) = ๐‘…4 ๐‘ฆ ร— ๐‘™1 = 850.6 ร— 1.71 = 1454.5( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(6) = 2656.95(๐‘™๐‘. ๐‘–๐‘›) At point 6: ๐‘€ ๐‘ฅ (6) = ๐น๐‘ฅ ร— ๐‘™3 = 491.1 ร— 2.69 = 1321.1( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (6) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(6) = 2656.95(๐‘™๐‘. ๐‘–๐‘›) ๏‚ท At point 7: ๐‘€ ๐‘ฅ (7) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘€ ๐‘ฆ (7) = 0( ๐‘™๐‘. ๐‘–๐‘›) ๐‘‡(7) = 2656.95(๐‘™๐‘. ๐‘–๐‘›)
  • 44. MEC2-K56- Group 15 Page 44 Figure 4.5.Moment diagram of shaft 2.
  • 45. MEC2-K56- Group 15 Page 45 b) Diameter calculation Firstly, we choosethe safety factor equal to 2.5 Apply the equation 9.56a (Robert L. Norton, Machine Design, p.512) to determine the diameter of the shaftโ€™s section: Consider the section II-4 at the point 4 of the 1st bearing: ๐‘€ ๐‘Ž = 0( ๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95( ๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter ๐‘‘0 = { 32ร— 2.5 ๐œ‹ [(1.9 ร— 0 35690 ) 2 + 3 4 (1.68 ร— 2656.95 54000 ) 2 ] 1 2 } 1 3 = 1.22(๐‘–๐‘›) Consider the section II-5 at the point 5 of the gear: ๐‘€ ๐‘Ž = 1679.5(๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter ๐‘‘1 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 1679.5 35690 ) 2 + 3 4 (1.68 ร— 2656.95 54000 ) 2 ] 1 2 } 1 3 = 1.43(๐‘–๐‘›) Consider the section II-6 at the point 6 of the 2nd bearing position: ๐‘€ ๐‘Ž = 1321.1(๐‘™๐‘. ๐‘–๐‘›), ๐‘‡ = 2656.95(๐‘™๐‘. ๐‘–๐‘›), the minimum recommended diameter ๐‘‘2 = { 32 ร— 2.5 ๐œ‹ [(1.9 ร— 1321.1 35690 ) 2 + 3 4 (1.68 ร— 2656.95 54000 ) 2 ] 1 2 } 1 3 = 1.37(๐‘–๐‘›) Consider the section II-7 at the point 7 position: 0( . ),T 3385.74(lb.in)aM lbin๏€ฝ ๏€ฝ , the minimum recommended diameter 1/31/22 2 32 3 4 f a m f fsm f y N M T d K K S S๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏‚ด ๏€ซ ๏‚ด ๏‚ด๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ 0 :d 1 :d 2 :d 3 :d
  • 46. MEC2-K56- Group 15 Page 46 ๐‘‘3 = { 32ร— 2.5 ๐œ‹ [(1.9 ร— 0 35690 ) 2 + 3 4 (1.68 ร— 2656.95 54000 ) 2 ] 1 2 } 1 3 = 1.22(๐‘–๐‘›) From these preliminary calculations, we can determine reasonable sizes for the four step diameters d0, d1, d2, d3: Position Symbol Minimum(in) Standard(in) Standard(mm) 1stbearing d0 1.22 1.57 40 Gearing d1 1.43 1.77 45 2ndbearing d2 1.37 1.57 40 Chain d3 1.22 1.37 35 Table 4.3.Uncorreted shaft II data. c) Key and testing for shaft II Assuming use square, parallel keys with end-milked keyways. Low- carbonsteel, SAE 1040 with will be used. as calculated above, stress-concentration factor can be seen in figure 9.16 (Robert L. Norton, Machine Design, p.529). These are 2 locations with keys on this shaft, at point 5 and 7. The design diameters chosenfor these sections were 1 30 (1.5 )d mm in๏€ฝ and 3 20 (0.72 )d mm in๏€ฝ . Table 9.2 (RobertL. Norton, Machine Design, p.525) shows that the standard key width for d1 is 0.500(in) and for d3 is 0.312(in). At point 5, the mean and alternating components of force on the key are found from the torque componentdivided by the shaft radius at that point: 86 , 54ut yS kpsi S kpsi๏€ฝ ๏€ฝ 35690eS psi๏€ฝ
