SlideShare a Scribd company logo
1 of 73
Jose Abella Gutiérrez Comité Dra. Silvia E. Ibarra Obando Dra. Theresa Sinicrope Talley Dra. Sharon Herzka Llona Dr. Stephen Vaughan Smith Efectos de la herbivoría de las brantas y los florecimientos algales en la comunidad de  Zostera marina
Jose Abella Gutiérrez Comité Dra. Silvia E. Ibarra Obando Dra. Theresa Sinicrope Talley Dra. Sharon Herzka Llona Dr. Stephen Vaughan Smith Effects of Brant Herbivory and Algal Blooms on  Zostera marina  Community
Introduction
Introduction Seagrasses as Engineers
Introduction DETRITIC PATHWAY Chesapeake Bay Seagrasses as Engineers
Valentine, J.F., y Heck, Jr., K.L.,  1999 . Seagrass herbivory: evidence for the continued grazing of marine grasses. Mar. Ecol. Prog. Ser., 176: 291-302. Introduction
Valentine, J.F., y Heck, Jr., K.L.,  1999 . Seagrass herbivory: evidence for the continued grazing of marine grasses. Mar. Ecol. Prog. Ser., 176: 291-302. Turtles and Sirenians are important in some systems. Change in herbivorous species. There are others grazers (limpets, sea urchins, fish, waterfowl). Seagrass is food Introduction
Branta bernicla nigricans Ward et al., 2005 Introduction
Branta bernicla nigricans Ward et al., 2005 Introduction Moore et al., 2004 Ward et al., 2005
[object Object],[object Object],[object Object],Introduction
Herbivory Effects on Seagrass Architecture “ Since defoliation by grazers rarely kills the host plant, it is generally believed that the principal effect of herbivory is to reduce the competitiveness of grazed individuals rather than to cause outright mortality” (Hulme, 1996)   Seagrass Macroalgae Epiphytes Microphytobenthos Phytoplancton Fauna Introduction
Herbivory Effects on Nutrient Cycling Introduction Thayer et al., 1982
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Introduction
 
 
 
 
 
