SlideShare a Scribd company logo
1 of 61
Download to read offline
SCHOOL OF ARCHITECTURE. BUILDING AND DESIGN
BACHELOR OF SCIENCE (HONS) IN ARCHITECTURE
BUILDING SCIENCE 2 (BLD61303)
__________________PULP BY PAPA PALHETA @ BANGSAR, KUALA LUMPUR_______________
Angoline Boo Lee Zhuang 0316144
Chong Yee Ching 0316102
Lai Jia Yi 0315957
Muhammad Muzhammil bin Azham 0311446
Ng Ming Hwee 0319511
Kelvin Fong Jia Zheng 0317166
TUTOR: MR MOHAMED RIZAL
CONTENTS PAGE
1.0 INTRODUCTION
1.1 Aim and Objective 1
1.2 Site Information 1-2
1.2.1 Site Introduction
1.2.2 Site Selection Reasons
1.3 Measured Drawings 2-3
1.3.1 Ground Floor Plan
1.3.1 Section A-Aโ€™
1.3.2 Section B-Bโ€™
2.0 LIGHTING PERFORMANCE EVALUATION
2.1 Literature Review 4-6
2.1.1 Lighting
2.1.2 Lumen
2.1.3 Illuminance
2.1.4 Brightness & Illuminance
2.1.5 Natural daylighting & Artificial lighting
2.1.6 Daylight factor
2.1.7 Lumen method
2.2 Precedent Studies 7-12
2.2.1 Design Strategies
2.2.2 Existing Light Source
2.2.3 Conclusion
2.3 Research Methodology 13-14
2.3.1 Lighting Data Collection Equipment
2.3.2 Lighting Data Collection Method
2.4 Case Study 15-53
2.4.1 Site Introduction
2.4.2 Zoning
2.4.3 Materials
2.4.4 Light Specifications
2.4.5 Lux Reading and Light Contour Diagram
2.5 Lighting Data Analysis
2.5.1 Zone A (Public Dinning Area)
2.5.2 Zone B (Cafรฉ Room Divider)
2.5.3 Zone C (Cafรฉ Room Divider)
2.6 Observation and Discussion
2.7 Conclusion
3.0 ACOUSTIC PERFORMANCE EVALUATION
3.1 Literature Review 54-55
3.1.1 Sound
3.1.2 Architecture Acoustic
3.1.3 Sound Pressure Level
3.1.4 Reverberation Level
3.1.5 Sound Reduction Index
3.2 Precedent Studies 56-61
3.2.1 External and Internal Noises
3.2.2 Design Strategies
3.2.3 Conclusion
3.3 Research Methodology 62-63
3.3.1 Acoustic Data Collection Equipment
3.3.2 Acoustic Data Collection Method
3.4 Case Study 64-112
3.5 Existing Noise Sources
3.5.1 External Noise
3.5.2 Internal Noise
3.6 Material and Properties
3.7 Acoustic Tabulation and Analysis
3.7.1 Sound Level Measurement
3.7.2 Reverberation Time
3.7.3 Sound Reflection Index
4.0 BIBLOGRAPHY 113
Page | 1
1.0 INTRODUCTION
1.1 AIM AND OBJECTIVE
The aim and objective of conducting this study is to understand and explore on day lighting, artificial lighting
performance and characteristics as well as acoustic performance and characteristics in a suggested space.
Through understanding of the site and its surrounding aid in producing a critical and analytical report which
educate students the ways of designing a good lighting and acoustic system.
1.2 SITE INFORMATION
1.2.1 SITE INTRODUCTION
PULP is a new cafรฉ that located at Jalan Riong which in the Bangsar area. PULP is the single storey building
which rests in between the Riong's Balai Berita building and the head office of the New Straits Times Press.
PULP isnโ€™t just a cafe. Housed in the old paper-cutting space of Art Printing Works, PULPโ€™s interior is
designed to be functional; perhaps in homage to its roots. The site was built in 1965, and The Royal Press
and Art Printing Works were in the process of revamping it when the Papa Palheta came along. There was
enough of a link between the ethos of each business that they decided to collaborate, and, as you may have
already gleaned, the name gives a nod to pulp in both the paper- and coffee-making processes.
Figure 1.2.1.1 Exterior view of the cafe
Page | 2
1.2.2 SITE SELECTION REASONS
The pedigree, experience & expertise of the people behind PULP ensure that it's well worth visiting. This is
a welcoming cafe with a friendly team, easygoing vibe, singular look & clean layout; even with the legion of
coffee bars stirring in the Klang Valley every week, PULP looks to be one of 2014's best bets.
1) The interior of the cafe is well lit with natural lighting during daytime due to the materials used.
2) Double volume space create a sense of openness in the enclosed interior space.
3) Artificial lighting are well used to create comfortable vibe in the cafรฉ.