  • 47. MEC2-K56- Group 15 Page 47 ๐น๐‘Ž = ๐‘‡๐‘Ž ๐‘Ÿ = 2656.95 0.885 = 3002.2( ๐‘™๐‘) ๐น๐‘š = ๐‘‡ ๐‘š ๐‘Ÿ = 2656.95 0.885 = 3002.2(๐‘™๐‘) Assuming a key length of 1in and calculate the alternating and mean shear stress components from equation 4.9 (Robert L. Norton, Machine Design, p.151): ๐œ ๐‘Ž = ๐œ ๐‘š = ๐น๐‘Ž ๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ = 2656.95 1 ร— 0.5 = 5313.9 ๐‘๐‘ ๐‘– To find the safety factor for shear fatigue of the key, compute the Von Mises equivalent stresses for each these components from equation 5.7d (Robert L. Norton, Machine Design, p.245): ๐œŽ๐‘Ž โ€ฒ = ๐œŽ ๐‘š โ€ฒ = โˆš ๐œŽ๐‘ฅ 2 + ๐œŽ๐‘ฆ 2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ 2 = โˆš3 ร— 5313.92 = 9204 ๐‘๐‘ ๐‘– Then use them in equation 6.18e (Robert L. Norton, Machine Design, p.364): ๐‘๐‘“ = 1 ๐œŽ ๐‘Ž โ€ฒ ๐‘† ๐‘’ + ๐œŽ ๐‘š โ€ฒ ๐‘† ๐‘ข๐‘ก = 1 9204 35690 + 9204 86000 = 2.74 At point 7, the mean and alternating components of force on the key are found from the torque component divided by the shaft radius at that point: ๐น๐‘Ž = ๐น๐‘š = ๐‘‡๐‘Ž ๐‘Ÿ = 2656.95 0.685 = 3878.76๐‘™๐‘ Assuming a key length of 1 in and calculate the alternating and mean shear stress components from: ๐œ ๐‘Ž = ๐œ ๐‘š = ๐น๐‘Ž ๐ด ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ = 3878.76 1 ร— 0.312 = 12431.92 ๐‘๐‘ ๐‘–
  • 48. MEC2-K56- Group 15 Page 48 To find the safety factor for shear fatigue of the key, compute the Von Mises equivalent stresses for each these components from equation 5.7d (Robert L. Norton, Machine Design, p.245): ๐œŽ๐‘Ž โ€ฒ = ๐œŽ ๐‘š โ€ฒ = โˆš ๐œŽ๐‘ฅ 2 + ๐œŽ๐‘ฆ 2 โˆ’ ๐œŽ๐‘ฅ. ๐œŽ๐‘ฆ + 3๐œ ๐‘ฅ๐‘ฆ 2 = โˆš3 ร— 12431.922 = 21532.72 ๐‘๐‘ ๐‘– Then use them in equation 6.18e (Robert L. Norton, Machine Design, p.364): ๐‘๐‘“ = 1 ๐œŽ ๐‘Ž โ€ฒ ๐‘† ๐‘’ + ๐œŽ ๐‘š โ€ฒ ๐‘† ๐‘ข๐‘ก = 1 21532.72 35690 + 21532.72 86000 = 1.17 End-mill radius versus shaft diameter ratio: ๏‚ท At point 5: 1 0.02 0.005 3.93 r d ๏€ฝ ๏€ฝ ๏‚ท At point 7: 3 0.02 0.005 3.54 r d ๏€ฝ ๏€ฝ The corresponding stress-concentration factors are read from figure 9.16 (Robert L. Norton, Machine Design, p.529): ๏‚ท At point 5: 4.00 4.00 t ts K K ๏€ฝ๏ƒฌ ๏ƒญ ๏€ฝ๏ƒฎ ๏‚ท At point 7: 4.00 4.00 t ts K K ๏€ฝ๏ƒฌ ๏ƒญ ๏€ฝ๏ƒฎ These are used to obtain the fatigue stress concentration factors, which for materials notch sensitivity q=0.65 are: ๏‚ท At point5: 1 ( 1) 1 0.65 (4.00 1) 2.95 1 ( 1) 1 0.65 (4.00 1) 2.95 f t fs ts K q K K q K ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ
  • 49. MEC2-K56- Group 15 Page 49 ๏‚ท At point 7: 1 ( 1) 1 0.65 (4.00 1) 2.95 1 ( 1) 1 0.65 (4.00 1) 2.95 f t fs ts K q K K q K ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ ๏€ซ ๏‚ด ๏€ญ ๏€ฝ๏ƒฏ๏ƒฎ For both point The new safety factors are then calculated using equation 9.8 (Robert L. Norton, Machine Design, p.514) with the data from equations (b) and (c) with the design values for shaft diameter and above stress-concentration values inserted: ๏‚ท At point 5: 1 3 2 2 2 2 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 3 (2.95 2150.7) (2.95 3385.74) 4 32 35690 1.77 3 (2.95 2150.7) (2.95 3385.74) 4 86000 f a fs a ff fm m fsm m ut f k M k T SN d k M K T S N ๏ฐ ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒช ๏ƒบ ๏ƒช ๏ƒบ ๏‚ด ๏ƒช ๏ƒบ๏€ฝ ๏ƒช ๏ƒบ ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด ๏ƒช๏€ซ ๏ƒช๏ƒซ ๏ƒป 1 3 3.32fN ๏ƒฌ ๏ƒผ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒญ ๏ƒฝ ๏ƒฏ ๏ƒฏ ๏ƒฏ ๏ƒฏ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒบ๏ƒฎ ๏ƒพ ๏ƒž ๏€ฝ 1 3 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 f a fs a ff fm m fsm m ut k M k T SN d k M K T S ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ f fm fsm fs K K K K ๏€ฝ๏ƒฌ๏ƒฏ ๏ƒญ ๏€ฝ๏ƒฏ๏ƒฎ
