SlideShare a Scribd company logo
1 of 19
Download to read offline
Warsaw University of Technology
The Faculty of Power and Aeronautical Engineering
Institute of Heat Engineering
Intermediate Engineering Project
Analysis of work cycle of turbofan engine equipped with
intercooler
Supervisor:
dr. inż. Paweł Oleszczak
Prepared by:
Kaushik Gogoi
Warsaw, 2012
i
List of Contents
1. Introduction........................................................................................................................1
2. Description of the thermodynamic cycle............................................................................1
2.1 Brayton cycle ..............................................................................................................1
3. The intercooler....................................................................................................................2
3.1 Description of an intercooler......................................................................................2
4. Analysis of the work cycle...................................................................................................4
4.1 Assumptions for calculation.......................................................................................4
4.2 Calculations (Ideal case).............................................................................................5
4.3 Results.......................................................................................................................6
5. Plots ..................................................................................................................................12
6. Conclusions........................................................................................................................15
References...............................................................................................................................16
ii
Nomenclature
LPC Low pressure compressor
HPC High pressure compressor
CP specific heat at constant pressure
AFR air/fuel ratio
h enthalpy
LHV low heating value of fuel
M mach number
m

mass flow rate
P pressure
P* total pressure
SFC specific fuel consumption
T* total temperature
V absolute velocity
k ratio of specific heats,
v
p
c
c
ηth thermal Efficiency
πc compressor pressure ratio (overall pressure ratio)
τ ratio of total temperatures
1
1. Introduction:
Enhancing the performance of an engine without affecting its efficiency is of paramount
importance and the ultimate goal while designing an engine for the aviation industry.
Continuous research has been done and many novel techniques have been applied to
achieve this goal.
One such reliable and proven technique is to employ an intercooler. Although it is still a
relatively new concept for aero engines, intercooled gas turbines have been employed in
the power generation industry and also in marine gas turbines to a great effect - thus
offering a consistent design solution for aero engines as well.
In this project, an analysis of a intercooled turbofan engine will be performed. In other
words, observations will be made on how an intercooler affects the compression cycle
and the efficiency of a turbofan engine.
2. Description of the thermodynamic
cycle:
2.1 Brayton cycle
The typical (ideal) Joule-Brayton cycle consists of four processes: Two isentropic
processes (Compression & expansion) & two isobaric processes(combustion and
cooling).
Figure 1: A typical Brayton cycle in T,s diagram and its schematic
2
In the particular case of a turbojet engine, the intake air is compressed by the
compressor(step 1→2) and mixed with fuel and converted into high temperature flue
gas by means of combustion(step 3→4) . The nozzle then converts the internal energy of
the hot gas into kinetic energy, or simply thrust.
The main parameter which is an indication of the effectiveness of this cycle and the
turbojet engine in general, is its thermal efficiency, ηth. Thermal efficiency can be
described as the ratio of the amount of energy converted to mechanical energy to the
thermal energy supplied to the system.
or,
3. The intercooler
3.1 Description of the intercooler
The intercooler is used to reduce the temperature at the high pressure compressor. It
effectively lowers the work input of the compression process.
Figure 2: Schematic Layout of intercooled engine
After passing through the inlet and the fan, the air is compressed in the low pressure
compressor to some intermediate pressure (P0→P1). This fluid then passes through an
intercooler where it is cooled down to a lower temperature in an isobaric process. This
cooler fluid is then compressed further in an high pressure compressor.
3
Two main types of intercoolers exist : an inline design and the more conventional off
the flow path design. The typical components of an inline intercooler is illustrated in
the following figure:
Figure 3: Typical design of an inline intercooler
In an inline intercooler, fins (4) are located on struts (3) and house between an inner(2) an outer
casing (1). The struts themselves have coolant flow paths (5) located inside them. The fins increase
the heat transfer area and act as heat sinks. Cooling fluid is usually air (for aviation purposes).
The cold flow for the intercooler is extracted from the bypass flow by an additional flow splitter in
the bypass stream.
Due to intercooling, the ideal thermodynamic cycle is changed to one where the inlet temperature
of the HPC is greatly reduced. The main advantage of an inline intercooler over a conventional one
is that it doesn't divert the airflow away from the main flow path, hence reduces pressure loss.
Figure 4: The modified thermodynamic cycle (after intercooling)
After passing through the LPC (step 0→1), the intercooler cools down the air flow to a lower
temperature while maintaining the same pressure (step 1→2). The compressed cooled air has
lesser volume - so it allows HPC size to be made smaller as well. This lowers the work input needed