1.3 MEASURED DRAWING
1.3.1 GROUND FLOOR PLAN
Figure 1.2.2.1 Interior view during daytime Figure 1.2.2.2 Exterior view during night time
Figure 1.3.1 Ground floor plan
Page | 3
1.3.2 SECTION A-Aโ€™
1.3.3 SECTION B-Bโ€™
Figure 1.3.2 Section A-Aโ€™
Figure 1.3.3 Section B-Bโ€™
Page | 4
2.0 LIGHTING STUDY
2.1 LITERATURE REVIEW
2.1.1 LIGHTING
Lighting or illumination is the deliberate use of light to achieve a practical or aesthetic effect. Lighting includes
the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing
daylight. Daylighting (using windows, skylights, or light shelves) is sometimes used as the main source of
light during daytime in buildings.
2.1.2 LUMEN
The lumen (symbol: lm) is the SI derived unit of luminous flux, a measure of the total quantity of visible light
emitted by a source. Luminous flux differs from power (radiant flux) in that radiant flux includes all
electromagnetic waves emitted, while luminous flux is weighted according to a model of the human eye's
sensitivity to various wavelengths. Lumens are related to lux in that one lux is one lumen per square meter.
2.1.3 ILLUMINANCE
Illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the
incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human
brightness perception.
2.1.4 BRIGHTNESS & ILLUMINANCE
Illuminance was formerly often called brightness, but this leads to confusion with other uses of the word, such
as to mean luminance. "Brightness" should never be used for quantitative description, but only for non-
quantitative references to physiological sensations and perceptions of light. .
Page | 5
2.1.5 NATURAL DAYLIGHTING & ELECTRICAL ARTIFICIAL LIGHTING
Natural light is the light generated naturally. The most common source of natural light on Earth is the Sun.
We receive natural light throughout our sunlight hours, whether we want it or not. That is, we cannot control
the amount, duration and intensity of the natural light. The light we obtain from Sun covers the entire visible
spectrum, with violet at one end and red at the other. This light is good for our health and is necessary for
plants to carry out photosynthesis. Fire is another source of natural light.
Artificial light is generated by artificial sources, such as incandescent lamps, compact fluorescent lamps
(CFLs), LEDs, etc. We can control the quality, quantity and duration of this light by controlling a number of
factors. Artificial light is necessary for us to work during hours of low lighting (evening and/or night). The
artificial light does not cover the entire light spectrum and is not too conducive to photosynthesis or health of
life forms.
2.1.6 DAYLIGHT FACTOR
It is a ratio that represents the amount of illumination available indoors relative to the illumination present
outdoors at the same time under overcast skies. Daylight factor is usually to obtain the internal natural
lighting levels as perceived on a plane or surface, in order to determine the sufficient of natural lighting for
the users in a particular space to conduct their activities. It is also simply known to be the ratio of internal
light level to external light level, as shown below:
Daylight Factor, DF
Indoor Illuminance, Ei
Outdoor Illuminance, Eo
Where, Ei = Illuminance due to daylight at a point on the indoor working plances,
Eo = Simultaneous outdoor illuminance on a horizontal plane from an unobstructed hemisphere of overcast
sky.
Page | 6
2.1.7 LUMEN METHOD
Lumen method is used to determine the number of lamps that should be installed in a space. This can be
done by calculating the total illuminance of the space based on the number of fixtures and determine
whether or not that particular space has enough lighting below:
Where,
N = Number of lamps required. illuminance level
E = required (lux)
A = area at working plane height (m2)
F = initial luminous flux from each lamp (lm)
UF = utilization factor, an allowance for the light distribution of the luminaire and the room surfaces.
MF = maintenance factor, an allowance for reduced light output because of deterioration and dirt
Room Index, RI, is the ratio of room plan area to half wall area between the working and luminaire planes.
Which can be calculated by:
Where, L = Length of room
W = Width of room
Hm = Mounting height, the vertical distance between the working plane and the luminaire
Page | 7
2.2 LIGHTING PRECEDENT STUDIES
OJALA Cafรฉ
Figure 2.2.1 (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
Ojala Cafรฉ had Andrรฉs Jaque as the architect designer and it is located in Calle de San Andrรฉs, 1, 28004
Madrid, Madrid, Spain. Collaborating with Sebastian Bech-Ravn, Ljubo Dragomirov, Roberto Gonzรกlez
Garcรญa, Senne Meesters, William Mondejar, Jorge Noguera Facuseh, Silvia Rueda Cuellar, JarcฬŒa Slamova,
this project was done in 2014 and with the advice of Juan Pablo Prieto (Technical Architect), Miguel de
Guzman (Photographer) and Jorge Lopez Conde (Graphic Design). It has a well-planned lighting system that
illuminates natural and artificial lighting throughout the building.