 
Ward et al., 2003 Bahía Falsa; Oct – 2007 Eelgrass decline in favor of green macroalgae. Increase of herbivory intensity as a consequence? Introduction Zertuche et al., 2009 2004
Burkholder et al 2007 Seagrass Eutrophication Introduction
[object Object],[object Object],[object Object],Seagrass Eutrophication Introduction
Introduction
Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Introduction
Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Increase of amonium and sulfide. Hypoxia  Introduction
Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Increase of amonium and sulfide. Hypoxia  Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Increase of amonium and sulfide. Hypoxia  Short shoots are immersed in toxic concentrations. Anoxia Introduction
Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced  Increase of amonium and sulfide. Hypoxia  Short shoots are immersed in toxic concentrations. Anoxia Plant dies and bed disappears if conditions persist Introduction
Objective: Understand plant-herbivory interactions in seagrasses with frequent  and continual algal blooms Hypothesis: Interactions between algal blooms and herbivory will produce a quick shift from seagrass to algal beds Objetive and Hipothesis
Objetive and Hipothesis Guano Defoliation Algal blooms
Objetive and Hipothesis Guano Defoliation Algal blooms Defoliation x Guano Guano x Algae Defol x Algae x Guano Defol. x Algae
Irradiance, temperature, sampling site Objetive and Hipothesis Guano Defoliation Algal blooms Defoliation x Guano Guano x Algae Defol x Algae x Guano Defol. x Algae
Materials  and  Methods
Manipulative experiment from  Nov-07 to Mar-08 4 seagrass beds: continuous beds, same depth Materials and Methods
Treatment Simulations Clipped treatment (2 cm, 3 months): No differences between plots RM-ANOVA  F(6, 14)=0.123, p=0.99   Fertilizer addition Multicote Ulva addition Materials and Methods
Treatment Simulations Clipped treatment (2 cm, 3 months) Fertilizer addition Multicote: DIN:  23.6 (± 6.9) g/mes   DIP:  8.6 (± 2.5) g/mes   Ulva addition Materials and Methods
Treatment Simulations Clipped treatment (2 cm, 3 months) Fertilizer addition Multicote Ulva addition: 2 Kg wet weight 0.876 (± 369.4) Kg Materials and Methods
Fully Factorial Experimental Design Using Randomized Complete Blocks Materials and Methods ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fully Factorial Experimental Design Using Randomized Complete Blocks Materials and Methods
Field Sampling Materials and Methods 3 underwater thermistors in 3 sites from Nov 07 to Mar 08 1 light sensor from Nov 07 to Mar 08 5 light sensors during last month (4 sites + land)
Field Sampling Materials and Methods Non destructive response variables. Monthly
Field Sampling Materials and Methods Non destructive response variables. Monthly Seagrass and algal cover and seagrass density (5)
Field Sampling Materials and Methods Non destructive response variables. Monthly Leaf length (10)
Field Sampling Materials and Methods Non destructive response variables. Monthly Epiphytes cover (5)
Field Sampling Materials and Methods Non destructive response variables. Monthly C and N content January(0.001 m2) (1) March (from biomass; 3)
Field Sampling Destructive response variables.  March 2008  Materials and Methods Aboveground biomass (3) Belowground biomass (3)
Laboratory Work ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Materials and Methods
Laboratory Work Materials and Methods Biomass samples Algae Zostera roots Leaves Clean and  freeze-dry clean dry weight C:N epiphytes leaves %C
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Materials and Methods
Data Analysis 3-way ANOVA destructive samples 3-way Repeated Measures ANOVA monthly variables MRA:  Z. marina  ~ site, light, Tª, green algae, brown algae and epiphytes Materials and Methods
Results  and  Discussion
Enviroment: Irradiance Data from 10 am to 2 pm Feb-Mar standardized irradiance (site/land): ANOVA: F = 17.59; p < 0.001  Tukey:  C  B   D  A Site B Results Mean ± SE
Environment: Temperature and Upwelling Temperature : 2-way ANOVA, month and site March warmer (F=48.92; p < 0.01) Upwelling  in March   16 th  Bakum index = 296  m -3  s -1   Results
Effects of Treatments on  Z. marina Aboveground and belowground biomass were reduced in plots with clipped treatment  3-ANOVA: F = 16.4, p <0.001; F = 10.26, p < 0.01 Aboveground b. ( g m -2 )   Belowground b. ( g m -2 )   Results C=clipped; U=Ulva; N=nutrient Mean ± SE
Effects of Treatments on  Z. marina Aboveground b. ( g m -2 )   Belowground b. ( g m -2 )   Discussion Study Aboveground  Belowground   Valentine and Heck, 1999   40-50%   40-50% Nacken and Reise, 2000   47 %   43% Rivers and Short, 2007   100% This study   ~ 70%   ~ 40% C=clipped; U=Ulva; N=nutrient Mean ± SE
There was no effect of treatments on  Z. marina  %N, %C or C:N per month  %N decreased from January to March except when  Ulva  treatment was involved (3 way ANOVA: F=5.51, p <0.05) Results Effects of Treatments on  Z. marina Mean ± SE 3 2.9 2.8 2.7 2.6 2.5
Results Discussion Study: (%N or C:N) Aboveground   Belowground Vergés et al., 2008   0=1=3 > 2    0>1>2>3 McGlathery, 1995    no differences Ibarra-Obando et al., 2004    no differences Ferson, 2007    no differences This study   no differences Effects of Treatments on  Z. marina
Large seasonal variability (cover, density, # leaves) Clipped treatment affected cover and density Results Effects of Treatments on  Z. marina C=clipped; U=Ulva; N=nutrient Mean ± SE
Cut treatment enhances growth  RM-ANOVA: F=6.01, p <0.01 Results Effects of Treatments on  Z. marina Mean ± SE
Discussion Decrease or increase in density? C = [( D *L) t+1  - ( D *L) t ] / ( D *L) t  * 100 Density was  reduced DURING  treatment but  increased AFTER  treatment Effects of Treatments on  Z. marina Mean ± SE
Discussion Decrease or increase in density? C = [( D *L) t+1  - ( D *L) t ] / ( D *L) t  * 100 Density was  reduced DURING  treatment but  increased AFTER  treatment GROWTH  shoots leaves Moran and Bjorndal, 2005   X Vergés et al., 2008   X Valentine et al., 1997   X Hughes and Stachowicz, 2004   X Ferson, 2007   X   X This study   X   X Ferson, 2007: moderate herbivory > control > high herbivory This study:    very high herbivory > control Effects of Treatments on  Z. marina Mean ± SE
Discussion Seagrasses regrew after 3 events of  simulated herbivory  in 60 days.  Seagrasses disappeared with 3 – 6 herbivory events (Valentine and Heck, 1991, 1999; Heck and Valentine, 1995; Maciá, 2000) Ulva  addition  can reduce seagrass biomass and production (Hauxwell et al., 2001) and density (Nelson and Lee, 2001), but not in this experiment Unsuccessful  enrichment Effects of Treatments on  Z. marina
Discussion There was no synergistic effect of algal blooms and herbivory (defoliation) on eelgrass Maciá, 2000: Interactions between urchin defoliation and macroagal blooms on  Thallasia testudinum  density but not on biomass Effects of Treatments on  Z. marina
Seasonal influence on brown algae cover  No significant differences between treatments Effects of Treatments on Green and Brown Macroalgae % cover Biomass  (g m -2 ) Results March C=clipped; U=Ulva; N=nutrient.  Z. marina ;  Green A.;  Brown A.
Effects of Treatments on Green and Brown Macroalgae % cover Biomass  (g m -2 ) Discussion High variability : Ulva clathrata, U. expansa  and  Dyctiota undulata  are floating macroalgae Presence of upwelling during March March C=clipped; U=Ulva; N=nutrient.  Z. marina ;  Green A.;  Brown A.
Large seasonal influence on epifaunal, green and red algae cover.  Clipped treatment affected total biomass, but not its relationship with  Z. marina.  Also affected red algae cover Effects of Treatments on Epiphytes Pneophyllum confervicola Results C=clipped; U=Ulva; N=nutrient Mean ± SE
Effects of Treatments on Epiphytes Pneophyllum confervicola Discussion Settlement of epiphytes in less than 14 days (Borum, 1987) Differences in settlement patterns across groups (Borowitza et al., 1990) C=clipped; U=Ulva; N=nutrient Mean ± SE
Effects of Enviroment on Eelgrass Characteristics Irradiance, green algae biomass, site and epiphyte biomass were related with some  Z. marina   characteristics Results
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Discussion Effects of Enviroment on Eelgrass Characteristics
Conclusions Large seasonal and spatial variability Simulated herbivory affected eelgrass, but seagrass reserves allowed the recovery of the bed The decrease in  Z. marina  aboveground biomass produced a parellel decrease in epiphyte biomass Although no effect of  Ulva  on eelgras was found, there was a negative relationship between green macroalgae and eelgrass
Future investigations It is necessary separate herbivory effects during grazing and after grazing More research is needed to understand the relationship of N content in seagrasses and grazing preferences by herbivores More studies of eutrophication are needed in estuaries affected by upwelling  More research that explores the interactions between algal blooms and herbivory is necesary
Agradecimientos Esta tesis corresponde a los estudios realizados con una beca otorgada por la Secretaría de Relaciones Exteriores del Gobierno de México.  El trabajo fue financiado por el proyecto de UC-MEXUS 622-215 (O0C053): Efecto de las brantas sobre las comunidades de pastos marinos en Bahía de San Quintín
Agradecimientos Gracias a mi comité A Drew Talley A Juan Guerrero y Ana Salazar A Hector Atilano y Miriam Poumian A Victor Camacho y Pepe Zertuche A los hermanos Aguilar A aquellos que me acompañaron al campo voluntariamente: Tiago, Doris, Marta, Annelise, Vania, Daniela, Lluis, Berta, Julian, Mariana, Yuca, Karla, Brenda, Luis, Mónica y Tomás. Así como a los trabajadores de San Quintín que nos echaron una mano para cortar el “zacate marino” A aquellos que me ayudaron en el laboratorio voluntariamente o en servicios sociales. Entre otros, Elsa, Araceli, Venecia, Raul y Filipo. Que ahora no recuerde los nombres de algunos de ellos no significa que les esté menos agradecido. A Gabi  Y a toda la gente de CICESE...
Muchas gracias por demostrarme que uno puede sentirse como en casa incluso en el extranjero