  • 50. MEC2-K56- Group 15 Page 50 1.77 = { 32 ร— ๐‘๐‘“ ๐œ‹ [ โˆš(2.95 ร— 1679.5)2 + 3 4 (2.95 ร— 2656.95)2 35690 + โˆš(2.95 ร— 1679.5)2 + 3 4 (2.95 ร— 2656.95)2 86000 ]} 1 3 โ†’ ๐‘๐‘“ = 1.63 ๏‚ท At point 7: 1 3 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 f a fs a ff fm m fsm m ut k M k T SN d k M K T S ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ 1 3 2 2 2 2 3 (2.95 0) (2.95 3385.74) 4 32 35690 1.37 3 (2.95 0) (2.95 3385.74) 4 86000 fN ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ 2.52fN๏ƒž ๏€ฝ 1 3 2 2 2 2 3 ( ) ( ) 4 32 3 ( ) ( ) 4 f a fs a ff fm m fsm m ut k M k T SN d k M K T S ๏ฐ ๏ƒฌ ๏ƒผ๏ƒฉ ๏ƒน ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏‚ด ๏ƒช ๏ƒบ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒญ ๏ƒฝ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ๏‚ด ๏€ซ ๏‚ด๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏€ซ๏ƒฏ ๏ƒฏ๏ƒช ๏ƒบ ๏ƒฏ ๏ƒฏ๏ƒซ ๏ƒป๏ƒฎ ๏ƒพ
  • 51. MEC2-K56- Group 15 Page 51 1.37 = { 32 ร— ๐‘๐‘“ ๐œ‹ [ โˆš(2.95ร— 0)2 + 3 4 (2.95 ร— 2656.95)2 35690 + โˆš(2.95 ร— 0)2 + 3 4 (2.95 ร— 2656.95)2 86000 ]} 1 3 โ†’ ๐‘๐‘“ = 0.94 Position Symbol Minimum (in) Standard (in) Standard (mm) 1stbearing d0 1.22 1.57 40 Gearing d1 1.43 1.77 45 2ndbearing d2 1.37 1.57 40 Chain d3 1.22 1.37 35 Width(in) Length(in) Key Point 5 0.500 1.0 Point 7 0.500 1.0 Table 4.4.Corrected shaft II data. E. Bearing and lubricant We select roller bearings for the designed shafts. 1. Shaft 1: d0 =35 mm = 1.37 in
  • 52. MEC2-K56- Group 15 Page 52 From figure 10.23(Robert L. Norton, Machine Design, p615), choose a #6306 bearing with 35 mm inside diameter. Its dynamic load rating factor is C=5700 lb, the static load rating C0 = 4000 lb. The static applied load of 86.94 lb (at 1st bearing) and 70.61 lb (at 2nd bearing) is obviously well below the bearingโ€™s static rating. From table 10.5(Robert L. Norton, Machine Design, p614), choose the factor for a 5% failure rate: KR =0.62 Calculate the projected life with equation 10.20a and 10.19 or their combination, equation 10.20d (Robert L. Norton, Machine Design, p615). Note that the equivalent load in this case is simply the applied radial load due to the absence of any thrust load. For the reaction load of 86.94 lb at 1st bearing: 10 10 3 35700 0.62 704545( ) 86.94 p p C L K revs P ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ For the reaction load of 70.61 lb at 2nd bearing: 10 10 3 35700 0.62 1409571( ) 70.61 p p C L K revs P ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ There bearing are obviously very light loaded, but their size was dictated by considerations of stresses in the shaft that defined the shaft diameter. From figure 10.23 (Robert L. Norton, Machine Design, p615), this bearingโ€™s limiting speed is 8500 rpm, well above the operating speed of shaft 960 rpm. 2. Shaft 2: d0 =50 mm = 1.96 in From figure 10.23(Robert L. Norton, Machine Design, p615), choose a #6308 bearing with 50 mm inside diameter. Its dynamic load rating factor is