Figure 2.2.2 Ground Floor Plan (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.3 First Floor Plan (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Page | 8
2.2.1 DESIGN STRATEGIES
The concept of the cafรฉ from an architectural response to the social diversity and community of the
locals living in Malasana according to the architectโ€™s point of view. A community or a diversity that manifests
itself in everyday life as an accumulation of various ways to talk, meet, eat and drink. The design of the cafรฉ
has an indoor and outdoor relation whereby it creates a continuous space where everyone can be establish
and be involved to stay aware of each otherโ€™s action. In order to maintain such relationship across spatial
boundaries, the cafรฉ has installed number of glass doors, which can be seen in Figure 1.1.2.2. In addition,
shows that a geometric like glass wall is placed connecting the transition spaces between the eating area
and the entrance. Where the geometric glass divider mirrors the inexhaustible characteristic light coming in
and making an iridescent common lighting impact. Subsequently, clients can appreciate espresso in bistro
space, while looking open air and indoor through glass entryways and the geometric glass divider.
Furthermore, unique lighting apparatuses are utilized as a part of various spaces of the bistro. Many hued
halogen globules and brilliant bulbs are utilized inside the entire bistro to make diverse spatial encounters.
Figure 2.2.4 Section A-Aโ€™ (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.5 Section D-Dโ€™ (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Page | 9
Figure 2.2.1.3 (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.1.1 (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.1.2 (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Page | 10
Figure 2.2.1.6 (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.1.4 (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Figure 2.2.1.5 (Source:
http://www.archdaily.com/621388/ojala-andres-jaque)
Page | 11
2.2.2 EXISTING LIGHT SOURCE
Page | 12
2.2.3 CONCLUSION
LIGHT ANALYSIS DIAGRAM
The Ojala Cafรฉ has a low lighting design and depend more on daylighting to enlighten its spaces. The lux
level amid the day-time is around 300 lux which is only decent for a cafe bistro, yet at evening time the lux
level is reduced to normal 150 lux due to the lack of daylighting. A few architectural lighting can be spotted
in the space, the colored wall and cabinet bulbs to brighten up the spaces and gives the mood for the interior
design even with daylight. Other than that, the material utilization and shading gives the lighting a congruous
and difference relationship relying upon the separating of space.
Page | 13
2.3 METHODOLOGY OF LIGHTING RESEARCH
2.3.1 LIGHTING DATA COLLECTION EQUIPMENT
(a) Lux Meter
Lux meter is an electronic equipment that measures luminous flux per unit area and illuminance level. The
device picks up accurate reading as it is sensitive to illuminance. The lux meter registers brightness with an
integrated photodetector. The photodetector is held perpendicular to the light source for optional exposure.
Readout are presented via LCD display. The model of lux meter used in this case study is Lux LX-101.
(b) Camera
Camera is used to capture the type of furniture and materials that used on the site. Other than that, it also
used to capture the light condition of the place and also capture the lighting appliances.
LCD display
Interface
Tether
Photodetector
Figure 2.3.1.1 Lux Meter
Page | 14
(c) Laser Measuring Device
It is used to measure the 1.0m and 1.5m height to make sure the lux meter is position at a constant height.
The tape also used to measure the dimension of the site and the distance between the light fixtures.
2.3.2 LIGHTING DATA COLLECTION METHOD
Lighting measurement were taken on the same day in two different period of time, which is 12-2pm (daytime)
and 8-10pm (nighttime) which we able to clearly differentiate the different lighting qualities in both times.
1) Identified the type of light source and indicate on the floor plan.
2) 1.5m x 1.5m gridlines are marked on the floorplan to provide a proper standard for the data collection.
3) Measurement is taken at 1.5m and 1.0m at each intersection point of the gridlines at daytime and nighttime.
4) Procedure 3 is repeated.
Figure 2.3.2.1 Section diagram
Page | 15
2.4 CASE STUDY
2.4.1 SITE INTRODUCTION
Figure 2.4.1.1 Location of PULP by Papa Palheta
Figure2.4.1.2 Spatial arrangement of PULP at the area
Page | 16
Figure 2.4.1.3 Exterior view of PULP at daytime
.
Figure 2.4.1.4 Exterior view of PULP at night time
Page | 17
Pulp by Papa Palheta is a newly open specialty coffee bar, located at Jalan Riong, Bangsar. The
store resides within the premises of Art Printing Works, a historical printing plant which still functions since
1965. It is a single storey building, with a modern looking faรงade, built by mainly glass and steel. It
successfully create a sense of openness, blur the boundary within inside and outside.
Figure 2.4.1.5 Glass Facade create sense of openness
The cafรฉ is where mostly office staff relax after long hours of work during weekdays. While during
weekend, the cafรฉ is almost full house from day to night. Peak hours of PULP is usually from afternoon to
evening.