More Related Content

What's hot

Eelgrass Poster-Amber
Eelgrass Poster-AmberEelgrass Poster-Amber
Eelgrass Poster-AmberAmber Wolf
 
2014-AGU_poster_ver9
2014-AGU_poster_ver92014-AGU_poster_ver9
2014-AGU_poster_ver9Shannan Sweet
 
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...National Institute of Food and Agriculture
 
The multivariate statistical analysis of the environmental pollutants at lake...
The multivariate statistical analysis of the environmental pollutants at lake...The multivariate statistical analysis of the environmental pollutants at lake...
The multivariate statistical analysis of the environmental pollutants at lake...Alexander Decker
 
Session 3.6 quantification & valuation of eco services
Session 3.6 quantification & valuation of eco servicesSession 3.6 quantification & valuation of eco services
Session 3.6 quantification & valuation of eco servicesWorld Agroforestry (ICRAF)
 
GSS poster final Stenka Vulova
GSS poster final Stenka VulovaGSS poster final Stenka Vulova
GSS poster final Stenka VulovaStenka Vulova
 
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...Marylou Moore
 
Photosynthetic rates of Camassia quamash under different burn regimes
Photosynthetic rates of Camassia quamash under different burn regimesPhotosynthetic rates of Camassia quamash under different burn regimes
Photosynthetic rates of Camassia quamash under different burn regimesClaire Cook
 
Near and mid-infrared spectroscopic determination of algal composition
Near  and mid-infrared spectroscopic determination of algal compositionNear  and mid-infrared spectroscopic determination of algal composition
Near and mid-infrared spectroscopic determination of algal compositionzhenhua82
 
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...Jen Benson
 
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...National Institute of Food and Agriculture
 
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...National Institute of Food and Agriculture
 
Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Julie Hart
 
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...National Institute of Food and Agriculture
 

What's hot (19)

Eelgrass Poster-Amber
Eelgrass Poster-AmberEelgrass Poster-Amber
Eelgrass Poster-Amber
 
2014-AGU_poster_ver9
2014-AGU_poster_ver92014-AGU_poster_ver9
2014-AGU_poster_ver9
 
MEEC poster final
MEEC poster finalMEEC poster final
MEEC poster final
 
Global Journal of Ecology
Global Journal of EcologyGlobal Journal of Ecology
Global Journal of Ecology
 
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...
Efficacy, Constraints and Uncertainties of Constructed Wetlands and Bioreacto...
 
The multivariate statistical analysis of the environmental pollutants at lake...
The multivariate statistical analysis of the environmental pollutants at lake...The multivariate statistical analysis of the environmental pollutants at lake...
The multivariate statistical analysis of the environmental pollutants at lake...
 