for the HPC to compress the air and increases the mass flow - resulting in higher specific power.
4
4. Analysis of the work cycle
4.1 Assumptions for calculation
For the purpose of the analysis, the following simplified assumptions were made:
No Quantity Notation Value Unit
1 Mach Number 0.82
2 Specific heat capacity at
constant pressure
(compressor)
Cpc 1000 J/kg.K
3 Specific heat capacity at
constant pressure (turbine)
Cpt 1050 J/kg.K
4 Ratio of specific heats k 1.4
5 Lower heating value LHV 45 MJ/kg
6 Compressor & Turbine
efficiency
ηLPC , ηHPC, ηT 0.90
7 Turbine inlet temperature T4 1250 K
Moreover, standard initial calculations were made for the ambient temperatures and
pressures for typical cruising altitudes:
Altitude To [k] Po [bar] Density (Kg/m3
)
8500 232.9 0.33 0.49509
9000 229.65 0.307 0.466348
9500 226.4 0.285 0.438901
10000 223.15 0.264 0.412707
12000 216.65 0.193 0.310828
Temperature T2 should be as low as possible, hence for our calculations, we'll assume T2=T1.
5
4.2 Calculations (Ideal case)
1. Inlet temperature, T0*:
2. inlet pressure, P0*:
3. Intermediate temperature, T1 :
4. Specific work of the Low pressure compressor, WLPC :
5. Specific work of the High pressure compressor, WHPC :
6. Intercooler effectiveness, x :
hence, intercooler effectiveness was assumed in a range of 0.5 to 1 ; with x=0 denoting the lack of an
intercooler. It is to be noted that intercooler effectiveness of x=1 is highly improbable and is
considered for analytical purposes only.
7. Temperature after intercooler, T2 (using equation 6):
6
8. Specific work by the turbine, WT :
9. Net work, Wnet :
10. Heat added, Qadd :
11. Thermal Efficiency, ηth :
12. Air to fuel Ratio, AFR :
13. Specific fuel consumption, SFC :
4.3 Results:
A. For approximation, πc was divided between πLPC and πHPC as follows:
πC 25 27.5 30 32.5 35 40
πLPC +πf 4 4.2 4.4 4.6 4.8 5
πHPC 6.25 6.547619 6.818182 7.065217 7.291667 8
7
B. Results for compressor specific work:
Using formulae (1) & (2):
πc 25 27.5 30 32.5 35 40
Altitude
[m]
T0*=T2*
[k]
P0* T1*
8500 264.2204 0.33029 406.898 413.022 418.941 424.671 430.225 435.617
9000 260.5333 0.30727 401.220 407.258 413.095 418.745 424.222 429.538
9500 256.8463 0.28525 395.542 401.495 407.249 412.819 418.218 423.459
10000 253.1592 0.26424 389.864 395.731 401.403 406.893 412.215 417.381
12000 245.7851 0.19317 378.507 384.204 389.710 395.040 400.208 405.223
Using formula (4):
πc 25 27.5 30 32.5 35 40
altitude WLPC [J/kg]
8500 142677.3 148801.3 154720.5 160450.4 166005.02 171396.7
9000 140686.3 146724.9 152561.4 158211.4 163688.51 169005
9500 138695.4 144648.5 150402.4 155972.4 161371.99 166613.2
10000 136704.4 142572 148243.3 153733.4 159055.48 164221.5
12000 132722.4 138419.1 143925.2 149255.4 154422.45 159438
From formula (7): Temperature after intercooler
T2*
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 341.5806 326.1086 310.6365 295.1645 279.6924 264.2204 418.9408
9000 336.814 321.5579 306.3018 291.0456 275.7895 260.5333 413.0947
9500 332.0475 317.0072 301.967 286.9267 271.8865 256.8463 407.2486
10000 327.2809 312.4565 297.6322 282.8079 267.9835 253.1592 401.4025
12000 317.7477 303.3552 288.9627 274.5701 260.1776 245.7851 389.7103
8
Temperature after HPC:
T3*
πC 25 27.5 30 32.5 35 40
8500
662.7928 681.0896 698.234 714.3861 729.6736 758.0498
9000
653.5438 671.5853 688.4905 704.4172 719.4914 747.4716
9500
644.2949 662.0811 678.747 694.4483 709.3092 736.8934
10000
635.046 652.5768 669.0035 684.4794 699.1269 726.3152
12000
616.5481 633.5683 649.5165 664.5417 678.7625 705.1589
Using formula (5) , for a particular Pressure ratio, πc = 30:
WHPC [J/kg] (πC =30)
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 277279 264719.5 252160 239600.5 227041.07 214481.6 340076.3
9000 273409.7 261025.5 248641.3 236257 223872.83 211488.6 335330.7
9500 269540.4 257331.4 245122.5 232913.5 220704.59 208495.6 330585.2
10000 265671.1 253637.4 241603.7 229570 217536.35 205502.7 325839.6
12000 257932.5 246249.4 234566.2 222883 211199.87 199516.7 316348.4
Therefore, compressor specific work (WC = WHPC + WLPC):
WC [J/kg] (πC =30)
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 431999.4 419439.9 406880.5 394321 381761.53 369202.1 494796.8
9000 425971.1 413586.9 401202.7 388818.5 376434.24 364050 487892.2
9500 419942.8 407733.8 395524.9 383315.9 371106.95 358898 480987.5
10000 413914.4 401880.7 389847 377813.4 365779.67 353746 474082.9
12000 401857.8 390174.6 378491.4 366808.3 355125.09 343441.9 460273.6
9
C. Results for turbine specific work:
From formula (8):
WT [J/kg]
πC 25 27.5 30 32.5 35 40
1781897 1863697 1940344 2012556 2080901.4 2207763
For further calculations, the value of WT = 1940344 J/kg (πC =30) was considered.
D. Results for Net specific work:
Using formula (9):
Wnet [J/kg] (πC =30)
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 1508345 1520904 1533464 1546023 1558582.8 1571142 1445548
9000 1514373 1526757 1539142 1551526 1563910.1 1576294 1452452
9500 1520402 1532611 1544819 1557028 1569237.4 1581446 1459357
10000 1526430 1538464 1550497 1562531 1574564.7 1586598 1466261
12000 1538487 1550170 1561853 1573536 1585219.3 1596902 1480071
E. Results for heat added:
Using formula (10):
Qadd [J]
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 2972006.764 2745190 2518373 2291556 2064739 1837922 4106091
9000 2948849.198 2725197 2501546 2277894 2054242 1830590 4067108
9500 2925691.633 2705205 2484718 2264232 2043745 1823258 4028125
10000 2902534.068 2685213 2467891 2250569 2033248 1815926 3989142
12000 2856218.937 2645228 2434236 2223245 2012254 1801262 3911175
10
F. Results for Thermal efficiency:
Using formula (11):
Efficiency ηth
x 0.5 0.6 0.7 0.8 0.9 1 0
8500 0.507517 0.554025 0.608911 0.674661 0.754857 0.854847 0.35205
9000 0.513547 0.560237 0.615276 0.681123 0.7613076 0.861085 0.357122
9500 0.519673 0.566541 0.621728 0.687663 0.7678244 0.867374 0.362292
10000 0.525896 0.572939 0.628268 0.694282 0.7744086 0.873713 0.367563
12000 0.538644 0.586025 0.641619 0.707765 0.787783 0.886546 0.378421