  • 53. MEC2-K56- Group 15 Page 53 C=10600 lb, the static load rating C0 = 8150 lb. The static applied load of 226.57 lb (at 1st bearing) and 358.31 lb (at 2nd bearing) is obviously well below the bearingโ€™s static rating. From table 10.5(Robert L. Norton, Machine Design, p614), choose the factor for a 5% failure rate: KR =0.62 Calculate the projected life with equation 10.20a and 10.19 or their combination, equation 10.20d (Robert L. Norton, Machine Design, p615). Note that the equivalent load in this case is simply the applied radial load due to the absence of any thrust load. For the reaction load of 226.57 lb at 1st bearing: 10 10 3 310600 0.62 228772( ) 226.57 p p C L K revs P ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ For the reaction load of 358.31 lb at 2nd bearing: 10 10 3 310600 358.31 0.62 49645( )p p C L K revs P ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ There bearing are obviously very light loaded, but their size was dictated by considerations of stresses in the shaft that defined the shaft diameter. From figure 10.23 (Robert L. Norton, Machine Design, p615), this bearingโ€™s limiting speed is 6000 rpm, well above the operating speed of shaft 320 rpm. We choose the petroleum oils for lubricant for the work characteristic very mild impact of system. We choose Rzeppar coupling for its characteristic constant velocity.
  • 54. MEC2-K56- Group 15 Page 54 F. Gearboxโ€™s cover ๏‚ท Box cover has responsibility of maintaining the relative position among machine parts and machine elements. It receives loads from part that attached in box cover, contains lubricating oil, protects inside element from dirt and dust. ๏‚ท Material: gray cast iron GX 15-32 ๏‚ท Assembling surface go through shaftโ€™s center line in order assemble machine element conveniently. ๏‚ท The cap surface and the black rubber or grinded in order to make interference fit, when fitting there are a layer of liquid coat or special coat. ๏‚ท The bottom surface inclines to the oil outlet about 1degree. ๏‚ท We have table of structure and dimensions of the gear box cover: Name Value Thickness: 1 ( ) ( ) Body Cap ๏ค ๏ค 1 1 0.03 3 0.03 120.47 3 6.61( ) 7 6( ) 0.9 0.9 7 6.3( ) 7 6( ) a mm mm mm mm ๏ค ๏ค ๏ค ๏ค ๏ค ๏€ฝ ๏‚ด ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ฝ ๏ƒž ๏€ฝ ๏€พ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏ƒž ๏€ฝ ๏€พ Reinforcing rib: ( ) ( ) Depth e Height h Slope (0.8 1) (0.8 1) 7 5.6 7( ) 7 5 5 7 35( ) 30 2 e mm e mm h mm h mm About ๏ค ๏ค ๏€ฝ ๏‚ธ ๏€ฝ ๏‚ธ ๏‚ด ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ผ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏ƒž ๏€ฝ ๏‚ฐ Diameter: Foundation bolt 1( )d Side bolt 2( )d Assembly cap and body bolt 3( )d Cap connecting screw 4( )d Oil outlet cap connecting screw 5( )d 1 1 2 1 2 3 2 3 4 2 4 5 2 5 0.04 10 0.04 120.47 10 14.81( ) 16 (0.7 0.8)d 12 (0.8 0.9)d 10 (0.6 0.7)d 6 (0.5 0.6)d 6 d a mm d mm d d mm d d mm d d mm d d mm ๏€พ ๏‚ด ๏€ซ ๏€ฝ ๏‚ด ๏€ซ ๏€ฝ ๏ƒž ๏€ฝ ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ
