Successfully reported this slideshow.

More Related Content

More from AdApta research team, Universidad Rey Juan Carlos

Related Books

Free with a 14 day trial from Scribd

See all

Related Audiobooks

Free with a 14 day trial from Scribd

See all

Utpl ecuador 2016_carlos lara romero

  1. 1. Efectos directos e indirectos de la invasión de arbustos en los prados alpinos mediados por las interacciones planta-polinizador Carlos Lara Romero UTPL – Loja 2016
  2. 2. Alpine tundra occurs at high enough altitude at any latitude. Map of arctic and antarctic tundraMap of alpine tundra alpinetundrabiome.weebly.com; www.blueplanetbiomes.org
  3. 3. o Alpine tundra vulnerability to global change Nogues-Bravo, 2007 Glob Env Chang
  4. 4. o Alpine tundra vulnerability to global change Ellis, 2011 Proc Royal Soc A
  5. 5. o Regime shift on the roof of the world Comte et al 2014 Nature communications
  6. 6. o Regime shift on the roof of the world Gottfried et al 2012 Climate change, Paulí et al 2012 Science, Barrio et al 2013 MRD, http://www.illustrationsof.com/
  7. 7. o Regime shift on the roof of the world http://www.grida.no
  8. 8. The three general categories of woody plants increase including (a) infilling of existing patches, (b) increase in growth and (c) an advancing shrubline. Myers-Smith et al. 2001. Environmetnal Research Letters o Shrub encroachment. Increase in the density, cover and biomass of native woody plants to the detriment of herbaceous flowering plants
  9. 9. o Shrub encroachment.
  10. 10. Myers-Smith et al. 2001. Env Reser Let; Wookey et al 2009, Glob Chang Biol Numerous studies document the effect of shrub encroachment on the structure of tundra ecosystems • Soil–atmosphere exchange of water, carbon and nutrients. • Plant-plant interactions and vegetation composition. • Energy fluxes • Regional climate o Shrub encroachment
  11. 11. We lack empirical data showing how shrub encroachment modifies plant–animal interactions at community scale. thetechjournal.com orkin.com o Shrub encroachment and biotic interactions
  12. 12. Difficulties in quantifying changes in interactions compared with changes in biodiversity thetechjournal.com orkin.com Inouye & Pyke 1988, Tylianakis et al 2008 Ecology Letters, Tylianakis et al 2010 Biological Conservation o Shrub encroachment and biotic interactions
  13. 13. o Shrub encroachment and biotic interactions Biotic interactions play an important role in the maintenance of biodiversity and the stability and resistance of ecosystems !!!!!! Inouye & Pyke 1988; Tylianakis et al 2008 Ecology Letters, Tylianakis et al 2010 Biological Conservation
  14. 14. o Shrub encroachment and biotic interactions Images downloaded from es.dreamstime.com Inouye & Pyke 1988; Kearns & Inouye 1994; Dupont, Hansen & Olesen 2003 The harsh environmental conditions of high-mountain ecosystems limit pollinator richness and pollination services for plant reproduction Biotic interactions play an important role in the maintenance of biodiversity and the stability and resistance of ecosystems !!!!!!
  15. 15. o Shrub encroachment and biotic interactions
  16. 16. o In this context of limited resources, shrub encroachment increases nutritional resources for pollinators. o Positive feedback at both trophic levels Van valen 1965 Amer Nat, Bolnick et al 2007 PNAS, Hegland et al 2009 Ecol Lett, Blüthgen & Klein 2011 Basic Appl Ecol Diversity (e.g.plants) Diversity (e.g. flower visitors) Functional Biodiversity Hypothesis FBH Niche width Niche Variation Hypothesis NHV o Shrub encroachment and biotic interactions
  17. 17. Capítulo I Capítulo II Capítulo III Capítulo IV o Research questions o 1. Does higher diversity at the producer trophic level (plants) result in increased diversity at the consumers (pollinators) trophic level, as predicted by FBH? o 2. Does shrub encroachment reduce the specific niche breadth of pollinators? o 3. Do shared pollinators mediate competitive indirect interactions between shrubs and forbs? We expected shrub encroachment to increase pollinator species richness and simultaneously to reduce the niche breadth of each pollinator species, ultimately affecting plant–plant interactions through competition for shared pollinators. o Predictions
  18. 18. Objetivos Capítulos Conclusiones o Study System: Mediterranean alpine communities of Iberian Peninsula
  19. 19. Objetivos Capítulos Conclusiones o Study System: Mediterranean alpine communities of Iberian Peninsula Silene ciliata Armeria caespitosaFestuca curvifolia Cytisus oromediterraneus
  20. 20. Laguna de los Pájaros Macizo de Peñalara Año 1.956
  21. 21. Año 1.976 Laguna de los Pájaros Macizo de Peñalara
  22. 22. Año 2009 Laguna de los Pájaros Macizo de Peñalara
  23. 23. Año 2009 Laguna de los Pájaros Macizo de Peñalara