G. Results for different pressure ratios (assuming x = 0.5) :
In order to compare the efficiencies for different pressure ratios, a minimum intercooler effectiveness
x=0.5 was considered:
Wnet (for x = 0.5)
πc 25 27.5 30 32.5 35 40
8500 1349898 1431698 1508345 1580556 1648902 1775764
9000 1355926 1437726 1514373 1586585 1654930 1781792
9500 1361955 1443754 1520402 1592613 1660959 1787820
10000 1367983 1449783 1526430 1598641 1666987 1793849
12000 1380040 1461839 1538487 1610698 1679044 1805905
Efficiency ηth
8500 0.454204 0.481728 0.507517 0.531815 0.554811 0.597497
9000 0.459815 0.487555 0.513547 0.538035 0.561212 0.604233
9500 0.465515 0.493474 0.519673 0.544354 0.567715 0.611076
10000 0.471306 0.499489 0.525896 0.550774 0.574321 0.618028
12000 0.48317 0.511809 0.538644 0.563927 0.587855 0.632271
11
H. Specific fuel consumption:
SFC [kg/kN.s]
8500
0.15763 0.144398 0.131382 0.118578 0.10598 0.093584 0.227241
9000
0.155779 0.142797 0.130023 0.117453 0.105082 0.092906 0.224013
9500
0.153943 0.141208 0.128674 0.116336 0.10419 0.092232 0.220816
10000
0.152121 0.139631 0.127334 0.115227 0.103305 0.091563 0.21765
12000
0.148521 0.136513 0.124685 0.113032 0.101551 0.090238 0.211405
I. Results for different turbine inlet temperatures( T4):
A range of turbine inlet temperatures between 1200k to 1600k was assumed:
Qadd
T4 1200 1250 1300 1400 1500 1600
8500
2919507 2972007 3024507 3129507 3234507 3339507
9000
2896349 2948849 3001349 3106349 3211349 3316349
9500
2873192 2925692 2978192 3083192 3188192 3293192
10000
2850034 2902534 2955034 3060034 3165034 3270034
12000
2803719 2856219 2908719 3013719 3118719 3223719
WT -(in terms of T4)
1862731 1940344 2017958 2173186 2328413 2483641
Wnet -(in terms of T4)
8500
1430731 1520904 1611078 1778865 1946652 2114439
9000
1436759 1526757 1616755 1784367 1951979 2119591
9500
1442788 1532611 1622433 1789870 1957306 2124743
10000
1448816 1538464 1628111 1795372 1962634 2129895
12000
1460873 1550170 1639467 1806377 1973288 2140199
12
Efficiency ηth
T4 1200 1250 1300 1400 1500 1600
8500
0.490059 0.511743 0.532675 0.568417 0.601839 0.633159
9000
0.496059 0.517747 0.538676 0.574426 0.607838 0.639134
9500
0.502155 0.523846 0.544771 0.580525 0.613924 0.645193
10000
0.50835 0.530042 0.550962 0.586716 0.620099 0.651337
12000
0.521048 0.542735 0.563639 0.599385 0.632724 0.663891
5. Plots
Figure 5: Effect of altitude(ambient temperature) and intercooler effectiveness on compressor work
300000
320000
340000
360000
380000
400000
420000
440000
460000
480000
500000
8000 9000 10000 11000 12000
Compressorwork[J/kg]
Altitude [m]
x= 0.5
x=0.6
x= 0.7
x= 0.8
x= 0.9
x= 1.0
x= 0
13
Figure 6: Effect of intercooler on thermal efficiency
Figure 7: Effect of overall pressure ratio on thermal efficiency
0.3
0.35
0.4
0.45
0.5
0.55
0.6
8000 9000 10000 11000 12000
Thermalefficiency
Altitude [m]
With
intercooler
Without
intercooler
0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
0.61
0.63
0.65
8000 9000 10000 11000 12000
ThermalEfficiency
Altitude [m]
PR = 25.0
PR = 27.5
PR = 30.0
PR = 32.5
PR = 35.0
PR = 40.0
14
Figure 8: Effect of intercooler effectiveness on thermal efficiency
Figure 9: Effect of turbine inlet temperature on thermal efficiency (for a certain pressure ratio)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
215 220 225 230 235
ThermalEfficiency
Ambient Temperature [k]
x= 0.5
x= 0.6
x= 0.7
x= 0.8
x= 0.9
x= 1.0
x=0
0.45
0.5
0.55
0.6
0.65
0.7
8000 9000 10000 11000 12000
ThermalEfficiency
Altitude [m]
T4 = 1200
T4 = 1250
T4 = 1300
T4 = 1400
T4 = 1500
T4 = 1600
15
Figure 10: Effect of intercooler on specific fuel consumption
6. Conclusions
The following observations were made from the analysis :
 Efficiency of the thermodynamic cycle can be substantially increased by the use of an
intercooler. It is particularly evident from Figure 6, which shows that by incorporating an
intercooler even with effectiveness as low as x=0.5 greatly increases the efficiency of the
cycle.
 With the increasing altitude (in other words with increasing ambient temperature), the
thermal efficiency tends to decrease.
 Compressor pressure ratio too has a significant impact on the efficiency. The efficiency is
notably large for bigger pressure ratios of the compressor.
 With increasing ambient temperature (decreasing cruise altitude), total compressor work
increase too, resulting in lower efficiencies.
To summarize, an intercooler provides a relatively easy and reliable way to achieve higher
pressure ratios without the need for a larger HPC, thus saving weight and increasing
efficiency. Intercooling can greatly influence the fuel efficiency of the engine as it is evident
from the results. However, for engines with lower pressure ratios, the effects of intercooling
is less pronounced. Engines with overall pressure ratio above 30 ( such as the General
electric CF-6) can benefit immensely by using intercooling technology.
0.05
0.07
0.09
0.11
0.13
0.15
0.17
0.19
0.21
0.23
0.25
8000 9000 10000 11000 12000
SpecificFuelConsumption[kg/kN.s]
Altitude [m]
x=0.5
x=0.6
x=0.7
x=0.8
x=0.9
x=1.0
x=0
16
References:
1. Propulsion systems Lectures - dr. inż. Paweł Oleszczak
2. Patent - US 6,430,931 B1 Gas turbine inline intercooler - Michael W. Horner
3. Intercooled Recuperated Aero Engine - S. Boggia, K. Rüd, Advanced Project Design, MTU Aero Engines
-München, Germany
4. Study on the effective parameter of gas turbine model with intercooled compression process - Thamir
K. Ibrahim1*, M. M. Rahman2 and Ahmed N. Abd Alla
5. Parametric Performance of Gas Turbine Power Plant with Effect Intercooler - Wadhah Hussein Abdul
Razzaq Al- Doori
6. A complete Parametric analysis of ideal turbofan engine - S.L. Yang, Y.K. Siow, K.H. Liew, and E. Urip
Mechanical Engineering – Engineering Mechanics Department, Michigan Technological University
7. Compression cycle of intercooled Gas turbine - Magdalena Milancej, Institut für Thermodynamik und
Energiewandlung Technische Universität Wien & Institute of Turbomachinery International Faculty of
Engineering, Technical University of Lodz