  • 55. MEC2-K56- Group 15 Page 55 Bearing dimension: Width of the assembly surface of drive side bolt: K2 Center of drive side bolt: E2 Distance between bolt center and hole side (k) 2 2 2 2 2 2 2 2 3 2 1.6 1.6 12 19.2( ) 1.3 1.3 12 15.6( ) (3 5) 19.2 15.6 3 37.8( ) 38 / 2with k 1,2 d 7.2( ) E d mm R d mm K E R mm K mm C D mm ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏€ฝ ๏‚ด ๏€ฝ ๏‚ด ๏€ฝ ๏€ฝ ๏€ซ ๏€ซ ๏‚ธ ๏€ฝ ๏€ซ ๏€ซ ๏€ฝ ๏ƒž ๏€ฝ ๏‚ป ๏‚ณ ๏‚ด ๏€ฝ Cap and body connecting flange: Body depth 3( )S Cap depth 4( )S Flange width 3(K ) 3 3 3 4 3 4 3 2 3 (1.4 1.5) 14 (0.9 1)S 13 (3 5) 35 S d S mm S S mm K K K mm ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏€ฝ ๏€ญ ๏‚ธ ๏ƒž ๏€ฝ Cover box foundation surface: Depth: without stub S1 Width of box foundation: K1 and q 1 1 1 1 1 (1.3 1.5) 22 3 1 3 15 45 2 45 2 7 59 S d S mm K d mm q K mm๏ค ๏€ฝ ๏‚ธ ๏ƒž ๏€ฝ ๏‚ป ๏‚ด ๏‚ป ๏‚ด ๏€ฝ ๏€ฝ ๏€ซ ๏€ฝ ๏€ซ ๏‚ด ๏€ฝ Clearance among elements: Between gear and inside wall of box. Between gear top and box bottom. Between gearโ€™s sides. 1 1 2 2 (1 2) 10 (3 5) 30 8 mm mm mm ๏ค ๏ค ๏ค ๏„ ๏‚ณ ๏‚ธ ๏ƒž ๏„ ๏€ฝ ๏„ ๏‚ณ ๏‚ธ ๏ƒž ๏„ ๏€ฝ ๏„ ๏‚ณ ๏ƒž ๏„ ๏€ฝ Number of foundation bolt ( ) / (200 300) Z 4Z L B๏€ฝ ๏€ซ ๏‚ธ ๏ƒž ๏€ฝ
  • 56. MEC2-K56- Group 15 Page 56 G. Comparisons of Designing chain - Driven system between Using Vietnamese Document and English Document Vietnamese Document English Document In part A: Choosing motor and distributing transmissionratio are nearly similar to English Document -Vietnamese and English documents use the same input data -work power . 1000 lv F v P ๏€ฝ -The same Efficiency of gear train,chain gear,bearing,coupling -the similar way to calculate the necessarypoweror the revolutions -According to Vietnamese Document,Choosing motor can be from 200rpm to 4000rpm -the distributing transmissionratio and torque on the axis is calculated in the same way for Vietnamese and English document - Using โ€œTinh Toan He Dan Dong Co Khiโ€ to choosethe motor. In part A: Choosing motor and distributing transmissionratio are nearly similar to the Vietnamese Document. -Input data: Pulling force of conveyor chain, conveyor speed chainโ€ฆ -work power . 1000 lv F v P ๏€ฝ -The necessary power lv yc P P ๏จ ๏€ฝ -the revolutions 60000. . ct v n z p ๏€ฝ -in English Document, manufacturer only provide motors from 500rpm to 2081rpm which are very commom in industry -Using Siemens or Toshiba catalogue to choosemotor. In part B: Calculating and designing outer transmission โ€“ chain drives In part B: Calculating and designing
  • 57. MEC2-K56- Group 15 Page 57 - Vietnamese version: Ux=2.19 => choose: Z1 = 25 Z2 = 55 -Both of document have choosing number of teeth of the sprocket -Vietnamese and English document use the same factor to determine the chain step -Selecting the chain drive by calculating center distance and force -Vietnamese and English also have testing chain durability outer transmission โ€“ chain drives -English version: Ux=2.4 => choose: Z1=24 Z2=48 -kz โ€“Toothfactor -kn โ€“ Rotating factor -Using selection factor F1,F2,F3,F4,F5,F6 -English document use Toothfactor and speed to select the chain drive in catalogue -Using wrecking load -Testing chain is more difficult in English