The building itself is situated along the main road, surrounded by several industrial building, but
due to its strategic location, which is quite hidden from the city, it will not disturb by transportation noise
pollution. Faรงade of the building allows large amount of natural sunlight to penetrate in during day time,
besides being illuminated with artificial lightings.
Page | 18
Figure 2.4.1.6 Interior space during daytime
Figure 2.4.1.7 Interior space during night time
Page | 19
2.4.2 ZONING
ZONE A (PUBLIC DINING AREA)
ZONE B (CAFร‰ ROOM DIVIDER)
ZONE C (SCULLERY)
Zone A covered the entrances, coffee making
area, and dining area.
A total of 41 intersection points are covered in
Zone A.
Zone B is a cafรฉ room divider. It was separated
from Zone C, which is the seating area to
provide customers an enclosed space to enjoy
their food and coffee.
A total of 9 intersection points are covered in
Zone B.
Zone C covered the coffee making area, scullery
and storage.
A total of 15 intersection points are covered in
Zone C.
In a nutshell, there are a total of 65 points in
these three zones.
Page | 20
2.4.3 MATERIALS
Laminated woodblock on solid floor
Laminated wood Kitchen Shelves and wall
Twin wall reinforced plastic panels
Laminated
Woodblock Floor
Wood Panel Wall
Reinforced
Plastic Panel
Page | 21
Concrete wall with plaster finish.
Glass as the faรงade at one side of the cafรฉ
Wood Frame with Laminated Tops
An antique machine act as table
Silver coffee machine
Concrete wall
Glass
Wood
Furniture
Laminated wood
panel counter table
Steel
Silver
Page | 22
Component Material Colour Surface
Finish
Reflectance
Value (%)
Wall Concrete wall
with plaster finish
Dark Grey Matte 20
White Matte 80
Wood Panel Dark Brown Glossy 20
Ceiling Fibreglass with
aluminium foil
insulation
Silver Glossy 55
Curtain Wall Aluminium Frame Black Matte 10
Glass Transparent Glossy 6
Reinforced
Plastic Panel
Semi-
transparent
Glossy 40
Floor Laminated
Woodblock Floor
Brown Glossy 20
Glass Door Aluminium Frame Black Matte 10
Glass Transparent Glossy 6
Furniture Wood Furniture Grey Glossy 10
Cafรฉ counter
table
Brown Glossy 20
Silver grey Glossy 55
Steel Silver Blue Glossy 40
Page | 23
2.4.4 LIGHT SPECIFICATIONS
Image Light Type Fluid Pendant Light Bulb
Lamp Luminous Flux (lm) 800 lm
Specification Life time approx. 4.000
hours
Rated Colour Temperature 2700K
Colour Rendering Index 100 (very good)
Luminaire Type Decorative pendant Downward
Wattage 60
Placement Ceiling Lamp
Light Type Leadare LED Bulb
Lamp Luminous Flux (lm) 400 lm
Specification E27
Life time approx. 25.000
hours
Rated Colour Temperature 5000K
Colour Rendering Index 82 (very good)
Luminaire Type Built in LED lamps
Wattage 9
Placement Wall Lamp
Light Type
Lamp Luminous Flux (lm) 2250 lm
Specification E27
Life time approx. 25.000
hours
Rated Colour Temperature 3500K
Colour Rendering Index 82 (very good)
Luminaire Type Built in LED lamps
Wattage 9
Placement Ceiling Light
Page | 24
Light Type LED Downlight
Lamp Luminous Flux 400 lm
Specification Life time approx. 35.000
hours
Rated Colour Temperature 5000K
Colour Rendering Index 82 (very good)
Luminaire Type Built in LED lamps
Wattage 40
Placement Ceiling Lamp
Light Type LED Surface Mounted Light
Lamp Luminous Flux 740 lm
Specification Life time approx. 15.000
hours
Rated Colour Temperature 2700 K
Colour Rendering Index 80 (very good)
Luminaire Type Built in LED lamps
Wattage 30
Placement Wall Light
Page | 25
2.4.5 LUX READING AND LIGHT CONTOUR DIAGRAM
DAYTIME (2-4PM), PEAK HOUR
Figure 2.4.5.1 Daytime lux reading at PULP
Page | 26
Figure 2.4.5.2 Daytime light contour diagram at PULP
Lux reading as shown shows the lux level during 2pm to 4pm interval, which is the peak hour as
PULP is always full house within the time. The artificial lighting were switched on while we were conducting
data collection, but due to the translucent wall panel as the main faรงade for the building, the main source of
light during daytime is the sunlight. Referring to diagram shown above, the readings for the inner space
(Zone C) are lower as it rarely exposes to sunlight. The highest reading recorded is at the entrance area
(Zone A), where the sunlight penetrates in through the glass faรงade.