More Related Content

What's hot

Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
NAAR Journal
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)
Yuri Melliza
 
Se prod thermo_chapter_4_i.c.engines
Se prod thermo_chapter_4_i.c.enginesSe prod thermo_chapter_4_i.c.engines
Se prod thermo_chapter_4_i.c.engines
VJTI Production
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressor
VJTI Production
 
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
theijes
 

What's hot (18)

Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
Distribution, Habitat Utilization and Threats to Chinese Pangolin (Manis Pent...
 
Propulsion
PropulsionPropulsion
Propulsion
 
Power cycles 1
Power cycles 1Power cycles 1
Power cycles 1
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)
 
Lecture 15d - Air conditioning processes
Lecture 15d - Air conditioning processes Lecture 15d - Air conditioning processes
Lecture 15d - Air conditioning processes
 
Se prod thermo_chapter_4_i.c.engines
Se prod thermo_chapter_4_i.c.enginesSe prod thermo_chapter_4_i.c.engines
Se prod thermo_chapter_4_i.c.engines
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamics
 
Eg 261 - carnot and jet engines
Eg 261 - carnot and jet enginesEg 261 - carnot and jet engines
Eg 261 - carnot and jet engines
 
Thermodynamics Lecture I
Thermodynamics Lecture IThermodynamics Lecture I
Thermodynamics Lecture I
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressor
 
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
Energy and Exergy Analysis of a Cogeneration Cycle, Driven by Ocean Thermal E...
 
