SlideShare a Scribd company logo
1 of 46
Download to read offline
Optimization of Micro-
machining Processes
DR ANAND J KULKARNI
SYMBIOSIS CENTER FOR RESEARCH AND INNOVATION, SYMBIOSIS INTERNATIONAL
(DEEMED UNIVERSITY), PUNE, INDIA
EMAIL: ANAND.KULKARNI@SITPUNE.EDU.IN; KULK0003@NTU.EDU.SG
APOORVA SHASTRI, ANIKET NARGUNDKAR
SYMBIOSIS INSTITUTE OF TECHNOLOGY, SYMBIOSIS INTERNATIONAL (DEEMED
UNIVERSITY), PUNE, INDIA
Outline
 Non Traditional Machining Processes (NTM)
 Need of Optimization and Techniques
 Electric Discharge Machining (EDM)
 Abrasive Water Jet Machining (AWJM)
 Micro-Milling
 Micro-Drilling with CFRP Application
 Micro-Turning
2
Manufacturing Processes
 Definition: the application of mechanical, physical, and chemical
processes to convert the geometry, properties, and/or shape of raw
material into finished parts or products.
 Primary Processes
 Machining Processes
 Metal Forming Processes
 Joining Processes
 Surface Finishing Processes
3
20th & 21st Century Applications &
Materials
 Aerospace
 Military
 Automobile
 Electronic Gadgets
 Complex Designs, many more, …
 Materials and alloys necessitate
 high strength-to-weight ratio
 high stiffness and toughness
 high heat capacity
 thermal conductivity, etc.
4
20th & 21st Century Applications &
Traditional Machining Processes
 Traditional Machining Processes, Chip Removal Processes
 Generation of High Temperatures and Stresses
 Challenges:
 Rapid Deterioration of the Cutting Tools
 Inferior Quality of Machined Parts
 Innovative and Complex Designs
 Demanding Tolerance Requirements
 Cost Reduction
5
Non Traditional Machining (NTM)
Processes
NTM
Processes
Mechanical
Processes
AWJM USM
Electro
Chemical
Processes
ECM
Electro
Thermal
Processes
EDM
Tool based
Micro
Machining
Micro
Turning
Micro
Milling
Micro
Drilling
Sustainable
Machining
(MQL,
Cryogenic)
6
Need for Optimization
 Dynamic and Market competition driven manufacturing
 Reduced time-to-market: shorter manufacturing time
 Minimal manufacturing costs: efficient use of all the resources
 High and Expected quality of highly customized products
 Growing needs for safety
 Determine optimal process parameter settings
 Productivity
 Quality
 Cost of Production
7
Optimization Methods 8
Cohort: A Self Organizing System 9
10
Cohort Intelligence: Applications
 Heat Exchanger Design
 Healthcare
 Image Processing
 Finite Element Analysis
 Robotics Path Planning
 Control Systems
 Machine Learning
 Logistics & Transportation
 Forming Processes
 Mechanical Engineering Design
 Micro Machining Processes
11
12
Electric Discharge Machining
(EDM)
 Controlled Spark-Erosion
 high strength temperature resistant materials and alloys (hardened
steel, carbide, etc.) with intricate geometries
G
Tool (-ve)
Work Piece (+ve)
Dielectric
Medium
13
EDM: Process Parameters/Variables
& Objectives
 The Process Parameters/Variables
 Discharge Current (𝑏1)
 Gap Voltage (𝑏2)
 Pulse on-time (𝑏3)
 Pulse off-time (𝑏4)
 Gap between the work piece and the tool
 Dielectric medium.
 Objectives
 Minimize Surface Roughness (𝑅 π‘Ž)
 Minimize Relative Electrode Wear Rate (π‘…πΈπ‘Šπ‘…)
 Maximizing Material Removal Rate (𝑀𝑅𝑅)
G
Tool (-ve)
Work Piece (+ve)
Dielectric
Medium
14
Muthuramalingam and Mohan (2015)
Gopalakannan and Senthilvelan (2014)
EDM: Problem Formulations
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑅𝑅 = βˆ’235.15 + 39.7𝑏1 + 4.227𝑏2 + 1.569𝑏3 βˆ’ 1.375𝑏4 βˆ’ 0.0059𝑏3
2
βˆ’ 0.536𝑏1 𝑏2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = 31.547 βˆ’ 0.0618𝑏1 βˆ’ 0.438𝑏2 + 0.059𝑏3 βˆ’ 0.59𝑏4 + 0.019𝑏1 𝑏4 βˆ’ 0.0075𝑏2 𝑏4
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘…πΈπ‘Šπ‘…
= 196.564 βˆ’ 24.19𝑏1 βˆ’ 3.135𝑏2 βˆ’ 1.781𝑏3 + 0.153𝑏4 + 0.093𝑏1
2
+ 0.00149𝑏3
2
+ 0.005265𝑏4
2
+ 0.464𝑏1 𝑏2
+ 0.158𝑏1 𝑏3 + 0.025𝑏1 𝑏4 + 0.029𝑏2 𝑏3 βˆ’ 0.017𝑏2 𝑏4 βˆ’ 0.003385𝑏1 𝑏2 𝑏3
7.5 ≀ 𝑏1≀ 12.5
45 ≀ 𝑏2≀ 55
50 ≀ 𝑏3≀ 150
40 ≀ 𝑏4≀ 60
15
Tzeng and Chen (2013)
Shukla and Singh (2017)
EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘…
Function
GA SA PSO Roulette
wheel
fbest fbetter alienation Multi-CI
𝑀𝑅𝑅
Mean 183.37 182.03 183.37 183.26 38.98 38.24 96.45 183.37
S.D. 0.00 2.21 0.00 0.11 0.69 0.71 23.21 0.00
Best 183.37 183.09 183.37 183.35 39.63 39.52 144.32 183.37
Run Time 1.41 2.61 1.81 0.35 0.59 0.64 0.51 1.81
𝑅 π‘Ž
Mean 3.55 3.67 3.55 3.61 3.60 3.61 5.99 3.55
S.D. 0.00 0.16 0.05 0.03 0.02 0.03 1.76 0.00
Best 3.55 3.58 3.55 3.55 3.55 3.55 4.06 3.55
Run Time 1.45 2.69 1.89 0.38 0.6 0.63 0.53 1.89
π‘…πΈπ‘Šπ‘…
%
Mean 1.30 Γ— 10-8 6.82 Γ— 10-4 3.73 Γ— 10-9 8.53 Γ— 10-5 2.96 Γ— 10-5 7.90 Γ— 10-6 2.37 Γ— 10-7 1.85 Γ— 10-8
S.D. 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00
Best 1.22 Γ— 10-7 1.36 Γ— 10-2 8.95 Γ— 10-9 2.43 Γ— 10-4 1.49 Γ— 10-4 4.15 Γ— 10-5 9.79 Γ— 10-7 9.50 Γ— 10-9
Run Time 1.7 2.8 1.42 0.42 0.62 0.66 0.57 1.93
16
EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘…
π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑅𝑅 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘…πΈπ‘Šπ‘…
17
EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘…
Problem
RSM
Tzeng &
Chen
(2013)
BPNN
Tzeng &
Chen
(2013)
FA
Shukla &
Singh
(2017)b
roulette
wheel
fbest fbetter alienation GA SA
PSO
Multi-CI
𝑀𝑅𝑅 157.39 159.70 181.67 183.35 39.63 39.52 144.32 183.35 183.09 183.37 183.37
𝑅 π‘Ž 7.38 7.04 3.67 3.55 3.55 3.55 4.06 3.55 3.58 3.55 3.55
REWR % 7.63 6.21 6.32 Γ—10-5 2.43 Γ—10-4
2.96 Γ—10-5 7.90 Γ—10-6 9.79 Γ—10-9 1.22 Γ—10-7 2.43 Γ—10-4 1.85 Γ—10-9 9.50 Γ—10-9
18
Abrasive Water Jet Machining
(AWJM)
19
Abrasive Water Jet Machining
(AWJM)
 Very high velocity fine abrasive particles impinge on the work piece
 Effective for hard, brittle material, tough, hard to machine materials (titanium,
stainless steel, high-strength temperature-resistant alloys, ceramics, refractories, fiber-reinforced
composites, super alloys, etc.)
Gupta et al 2017
20
AWJM: Process Parameters/
Variables & Objectives