Session 3.6 quantification & valuation of eco services
Session 3.6 quantification & valuation of eco servicesSession 3.6 quantification & valuation of eco services
Session 3.6 quantification & valuation of eco services
 
GSS poster final Stenka Vulova
GSS poster final Stenka VulovaGSS poster final Stenka Vulova
GSS poster final Stenka Vulova
 
Jardine, t.d. et al, 2015
Jardine, t.d. et al, 2015Jardine, t.d. et al, 2015
Jardine, t.d. et al, 2015
 
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...
Effect of Temperature on Stream Fish Energetics and Tolerance to Increasing U...
 
Invited scientific talk
Invited scientific talkInvited scientific talk
Invited scientific talk
 
Photosynthetic rates of Camassia quamash under different burn regimes
Photosynthetic rates of Camassia quamash under different burn regimesPhotosynthetic rates of Camassia quamash under different burn regimes
Photosynthetic rates of Camassia quamash under different burn regimes
 
Near and mid-infrared spectroscopic determination of algal composition
Near  and mid-infrared spectroscopic determination of algal compositionNear  and mid-infrared spectroscopic determination of algal composition
Near and mid-infrared spectroscopic determination of algal composition
 
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...JEMA article Relationship between nitrogen concentration, light, and Z.marina...
JEMA article Relationship between nitrogen concentration, light, and Z.marina...
 
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
 
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...
Nitrogen Emissions Associated With Nutrient Management Practices: Measurement...
 
Scientific talk on Responses of fish populations to climate forcing across th...
Scientific talk on Responses of fish populations to climate forcing across th...Scientific talk on Responses of fish populations to climate forcing across th...
Scientific talk on Responses of fish populations to climate forcing across th...
 
Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?
 
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...
Practical Benefits of Biochar Amendment to Agricultural Systems: Linking Soil...
 

Viewers also liked

Tomaž Štolfa: The Internet Of Things
Tomaž Štolfa: The Internet Of ThingsTomaž Štolfa: The Internet Of Things
Tomaž Štolfa: The Internet Of ThingsSlo-Tech
 
2012: Humankind at a Crossroads: A Call toAction
2012: Humankind at a Crossroads: A Call toAction2012: Humankind at a Crossroads: A Call toAction
2012: Humankind at a Crossroads: A Call toActionlauren tratar
 
Swizec Teller: Synaptic Web
Swizec Teller: Synaptic WebSwizec Teller: Synaptic Web
Swizec Teller: Synaptic WebSlo-Tech
 
Ivan Brezak Brkan: The Freelancer's Marketing Plan
Ivan Brezak Brkan: The Freelancer's Marketing PlanIvan Brezak Brkan: The Freelancer's Marketing Plan
Ivan Brezak Brkan: The Freelancer's Marketing PlanSlo-Tech
 

Viewers also liked (6)

Tormentas
TormentasTormentas
Tormentas
 
Tomaž Štolfa: The Internet Of Things
Tomaž Štolfa: The Internet Of ThingsTomaž Štolfa: The Internet Of Things
Tomaž Štolfa: The Internet Of Things
 
2012: Humankind at a Crossroads: A Call toAction
2012: Humankind at a Crossroads: A Call toAction2012: Humankind at a Crossroads: A Call toAction
2012: Humankind at a Crossroads: A Call toAction
 
Swizec Teller: Synaptic Web
Swizec Teller: Synaptic WebSwizec Teller: Synaptic Web
Swizec Teller: Synaptic Web
 
Wef gcr report_2011-12
Wef gcr report_2011-12Wef gcr report_2011-12
Wef gcr report_2011-12
 
Ivan Brezak Brkan: The Freelancer's Marketing Plan
Ivan Brezak Brkan: The Freelancer's Marketing PlanIvan Brezak Brkan: The Freelancer's Marketing Plan
Ivan Brezak Brkan: The Freelancer's Marketing Plan
 

Similar to Tesis Maestría

Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...
Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...
Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...MACE Lab
 
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...Premier Publishers
 
SAS Analytics Experience 2016
SAS Analytics Experience 2016SAS Analytics Experience 2016
SAS Analytics Experience 2016Reuben Hilliard
 
Relationship Between Sampling Area, Sampling Size Vs...
Relationship Between Sampling Area, Sampling Size Vs...Relationship Between Sampling Area, Sampling Size Vs...
Relationship Between Sampling Area, Sampling Size Vs...Jessica Deakin
 
Leaf litter decomposition and nutrient release from cordia africana lam. and ...
Leaf litter decomposition and nutrient release from cordia africana lam. and ...Leaf litter decomposition and nutrient release from cordia africana lam. and ...
Leaf litter decomposition and nutrient release from cordia africana lam. and ...Alexander Decker
 
IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGEIMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGEAnilKoirala
 
SURF presentation
SURF presentationSURF presentation
SURF presentationErin Plachy
 
EEB Group Ecology Report
EEB Group Ecology ReportEEB Group Ecology Report
EEB Group Ecology ReportLisa Tripp
 