K10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plantK10854 Experimental evaluation of cascade refrigeration plant
K10854 Experimental evaluation of cascade refrigeration plant
 
Gas turbine details
Gas turbine detailsGas turbine details
Gas turbine details
 
PulseDetArticle_GTW_Nov-Dec2013
PulseDetArticle_GTW_Nov-Dec2013PulseDetArticle_GTW_Nov-Dec2013
PulseDetArticle_GTW_Nov-Dec2013
 
Cooling Tower Makeup Water Estimation
Cooling Tower Makeup Water EstimationCooling Tower Makeup Water Estimation
Cooling Tower Makeup Water Estimation
 
Ideal Models of Engine Cycles
Ideal Models of Engine CyclesIdeal Models of Engine Cycles
Ideal Models of Engine Cycles
 
C1303071722
C1303071722C1303071722
C1303071722
 

Similar to Analysis of work cycle of intercooled turbofan engine

Predicting and Optimising CT LWT
Predicting and Optimising CT LWTPredicting and Optimising CT LWT
Predicting and Optimising CT LWT
Raji Panicker
 
Sessional 2 solutions
Sessional 2 solutionsSessional 2 solutions
Sessional 2 solutions
Hammad Tariq
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)
shone john
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
ReemTaha14
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
ssuser5a6db81
 

Similar to Analysis of work cycle of intercooled turbofan engine (20)

Refrigeration Engineering Lecture notes
Refrigeration Engineering Lecture notesRefrigeration Engineering Lecture notes
Refrigeration Engineering Lecture notes
 
Refrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture NotesRefrigeration Engineering Lecture Notes
Refrigeration Engineering Lecture Notes
 
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFDIRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
 
3.6.doc
3.6.doc3.6.doc
3.6.doc
 
Predicting and Optimising CT LWT
Predicting and Optimising CT LWTPredicting and Optimising CT LWT
Predicting and Optimising CT LWT
 
Sessional 2 solutions
Sessional 2 solutionsSessional 2 solutions
Sessional 2 solutions
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)
 
UNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdfUNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdf
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioning
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
 
Steam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of BoilerSteam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of Boiler
 
Chapter_11.ppt RAC REFRIGERATOR.ppt
Chapter_11.ppt RAC REFRIGERATOR.pptChapter_11.ppt RAC REFRIGERATOR.ppt
Chapter_11.ppt RAC REFRIGERATOR.ppt
 
Impact of Fouling on VCR System
Impact of Fouling on VCR SystemImpact of Fouling on VCR System
Impact of Fouling on VCR System
 
2 gas turbinepp
2 gas turbinepp2 gas turbinepp
2 gas turbinepp
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
221026681 SECOND OPP Cooling tower.pptx
221026681 SECOND OPP Cooling tower.pptx221026681 SECOND OPP Cooling tower.pptx
221026681 SECOND OPP Cooling tower.pptx
 
Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle
 

Recently uploaded

“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
Muhammad Subhan
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
FIDO Alliance
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 

Recently uploaded (20)

“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
الأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهلهالأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهله
 