 The Process Parameters/Variables
 Work Piece Thickness (π‘Ž1)
 Nozzle Diameter (π‘Ž2)
 Standoff Distance (π‘Ž3)
 Traverse Speed (π‘Ž4)
 Objectives
 Minimize Taper Angle π‘˜π‘’π‘Ÿπ‘“
(Geometry)
 Minimize Surface Roughness 𝑅 π‘Ž
(Surface Finish)
21
AWJM: Problem Formulations
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž
= βˆ’23.309555 + 16.6968π‘Ž1 + 26.9296π‘Ž2 + 0.0587π‘Ž3 + 0.0146π‘Ž4 βˆ’ 5.1863π‘Ž2
2
βˆ’ 10.4571π‘Ž1 π‘Ž2 βˆ’ 0.0534π‘Ž1 π‘Ž3
βˆ’ 0.0103π‘Ž1 π‘Ž4 + 0.0113π‘Ž2 π‘Ž3 βˆ’ 0.0039π‘Ž2 π‘Ž4
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘˜π‘’π‘Ÿπ‘“
= βˆ’1.15146 + 0.70118π‘Ž1 + 2.72749π‘Ž2 + 0.00689π‘Ž3 βˆ’ 0.00025π‘Ž4 + 0.00386π‘Ž2 π‘Ž3 βˆ’ 0.93947π‘Ž2
2
βˆ’ 0.25711a1a2
βˆ’ 0.00314a1a3 βˆ’ 0.00249a1a4 + 0.00196a2a4 βˆ’ 0.00002a3a4 βˆ’ 0.00001a3
2
0.9 ≀ π‘Ž1≀ 1.25
0.95 ≀ π‘Ž2≀ 1.5
20 ≀ π‘Ž3≀ 96
200 ≀ π‘Ž4≀ 600
Shukla and Singh (2017)
22
AWJM: Solutions to π‘˜π‘’π‘Ÿπ‘“ & 𝑅 π‘Ž
Problem
Expt
(Kechagias,
2012)
Regression
(Kechagias,
2012)
FA
Shukla and
Singh
(2017)
roulette
wheel
fbest fbetter alienation
GA SA PSO Multi-CI
Gulia and Nargundkar (2019)
𝑅 π‘Ž 5.80 5.41 4.44 4.38 4.38 4.38 4.38 4.38 4.61 4.39 4.38
π‘˜π‘’π‘Ÿπ‘“ 0.85 090 0.37 0.34 0.34 0.34 0.34 0.33 0.35 0.43 0.33
Function GA SA PSO Multi-CI
𝑅 π‘Ž
Mean 4.43 4.86 4.39 4.38
S.D. 0.03 0.12 0.22 0.00
Best 4.38 4.61 4.75 4.38
Run
Time
1.62 2.63 1.78 4.63
π‘˜π‘’π‘Ÿπ‘“
Mean 0.33 0.41 0.43 0.33
S.D. 0.01 0.04 0.00 0.01
Best 0.33 0.36 0.43 0.33
Run
Time
1.48 2.8 1.52 3.89
23
AWJM: Solutions to π‘˜π‘’π‘Ÿπ‘“ & 𝑅 π‘Ž
Minimize Taper Angle π‘˜π‘’π‘Ÿπ‘“ (Geometry) Minimize Surface Roughness 𝑅 π‘Ž (Surface Finish)
24
Tool Based Micro-machining
Processes
 Today’s manufacturing field involve
 increased number of functions
 Miniaturization of parts/dimensions
 Advantages of tool based micromachining
 Productivity
 Efficiency
 Flexibility
 Cost effectiveness
25
Tool Based Micro-machining
Processes Methods of Micro
Fabrication
Material
Deposition
(Additive)
Physical Vapour
Deposition
Chemical Vapour
Deposition
Lithography
Material
Removal/Mecha
nical Processes
(Subtractive)
Conventional
Tool Based
Processes such
as Micro Turning,
Micro Drilling
and Micro Milling
Advanced
Processes such as
Micro-EDM,
Micro- ECM
26
Micro-Milling
27
Micro-Milling: Tool Diameter ≀ 1π‘šπ‘š
 Miniature featured objects: Meso (500 ¡m-10mm) and Micro Scale (1-500 ¡m)
 Aeronautical
 Biomedical
 Automobile
 Optical
 Nuclear
 Semiconductor sector
 Materials: Ceramics, Specialized Metals, Polymers, etc.
28
Micro-Milling: Process Parameters/
Variables & Objectives
 The Process Parameters/Variables
 Cutting Speed (𝑑1)
 Feed (𝑑2)
 Objectives
 Surface Roughness (𝑅 π‘Ž)
 Machining Time (𝑀𝑑)
29
Kumar et al. (2014)
Micro-Milling: Process Parameters/
Variables & Objectives
 For tool diameter 0.7 mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = βˆ’0.455378 + 0.00027𝑑1 + 0.016422𝑑2 βˆ’ 0.000077𝑑1 𝑑2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑑 = 17.7164 βˆ’ 0.0002𝑑1 βˆ’ 4.8404𝑑2 + 0.0001𝑑1 𝑑2
 For tool diameter 1 mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = βˆ’0.208871 + 0.000144𝑑1 + 0.019571𝑑2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑑 = 20.2906 βˆ’ 0.0015𝑑1 βˆ’ 5.8369𝑑2 + 0.0006𝑑1 𝑑2
1500 ≀ 𝑑1 ≀ 2500
1 ≀ 𝑑2 ≀ 3
Kumar et al. (2014)
30
Micro-Milling: Solutions to 𝑅 π‘Ž & 𝑀𝑑
Micro
Machining
Processes
Cutter
Diameter
Objective
Function
Algorithms Applied
GA SA PSO
Variations of CI
Multi-CIroulette wheel fbest fbetter alienation
Micro
Milling
0.7 mm
𝑅 π‘Ž
Mean 0.00 0.13 0.00 0.00 0.12 0.19 0.00 0.00
S.D. 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Best 0.00 0.13 0.00 0.00 0.09 0.19 0.00 0.00
Run Time 1.40 2.60 1.12 0.06 0.05 0.06 0.14 0.21
𝑀𝑑
Mean 3.35 3.42 3.34 3.35 3.35 3.35 3.35 3.35
S.D. 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Best 3.35 3.42 3.35 3.35 3.35 3.35 3.35 3.35
Run Time 1.44 2.62 0.74 0.04 0.04 0.04 0.10 0.16
1 mm
𝑅 π‘Ž
Mean 0.03 0.16 0.03 0.03 0.11 0.21 0.03 0.03
S.D. 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00
Best 0.03 0.15 0.03 0.03 0.06 0.21 0.03 0.03
Run Time 1.78 2.76 0.98 0.06 0.05 0.06 0.11 0.39
𝑀𝑑
Mean 3.23 3.47 3.23 3.23 3.23 3.23 3.23 3.23
S.D. 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Best 3.23 3.44 3.23 3.23 3.23 3.23 3.23 3.23
Run Time 1.72 2.77 1.07 0.05 0.06 0.05 0.10 0.37
31
Micro-Milling: Solutions to 𝑅 π‘Ž & 𝑀𝑑
Tool diameter
0.7 mm
𝑅 π‘Ž & 𝑀𝑑
Tool diameter
1 mm
𝑅 π‘Ž & 𝑀𝑑
32
Micro-Drilling
33
Micro-Drilling
 PCB circuits
 Microprocessor
 automotive industry
 Fuel Injectors
 Fasteners for Micro-jacks and Micro-pins
 Hole quality
 Reduced Burr Thickness and height
 Surface Finish
 Durability
 Precision
 Assembly problems
Challenges in De-burring:
β€’ Poor Accessibility of Burr Area
β€’ Tight Tolerance
Crown burr
- very low
feed rate
and high
speed
Transient burr
- higher feed
rate and
higher speed
Uniform burr
- not solely
dependent on
feed rate and
speed but tool
diameter and
tool type
Pansari et al. 2019
34
Micro-Drilling: Process Parameters/
Variables & Objectives
 Important Parameters:
 Tool Diameter
 Spindle Speed (π‘ž1)
 Tool Helix Angle
 Feed Rate (π‘ž2)
 Hole quality
 Burr Thickness (𝐡𝑑)
 Burr Height (π΅β„Ž) Choudhary, H. (2007)
35
Micro-Drilling: Process Parameters/
Variables & Objectives
 For tool diameter 0.5mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 420.94 βˆ’ 0.234π‘ž1 βˆ’ 99.91π‘ž2 + 6.5510βˆ’5
π‘ž1
2
+ 22.152π‘ž2
2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 90.57 βˆ’ 0.049π‘ž1 βˆ’ 27.12π‘ž2 + 1.3210βˆ’5
π‘ž1
2
+ 5.54π‘ž2
2
 For tool diameter 0.6 mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 369.67 βˆ’ 0.028π‘ž1 βˆ’ 156.79π‘ž2 + 6.64 Γ— 10βˆ’6
π‘ž1
2
+ 23.162π‘ž2
2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 35.34 βˆ’ 0.019π‘ž1 βˆ’ 0.59π‘ž2 + 6.44 Γ— 10βˆ’6
π‘ž1
2
+ 0.51π‘ž2
2
 For tool diameter 0.8 mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 106.116 βˆ’ 0.13π‘ž1 βˆ’ 6.62π‘ž2 + 1.49 Γ— 10βˆ’6