Page | 27
NIGHTTIME (7-9), NON PEAK HOUR
Diagram 2.4.5.3 Daytime lux reading at PULP
Page | 28
Figure 2.4.5.4 Night time light contour diagram at PULP
According to the diagram shown above. The area rendered with blue and purple area has lower
luminance level while red and orange area has higher luminance level. More LED spotlights are installed at
Zone C, where the apparatus and machines are kept, to provide brighter environment for the stuff to work
and thus exceed standard 200lux. While the luminance level is lower at the walkway towards kitchen.
Referring to Figure 2.4.4.4, artificial light provide brightness to only targeted place, but generally the area is
still considered as average as the amount of spotlight is high.
Page | 29
2.5 LIGHTING ANALYSIS
Figure 2.5.1 Floor plan indicating section cut
Page | 30
2.5.1 ZONE A (Public Dining Area)
2.5.1.1 Indication of light sources and light distribution
Figure 2.5.1.1.1 Floor plan indicating light source and distribution of zone A
Page | 31
Figure 2.5.1.1.1 Section A-A diagram of Zone A showing light fixtures and light distribution
Zone A is the main area of the cafรฉ for serving customer purpose. Making coffee counter and dessert
display area are located at here as well. Large surface of this zone is covered by the reinforced plastic
panel. This semi- transparent material let some of the outside natural light penetrates into this public dining
area.
Figure 2.5.1.1.2 Section B-B diagram of Zone A showing light fixtures and light distribution
Some of the part of zone A is covered by the glass wall, it allows the natural light directly penetrates into
the space of the dining area. This diagram is also showing the relationship between public dining area
(Zone A) and cafรฉ room divider area (Zone B).
Page | 32
2.5.1.2 Existing Light Fixture
SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION
Spotlight
(multilightbar)
30
LED- PAR16
(spotlight)
2
LED spotlight 6
Leadare LED wall
lamp 1
Page | 33
2.5.1.3 Daylight Factor Calculation
Zone A: Public Dining Area
Time Weather Luminance at
1m height
Average Luminance at
1.5m height
Average
2pm -4pm Clear Sky 60- 4040 1128.5 lux 60- 3700 1242.9 lux
Table 1 Lux Reading at Zone A
Average Lux Reading 2pm- 4pm
1m 1128.5
1.5m 1242.9
Average lux value 1185.7 lux
Table 2 Average Lux Value at Zone A
Luminance Level Example
120,000 lux Brightest sunlight
110,000 lux Bright sunlight
20,000 lux Shade illuminated by entire clear blue sky, midday
1000 โ€“ 2000 lux Typical over cast day, midday
400 lux Sunrise or sunset on clear day(ambient illumination)
<200 lux Extreme of darkest storm clouds, midday
40 lux Fully overcast, sunset/ sunrise
< 1 lux Extreme of darkest storm cloud, sunset/ rise
Table 3 Daylight intensity at different condition
Date and Time 2pm- 4pm (1 October 2016)
Average lux value reading (E internal) 1186 lux
Daylight Factor Calculation Formula
๐ท๐น =
๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
ร— 100%
Standard direct sunlight (E external) 20,000 lux
Calculation
๐ท๐น =
1186
20,000
ร— 100% = 5.93%
DF. % Distribution
>6 Very Bright With thermal and glare problem
3-6 Bright
1-3 Average
0-1 Dark
Table 4 Daylight Factor, DF
Page | 34
According to table provided in MS1525, the 5.9% daylight factor of public dining area is categorized
under the bright category. That is because the public dining area is mostly covered by the reinforced plastic
panel and glass wall. Therefore, the natural lighting are allowed to penetrate through the transparent and
semi- transparent material into the space. Daylight play an important role in public dining area because it
act as a main gathering space for the customer. At the same time, the lighting is sufficient for the working
purpose of the cafรฉ counter at Zone A. The use of the reinforced plastic panel is perfectly controlling the
exposure of the sunlight and provide the warm feeling in the space.
2.5.1.4 Calculation of luminance level in Zone A (Public Dining Area)
Dimension of
room (m)
(5.27 x 12.36) + (3.84 x 1.2) + (1.78 x 3.27)
Total floor area /m2 75.54 m2
Type of lighting
fixtures
Wall and ceiling light
Type of lighting Spotlight 1 Spotlight 2 Spotlight 3 Wall lamp
Number of lighting
fixtures/ N
30 6 2 1
Lumen of lighting
fixtures
800 740 400 2250
Height of luminaire
(m)
3.6 2.3
Work level (m) 0.8
Mounting height/ H
(hm)
2.8 1.5
Assumption of
reflectance value
Ceiling
0.5
Wall
0.4
Floor
0.2
Room Index/ RI (K)
K= (
๐ฟ ๐‘ฅ ๐‘Š
(๐ฟ+๐‘€)โ„Ž๐‘š
)
=(
10.89 ๐‘ฅ 16.83
(10.89+16.83)2.8
)
= 2.36
=(
10.89 ๐‘ฅ 16.83
(10.89+16.83)1.5
)
= 4.41
Utilization factor/ UF 0.57 0.63
Maintenance Factor 0.8 (standard)
Standard
Luminance (lux)
200
Illuminance Level
(lux)
E= (
๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น)
๐ด
)
30 x 800 x 0.57 x 0.8
75.54
=144.88 lux
6 ๐‘ฅ 740 ๐‘ฅ 0.57 ๐‘ฅ 0.8
75.54
=26.8 lux
2 ๐‘ฅ 400 ๐‘ฅ 0.63 ๐‘ฅ 0.8
75.54
= 5.34 lux
1 ๐‘ฅ 2250 ๐‘ฅ 0.63 ๐‘ฅ 0.8
75.54
= 15.01 lux
Page | 35
According to the MS1525, the standard luminance for a dining area should be 200 lux. While the calculation
shows that zone A has almost reach the standard, which is 192.03. 2 lamps needed in order to reach the
standard. However, the overall environment of zone A at night is already good enough to provide a warm
and friendly ambience.