Response of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationResponse of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationKavitha Cingam
 
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...EdytaSierka
 
Kupferberg.Lind Aptf 2011
Kupferberg.Lind Aptf 2011Kupferberg.Lind Aptf 2011
Kupferberg.Lind Aptf 2011skupferberg
 
Patch Size Dependent Grazing on a Caribbean Coral Reef
Patch Size Dependent Grazing on a Caribbean Coral ReefPatch Size Dependent Grazing on a Caribbean Coral Reef
Patch Size Dependent Grazing on a Caribbean Coral Reefstoyleg
 
Flats Ecology Research Poster
Flats Ecology Research PosterFlats Ecology Research Poster
Flats Ecology Research PosterKate Maroni
 
Honors Biology - Ecosystems 1011
Honors Biology - Ecosystems 1011Honors Biology - Ecosystems 1011
Honors Biology - Ecosystems 1011Michael Edgar
 
Local human perturbations increase lakes vulnerability to climate changes: A ...
Local human perturbations increase lakes vulnerability to climate changes: A ...Local human perturbations increase lakes vulnerability to climate changes: A ...
Local human perturbations increase lakes vulnerability to climate changes: A ...Lancaster University
 
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...Meaghan Daley
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickEverGreenAgriculture13
 

Similar to Tesis Maestría (20)

SASDay2016
SASDay2016SASDay2016
SASDay2016
 
Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...
Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...
Linking Nitrogen Pollution in Estuaries to Rocky Shores: A stable Isotope App...
 
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...
Trends in Macrophyte Diversity in Anthropogenic Perturbed Lentic Ecosystems w...
 
SAS Analytics Experience 2016
SAS Analytics Experience 2016SAS Analytics Experience 2016
SAS Analytics Experience 2016
 
Relationship Between Sampling Area, Sampling Size Vs...
Relationship Between Sampling Area, Sampling Size Vs...Relationship Between Sampling Area, Sampling Size Vs...
Relationship Between Sampling Area, Sampling Size Vs...
 
Leaf litter decomposition and nutrient release from cordia africana lam. and ...
Leaf litter decomposition and nutrient release from cordia africana lam. and ...Leaf litter decomposition and nutrient release from cordia africana lam. and ...
Leaf litter decomposition and nutrient release from cordia africana lam. and ...
 
FrankeO final poster
FrankeO final posterFrankeO final poster
FrankeO final poster
 
IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGEIMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGE
 
SURF presentation
SURF presentationSURF presentation
SURF presentation
 
EEB Group Ecology Report
EEB Group Ecology ReportEEB Group Ecology Report
EEB Group Ecology Report
 
Response of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationResponse of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontamination
 
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
 
Kupferberg.Lind Aptf 2011
Kupferberg.Lind Aptf 2011Kupferberg.Lind Aptf 2011
Kupferberg.Lind Aptf 2011
 
Patch Size Dependent Grazing on a Caribbean Coral Reef
Patch Size Dependent Grazing on a Caribbean Coral ReefPatch Size Dependent Grazing on a Caribbean Coral Reef
Patch Size Dependent Grazing on a Caribbean Coral Reef
 
Flats Ecology Research Poster
Flats Ecology Research PosterFlats Ecology Research Poster
Flats Ecology Research Poster
 
Honors Biology - Ecosystems 1011
Honors Biology - Ecosystems 1011Honors Biology - Ecosystems 1011
Honors Biology - Ecosystems 1011
 
Local human perturbations increase lakes vulnerability to climate changes: A ...
Local human perturbations increase lakes vulnerability to climate changes: A ...Local human perturbations increase lakes vulnerability to climate changes: A ...
Local human perturbations increase lakes vulnerability to climate changes: A ...
 
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...
Benavides 2016 J Plankton Res Longitudinal variability of diazotroph abundanc...
 
GCSAA Research Update
GCSAA Research UpdateGCSAA Research Update
GCSAA Research Update
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dick
 