π‘ž1
2
+ 4.75π‘ž2
2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 59.79 βˆ’ 0.024π‘ž1 βˆ’ 11.3π‘ž2 βˆ’ 7.78 Γ— 10βˆ’6
π‘ž1
2
+ 2.18π‘ž2
2
 For tool diameter 0.9 mm
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 450.7 βˆ’ 0.09π‘ž1 βˆ’ 38.48π‘ž2 + 2.34 Γ— 10βˆ’5
π‘ž1
2
+ 5.03π‘ž2
2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 80.07 βˆ’ 0.040π‘ž1 βˆ’ 14.81 π‘ž2 + 1.516 Γ— 10βˆ’5
π‘ž1
2
+ 4.65π‘ž2
2
1000 ≀ π‘ž1 ≀ 2500
1 ≀ π‘ž2 ≀ 4
Pansari et al. 2019
36
Micro-Drilling: Solutions to 𝐡𝑑 & π΅β„Ž
Micro
Machining
Processes
Cutter
Diameter
Objective
Function
Algorithms Applied
GA SA PSO
Variations of CI
Multi-CI
roulette wheel Fbest fbetter alienation
Micro Drilling
0.5 mm
π΅β„Ž
Mean 99.29 134.13 99.29 99.29 99.29 99.29 99.29 99.29
S.D. 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.00
Best 99.29 131.79 99.29 99.29 99.29 99.29 99.29 99.29
Run Time 1.47 2.60 1.14 0.04 0.04 0.04 0.08 0.14
𝐡𝑑
Mean 11.91 21.13 11.90 11.91 11.91 11.91 11.91 11.91
S.D. 0.00 1.22 0.00 0.00 0.00 0.00 0.00 0.00
Best 11.91 18.14 11.90 11.91 11.91 11.91 11.91 11.91
Run Time 1.43 2.62 0.87 0.04 0.04 0.04 0.08 0.15
0.6mm
π΅β„Ž
Mean 74.83 75.30 74.81 74.81 74.81 74.81 74.81 74.81
S.D. 0.04 0.24 0.00 0.00 0.00 0.00 0.00 0.00
Best 74.81 74.91 74.81 74.81 74.81 74.81 74.81 74.81
Run Time 1.62 2.65 0.76 0.04 0.04 0.04 0.08 0.14
𝐡𝑑
Mean 21.25 22.65 21.25 21.25 21.25 21.25 21.25 21.25
S.D. 0.01 1.91 0.00 0.00 0.00 0.00 0.00 0.00
Best 21.25 21.25 21.25 21.25 21.25 21.25 21.25 21.25
Run Time 1.64 2.66 1.23 0.04 0.04 0.05 0.01 0.14
0.8mm
π΅β„Ž
Mean 235.78 235.73 235.74 235.74 235.74 235.74 235.74 235.74
S.D. 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 235.74 235.73 235.74 235.74 235.74 235.74 235.74 235.74
Run Time 1.73 2.67 1.34 0.06 0.05 0.06 0.12 0.17
𝐡𝑑
Mean 26.64 32.90 26.64 26.64 26.64 26.64 26.64 26.64
S.D. 0.00 0.6 0.00 0.00 0.00 0.00 0.00 0.00
Best 26.64 31.70 26.64 26.64 26.64 26.64 26.64 26.64
Run time 1.68 2.71 0.88 0.035 0.036 0.04 0.076 0.16
0.9mm
π΅β„Ž
Mean 305.07 307.74 305.07 305.07 305.07 305.07 305.07 305.07
S.D. 0.00 2.46 0.00 0.00 0.00 0.00 0.00 0.00
Best 305.07 305.39 305.07 305.07 305.07 305.07 305.07 305.07
Run Time 1.42 2.60 1.12 0.04 0.03 0.03 0.07 0.08
𝐡𝑑
Mean 41.89 43.09 41.89 41.89 41.89 41.89 41.89 41.89
S.D. 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
Best 41.89 43.01 41.89 41.89 41.89 41.89 41.89 41.89
Run Time 1.47 2.64 0.96 0.04 0.03 0.04 0.07 0.10
37
Micro-Drilling of CFRP
Composites for Aerospace App
38
Micro-Drilling of CFRP
Composites for Aerospace App
 Minimization of Cutting Forces in x, y and z directions induced in
micro drilling of Carbon Fiber Reinforced Plastic (CFPR) composite
materials for aerospace applications.
 CFRP Properties
 High Stiffness
 High Strength to Weight Ratio
 Good Damping Capacity
39
Process Parameters/ Variables &
Objectives
 Process Parameters/Variables:
 Cutting Speed (𝑉)
 Feed (𝑓)
 Objectives: Minimize Cutting
Forces
 𝐹π‘₯
 𝐹𝑦
 𝐹𝑧
Axial Force𝑭 π’š
Thrust Force𝑭 𝒛
Cutting Force𝑭 𝒙
Tool Feed
βˆ…
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹π‘₯ = 0.38607 βˆ’ 0.01498 Γ— 𝑉 βˆ’ 0.13220 Γ— 𝑓 + 0.0012 Γ— 𝑓 Γ— 𝑉 + 0.0003 Γ— 𝑉2
+ 0.019583 Γ— 𝑓2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹𝑦 = 0.25371 βˆ’ 0.00375 Γ— 𝑉 βˆ’ 0.12116 Γ— 𝑓 + 0.00063 Γ— 𝑓 Γ— 𝑉 + 0.000093 Γ— 𝑉2
+ 0.021 Γ— 𝑓2
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹𝑧 = 0.64841 + 0.078424 Γ— 𝑉 + 0.59493 Γ— 𝑓 βˆ’ 0.0017 Γ— 𝑓 Γ— 𝑉 βˆ’ 0.0009 Γ— 𝑉2
βˆ’ 0.0204 Γ— 𝑓2
40
Anand and Patra (2018)
Solutions to 𝐹π‘₯, 𝐹𝑦 & 𝐹𝑧
Machining
Process
Objective
Function
Variations of CI
Roulette
Wheel
Follow Best
Follow
Better
Alienation
Micro
Drilling
𝐹π‘₯
Mean 0.0569 0.0569 0.0569 0.0569
S.D. 0.0000 0.0000 0.0000 0.0000
Best 0.0569 0.0569 0.0569 0.0569
Run Time 0.73 0.94 0.78 0.79
𝐹𝑦
Mean 0.0704 0.0704 0.0704 0.0704
S.D. 0.0000 0.0000 0.0000 0.0000
Best 0.0704 0.0704 0.0704 0.0704
Run Time 0.98 0.63 0.96 0.83
𝐹𝑧
Mean 2.2057 2.2057 2.2057 2.2057
S.D. 0.0000 0.0000 0.0000 0.0000
Best 2.2057 2.2057 2.2057 2.2057
Run Time 0.81 0.76 0.64 0.82
Obj
Fun
Experim
ental
Roulette
Wheel
Follow
Best
Follow
Better
Alienat
ion
𝐹π‘₯ 0.0950 0.0569 0.0569 0.0569 0.0569
𝐹𝑦 0.1080 0.0704 0.0704 0.0704 0.0704
𝐹𝑧 0.1080 2.2057 2.2057 2.2057 2.2057
41
Micro-Turning
42
Micro-Turning: Optimization of
Micro-turning Process
 Cutting speed (𝑉𝑐)
 Feed (𝑓)
 Depth of cut (𝑑 )
 Objectives
 Flank Wear (𝑓𝑏)
 Surface Roughness (𝑅 π‘Ž)
Tool feed 𝑓
Cutting
Speed 𝑉𝑐
Flank wear
𝑓𝑏
Depth of cut 𝑑
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑓𝑏 = 0.004 Γ— 𝑉𝑐
0.495
Γ— 𝑓0.545
Γ— 𝑑0.763
π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = 0.048 Γ— 𝑉𝑐
βˆ’0.062
Γ— 𝑓0.445
Γ— 𝑑0.516
25 ≀ 𝑉𝑐 ≀ 37
5 ≀ 𝑓 ≀ 15
30 ≀ 𝑑 ≀ 70
Durairaj and Gowri (2013)
43
Optimization of Micro-turning
Process
Process
Cutter
Dim
Objective
Function
Algorithms Applied
GA SA PSO
Variations of CI
Multi-CIroulette
wheel
fbest fbetter
alienatio
n
Micro
Turning
0.2 mm
Nose
radius
𝑅 π‘Ž
Mean 0.45 0.45 0.46 0.46 0.45 0.45 0.46 0.46
S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Run Time 1.64 2.80 1.21 0.04 0.03 0.04 0.10 0.39
𝑓𝑏
Mean 0.63 0.64 0.63 0.63 0.63 0.63 0.63 0.63
S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 0.63 0.64 0.63 0.63 0.63 0.63 0.63 0.63
Run Time 1.42 2.78 0.89 0.06 0.04 0.04 0.10 0.38
44
For all the MATLAB Codes 45
www.sites.google.com/site/oatresearch/
or
Google: OAT Research Lab
Thank you
Anand J Kulkarni PhD, MASc, BEng, DME
Associate Professor
Symbiosis Center for Research and Innovation
Symbiosis International (Deemed University)
Pune 412 115, MH, India
Email: anand.kulkarni@sitpune.edu.in
kulk0003@ntu.edu.sg; anandmasc@gmail.com
URL: sites.google.com/site/oatresearch/anand-jayant-kulkarni
Ph: 91 20 6193 6790
ResearcherID: www.researcherid.com/rid/O-3585-2016
ORCID ID: orcid.org/0000-0001-6242-9492
Google Scholar: scholar.google.ca/citations?user=IAvtDokAAAAJ&hl=en
46