Analysis of work cycle of intercooled turbofan engine

  • 1. Warsaw University of Technology The Faculty of Power and Aeronautical Engineering Institute of Heat Engineering Intermediate Engineering Project Analysis of work cycle of turbofan engine equipped with intercooler Supervisor: dr. inż. Paweł Oleszczak Prepared by: Kaushik Gogoi Warsaw, 2012
  • 2. i List of Contents 1. Introduction........................................................................................................................1 2. Description of the thermodynamic cycle............................................................................1 2.1 Brayton cycle ..............................................................................................................1 3. The intercooler....................................................................................................................2 3.1 Description of an intercooler......................................................................................2 4. Analysis of the work cycle...................................................................................................4 4.1 Assumptions for calculation.......................................................................................4 4.2 Calculations (Ideal case).............................................................................................5 4.3 Results.......................................................................................................................6 5. Plots ..................................................................................................................................12 6. Conclusions........................................................................................................................15 References...............................................................................................................................16
  • 3. ii Nomenclature LPC Low pressure compressor HPC High pressure compressor CP specific heat at constant pressure AFR air/fuel ratio h enthalpy LHV low heating value of fuel M mach number m  mass flow rate P pressure P* total pressure SFC specific fuel consumption T* total temperature V absolute velocity k ratio of specific heats, v p c c ηth thermal Efficiency πc compressor pressure ratio (overall pressure ratio) τ ratio of total temperatures
  • 4. 1 1. Introduction: Enhancing the performance of an engine without affecting its efficiency is of paramount importance and the ultimate goal while designing an engine for the aviation industry. Continuous research has been done and many novel techniques have been applied to achieve this goal. One such reliable and proven technique is to employ an intercooler. Although it is still a relatively new concept for aero engines, intercooled gas turbines have been employed in the power generation industry and also in marine gas turbines to a great effect - thus offering a consistent design solution for aero engines as well. In this project, an analysis of a intercooled turbofan engine will be performed. In other words, observations will be made on how an intercooler affects the compression cycle and the efficiency of a turbofan engine. 2. Description of the thermodynamic cycle: 2.1 Brayton cycle The typical (ideal) Joule-Brayton cycle consists of four processes: Two isentropic processes (Compression & expansion) & two isobaric processes(combustion and cooling). Figure 1: A typical Brayton cycle in T,s diagram and its schematic
  • 5. 2 In the particular case of a turbojet engine, the intake air is compressed by the compressor(step 1→2) and mixed with fuel and converted into high temperature flue gas by means of combustion(step 3→4) . The nozzle then converts the internal energy of the hot gas into kinetic energy, or simply thrust. The main parameter which is an indication of the effectiveness of this cycle and the turbojet engine in general, is its thermal efficiency, ηth. Thermal efficiency can be described as the ratio of the amount of energy converted to mechanical energy to the thermal energy supplied to the system. or, 3. The intercooler 3.1 Description of the intercooler The intercooler is used to reduce the temperature at the high pressure compressor. It effectively lowers the work input of the compression process. Figure 2: Schematic Layout of intercooled engine After passing through the inlet and the fan, the air is compressed in the low pressure compressor to some intermediate pressure (P0→P1). This fluid then passes through an intercooler where it is cooled down to a lower temperature in an isobaric process. This cooler fluid is then compressed further in an high pressure compressor.
  • 6. 3 Two main types of intercoolers exist : an inline design and the more conventional off the flow path design. The typical components of an inline intercooler is illustrated in the following figure: Figure 3: Typical design of an inline intercooler In an inline intercooler, fins (4) are located on struts (3) and house between an inner(2) an outer casing (1). The struts themselves have coolant flow paths (5) located inside them. The fins increase the heat transfer area and act as heat sinks. Cooling fluid is usually air (for aviation purposes). The cold flow for the intercooler is extracted from the bypass flow by an additional flow splitter in the bypass stream. Due to intercooling, the ideal thermodynamic cycle is changed to one where the inlet temperature of the HPC is greatly reduced. The main advantage of an inline intercooler over a conventional one is that it doesn't divert the airflow away from the main flow path, hence reduces pressure loss. Figure 4: The modified thermodynamic cycle (after intercooling) After passing through the LPC (step 0→1), the intercooler cools down the air flow to a lower temperature while maintaining the same pressure (step 1→2). The compressed cooled air has lesser volume - so it allows HPC size to be made smaller as well. This lowers the work input needed for the HPC to compress the air and increases the mass flow - resulting in higher specific power.