Number of lighting
fixture required to
reach the required
illuminance
144.88 + 26.8 + 5.34 + 15.01
= 192.03
200- 192.03 =7.97 lux
7.97 more lux is required to fulfil the MS1525
๐‘ =
๐ธ ๐‘ฅ ๐ด
๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น
N =
7.97 ๐‘™๐‘ข๐‘ฅ (75.54)
800 ๐‘ฅ 0.57 ๐‘ฅ 0.8
N = 1.63
N = 2 lamps
Page | 36
2.5.2 ZONE B (Cafรฉ room divider)
2.5.2.1 Indication of light sources and light distribution
Figure 2.5.2.1.1 Floor plan indicating light source and distribution of zone B
Page | 37
Section B - B
Sections showing Zone B from both directions. As you can see, Zone B is separated from the public area,
the height of the light fixtures mounted is lower compared to Zone A, it provides a brighter environment at
night but during daytime, the reading for both of the zone is almost the same. LED up light installed to shine
upward casting pools of light on the surface above.
Figure 2.5.2.1.1 Section Bโ€“ B diagram of Zone B showing light fixtures and light distribution
Figure 2.5.2.1.2 Section C- C. Diagram of Zone C showing light fixtures and light distribution
Page | 38
2.5.2.2 Existing Light Fixture
SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION
Spotlight
(multilightbar)
2
Fluid Pendant
Ceiling Lamp
1
Page | 39
2.5.2.3 Calculation of daylight factor
Zone B: Cafรฉ Room Divider
Time Weather Luminance at
1m height
Average Luminance at
1.5m height
Average
2pm -4pm Clear Sky 220 - 1500 504.4lux 310 - 2860 748.9lux
Table 5 Lux Reading at Zone B
Average Lux Reading 2pm- 4pm
1m 504.4
1.5m 748.9
Average lux value 626.65 lux
Table 6 Average Lux Value at Zone B
Luminance Level Example
120,000 lux Brightest sunlight
110,000 lux Bright sunlight
20,000 lux Shade illuminated by entire clear blue sky, midday
1000 โ€“ 2000 lux Typical over cast day, midday
400 lux Sunrise or sunset on clear day(ambient illumination)
<200 lux Extreme of darkest storm clouds, midday
40 lux Fully overcast, sunset/ sunrise
< 1 lux Extreme of darkest storm cloud, sunset/ rise
Table 7 Daylight intensity at different condition
Date and Time 2pm- 4pm (1 October 2016)
Average lux value reading (E internal) 626.65 lux
Daylight Factor Calculation Formula
๐ท๐น =
๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
ร— 100%
Standard direct sunlight (E external) 20,000 lux
Calculation
๐ท๐น =
626.65
20,000
ร— 100% = 3.1%
DF. % Distribution
>6 Very Bright With thermal and glare problem
3-6 Bright
1-3 Average
0-1 Dark
Table 8 Daylight Factor, DF
According to table provided in MS1525, the 3.1% daylight factor of cafรฉ room divider is categorized
under the bright category. This zone is located at the east of the cafรฉ, one opening face to the east side let
the natural light brighten up the room. This cafรฉ room divider has sufficient light for the dining purpose.