More Related Content

What's hot

Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lhercristhian cabrera
Β 
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...Luis Fernando Roca Gonzales
Β 
DRE Linear Guide
DRE Linear GuideDRE Linear Guide
DRE Linear GuideFiona he
Β 
Gam pe brochure
Gam pe brochureGam pe brochure
Gam pe brochureElectromate
Β 
Hw8p5
Hw8p5Hw8p5
Hw8p5shr375
Β 
Mineral Production Machinery
Mineral Production MachineryMineral Production Machinery
Mineral Production MachineryGary Li
Β 
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer GearboxIRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer GearboxIRJET Journal
Β 
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
Β 
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Maamoun Hennache
Β 
GP03 Trash Compactor G07
GP03 Trash Compactor G07GP03 Trash Compactor G07
GP03 Trash Compactor G07Casey Stribrny
Β 
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
Multi Objective Optimization of PMEDM Process Parameter by Topsis MethodMulti Objective Optimization of PMEDM Process Parameter by Topsis Method
Multi Objective Optimization of PMEDM Process Parameter by Topsis Methodijtsrd
Β 
Depositiondata
DepositiondataDepositiondata
DepositiondataHoang Nguyen
Β 
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
Β 
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manualMc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manualfudjjjskeskmmd
Β 

What's hot (14)

Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Β 
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...
chapter 12-solutions-to-exercisesAnΓ‘lisis de circuitos en IngenierΓ­a Autor/es...
Β 
DRE Linear Guide
DRE Linear GuideDRE Linear Guide
DRE Linear Guide
Β 
Gam pe brochure
Gam pe brochureGam pe brochure
Gam pe brochure
Β 
Hw8p5
Hw8p5Hw8p5
Hw8p5
Β 
Mineral Production Machinery
Mineral Production MachineryMineral Production Machinery
Mineral Production Machinery
Β 
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer GearboxIRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
Β 
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 17 solutions_to_exercises(engineering circuit analysis 7th)
Β 
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Β 
GP03 Trash Compactor G07
GP03 Trash Compactor G07GP03 Trash Compactor G07
GP03 Trash Compactor G07
Β 
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
Multi Objective Optimization of PMEDM Process Parameter by Topsis MethodMulti Objective Optimization of PMEDM Process Parameter by Topsis Method
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
Β 
Depositiondata
DepositiondataDepositiondata
Depositiondata
Β 
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 16 solutions_to_exercises(engineering circuit analysis 7th)
Β 
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manualMc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Β 