  • 7. 4 4. Analysis of the work cycle 4.1 Assumptions for calculation For the purpose of the analysis, the following simplified assumptions were made: No Quantity Notation Value Unit 1 Mach Number 0.82 2 Specific heat capacity at constant pressure (compressor) Cpc 1000 J/kg.K 3 Specific heat capacity at constant pressure (turbine) Cpt 1050 J/kg.K 4 Ratio of specific heats k 1.4 5 Lower heating value LHV 45 MJ/kg 6 Compressor & Turbine efficiency ηLPC , ηHPC, ηT 0.90 7 Turbine inlet temperature T4 1250 K Moreover, standard initial calculations were made for the ambient temperatures and pressures for typical cruising altitudes: Altitude To [k] Po [bar] Density (Kg/m3 ) 8500 232.9 0.33 0.49509 9000 229.65 0.307 0.466348 9500 226.4 0.285 0.438901 10000 223.15 0.264 0.412707 12000 216.65 0.193 0.310828 Temperature T2 should be as low as possible, hence for our calculations, we'll assume T2=T1.
  • 8. 5 4.2 Calculations (Ideal case) 1. Inlet temperature, T0*: 2. inlet pressure, P0*: 3. Intermediate temperature, T1 : 4. Specific work of the Low pressure compressor, WLPC : 5. Specific work of the High pressure compressor, WHPC : 6. Intercooler effectiveness, x : hence, intercooler effectiveness was assumed in a range of 0.5 to 1 ; with x=0 denoting the lack of an intercooler. It is to be noted that intercooler effectiveness of x=1 is highly improbable and is considered for analytical purposes only. 7. Temperature after intercooler, T2 (using equation 6):
  • 9. 6 8. Specific work by the turbine, WT : 9. Net work, Wnet : 10. Heat added, Qadd : 11. Thermal Efficiency, ηth : 12. Air to fuel Ratio, AFR : 13. Specific fuel consumption, SFC : 4.3 Results: A. For approximation, πc was divided between πLPC and πHPC as follows: πC 25 27.5 30 32.5 35 40 πLPC +πf 4 4.2 4.4 4.6 4.8 5 πHPC 6.25 6.547619 6.818182 7.065217 7.291667 8
  • 10. 7 B. Results for compressor specific work: Using formulae (1) & (2): πc 25 27.5 30 32.5 35 40 Altitude [m] T0*=T2* [k] P0* T1* 8500 264.2204 0.33029 406.898 413.022 418.941 424.671 430.225 435.617 9000 260.5333 0.30727 401.220 407.258 413.095 418.745 424.222 429.538 9500 256.8463 0.28525 395.542 401.495 407.249 412.819 418.218 423.459 10000 253.1592 0.26424 389.864 395.731 401.403 406.893 412.215 417.381 12000 245.7851 0.19317 378.507 384.204 389.710 395.040 400.208 405.223 Using formula (4): πc 25 27.5 30 32.5 35 40 altitude WLPC [J/kg] 8500 142677.3 148801.3 154720.5 160450.4 166005.02 171396.7 9000 140686.3 146724.9 152561.4 158211.4 163688.51 169005 9500 138695.4 144648.5 150402.4 155972.4 161371.99 166613.2 10000 136704.4 142572 148243.3 153733.4 159055.48 164221.5 12000 132722.4 138419.1 143925.2 149255.4 154422.45 159438 From formula (7): Temperature after intercooler T2* x 0.5 0.6 0.7 0.8 0.9 1 0 8500 341.5806 326.1086 310.6365 295.1645 279.6924 264.2204 418.9408 9000 336.814 321.5579 306.3018 291.0456 275.7895 260.5333 413.0947 9500 332.0475 317.0072 301.967 286.9267 271.8865 256.8463 407.2486 10000 327.2809 312.4565 297.6322 282.8079 267.9835 253.1592 401.4025 12000 317.7477 303.3552 288.9627 274.5701 260.1776 245.7851 389.7103
  • 11. 8 Temperature after HPC: T3* πC 25 27.5 30 32.5 35 40 8500 662.7928 681.0896 698.234 714.3861 729.6736 758.0498 9000 653.5438 671.5853 688.4905 704.4172 719.4914 747.4716 9500 644.2949 662.0811 678.747 694.4483 709.3092 736.8934 10000 635.046 652.5768 669.0035 684.4794 699.1269 726.3152 12000 616.5481 633.5683 649.5165 664.5417 678.7625 705.1589 Using formula (5) , for a particular Pressure ratio, πc = 30: WHPC [J/kg] (πC =30) x 0.5 0.6 0.7 0.8 0.9 1 0 8500 277279 264719.5 252160 239600.5 227041.07 214481.6 340076.3 9000 273409.7 261025.5 248641.3 236257 223872.83 211488.6 335330.7 9500 269540.4 257331.4 245122.5 232913.5 220704.59 208495.6 330585.2 10000 265671.1 253637.4 241603.7 229570 217536.35 205502.7 325839.6 12000 257932.5 246249.4 234566.2 222883 211199.87 199516.7 316348.4 Therefore, compressor specific work (WC = WHPC + WLPC): WC [J/kg] (πC =30) x 0.5 0.6 0.7 0.8 0.9 1 0 8500 431999.4 419439.9 406880.5 394321 381761.53 369202.1 494796.8 9000 425971.1 413586.9 401202.7 388818.5 376434.24 364050 487892.2 9500 419942.8 407733.8 395524.9 383315.9 371106.95 358898 480987.5 10000 413914.4 401880.7 389847 377813.4 365779.67 353746 474082.9 12000 401857.8 390174.6 378491.4 366808.3 355125.09 343441.9 460273.6
  • 12. 9 C. Results for turbine specific work: From formula (8): WT [J/kg] πC 25 27.5 30 32.5 35 40 1781897 1863697 1940344 2012556 2080901.4 2207763 For further calculations, the value of WT = 1940344 J/kg (πC =30) was considered. D. Results for Net specific work: Using formula (9): Wnet [J/kg] (πC =30) x 0.5 0.6 0.7 0.8 0.9 1 0 8500 1508345 1520904 1533464 1546023 1558582.8 1571142 1445548 9000 1514373 1526757 1539142 1551526 1563910.1 1576294 1452452 9500 1520402 1532611 1544819 1557028 1569237.4 1581446 1459357 10000 1526430 1538464 1550497 1562531 1574564.7 1586598 1466261 12000 1538487 1550170 1561853 1573536 1585219.3 1596902 1480071 E. Results for heat added: Using formula (10): Qadd [J] x 0.5 0.6 0.7 0.8 0.9 1 0 8500 2972006.764 2745190 2518373 2291556 2064739 1837922 4106091 9000 2948849.198 2725197 2501546 2277894 2054242 1830590 4067108 9500 2925691.633 2705205 2484718 2264232 2043745 1823258 4028125 10000 2902534.068 2685213 2467891 2250569 2033248 1815926 3989142 12000 2856218.937 2645228 2434236 2223245 2012254 1801262 3911175