  24. 24. Objetivos Capítulos Conclusiones Adenocarpus hispanicus Lam (DC) (Fabaceae) Cytisus oromediterraneus Rivas Mart. & Al. (Fabaceae) o Study System: Mediterranean alpine communities of Iberian Peninsula Sanz-Elorza et al 2003 Annals of Botany; Garcia-Romero et al 2010 Climatic Change
  25. 25. 10 km Nevero Peñalara Objetivos Capítulos Conclusiones o Sampling design and field survey PA EP
  26. 26. 11 census days for each sampling site (PA & EP) o 10 Linear transects at each site. o Number flowering plant of each species o Identity and number of contacts between plants and flower visitors o Sites simultaneously surveyed Animal Planta A B C D A 7 2 12 2 B 0 8 34 8 C 4 9 4 0 D 2 0 23 0 Quantitative bipartite networks for full-season data for each habitat type. o Sampling design and field survey Jordano 1987 Amer Nat
  27. 27. Metrics Effect of shrubs on metrics Network-level metrics Number of plants (P) Number of animals (A) Number of interactions (I) Number of visits (V) Connectance (C) Weighted Linkage (lw) Modularity (Q) Species-level metrics Linkage (L) Species Specialization (d’) Species strength (S)
  28. 28. Metrics Effect of shrubs on metrics Network-level metrics Number of plants (P) + Number of animals (A) + Number of interactions (I) + Number of visits (V) + Connectance (C) - Weighted Linkage (lw) - Modularity (Q) + Species-level metrics Linkage (L) - Species Specialization (d’) + Species strength (S) +
  29. 29. Capítulo I Capítulo II Capítulo III Capítulo IV o Results & discussion: species assemblages and visitation patterns
  30. 30. Capítulo I Capítulo II Capítulo III Capítulo IV o Results & discussion: species assemblages and visitation patterns Blüthgen & Klein 2011 Basic Appl Ecol o Flower visitor richness was higher in EP than in PA in all functional groups of pollinators o Result confirmed by sample-based rarefied estimates
  31. 31. Capítulo I Capítulo II Capítulo III Capítulo IV o Results & discussion: species assemblages and visitation patterns Blüthgen & Klein 2011 Basic Appl Ecol Mixed lineal models (LMMs) fitted for flower visitors Number of interactions Number of visits F value Pr(>|F|) F value Pr(>|F|) Intercept 1109.51 <0.001 773.74 <0.001 Habitat type 20.75 <0.001 14.16 <0.001 Functional group 34.96 <0.001 25.40 <0.001 Plants abundance 0.07 0.78 0.10 0.76 Habitat type: F. group 1.42 0.17 1.34 0.21 Increased number of interactions and visits for each functional group of flower visitors
  32. 32. Capítulo I Capítulo II Capítulo III Capítulo IV o Results & discussion: species assemblages and visitation patterns Diversity (e.g.plants) Diversity (e.g. flower visitors) FBH Blüthgen & Klein 2011 Basic Appl Ecol The integration of shrubs into the network increased richness and visitation rates of all functional groups of flower visitors.
  33. 33. Flower visitors did not vary their niche breadth (d’a , La, Lwa) Niche width Increased generalization at EP (H’2) Bolnick et al 2007 PNAS, Blüthgen & Klein 2011 Basic Appl Ecol, Seifan et al 2014, J Ecol Both habitat types displayed a similar modular structure (Q) o Results & discussion: specific niche breadth of pollinators
  34. 34. Number of interactions Number of visits Visits per flowering plant F value Pr(>|F|) F value Pr(>|F|) F value Pr(>|F|) a) Species that occurred at encroached pastures Intercept 356.87 <0.001 423.69 <0.001 140.69 <0.001 Life form 3.91 0.05 1.12 0.29 12.26 <0.001 Plants abundance 10.88 <0.01 19.46 <0.001 53.28 < 0.001 b) Species that occurred at both habitat types Intercept 580.23 <0.001 645.22 <0.001 359.16 <0.001 Habitat type 0.019 0.89 0.12 0.73 25.40 <0.001 Plant species 4.64 <0.001 4.70 <0.001 22.00 <0.001 Plants abundance 26.98 <0.001 37.84 <0.001 47.71 <0.001 H. Type:P. Species 0.52 0.87 0.45 0.92 2.36 0.01 o Results & discussion: plant-plant interactions mediated by shared pollinators LMMs fitted for plants o Shrubs had more interactions with flower visitors and recevied more visits per plant than forb species. o Forb species received fewer visits per plant in EP than in PA
  35. 35. Capítulo I Capítulo II Capítulo III Capítulo IV Shrub encroachment increased plant linkage (Lp y Lwp) while reducing the number of visits per plant of forb species without affecting their specialization (d’p). Bolnick et al 2007 PNAS, Morales & Traveset 2009 Ecol Lett, Seifan et al 2014, J Ecol o Results & discussion: plant-plant interactions mediated by shared pollinators Niche width These findings suggest the existence of competition among plant species mediated by pollinator sharing
  36. 36. o Research questions and conclusions o 1. Does higher diversity at the producer trophic level (plants) result in increased diversity at the consumers (pollinators) trophic level, as predicted by FBH? o 2. Does shrub encroachment reduce the specific niche breadth of pollinators? o 3. Do shared pollinators mediate competitive indirect interactions between shrubs and forbs?
  37. 37. Introducción Objetivoso Acknowledgements