Similar to Optimization of micro machining processes

Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...
Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...
Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...ijsrd.com
Β 
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...AVINASH JURIANI
Β 
Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...sajal dixit
Β 
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...Pinkraj Gangwar
Β 
Optimization of EDM process parameters for machining SS310
Optimization of EDM process parameters for machining SS310Optimization of EDM process parameters for machining SS310
Optimization of EDM process parameters for machining SS310IRJET Journal
Β 
Taguchi method and anova an approach for process parameters 2
Taguchi method and anova an approach for process parameters 2Taguchi method and anova an approach for process parameters 2
Taguchi method and anova an approach for process parameters 2IAEME Publication
Β 
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan Tanah
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan TanahPembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan Tanah
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan TanahChristopherAbhistaAr
Β 
Design of a Controller for MIMO System by using Approximate Model Matching (A...
Design of a Controller for MIMO System by using Approximate Model Matching (A...Design of a Controller for MIMO System by using Approximate Model Matching (A...
Design of a Controller for MIMO System by using Approximate Model Matching (A...Dr. Amarjeet Singh
Β 
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS IAEME Publication
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steeliaemedu
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steeliaemedu
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steeliaemedu
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steeliaemedu
Β 
RELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXRELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXIJERA Editor
Β 
Presentation2_Agus Widyianto_MSME.pdf
Presentation2_Agus Widyianto_MSME.pdfPresentation2_Agus Widyianto_MSME.pdf
Presentation2_Agus Widyianto_MSME.pdfAgusWidyianto2
Β 
Roll grinding Six Sigma project
Roll grinding Six Sigma projectRoll grinding Six Sigma project
Roll grinding Six Sigma projectTariq Aziz
Β 

Similar to Optimization of micro machining processes (20)

674_vaibhav chandra.pptx
674_vaibhav chandra.pptx674_vaibhav chandra.pptx
674_vaibhav chandra.pptx
Β 
Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...
Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...
Effect Evaluation of Roller Burnishing Process on Surface Roughness of 6061 T...
Β 
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...
OPTIMIZATION OF MACHINING PARAMETERS WITH TOOL INSERT SELECTION FOR S355J2G3 ...
Β 
E43042629
E43042629E43042629
E43042629
Β 
Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Β 
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Β 
Optimization of EDM process parameters for machining SS310
Optimization of EDM process parameters for machining SS310Optimization of EDM process parameters for machining SS310
Optimization of EDM process parameters for machining SS310
Β 
Taguchi method and anova an approach for process parameters 2
Taguchi method and anova an approach for process parameters 2Taguchi method and anova an approach for process parameters 2
Taguchi method and anova an approach for process parameters 2
Β 
2-3n.docx
2-3n.docx2-3n.docx
2-3n.docx
Β 
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan Tanah
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan TanahPembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan Tanah
Pembahasan Soal Teknik Fondasi Telapak dan Dinding Penahan Tanah
Β 
Design of a Controller for MIMO System by using Approximate Model Matching (A...
Design of a Controller for MIMO System by using Approximate Model Matching (A...Design of a Controller for MIMO System by using Approximate Model Matching (A...
Design of a Controller for MIMO System by using Approximate Model Matching (A...
Β 
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS
A STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF PLUNGE CENTERLESS GRINDING PROCESS
Β 
B012460814
B012460814B012460814
B012460814
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steel
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steel
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steel
Β 
Optimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steelOptimization of cutting parameters in dry turning operation of mild steel
Optimization of cutting parameters in dry turning operation of mild steel
Β 
RELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXRELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOX
Β 
Presentation2_Agus Widyianto_MSME.pdf
Presentation2_Agus Widyianto_MSME.pdfPresentation2_Agus Widyianto_MSME.pdf
Presentation2_Agus Widyianto_MSME.pdf
Β 
Roll grinding Six Sigma project
Roll grinding Six Sigma projectRoll grinding Six Sigma project
Roll grinding Six Sigma project
Β 

Recently uploaded

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 

Recently uploaded (20)