Tesis Maestría

  • 1. Jose Abella Gutiérrez Comité Dra. Silvia E. Ibarra Obando Dra. Theresa Sinicrope Talley Dra. Sharon Herzka Llona Dr. Stephen Vaughan Smith Efectos de la herbivoría de las brantas y los florecimientos algales en la comunidad de Zostera marina
  • 2. Jose Abella Gutiérrez Comité Dra. Silvia E. Ibarra Obando Dra. Theresa Sinicrope Talley Dra. Sharon Herzka Llona Dr. Stephen Vaughan Smith Effects of Brant Herbivory and Algal Blooms on Zostera marina Community
  • 5. Introduction DETRITIC PATHWAY Chesapeake Bay Seagrasses as Engineers
  • 6. Valentine, J.F., y Heck, Jr., K.L., 1999 . Seagrass herbivory: evidence for the continued grazing of marine grasses. Mar. Ecol. Prog. Ser., 176: 291-302. Introduction
  • 7. Valentine, J.F., y Heck, Jr., K.L., 1999 . Seagrass herbivory: evidence for the continued grazing of marine grasses. Mar. Ecol. Prog. Ser., 176: 291-302. Turtles and Sirenians are important in some systems. Change in herbivorous species. There are others grazers (limpets, sea urchins, fish, waterfowl). Seagrass is food Introduction
  • 8. Branta bernicla nigricans Ward et al., 2005 Introduction
  • 9. Branta bernicla nigricans Ward et al., 2005 Introduction Moore et al., 2004 Ward et al., 2005
  • 10.
  • 11. Herbivory Effects on Seagrass Architecture “ Since defoliation by grazers rarely kills the host plant, it is generally believed that the principal effect of herbivory is to reduce the competitiveness of grazed individuals rather than to cause outright mortality” (Hulme, 1996) Seagrass Macroalgae Epiphytes Microphytobenthos Phytoplancton Fauna Introduction
  • 12. Herbivory Effects on Nutrient Cycling Introduction Thayer et al., 1982
  • 13.
  • 14.  
  • 15.  
  • 16.  
  • 17.  
  • 18.  
  • 19.  
  • 20. Ward et al., 2003 Bahía Falsa; Oct – 2007 Eelgrass decline in favor of green macroalgae. Increase of herbivory intensity as a consequence? Introduction Zertuche et al., 2009 2004
  • 21. Burkholder et al 2007 Seagrass Eutrophication Introduction
  • 22.
  • 24. Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Introduction
  • 25. Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Increase of amonium and sulfide. Hypoxia Introduction
  • 26. Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Increase of amonium and sulfide. Hypoxia Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Increase of amonium and sulfide. Hypoxia Short shoots are immersed in toxic concentrations. Anoxia Introduction
  • 27. Green macroalgae shade seagrasses Decrease of oxygen translocated Nutrient fluxes reduced Increase of amonium and sulfide. Hypoxia Short shoots are immersed in toxic concentrations. Anoxia Plant dies and bed disappears if conditions persist Introduction
  • 28. Objective: Understand plant-herbivory interactions in seagrasses with frequent and continual algal blooms Hypothesis: Interactions between algal blooms and herbivory will produce a quick shift from seagrass to algal beds Objetive and Hipothesis
  • 29. Objetive and Hipothesis Guano Defoliation Algal blooms
  • 30. Objetive and Hipothesis Guano Defoliation Algal blooms Defoliation x Guano Guano x Algae Defol x Algae x Guano Defol. x Algae
  • 31. Irradiance, temperature, sampling site Objetive and Hipothesis Guano Defoliation Algal blooms Defoliation x Guano Guano x Algae Defol x Algae x Guano Defol. x Algae
  • 32. Materials and Methods
  • 33. Manipulative experiment from Nov-07 to Mar-08 4 seagrass beds: continuous beds, same depth Materials and Methods
  • 34. Treatment Simulations Clipped treatment (2 cm, 3 months): No differences between plots RM-ANOVA F(6, 14)=0.123, p=0.99 Fertilizer addition Multicote Ulva addition Materials and Methods
  • 35. Treatment Simulations Clipped treatment (2 cm, 3 months) Fertilizer addition Multicote: DIN: 23.6 (± 6.9) g/mes DIP: 8.6 (± 2.5) g/mes Ulva addition Materials and Methods
  • 36. Treatment Simulations Clipped treatment (2 cm, 3 months) Fertilizer addition Multicote Ulva addition: 2 Kg wet weight 0.876 (± 369.4) Kg Materials and Methods
  • 37.
  • 38. Fully Factorial Experimental Design Using Randomized Complete Blocks Materials and Methods
  • 39. Field Sampling Materials and Methods 3 underwater thermistors in 3 sites from Nov 07 to Mar 08 1 light sensor from Nov 07 to Mar 08 5 light sensors during last month (4 sites + land)
  • 40. Field Sampling Materials and Methods Non destructive response variables. Monthly
  • 41. Field Sampling Materials and Methods Non destructive response variables. Monthly Seagrass and algal cover and seagrass density (5)
  • 42. Field Sampling Materials and Methods Non destructive response variables. Monthly Leaf length (10)
  • 43. Field Sampling Materials and Methods Non destructive response variables. Monthly Epiphytes cover (5)
  • 44. Field Sampling Materials and Methods Non destructive response variables. Monthly C and N content January(0.001 m2) (1) March (from biomass; 3)
  • 45. Field Sampling Destructive response variables. March 2008 Materials and Methods Aboveground biomass (3) Belowground biomass (3)
  • 46.
  • 47. Laboratory Work Materials and Methods Biomass samples Algae Zostera roots Leaves Clean and freeze-dry clean dry weight C:N epiphytes leaves %C
  • 48.
  • 49. Data Analysis 3-way ANOVA destructive samples 3-way Repeated Measures ANOVA monthly variables MRA: Z. marina ~ site, light, Tª, green algae, brown algae and epiphytes Materials and Methods
  • 50. Results and Discussion
  • 51. Enviroment: Irradiance Data from 10 am to 2 pm Feb-Mar standardized irradiance (site/land): ANOVA: F = 17.59; p < 0.001 Tukey: C B D A Site B Results Mean ± SE
  • 52. Environment: Temperature and Upwelling Temperature : 2-way ANOVA, month and site March warmer (F=48.92; p < 0.01) Upwelling in March 16 th Bakum index = 296 m -3 s -1 Results