Editor's Notes

  • Las comunidades vegetales de alta montaña se encuentran entre los organismos más vulnerables al cambio global y particularmente a uno de sus motores más notables, el cambio climático. Pese a su escasa superficie, estos ecosistemas tiene un valor desproporcionado en términos de diversidad biológica y de servicios ecosistémicos y es por ello que constituyen una prioridad de investigación.

    La mayor parte de los modelos predictivos de clima pronostican que los cambios de temperatura y precipitación más intensos van a tener lugar en las montañas de clima mediterráneo de Europa. Esto puede significar que las respuestas al cambio climático tengan que ser más intensas y rápidas que en otros sistemas montañosos situados en regiones más septentrionales.


  • Las comunidades vegetales de alta montaña se encuentran entre los organismos más vulnerables al cambio global y particularmente a uno de sus motores más notables, el cambio climático. Pese a su escasa superficie, estos ecosistemas tiene un valor desproporcionado en términos de diversidad biológica y de servicios ecosistémicos y es por ello que constituyen una prioridad de investigación.

    La mayor parte de los modelos predictivos de clima pronostican que los cambios de temperatura y precipitación más intensos van a tener lugar en las montañas de clima mediterráneo de Europa. Esto puede significar que las respuestas al cambio climático tengan que ser más intensas y rápidas que en otros sistemas montañosos situados en regiones más septentrionales.


  • Las comunidades vegetales de alta montaña se encuentran entre los organismos más vulnerables al cambio global y particularmente a uno de sus motores más notables, el cambio climático. Pese a su escasa superficie, estos ecosistemas tiene un valor desproporcionado en términos de diversidad biológica y de servicios ecosistémicos y es por ello que constituyen una prioridad de investigación.

    La mayor parte de los modelos predictivos de clima pronostican que los cambios de temperatura y precipitación más intensos van a tener lugar en las montañas de clima mediterráneo de Europa. Esto puede significar que las respuestas al cambio climático tengan que ser más intensas y rápidas que en otros sistemas montañosos situados en regiones más septentrionales.


  • Las comunidades vegetales de alta montaña se encuentran entre los organismos más vulnerables al cambio global y particularmente a uno de sus motores más notables, el cambio climático. Pese a su escasa superficie, estos ecosistemas tiene un valor desproporcionado en términos de diversidad biológica y de servicios ecosistémicos y es por ello que constituyen una prioridad de investigación.

    La mayor parte de los modelos predictivos de clima pronostican que los cambios de temperatura y precipitación más intensos van a tener lugar en las montañas de clima mediterráneo de Europa. Esto puede significar que las respuestas al cambio climático tengan que ser más intensas y rápidas que en otros sistemas montañosos situados en regiones más septentrionales.


  • Las comunidades vegetales de alta montaña se encuentran entre los organismos más vulnerables al cambio global y particularmente a uno de sus motores más notables, el cambio climático. Pese a su escasa superficie, estos ecosistemas tiene un valor desproporcionado en términos de diversidad biológica y de servicios ecosistémicos y es por ello que constituyen una prioridad de investigación.