Document. In part C: Design gear transmission -Vietnamese version:Ubr=4 => choose : Ppinion=60.08(mm) PGear = 237.92(mm) -The same input data -in Vietnamese Document,we choose material for gear before we calculated pitch -both of documents calculated pitch diameter,number of teeth,pitch diameter,distance,but using different formula and factor -Using bothtorque and transmission In part C: Design gear transmission - English version: Ubr=5 => choose: Ppinion=8.4(mm) PGear = 72.2(mm) -power,number of shift,transmission ratioโ€ฆ -we finished for calculating pitch,choosing material is at the end of the process -using look up table for choosing quality,the tooth form,bending geometry factor,size factor,rim thickness factor,velocity
  • 58. MEC2-K56- Group 15 Page 58 power to calculate -Vietnamese have testing for gear transmission -in Vietnamese document,we calculate for diameter of teeth distinctly with gear factor,overload factorโ€ฆ -using only transmission power to calculate -in English document,we adjust the contact stress to check -Englisht documents donโ€™tcalculate for teeth,we use look up table for choosing gear and teeth In part D. Shafts, keys and couplings calculation -the same input Data -At first,coupling is calculated by using transmission momment and diameter of motorโ€™s shaft -The same way to calculate shaft diameter -the similar way to calculate length of the gear hub -Vietnamese documents name KnF instead of couplingF in English document -the different formular for calculating the diameter of the shaftโ€™ s section. 1 3 0,1[ ] tdM d ๏ณ ๏€ฝ -in Vietnamese document,the shaft In part D. Shafts, keys and couplings calculation - dcT , T , IIT โ€ฆ -At first,the material is choosenby using working charact - ๏› ๏ 300 10,2 IT d ๏ด ๏€ฝ - 13ml , 12l , 11l โ€ฆ - couplingF -according to norton book 3 1 2 1 22 .. 4 3 . 32 ๏ƒฏ ๏ƒฏ ๏ƒพ ๏ƒฏ๏ƒฏ ๏ƒฝ ๏ƒผ ๏ƒฏ ๏ƒฏ ๏ƒฎ ๏ƒฏ๏ƒฏ ๏ƒญ ๏ƒฌ ๏ƒบ ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒช ๏ƒซ ๏ƒฉ ๏ƒท ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒง ๏ƒจ ๏ƒฆ ๏€ซ ๏ƒท ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ y m fsm f a f f S T k S M K N d ๏ฐ -in English Document,the shaft diameter is smaller because we chose material which has higher hardness than Vietnamese Document
  • 59. MEC2-K56- Group 15 Page 59 diameter is greater than English Document -in Vietnamese document using safety factor and stress -in english document,Testing for shaft using Torque,forceand safety factor E.Bearing and lubricant,Designโ€™s box cover,the oil diptick E.Bearing and lubricant,Designโ€™s box cover,the oil diptick I. Data Table a. English document FactorsAxis Motor I II Operating ukn = 1 ubr = 5 ux = 2.4 P(KW) Pฤ‘c= 6.75 PI = 6.66 PII = 6.36 Pct= 5.7 n(rev/min) nฤ‘c= 1000 nI= 1000 nII= 200 nct = 83.33 T(N.mm) Tฤ‘c= 64462 TI = 63603 TII = 303690 Tct = 653246 b. Vietnamese document Thรดng sแป‘Trแปฅc ฤแป™ng cฦก I II Cรดng tรกc ukn = 0.99 ubr = 4 ux = 2.19 P(KW) Pฤ‘c=4.4 PI=4.33 PII=4.09 Pct=3.74 n(v/ph) nฤ‘c=716 nI=716 nII=179 nct=327