  • 53. Effects of Treatments on Z. marina Aboveground and belowground biomass were reduced in plots with clipped treatment 3-ANOVA: F = 16.4, p <0.001; F = 10.26, p < 0.01 Aboveground b. ( g m -2 ) Belowground b. ( g m -2 ) Results C=clipped; U=Ulva; N=nutrient Mean ± SE
  • 54. Effects of Treatments on Z. marina Aboveground b. ( g m -2 ) Belowground b. ( g m -2 ) Discussion Study Aboveground Belowground Valentine and Heck, 1999 40-50% 40-50% Nacken and Reise, 2000 47 % 43% Rivers and Short, 2007 100% This study ~ 70% ~ 40% C=clipped; U=Ulva; N=nutrient Mean ± SE
  • 55. There was no effect of treatments on Z. marina %N, %C or C:N per month %N decreased from January to March except when Ulva treatment was involved (3 way ANOVA: F=5.51, p <0.05) Results Effects of Treatments on Z. marina Mean ± SE 3 2.9 2.8 2.7 2.6 2.5
  • 56. Results Discussion Study: (%N or C:N) Aboveground Belowground Vergés et al., 2008 0=1=3 > 2 0>1>2>3 McGlathery, 1995 no differences Ibarra-Obando et al., 2004 no differences Ferson, 2007 no differences This study no differences Effects of Treatments on Z. marina
  • 57. Large seasonal variability (cover, density, # leaves) Clipped treatment affected cover and density Results Effects of Treatments on Z. marina C=clipped; U=Ulva; N=nutrient Mean ± SE
  • 58. Cut treatment enhances growth RM-ANOVA: F=6.01, p <0.01 Results Effects of Treatments on Z. marina Mean ± SE
  • 59. Discussion Decrease or increase in density? C = [( D *L) t+1 - ( D *L) t ] / ( D *L) t * 100 Density was reduced DURING treatment but increased AFTER treatment Effects of Treatments on Z. marina Mean ± SE
  • 60. Discussion Decrease or increase in density? C = [( D *L) t+1 - ( D *L) t ] / ( D *L) t * 100 Density was reduced DURING treatment but increased AFTER treatment GROWTH shoots leaves Moran and Bjorndal, 2005 X Vergés et al., 2008 X Valentine et al., 1997 X Hughes and Stachowicz, 2004 X Ferson, 2007 X X This study X X Ferson, 2007: moderate herbivory > control > high herbivory This study: very high herbivory > control Effects of Treatments on Z. marina Mean ± SE
  • 61. Discussion Seagrasses regrew after 3 events of simulated herbivory in 60 days. Seagrasses disappeared with 3 – 6 herbivory events (Valentine and Heck, 1991, 1999; Heck and Valentine, 1995; Maciá, 2000) Ulva addition can reduce seagrass biomass and production (Hauxwell et al., 2001) and density (Nelson and Lee, 2001), but not in this experiment Unsuccessful enrichment Effects of Treatments on Z. marina
  • 62. Discussion There was no synergistic effect of algal blooms and herbivory (defoliation) on eelgrass Maciá, 2000: Interactions between urchin defoliation and macroagal blooms on Thallasia testudinum density but not on biomass Effects of Treatments on Z. marina
  • 63. Seasonal influence on brown algae cover No significant differences between treatments Effects of Treatments on Green and Brown Macroalgae % cover Biomass (g m -2 ) Results March C=clipped; U=Ulva; N=nutrient. Z. marina ; Green A.; Brown A.
  • 64. Effects of Treatments on Green and Brown Macroalgae % cover Biomass (g m -2 ) Discussion High variability : Ulva clathrata, U. expansa and Dyctiota undulata are floating macroalgae Presence of upwelling during March March C=clipped; U=Ulva; N=nutrient. Z. marina ; Green A.; Brown A.
  • 65. Large seasonal influence on epifaunal, green and red algae cover. Clipped treatment affected total biomass, but not its relationship with Z. marina. Also affected red algae cover Effects of Treatments on Epiphytes Pneophyllum confervicola Results C=clipped; U=Ulva; N=nutrient Mean ± SE
  • 66. Effects of Treatments on Epiphytes Pneophyllum confervicola Discussion Settlement of epiphytes in less than 14 days (Borum, 1987) Differences in settlement patterns across groups (Borowitza et al., 1990) C=clipped; U=Ulva; N=nutrient Mean ± SE
  • 67. Effects of Enviroment on Eelgrass Characteristics Irradiance, green algae biomass, site and epiphyte biomass were related with some Z. marina characteristics Results
  • 68.
  • 69. Conclusions Large seasonal and spatial variability Simulated herbivory affected eelgrass, but seagrass reserves allowed the recovery of the bed The decrease in Z. marina aboveground biomass produced a parellel decrease in epiphyte biomass Although no effect of Ulva on eelgras was found, there was a negative relationship between green macroalgae and eelgrass
  • 70. Future investigations It is necessary separate herbivory effects during grazing and after grazing More research is needed to understand the relationship of N content in seagrasses and grazing preferences by herbivores More studies of eutrophication are needed in estuaries affected by upwelling More research that explores the interactions between algal blooms and herbivory is necesary
  • 71. Agradecimientos Esta tesis corresponde a los estudios realizados con una beca otorgada por la Secretaría de Relaciones Exteriores del Gobierno de México. El trabajo fue financiado por el proyecto de UC-MEXUS 622-215 (O0C053): Efecto de las brantas sobre las comunidades de pastos marinos en Bahía de San Quintín
  • 72. Agradecimientos Gracias a mi comité A Drew Talley A Juan Guerrero y Ana Salazar A Hector Atilano y Miriam Poumian A Victor Camacho y Pepe Zertuche A los hermanos Aguilar A aquellos que me acompañaron al campo voluntariamente: Tiago, Doris, Marta, Annelise, Vania, Daniela, Lluis, Berta, Julian, Mariana, Yuca, Karla, Brenda, Luis, Mónica y Tomás. Así como a los trabajadores de San Quintín que nos echaron una mano para cortar el “zacate marino” A aquellos que me ayudaron en el laboratorio voluntariamente o en servicios sociales. Entre otros, Elsa, Araceli, Venecia, Raul y Filipo. Que ahora no recuerde los nombres de algunos de ellos no significa que les esté menos agradecido. A Gabi Y a toda la gente de CICESE...
  • 73. Muchas gracias por demostrarme que uno puede sentirse como en casa incluso en el extranjero