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 

Optimization of micro machining processes

  • 1. Optimization of Micro- machining Processes DR ANAND J KULKARNI SYMBIOSIS CENTER FOR RESEARCH AND INNOVATION, SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY), PUNE, INDIA EMAIL: ANAND.KULKARNI@SITPUNE.EDU.IN; KULK0003@NTU.EDU.SG APOORVA SHASTRI, ANIKET NARGUNDKAR SYMBIOSIS INSTITUTE OF TECHNOLOGY, SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY), PUNE, INDIA
  • 2. Outline  Non Traditional Machining Processes (NTM)  Need of Optimization and Techniques  Electric Discharge Machining (EDM)  Abrasive Water Jet Machining (AWJM)  Micro-Milling  Micro-Drilling with CFRP Application  Micro-Turning 2
  • 3. Manufacturing Processes  Definition: the application of mechanical, physical, and chemical processes to convert the geometry, properties, and/or shape of raw material into finished parts or products.  Primary Processes  Machining Processes  Metal Forming Processes  Joining Processes  Surface Finishing Processes 3
  • 4. 20th & 21st Century Applications & Materials  Aerospace  Military  Automobile  Electronic Gadgets  Complex Designs, many more, …  Materials and alloys necessitate  high strength-to-weight ratio  high stiffness and toughness  high heat capacity  thermal conductivity, etc. 4
  • 5. 20th & 21st Century Applications & Traditional Machining Processes  Traditional Machining Processes, Chip Removal Processes  Generation of High Temperatures and Stresses  Challenges:  Rapid Deterioration of the Cutting Tools  Inferior Quality of Machined Parts  Innovative and Complex Designs  Demanding Tolerance Requirements  Cost Reduction 5
  • 6. Non Traditional Machining (NTM) Processes NTM Processes Mechanical Processes AWJM USM Electro Chemical Processes ECM Electro Thermal Processes EDM Tool based Micro Machining Micro Turning Micro Milling Micro Drilling Sustainable Machining (MQL, Cryogenic) 6
  • 7. Need for Optimization  Dynamic and Market competition driven manufacturing  Reduced time-to-market: shorter manufacturing time  Minimal manufacturing costs: efficient use of all the resources  High and Expected quality of highly customized products  Growing needs for safety  Determine optimal process parameter settings  Productivity  Quality  Cost of Production 7
  • 9. Cohort: A Self Organizing System 9
  • 10. 10
  • 11. Cohort Intelligence: Applications  Heat Exchanger Design  Healthcare  Image Processing  Finite Element Analysis  Robotics Path Planning  Control Systems  Machine Learning  Logistics & Transportation  Forming Processes  Mechanical Engineering Design  Micro Machining Processes 11
  • 12. 12
  • 13. Electric Discharge Machining (EDM)  Controlled Spark-Erosion  high strength temperature resistant materials and alloys (hardened steel, carbide, etc.) with intricate geometries G Tool (-ve) Work Piece (+ve) Dielectric Medium 13
  • 14. EDM: Process Parameters/Variables & Objectives  The Process Parameters/Variables  Discharge Current (𝑏1)  Gap Voltage (𝑏2)  Pulse on-time (𝑏3)  Pulse off-time (𝑏4)  Gap between the work piece and the tool  Dielectric medium.  Objectives  Minimize Surface Roughness (𝑅 π‘Ž)  Minimize Relative Electrode Wear Rate (π‘…πΈπ‘Šπ‘…)  Maximizing Material Removal Rate (𝑀𝑅𝑅) G Tool (-ve) Work Piece (+ve) Dielectric Medium 14 Muthuramalingam and Mohan (2015) Gopalakannan and Senthilvelan (2014)
  • 15. EDM: Problem Formulations π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑅𝑅 = βˆ’235.15 + 39.7𝑏1 + 4.227𝑏2 + 1.569𝑏3 βˆ’ 1.375𝑏4 βˆ’ 0.0059𝑏3 2 βˆ’ 0.536𝑏1 𝑏2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = 31.547 βˆ’ 0.0618𝑏1 βˆ’ 0.438𝑏2 + 0.059𝑏3 βˆ’ 0.59𝑏4 + 0.019𝑏1 𝑏4 βˆ’ 0.0075𝑏2 𝑏4 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘…πΈπ‘Šπ‘… = 196.564 βˆ’ 24.19𝑏1 βˆ’ 3.135𝑏2 βˆ’ 1.781𝑏3 + 0.153𝑏4 + 0.093𝑏1 2 + 0.00149𝑏3 2 + 0.005265𝑏4 2 + 0.464𝑏1 𝑏2 + 0.158𝑏1 𝑏3 + 0.025𝑏1 𝑏4 + 0.029𝑏2 𝑏3 βˆ’ 0.017𝑏2 𝑏4 βˆ’ 0.003385𝑏1 𝑏2 𝑏3 7.5 ≀ 𝑏1≀ 12.5 45 ≀ 𝑏2≀ 55 50 ≀ 𝑏3≀ 150 40 ≀ 𝑏4≀ 60 15 Tzeng and Chen (2013) Shukla and Singh (2017)
  • 16. EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘… Function GA SA PSO Roulette wheel fbest fbetter alienation Multi-CI 𝑀𝑅𝑅 Mean 183.37 182.03 183.37 183.26 38.98 38.24 96.45 183.37 S.D. 0.00 2.21 0.00 0.11 0.69 0.71 23.21 0.00 Best 183.37 183.09 183.37 183.35 39.63 39.52 144.32 183.37 Run Time 1.41 2.61 1.81 0.35 0.59 0.64 0.51 1.81 𝑅 π‘Ž Mean 3.55 3.67 3.55 3.61 3.60 3.61 5.99 3.55 S.D. 0.00 0.16 0.05 0.03 0.02 0.03 1.76 0.00 Best 3.55 3.58 3.55 3.55 3.55 3.55 4.06 3.55 Run Time 1.45 2.69 1.89 0.38 0.6 0.63 0.53 1.89 π‘…πΈπ‘Šπ‘… % Mean 1.30 Γ— 10-8 6.82 Γ— 10-4 3.73 Γ— 10-9 8.53 Γ— 10-5 2.96 Γ— 10-5 7.90 Γ— 10-6 2.37 Γ— 10-7 1.85 Γ— 10-8 S.D. 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 Best 1.22 Γ— 10-7 1.36 Γ— 10-2 8.95 Γ— 10-9 2.43 Γ— 10-4 1.49 Γ— 10-4 4.15 Γ— 10-5 9.79 Γ— 10-7 9.50 Γ— 10-9 Run Time 1.7 2.8 1.42 0.42 0.62 0.66 0.57 1.93 16
  • 17. EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘… π‘€π‘Žπ‘₯π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑅𝑅 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘…πΈπ‘Šπ‘… 17
  • 18. EDM: Solutions to 𝑀𝑅𝑅, 𝑅 π‘Ž & π‘…πΈπ‘Šπ‘… Problem RSM Tzeng & Chen (2013) BPNN Tzeng & Chen (2013) FA Shukla & Singh (2017)b roulette wheel fbest fbetter alienation GA SA PSO Multi-CI 𝑀𝑅𝑅 157.39 159.70 181.67 183.35 39.63 39.52 144.32 183.35 183.09 183.37 183.37 𝑅 π‘Ž 7.38 7.04 3.67 3.55 3.55 3.55 4.06 3.55 3.58 3.55 3.55 REWR % 7.63 6.21 6.32 Γ—10-5 2.43 Γ—10-4 2.96 Γ—10-5 7.90 Γ—10-6 9.79 Γ—10-9 1.22 Γ—10-7 2.43 Γ—10-4 1.85 Γ—10-9 9.50 Γ—10-9 18
  • 19. Abrasive Water Jet Machining (AWJM) 19
  • 20. Abrasive Water Jet Machining (AWJM)  Very high velocity fine abrasive particles impinge on the work piece  Effective for hard, brittle material, tough, hard to machine materials (titanium, stainless steel, high-strength temperature-resistant alloys, ceramics, refractories, fiber-reinforced composites, super alloys, etc.) Gupta et al 2017 20