  • 60. MEC2-K56- Group 15 Page 60 T(N.mm) Tฤ‘c=58687 TI=57753 TII=218209 Tct=109225 ๏ƒฐ we can see the different about the way we chooseubr and ux, that make the different design. II. Calculating and designing outer transmission โ€“ chain drives: - English document: Ux=2.4 => choose: Z1 = 24 Z2 = 48 - Vietnamese document: Ux=2.19 => choose: Z1 = 25 Z2 = 55 III. Design gear transmission. - English document: Ubr= 5 => choose: Ppinion = 8.4(mm) PGear = 72.2(mm) - English document: Ubr=4 => choose: Ppinion = 60.08(mm) PGear = 237.92(mm) We have Data of gear transmission: a. English document Gear details Symbol Value Diametral pitch ๐‘‘ ๐‘ 8 Pressure angle ๏ฆ 25o
  • 61. MEC2-K56- Group 15 Page 61 Tangential force tW 520.3(lb) No. of teeth on pinion pinionN 20 No. of teeth on gear gearN 100 Pitch diameter of pinion piniond 2.5(in) Pitch diameter of gear geard 12.5(in) Pitch-line velocity tV 654.5(ft/min) Bending stress-pinion tooth bpinion๏ณ 17027.40psi Bending stress-gear tooth bgear๏ณ 13859.51psi Surface stress in pinion and gear cpinion๏ณ 106079.6psi Uncorrected bending strength ' fb S 31051psi Corrected bending strength ' fb S 28132psi Uncorrected surface strength ' fc S 104480psi Corrected surface strength fc S 94867.84psi
  • 62. MEC2-K56- Group 15 Page 62 Bending safety factor for pinion bpN 1.65 Bending safety factor for gear bgN 2.03 Surface safety factor for mesh cpN 0.8
  • 63. MEC2-K56- Group 15 Page 63 b. Vietnamese document Information Symbol Value Spindle diameter aw 149(mm) Z1 24 Z2 95 Rolling diameter d1 60(mm) d2 237.5(mm) Peak diameter dw1 60.08(mm) dw2 237.92(mm) Bottom diameter da1 65(mm) da2 232.5(mm) Base diameter df1 53.75(mm) df2 231.25(mm) Moving ratio db1 56.38(mm)
  • 64. MEC2-K56- Group 15 Page 64 db2 223.18(mm) Profin angle x1 0 Profin Gearโ€™s angle x2 0 Relative angle ๏ก 25o Coincidental ratio ๏กw 35 o Mode ๏ฅ๏ก 1.7 Band wide (mm) m 2.5(mm) Coincidental force bw1 50 bw2 45 Dividing diameter Ft 1725.73(N) Fr 1812.02 (N)
  • 65. MEC2-K56- Group 15 Page 65 Diameter of the shaftโ€™ s section. -English version : Using this equation to calculate 3 1 2 1 22 .. 4 3 . 32 ๏ƒฏ ๏ƒฏ ๏ƒพ ๏ƒฏ๏ƒฏ ๏ƒฝ ๏ƒผ ๏ƒฏ ๏ƒฏ ๏ƒฎ ๏ƒฏ๏ƒฏ ๏ƒญ ๏ƒฌ ๏ƒบ ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒช ๏ƒซ ๏ƒฉ ๏ƒท ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒง ๏ƒจ ๏ƒฆ ๏€ซ ๏ƒท ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ y m fsm f a f f S T k S M K N d ๏ฐ Position Notion Minimum diameter ( in) Standard diameter is choosen (mm) Standard diameter is choosen (inch) 1st bearing d0 0.73 25 0.98 2nd bearing d1 1.08 30 1.18 Coupling d2 0.77 25 0.98 Gearing d3 0.73 22 0.89
  • 66. MEC2-K56- Group 15 Page 66 -Vietnamese version : Using this equation to calculate 3 0.1[ ] tdj j M d ๏ณ ๏€ฝ 2 2 j0.75tdj jM M T๏€ฝ ๏€ซ 2 2 yjj xjM M M๏€ฝ ๏€ซ Position Notion Minimum diameter ( calculated) Standard diameter is choosen (mm) Standard diameter is choosen (inch) 1st bearing d0 19.5 25 0.98 2nd bearing d1 22.5 25 0.98 Coupling d2 19.95 20 0.79 Gearing d3 20.27 30 1.18
  • 67. MEC2-K56- Group 15 Page 67 References: 1. Trแป‹nhChแบฅt, LรชVฤƒnUyแปƒn โ€“ Tรญnhtoรกnthiแบฟtkแบฟhแป‡dแบซnฤ‘แป™ngcฦกkhรญ, tแบญp 1. NXB Giรกodแปฅc, 2005 2. http://www.renoldchainselector.com/ChainSelector 3. Siemens Cooperation, Siemens motor choosing document. 4. Dudley's Handbook of Practical Gear Design and Manufacture 5. Robert L. Norton, Machine design.