Page | 40
2.5.2.4 Calculation of illuminance level in Zone B (Cafรฉ room divider)
Dimension of
room (m)
3.85 x 3.29
Total floor area /m2 12.67
Type of lighting fixtures Ceilingl light
Type of lighting Spotlight 1 Pendant lamp
Number of lighting
fixtures/ N
6 1
Lumen of lighting
fixtures
800 400
Height of luminaire (m) 2.3
Work level (m) 1
Mounting height/ H (hm) 1.3
Assumption of
reflectance value
Ceiling
0.5
Wall
0.4
Floor
0.2
Room Index/ RI (K)
K= (
๐ฟ ๐‘ฅ ๐‘€
(๐ฟ+๐‘€)โ„Ž๐‘š
)
=(
3.85 ๐‘ฅ 3.29
(3.85+3.29)1.3
)
= 1.37
Utilization factor/ UF 0.48
Maintenance Factor 0.8 (standard)
Standard
Luminance (lux)
200
Illuminance Level (lux)
E= (
๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น)
๐ด
)
6 x 800 x 0.48 x 0.8
12.67
= 145.48 lux
1 x 400 x 0.48 x 0.8
12.67
= 12.12 lux
Number of lighting
fixture required to reach
the required illuminance
145.48 + 12.12
= 157.6
200- 157.6 = 42.4 lux
42.4 more lux is required to fulfil the MS1525
๐‘ =
๐ธ ๐‘ฅ ๐ด
๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น
N =
42.4 ๐‘™๐‘ข๐‘ฅ (12.67)
800 ๐‘ฅ 0.48 ๐‘ฅ 0.8
N = 1.75
N = 2 lamps
Same goes to Zone B, which is also a dining area, the required standard luminance is 200 lux, the lighting
provided is 157.6, 2 more lamps are needed in order to reach the standard luminance.
Page | 41
2.5.3 ZONE C (Cafรฉ room divider)
2.5.3.1 Indication of light sources and light distribution
Figure 2.5.3.1.1 Section C - C diagram of Zone C showing light fixtures and light distribution
Page | 42
While for Zone C, it function as two purposes, which is a workplace for food preparation while the room
beside act as a storage. The amount of LED lights is high because it requires a brighter view to provide
better work environment, as Zone C is separated from exterior as well. This zone has a highest reading at
night but lowest at daytime.
2.5.3.2 Existing Light Fixture
SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION
Spotlight
(multilightbar)
4
Fluid Pendant
Ceiling Lamp
1
LED- PAR16
(spotlight) 13
Page | 43
Zone C: Scullery
Time Weather Luminance at
1m height
Average Luminance at
1.5m height
Average
2pm -4pm Clear Sky 190 - 520 280 lux 180 - 490 346.7 lux
Table 9 Lux Reading at Zone C
Average Lux Reading 2pm- 4pm
1m 280
1.5m 346.7
Average lux value 313.35 lux
Table 10 Average Lux Value at Zone C
Luminance Level Example
120,000 lux Brightest sunlight
110,000 lux Bright sunlight
20,000 lux Shade illuminated by entire clear blue sky, midday
1000 โ€“ 2000 lux Typical over cast day, midday
400 lux Sunrise or sunset on clear day(ambient illumination)
<200 lux Extreme of darkest storm clouds, midday
40 lux Fully overcast, sunset/ sunrise
< 1 lux Extreme of darkest storm cloud, sunset/ rise
Table 11 Daylight intensity at different condition
Date and Time 2pm- 4pm (1 October 2016)
Average lux value reading (E internal) 313.35 lux
Daylight Factor Calculation Formula
๐ท๐น =
๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™
ร— 100%
Standard direct sunlight (E external) 20,000 lux
Calculation
๐ท๐น =
313.35
20,000
ร— 100% = 1.57%
DF. % Distribution
>6 Very Bright With thermal and glare problem
3-6 Bright
1-3 Average
0-1 Dark
Table 12 Daylight Factor, DF
According to table provided in MS1525, the 1.57% daylight factor of scullery is categorized under the
average category. Here is darker than the other zone as it is located at the middle of the cafe. Therefore,
the artificial light is needed during the daytime. Even though the daylight factor is lower, it is sufficient for
the working purpose and storage use as here is not a serving purpose area and public use.
Page | 44
2.5.3.3 Calculation of illuminance level in Zone C (Scullery)
Dimension of
room (m)
3.85 x 7.26
Total floor area /m2 27.95
Type of lighting fixtures Ceiling light
Type of lighting Spotlight 1 Spotlight 2 Pendant Lamp
Number of lighting
fixtures/ N
6 13 1
Lumen of lighting
fixtures
800 740 400
Height of luminaire (m) 2.3
Work level (m) 0.9
Mounting height/ H
(hm)
1.4
Assumption of
reflectance value
Ceiling
0.5
Wall
0.4
Floor
0.2
Room Index/ RI (K)
K= (
๐ฟ ๐‘ฅ ๐‘€
(๐ฟ+๐‘€)โ„Ž๐‘š
)
=(
3.85 ๐‘ฅ 7.26
(3.85+7.26)1.4
)
= 1.8
Utilization factor/ UF 0.53
Maintenance Factor 0.8 (standard)
Standard
Luminance (lux)
200
Illuminance Level (lux)
E= (
๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น)
๐ด
)
6 x 800 x 0.53 x 0.8
27.95
= 72.82 lux
13 x 740 x 0.53 x 0.8
27.95
= 145.93 lux
1 x 400 x 0.53 x 0.8
27.95
= 6.07 lux
Number of lighting
fixture required to
reach the required
illuminance
72.82 + 145.93 + 6.07
= 224.82
224.82 โ€“ 200 = 24.82 lux
24.82 lux is exceed to fulfil the MS1525
As for Zone C, the standard luminance required is 200 but the lighting provided is 224.82, which is already
exceed the requirement. Compared with the other two zones, this zone is the brightest due to its function
as a place to keep apparatus and machines, and act as a workplace for the stuff to prepare food. Besides,
there is no opening connected from this Zone to exterior, so extra lighting is needed for this zone especially
during day time.