Editor's Notes

  1. Poligono blanco, mayo 2004; polígono oscuro, noviembre 2004
  2. Mecanismos propuestos por Haxwell y Valiella 2004 Retroalimentación: lo que conlleva a una limitación interna de carbono (Burkholder et al., 1992) y a una mayor sensibilidad a patógenos (Short y Burdick, 1996)
  3. H0: Diferencias en la irradiancia, temperatura y sitio de muestreo no afectan a las características de las praderas de Z. marina y por lo tanto tampoco a la respuesta a la herbivoría, al enriquecimiento por guano y a los florecimientos macroalgales. H1: Las características morfológicas, biomasa y contenido de C y N de Z. marina están relacionadas con el sitio de muestreo y diferencias en la irradiancia y temperatura. Esto tiene implicaciones en el efecto de la herbivoría, del enriquecimiento por guano y de los florecimientos macroalgales sobre la comunidad de Z. marina .
  4. H0: Diferencias en la irradiancia, temperatura y sitio de muestreo no afectan a las características de las praderas de Z. marina y por lo tanto tampoco a la respuesta a la herbivoría, al enriquecimiento por guano y a los florecimientos macroalgales. H1: Las características morfológicas, biomasa y contenido de C y N de Z. marina están relacionadas con el sitio de muestreo y diferencias en la irradiancia y temperatura. Esto tiene implicaciones en el efecto de la herbivoría, del enriquecimiento por guano y de los florecimientos macroalgales sobre la comunidad de Z. marina .
  5. H0: Diferencias en la irradiancia, temperatura y sitio de muestreo no afectan a las características de las praderas de Z. marina y por lo tanto tampoco a la respuesta a la herbivoría, al enriquecimiento por guano y a los florecimientos macroalgales. H1: Las características morfológicas, biomasa y contenido de C y N de Z. marina están relacionadas con el sitio de muestreo y diferencias en la irradiancia y temperatura. Esto tiene implicaciones en el efecto de la herbivoría, del enriquecimiento por guano y de los florecimientos macroalgales sobre la comunidad de Z. marina .
  6. Experimento manipulativo; simulación de remoción foliar (corte), de adición de guano (fertilizante), de florecimiento algal (ulva) Diseño de bloques al azar N=4
  7. Las hojas cortadas se llevaron al laboratorio. Corte 3 veces El fertilizante se cambió mensualmente. Y se estimó la cantidad liberada al medio. 2 kg de peso fresco de Ulva
  8. Las hojas cortadas se llevaron al laboratorio. Corte 3 veces El fertilizante se cambió mensualmente. Y se estimó la cantidad liberada al medio. 2 kg de peso fresco de Ulva
  9. Las hojas cortadas se llevaron al laboratorio. Corte 3 veces El fertilizante se cambió mensualmente. Y se estimó la cantidad liberada al medio. 2 kg de peso fresco de Ulva
  10. Experimento manipulativo; simulación de remoción foliar (corte), de adición de guano (fertilizante), de florecimiento algal (ulva) Diseño de bloques al azar N=4
  11. Experimento manipulativo; simulación de remoción foliar (corte), de adición de guano (fertilizante), de florecimiento algal (ulva) Diseño de bloques al azar N=4
  12. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores
  13. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores
  14. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores
  15. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores
  16. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores
  17. Luz 1 todo el experimento 5 último mes Temperatura 3 sensores