  • 13. 10 F. Results for Thermal efficiency: Using formula (11): Efficiency ηth x 0.5 0.6 0.7 0.8 0.9 1 0 8500 0.507517 0.554025 0.608911 0.674661 0.754857 0.854847 0.35205 9000 0.513547 0.560237 0.615276 0.681123 0.7613076 0.861085 0.357122 9500 0.519673 0.566541 0.621728 0.687663 0.7678244 0.867374 0.362292 10000 0.525896 0.572939 0.628268 0.694282 0.7744086 0.873713 0.367563 12000 0.538644 0.586025 0.641619 0.707765 0.787783 0.886546 0.378421 G. Results for different pressure ratios (assuming x = 0.5) : In order to compare the efficiencies for different pressure ratios, a minimum intercooler effectiveness x=0.5 was considered: Wnet (for x = 0.5) πc 25 27.5 30 32.5 35 40 8500 1349898 1431698 1508345 1580556 1648902 1775764 9000 1355926 1437726 1514373 1586585 1654930 1781792 9500 1361955 1443754 1520402 1592613 1660959 1787820 10000 1367983 1449783 1526430 1598641 1666987 1793849 12000 1380040 1461839 1538487 1610698 1679044 1805905 Efficiency ηth 8500 0.454204 0.481728 0.507517 0.531815 0.554811 0.597497 9000 0.459815 0.487555 0.513547 0.538035 0.561212 0.604233 9500 0.465515 0.493474 0.519673 0.544354 0.567715 0.611076 10000 0.471306 0.499489 0.525896 0.550774 0.574321 0.618028 12000 0.48317 0.511809 0.538644 0.563927 0.587855 0.632271
  • 14. 11 H. Specific fuel consumption: SFC [kg/kN.s] 8500 0.15763 0.144398 0.131382 0.118578 0.10598 0.093584 0.227241 9000 0.155779 0.142797 0.130023 0.117453 0.105082 0.092906 0.224013 9500 0.153943 0.141208 0.128674 0.116336 0.10419 0.092232 0.220816 10000 0.152121 0.139631 0.127334 0.115227 0.103305 0.091563 0.21765 12000 0.148521 0.136513 0.124685 0.113032 0.101551 0.090238 0.211405 I. Results for different turbine inlet temperatures( T4): A range of turbine inlet temperatures between 1200k to 1600k was assumed: Qadd T4 1200 1250 1300 1400 1500 1600 8500 2919507 2972007 3024507 3129507 3234507 3339507 9000 2896349 2948849 3001349 3106349 3211349 3316349 9500 2873192 2925692 2978192 3083192 3188192 3293192 10000 2850034 2902534 2955034 3060034 3165034 3270034 12000 2803719 2856219 2908719 3013719 3118719 3223719 WT -(in terms of T4) 1862731 1940344 2017958 2173186 2328413 2483641 Wnet -(in terms of T4) 8500 1430731 1520904 1611078 1778865 1946652 2114439 9000 1436759 1526757 1616755 1784367 1951979 2119591 9500 1442788 1532611 1622433 1789870 1957306 2124743 10000 1448816 1538464 1628111 1795372 1962634 2129895 12000 1460873 1550170 1639467 1806377 1973288 2140199
  • 15. 12 Efficiency ηth T4 1200 1250 1300 1400 1500 1600 8500 0.490059 0.511743 0.532675 0.568417 0.601839 0.633159 9000 0.496059 0.517747 0.538676 0.574426 0.607838 0.639134 9500 0.502155 0.523846 0.544771 0.580525 0.613924 0.645193 10000 0.50835 0.530042 0.550962 0.586716 0.620099 0.651337 12000 0.521048 0.542735 0.563639 0.599385 0.632724 0.663891 5. Plots Figure 5: Effect of altitude(ambient temperature) and intercooler effectiveness on compressor work 300000 320000 340000 360000 380000 400000 420000 440000 460000 480000 500000 8000 9000 10000 11000 12000 Compressorwork[J/kg] Altitude [m] x= 0.5 x=0.6 x= 0.7 x= 0.8 x= 0.9 x= 1.0 x= 0
  • 16. 13 Figure 6: Effect of intercooler on thermal efficiency Figure 7: Effect of overall pressure ratio on thermal efficiency 0.3 0.35 0.4 0.45 0.5 0.55 0.6 8000 9000 10000 11000 12000 Thermalefficiency Altitude [m] With intercooler Without intercooler 0.45 0.47 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65 8000 9000 10000 11000 12000 ThermalEfficiency Altitude [m] PR = 25.0 PR = 27.5 PR = 30.0 PR = 32.5 PR = 35.0 PR = 40.0
  • 17. 14 Figure 8: Effect of intercooler effectiveness on thermal efficiency Figure 9: Effect of turbine inlet temperature on thermal efficiency (for a certain pressure ratio) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 215 220 225 230 235 ThermalEfficiency Ambient Temperature [k] x= 0.5 x= 0.6 x= 0.7 x= 0.8 x= 0.9 x= 1.0 x=0 0.45 0.5 0.55 0.6 0.65 0.7 8000 9000 10000 11000 12000 ThermalEfficiency Altitude [m] T4 = 1200 T4 = 1250 T4 = 1300 T4 = 1400 T4 = 1500 T4 = 1600
  • 18. 15 Figure 10: Effect of intercooler on specific fuel consumption 6. Conclusions The following observations were made from the analysis :  Efficiency of the thermodynamic cycle can be substantially increased by the use of an intercooler. It is particularly evident from Figure 6, which shows that by incorporating an intercooler even with effectiveness as low as x=0.5 greatly increases the efficiency of the cycle.  With the increasing altitude (in other words with increasing ambient temperature), the thermal efficiency tends to decrease.  Compressor pressure ratio too has a significant impact on the efficiency. The efficiency is notably large for bigger pressure ratios of the compressor.  With increasing ambient temperature (decreasing cruise altitude), total compressor work increase too, resulting in lower efficiencies. To summarize, an intercooler provides a relatively easy and reliable way to achieve higher pressure ratios without the need for a larger HPC, thus saving weight and increasing efficiency. Intercooling can greatly influence the fuel efficiency of the engine as it is evident from the results. However, for engines with lower pressure ratios, the effects of intercooling is less pronounced. Engines with overall pressure ratio above 30 ( such as the General electric CF-6) can benefit immensely by using intercooling technology. 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 8000 9000 10000 11000 12000 SpecificFuelConsumption[kg/kN.s] Altitude [m] x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0 x=0
  • 19. 16 References: 1. Propulsion systems Lectures - dr. inż. Paweł Oleszczak 2. Patent - US 6,430,931 B1 Gas turbine inline intercooler - Michael W. Horner 3. Intercooled Recuperated Aero Engine - S. Boggia, K. Rüd, Advanced Project Design, MTU Aero Engines -München, Germany 4. Study on the effective parameter of gas turbine model with intercooled compression process - Thamir K. Ibrahim1*, M. M. Rahman2 and Ahmed N. Abd Alla 5. Parametric Performance of Gas Turbine Power Plant with Effect Intercooler - Wadhah Hussein Abdul Razzaq Al- Doori 6. A complete Parametric analysis of ideal turbofan engine - S.L. Yang, Y.K. Siow, K.H. Liew, and E. Urip Mechanical Engineering – Engineering Mechanics Department, Michigan Technological University 7. Compression cycle of intercooled Gas turbine - Magdalena Milancej, Institut für Thermodynamik und Energiewandlung Technische Universität Wien & Institute of Turbomachinery International Faculty of Engineering, Technical University of Lodz