    La mayor parte de los modelos predictivos de clima pronostican que los cambios de temperatura y precipitación más intensos van a tener lugar en las montañas de clima mediterráneo de Europa. Esto puede significar que las respuestas al cambio climático tengan que ser más intensas y rápidas que en otros sistemas montañosos situados en regiones más septentrionales.


  • El concepto de cambio global incluye todos aquellos impactos originados por actividades antrópicas que modifican la composición y funcionamiento de los ecosistemas (Vitousek, 1992). Existen considerables evidencias sobre su efecto directo en alteraciones del rango geográfi
  • Historical lack of research into global change effects on biotic interactions
  • Ene ste contexto de limitación de recursos la matorralización podría implicar un aumento del recurso trófico desde el PV de los polinizadores

    La pendiente de la función que describe la relación entre ambas reiquezas estará relacionada con la complementarierdad funcional de las epsecies de la comunidad

    when multiple species are specialised
    and differ in their niche (niche complementarity), interspecific competition is reduced, facilitating their co-existencee transmitter of the function

    (d) increased population but not individual niche widths, via increased among-individual variation (niche variation hypothesis).
    increased individual and population niche widths (parallel release);

    Fig. 1. Illustration of two alternative patterns of population niche expansion. A population that uses a narrow range of prey sizes can increase its population niche breadth (bold lines) in two ways. (a) All individual niche breadths (thin lines) can expand resulting in no increased niche variation among individuals. (b) Individual niche breadths can remain limited, whereas individuals diverge from each other to increase among-individual variation
  • Basandonos en NHV y NBH nos preguntamo si
  • El escenario elegido para esta tesis son los pastos piscor de alta montaña del SC,una de las más importantes del Sistema Central.

    La citada comunidad vegetal constituye la vegetación potencial de las cumbres del SC por encima de los 2000 metros. La comunidad está dominada por la gramínea Festuca curvifolia que tiende a aparecer con escasa cobertura debido a los procesos de crioturbación y las condiciones extremas reinantes.

    Junto a la graminea aparecen un un importante número de nanocaméfitos almohadillados o pulviformes muchos de ellos endémicos del SC o la PI (Figura 3 y 4).

    Dos de estos nanocaméfitos son las princpales especies de estudio de la tesis doctoral
  • El escenario elegido para esta tesis son los pastos piscor de alta montaña del SC,una de las más importantes del Sistema Central.

    La citada comunidad vegetal constituye la vegetación potencial de las cumbres del SC por encima de los 2000 metros. La comunidad está dominada por la gramínea Festuca curvifolia que tiende a aparecer con escasa cobertura debido a los procesos de crioturbación y las condiciones extremas reinantes.

    Junto a la graminea aparecen un un importante número de nanocaméfitos almohadillados o pulviformes muchos de ellos endémicos del SC o la PI (Figura 3 y 4).

    Dos de estos nanocaméfitos son las princpales especies de estudio de la tesis doctoral
  • La comunidad convive intercalada en una matriz arbustiva más o menos densa caracterizada por Cytisus oromediterraneus Rivas Mart. et al., Adenocarpus hispanicus (Lam. DC.) y Juniperus communis subsp. alpina (Suter) Celak.
    Como hemos comentado anterioremente el ascenso y ocupación de los pastos por parte de este estrato arbustivo está afectando de manera significativa a la comunidad.
  • El escenario elegido para esta tesis son los pastos piscor de alta montaña del SC,una de las más importantes del Sistema Central.

    La citada comunidad vegetal constituye la vegetación potencial de las cumbres del SC por encima de los 2000 metros. La comunidad está dominada por la gramínea Festuca curvifolia que tiende a aparecer con escasa cobertura debido a los procesos de crioturbación y las condiciones extremas reinantes.

    Junto a la graminea aparecen un un importante número de nanocaméfitos almohadillados o pulviformes muchos de ellos endémicos del SC o la PI (Figura 3 y 4).

    Dos de estos nanocaméfitos son las princpales especies de estudio de la tesis doctoral
  • Resultado coherente con lo predicho por la Hipótesis de la diversidad funcional
  • Resultado coherente con lo predicho por la Hipótesis de la diversidad funcional
  • Resultado coherente con lo predicho por la Hipótesis de la diversidad funcional
  • Resultado coherente con lo predicho por la Hipótesis de la diversidad funcional
  • mientras redujo el número de visitas por planta
  • Esta última situación podría reducir el éxito reproductivo en alguna de las especies de la comunidad
  • ×