  • 21. AWJM: Process Parameters/ Variables & Objectives  The Process Parameters/Variables  Work Piece Thickness (π‘Ž1)  Nozzle Diameter (π‘Ž2)  Standoff Distance (π‘Ž3)  Traverse Speed (π‘Ž4)  Objectives  Minimize Taper Angle π‘˜π‘’π‘Ÿπ‘“ (Geometry)  Minimize Surface Roughness 𝑅 π‘Ž (Surface Finish) 21
  • 22. AWJM: Problem Formulations π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = βˆ’23.309555 + 16.6968π‘Ž1 + 26.9296π‘Ž2 + 0.0587π‘Ž3 + 0.0146π‘Ž4 βˆ’ 5.1863π‘Ž2 2 βˆ’ 10.4571π‘Ž1 π‘Ž2 βˆ’ 0.0534π‘Ž1 π‘Ž3 βˆ’ 0.0103π‘Ž1 π‘Ž4 + 0.0113π‘Ž2 π‘Ž3 βˆ’ 0.0039π‘Ž2 π‘Ž4 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π‘˜π‘’π‘Ÿπ‘“ = βˆ’1.15146 + 0.70118π‘Ž1 + 2.72749π‘Ž2 + 0.00689π‘Ž3 βˆ’ 0.00025π‘Ž4 + 0.00386π‘Ž2 π‘Ž3 βˆ’ 0.93947π‘Ž2 2 βˆ’ 0.25711a1a2 βˆ’ 0.00314a1a3 βˆ’ 0.00249a1a4 + 0.00196a2a4 βˆ’ 0.00002a3a4 βˆ’ 0.00001a3 2 0.9 ≀ π‘Ž1≀ 1.25 0.95 ≀ π‘Ž2≀ 1.5 20 ≀ π‘Ž3≀ 96 200 ≀ π‘Ž4≀ 600 Shukla and Singh (2017) 22
  • 23. AWJM: Solutions to π‘˜π‘’π‘Ÿπ‘“ & 𝑅 π‘Ž Problem Expt (Kechagias, 2012) Regression (Kechagias, 2012) FA Shukla and Singh (2017) roulette wheel fbest fbetter alienation GA SA PSO Multi-CI Gulia and Nargundkar (2019) 𝑅 π‘Ž 5.80 5.41 4.44 4.38 4.38 4.38 4.38 4.38 4.61 4.39 4.38 π‘˜π‘’π‘Ÿπ‘“ 0.85 090 0.37 0.34 0.34 0.34 0.34 0.33 0.35 0.43 0.33 Function GA SA PSO Multi-CI 𝑅 π‘Ž Mean 4.43 4.86 4.39 4.38 S.D. 0.03 0.12 0.22 0.00 Best 4.38 4.61 4.75 4.38 Run Time 1.62 2.63 1.78 4.63 π‘˜π‘’π‘Ÿπ‘“ Mean 0.33 0.41 0.43 0.33 S.D. 0.01 0.04 0.00 0.01 Best 0.33 0.36 0.43 0.33 Run Time 1.48 2.8 1.52 3.89 23
  • 24. AWJM: Solutions to π‘˜π‘’π‘Ÿπ‘“ & 𝑅 π‘Ž Minimize Taper Angle π‘˜π‘’π‘Ÿπ‘“ (Geometry) Minimize Surface Roughness 𝑅 π‘Ž (Surface Finish) 24
  • 25. Tool Based Micro-machining Processes  Today’s manufacturing field involve  increased number of functions  Miniaturization of parts/dimensions  Advantages of tool based micromachining  Productivity  Efficiency  Flexibility  Cost effectiveness 25
  • 26. Tool Based Micro-machining Processes Methods of Micro Fabrication Material Deposition (Additive) Physical Vapour Deposition Chemical Vapour Deposition Lithography Material Removal/Mecha nical Processes (Subtractive) Conventional Tool Based Processes such as Micro Turning, Micro Drilling and Micro Milling Advanced Processes such as Micro-EDM, Micro- ECM 26
  • 28. Micro-Milling: Tool Diameter ≀ 1π‘šπ‘š  Miniature featured objects: Meso (500 Β΅m-10mm) and Micro Scale (1-500 Β΅m)  Aeronautical  Biomedical  Automobile  Optical  Nuclear  Semiconductor sector  Materials: Ceramics, Specialized Metals, Polymers, etc. 28
  • 29. Micro-Milling: Process Parameters/ Variables & Objectives  The Process Parameters/Variables  Cutting Speed (𝑑1)  Feed (𝑑2)  Objectives  Surface Roughness (𝑅 π‘Ž)  Machining Time (𝑀𝑑) 29 Kumar et al. (2014)
  • 30. Micro-Milling: Process Parameters/ Variables & Objectives  For tool diameter 0.7 mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = βˆ’0.455378 + 0.00027𝑑1 + 0.016422𝑑2 βˆ’ 0.000077𝑑1 𝑑2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑑 = 17.7164 βˆ’ 0.0002𝑑1 βˆ’ 4.8404𝑑2 + 0.0001𝑑1 𝑑2  For tool diameter 1 mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = βˆ’0.208871 + 0.000144𝑑1 + 0.019571𝑑2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑀𝑑 = 20.2906 βˆ’ 0.0015𝑑1 βˆ’ 5.8369𝑑2 + 0.0006𝑑1 𝑑2 1500 ≀ 𝑑1 ≀ 2500 1 ≀ 𝑑2 ≀ 3 Kumar et al. (2014) 30
  • 31. Micro-Milling: Solutions to 𝑅 π‘Ž & 𝑀𝑑 Micro Machining Processes Cutter Diameter Objective Function Algorithms Applied GA SA PSO Variations of CI Multi-CIroulette wheel fbest fbetter alienation Micro Milling 0.7 mm 𝑅 π‘Ž Mean 0.00 0.13 0.00 0.00 0.12 0.19 0.00 0.00 S.D. 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Best 0.00 0.13 0.00 0.00 0.09 0.19 0.00 0.00 Run Time 1.40 2.60 1.12 0.06 0.05 0.06 0.14 0.21 𝑀𝑑 Mean 3.35 3.42 3.34 3.35 3.35 3.35 3.35 3.35 S.D. 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 Best 3.35 3.42 3.35 3.35 3.35 3.35 3.35 3.35 Run Time 1.44 2.62 0.74 0.04 0.04 0.04 0.10 0.16 1 mm 𝑅 π‘Ž Mean 0.03 0.16 0.03 0.03 0.11 0.21 0.03 0.03 S.D. 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 Best 0.03 0.15 0.03 0.03 0.06 0.21 0.03 0.03 Run Time 1.78 2.76 0.98 0.06 0.05 0.06 0.11 0.39 𝑀𝑑 Mean 3.23 3.47 3.23 3.23 3.23 3.23 3.23 3.23 S.D. 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Best 3.23 3.44 3.23 3.23 3.23 3.23 3.23 3.23 Run Time 1.72 2.77 1.07 0.05 0.06 0.05 0.10 0.37 31
  • 32. Micro-Milling: Solutions to 𝑅 π‘Ž & 𝑀𝑑 Tool diameter 0.7 mm 𝑅 π‘Ž & 𝑀𝑑 Tool diameter 1 mm 𝑅 π‘Ž & 𝑀𝑑 32
  • 34. Micro-Drilling  PCB circuits  Microprocessor  automotive industry  Fuel Injectors  Fasteners for Micro-jacks and Micro-pins  Hole quality  Reduced Burr Thickness and height  Surface Finish  Durability  Precision  Assembly problems Challenges in De-burring: β€’ Poor Accessibility of Burr Area β€’ Tight Tolerance Crown burr - very low feed rate and high speed Transient burr - higher feed rate and higher speed Uniform burr - not solely dependent on feed rate and speed but tool diameter and tool type Pansari et al. 2019 34
  • 35. Micro-Drilling: Process Parameters/ Variables & Objectives  Important Parameters:  Tool Diameter  Spindle Speed (π‘ž1)  Tool Helix Angle  Feed Rate (π‘ž2)  Hole quality  Burr Thickness (𝐡𝑑)  Burr Height (π΅β„Ž) Choudhary, H. (2007) 35
  • 36. Micro-Drilling: Process Parameters/ Variables & Objectives  For tool diameter 0.5mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 420.94 βˆ’ 0.234π‘ž1 βˆ’ 99.91π‘ž2 + 6.5510βˆ’5 π‘ž1 2 + 22.152π‘ž2 2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 90.57 βˆ’ 0.049π‘ž1 βˆ’ 27.12π‘ž2 + 1.3210βˆ’5 π‘ž1 2 + 5.54π‘ž2 2  For tool diameter 0.6 mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 369.67 βˆ’ 0.028π‘ž1 βˆ’ 156.79π‘ž2 + 6.64 Γ— 10βˆ’6 π‘ž1 2 + 23.162π‘ž2 2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 35.34 βˆ’ 0.019π‘ž1 βˆ’ 0.59π‘ž2 + 6.44 Γ— 10βˆ’6 π‘ž1 2 + 0.51π‘ž2 2  For tool diameter 0.8 mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 106.116 βˆ’ 0.13π‘ž1 βˆ’ 6.62π‘ž2 + 1.49 Γ— 10βˆ’6 π‘ž1 2 + 4.75π‘ž2 2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 59.79 βˆ’ 0.024π‘ž1 βˆ’ 11.3π‘ž2 βˆ’ 7.78 Γ— 10βˆ’6 π‘ž1 2 + 2.18π‘ž2 2  For tool diameter 0.9 mm π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ π΅β„Ž = 450.7 βˆ’ 0.09π‘ž1 βˆ’ 38.48π‘ž2 + 2.34 Γ— 10βˆ’5 π‘ž1 2 + 5.03π‘ž2 2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐡𝑑 = 80.07 βˆ’ 0.040π‘ž1 βˆ’ 14.81 π‘ž2 + 1.516 Γ— 10βˆ’5 π‘ž1 2 + 4.65π‘ž2 2 1000 ≀ π‘ž1 ≀ 2500 1 ≀ π‘ž2 ≀ 4 Pansari et al. 2019 36
  • 37. Micro-Drilling: Solutions to 𝐡𝑑 & π΅β„Ž Micro Machining Processes Cutter Diameter Objective Function Algorithms Applied GA SA PSO Variations of CI Multi-CI roulette wheel Fbest fbetter alienation Micro Drilling 0.5 mm π΅β„Ž Mean 99.29 134.13 99.29 99.29 99.29 99.29 99.29 99.29 S.D. 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.00 Best 99.29 131.79 99.29 99.29 99.29 99.29 99.29 99.29 Run Time 1.47 2.60 1.14 0.04 0.04 0.04 0.08 0.14 𝐡𝑑 Mean 11.91 21.13 11.90 11.91 11.91 11.91 11.91 11.91 S.D. 0.00 1.22 0.00 0.00 0.00 0.00 0.00 0.00 Best 11.91 18.14 11.90 11.91 11.91 11.91 11.91 11.91 Run Time 1.43 2.62 0.87 0.04 0.04 0.04 0.08 0.15 0.6mm π΅β„Ž Mean 74.83 75.30 74.81 74.81 74.81 74.81 74.81 74.81 S.D. 0.04 0.24 0.00 0.00 0.00 0.00 0.00 0.00 Best 74.81 74.91 74.81 74.81 74.81 74.81 74.81 74.81 Run Time 1.62 2.65 0.76 0.04 0.04 0.04 0.08 0.14 𝐡𝑑 Mean 21.25 22.65 21.25 21.25 21.25 21.25 21.25 21.25 S.D. 0.01 1.91 0.00 0.00 0.00 0.00 0.00 0.00 Best 21.25 21.25 21.25 21.25 21.25 21.25 21.25 21.25 Run Time 1.64 2.66 1.23 0.04 0.04 0.05 0.01 0.14 0.8mm π΅β„Ž Mean 235.78 235.73 235.74 235.74 235.74 235.74 235.74 235.74 S.D. 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Best 235.74 235.73 235.74 235.74 235.74 235.74 235.74 235.74 Run Time 1.73 2.67 1.34 0.06 0.05 0.06 0.12 0.17 𝐡𝑑 Mean 26.64 32.90 26.64 26.64 26.64 26.64 26.64 26.64 S.D. 0.00 0.6 0.00 0.00 0.00 0.00 0.00 0.00 Best 26.64 31.70 26.64 26.64 26.64 26.64 26.64 26.64 Run time 1.68 2.71 0.88 0.035 0.036 0.04 0.076 0.16 0.9mm π΅β„Ž Mean 305.07 307.74 305.07 305.07 305.07 305.07 305.07 305.07 S.D. 0.00 2.46 0.00 0.00 0.00 0.00 0.00 0.00 Best 305.07 305.39 305.07 305.07 305.07 305.07 305.07 305.07 Run Time 1.42 2.60 1.12 0.04 0.03 0.03 0.07 0.08 𝐡𝑑 Mean 41.89 43.09 41.89 41.89 41.89 41.89 41.89 41.89 S.D. 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 Best 41.89 43.01 41.89 41.89 41.89 41.89 41.89 41.89 Run Time 1.47 2.64 0.96 0.04 0.03 0.04 0.07 0.10 37
  • 38. Micro-Drilling of CFRP Composites for Aerospace App 38
  • 39. Micro-Drilling of CFRP Composites for Aerospace App  Minimization of Cutting Forces in x, y and z directions induced in micro drilling of Carbon Fiber Reinforced Plastic (CFPR) composite materials for aerospace applications.  CFRP Properties  High Stiffness  High Strength to Weight Ratio  Good Damping Capacity 39
  • 40. Process Parameters/ Variables & Objectives  Process Parameters/Variables:  Cutting Speed (𝑉)  Feed (𝑓)  Objectives: Minimize Cutting Forces  𝐹π‘₯  𝐹𝑦  𝐹𝑧 Axial Force𝑭 π’š Thrust Force𝑭 𝒛 Cutting Force𝑭 𝒙 Tool Feed βˆ… π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹π‘₯ = 0.38607 βˆ’ 0.01498 Γ— 𝑉 βˆ’ 0.13220 Γ— 𝑓 + 0.0012 Γ— 𝑓 Γ— 𝑉 + 0.0003 Γ— 𝑉2 + 0.019583 Γ— 𝑓2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹𝑦 = 0.25371 βˆ’ 0.00375 Γ— 𝑉 βˆ’ 0.12116 Γ— 𝑓 + 0.00063 Γ— 𝑓 Γ— 𝑉 + 0.000093 Γ— 𝑉2 + 0.021 Γ— 𝑓2 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝐹𝑧 = 0.64841 + 0.078424 Γ— 𝑉 + 0.59493 Γ— 𝑓 βˆ’ 0.0017 Γ— 𝑓 Γ— 𝑉 βˆ’ 0.0009 Γ— 𝑉2 βˆ’ 0.0204 Γ— 𝑓2 40 Anand and Patra (2018)
  • 41. Solutions to 𝐹π‘₯, 𝐹𝑦 & 𝐹𝑧 Machining Process Objective Function Variations of CI Roulette Wheel Follow Best Follow Better Alienation Micro Drilling 𝐹π‘₯ Mean 0.0569 0.0569 0.0569 0.0569 S.D. 0.0000 0.0000 0.0000 0.0000 Best 0.0569 0.0569 0.0569 0.0569 Run Time 0.73 0.94 0.78 0.79 𝐹𝑦 Mean 0.0704 0.0704 0.0704 0.0704 S.D. 0.0000 0.0000 0.0000 0.0000 Best 0.0704 0.0704 0.0704 0.0704 Run Time 0.98 0.63 0.96 0.83 𝐹𝑧 Mean 2.2057 2.2057 2.2057 2.2057 S.D. 0.0000 0.0000 0.0000 0.0000 Best 2.2057 2.2057 2.2057 2.2057 Run Time 0.81 0.76 0.64 0.82 Obj Fun Experim ental Roulette Wheel Follow Best Follow Better Alienat ion 𝐹π‘₯ 0.0950 0.0569 0.0569 0.0569 0.0569 𝐹𝑦 0.1080 0.0704 0.0704 0.0704 0.0704 𝐹𝑧 0.1080 2.2057 2.2057 2.2057 2.2057 41
  • 43. Micro-Turning: Optimization of Micro-turning Process  Cutting speed (𝑉𝑐)  Feed (𝑓)  Depth of cut (𝑑 )  Objectives  Flank Wear (𝑓𝑏)  Surface Roughness (𝑅 π‘Ž) Tool feed 𝑓 Cutting Speed 𝑉𝑐 Flank wear 𝑓𝑏 Depth of cut 𝑑 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑓𝑏 = 0.004 Γ— 𝑉𝑐 0.495 Γ— 𝑓0.545 Γ— 𝑑0.763 π‘€π‘–π‘›π‘–π‘šπ‘–π‘§π‘’ 𝑅 π‘Ž = 0.048 Γ— 𝑉𝑐 βˆ’0.062 Γ— 𝑓0.445 Γ— 𝑑0.516 25 ≀ 𝑉𝑐 ≀ 37 5 ≀ 𝑓 ≀ 15 30 ≀ 𝑑 ≀ 70 Durairaj and Gowri (2013) 43
  • 44. Optimization of Micro-turning Process Process Cutter Dim Objective Function Algorithms Applied GA SA PSO Variations of CI Multi-CIroulette wheel fbest fbetter alienatio n Micro Turning 0.2 mm Nose radius 𝑅 π‘Ž Mean 0.45 0.45 0.46 0.46 0.45 0.45 0.46 0.46 S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Best 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 Run Time 1.64 2.80 1.21 0.04 0.03 0.04 0.10 0.39 𝑓𝑏 Mean 0.63 0.64 0.63 0.63 0.63 0.63 0.63 0.63 S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Best 0.63 0.64 0.63 0.63 0.63 0.63 0.63 0.63 Run Time 1.42 2.78 0.89 0.06 0.04 0.04 0.10 0.38 44
  • 45. For all the MATLAB Codes 45 www.sites.google.com/site/oatresearch/ or Google: OAT Research Lab
  • 46. Thank you Anand J Kulkarni PhD, MASc, BEng, DME Associate Professor Symbiosis Center for Research and Innovation Symbiosis International (Deemed University) Pune 412 115, MH, India Email: anand.kulkarni@sitpune.edu.in kulk0003@ntu.edu.sg; anandmasc@gmail.com URL: sites.google.com/site/oatresearch/anand-jayant-kulkarni Ph: 91 20 6193 6790 ResearcherID: www.researcherid.com/rid/O-3585-2016 ORCID ID: orcid.org/0000-0001-6242-9492 Google Scholar: scholar.google.ca/citations?user=IAvtDokAAAAJ&hl=en 46