Page | 45
2.6 OBSERVATIONS AND DISCUSSIONS
2.6.1 Zone A (Public Dining Area)
Figure 2.6.1.1 Panoramic view of zone A
Observation
Zone A is the biggest area, function as a place to serve customers, make coffee and for customers to have
their meal. At day, readings are higher at the perimeter along the translucent faรงade where daylight could
penetrate in; while at night, the readings are various depending on the position of light fixture.
Discussion
Figure 2.6.1.2 Dining area located right in front of the entrance
Page | 46
Figure 2.6.1.3 Wall lamp located right above the decorative element
Figure 2.6.1.4 Furniture of the dining area of Zone A
Page | 47
Figure 2.6.1.5 Pastry displayed in glass box
Figure 2.6.1.6 Counter to serve customer and to make coffee
Discussion
Zone A consists of three different light fixtures, to create different ambience at the area base on different
functions. There is no much different during daytime where the readings are almost the same, the readings
are higher only when it is closed to the translucent plastic panel along the parameter. At night, the counter
area is brighter as it act as a space to serve customer, in order to provide a clearer vision for customer to
look at the menu, while the lighting effect of the other dining area is depends on the position of the light
fixture.
Page | 48
2.6.2 Zone B
Figure 2.6.2.1 Panoramic view of Zone B
Observation
Zone B is one of the eating areas in PULP. Furniture provided for this zone is different with other zones as
well as the lighting effect. The readings collected at this zone are lower at morning and higher at night due
to the openings and also type of lighting provided.
Discussion
Figure 2.6.2.2 Furniture provided at Zone B
Page | 49
Figure 2.6.2.3 Openings at Zone B during day and night
Figure 2.6.2.4 Romantic ambience creating by lighting effect at Zone B at night
Page | 50
Figure 2.6.2.5 Light Fixtures at Zone B
At night, the space is brighter as the LED multilightbar is right above the seatings, and the light reflecting
from ceiling and glasses successfully brighten up this zone. The lighting condition is already perfect as it
provide sufficient daylight during daytime while at night, it also create a warm ambience for customer to
enjoy the atmosphere. It is more suitable for a closer interaction.
Page | 51
2.6.3 Zone C
Figure 2.6.3.1 Panoramic View of Zone C
Observation
Zone C is an area where all the apparatus and machines are kept. The reading for this zone is the highest
at night and the lowest during day time.
Discussion
Figure 2.6.3.2 large quantity of LED down light at Zone C
Page | 52
Figure 2.6.3.3 Apparatus and machines placed at Zone C
Figure 2.6.3.4 Laminated wood shelves at Zone C
At Zone C, the reason of light readings is the lowest at day because it does not have any openings
direct to outdoor. Sandwiched by zone B and the store room, zone C is the darkest zone at day; while at
night, large amount of down lights located right on top the apparatus and machines, light reflects and it
bright up the whole space. This zone need to be the brightest as zone C is a working space where the stuff
need to go in and out to prepare food and beverages.
Page | 53
2.7 Conclusion
In a conclusion, PULP has more than average daylight due to the selection of material which is
glass, and translucent wall panel as main faรงade. While for the interior, the use of fiberglass with aluminium
as material for ceiling successfully reflects light to bright up the interior. The cafรฉ receives sufficient day
lighting focuses on certain area with the aid of glass wall at the entrance. While at night, the use of artificial
light is about to reach the standard, but the overall environment is warm to provide a very calm ambience
for the customer. The use of dim light bulb has become a trend in many cafes.
In order to create a pleasing working environment, additional lightings should be add on at certain
area, for example Zone C, for a better environment to work. Different arrangement can be applied with the
combination of several types of luminaires in the spaces. Florescent light can be added to create equal
luminance throughout the space as beam angle spreads. The sharp angle of the light catches any variation
in the surface it shines upon, creating sharp shadows that give the walls life and dimension. White or gently
warm LED light can be added so that foods and people look better under white light than they do under
intense color.
Page | 54
3.1 LITERATURE REVIEW
3.1.1 SOUND
The sensation stimulated in the organs of hearing by mechanical radiant energy transmitted as longitudinal
pressure waves through the air or other medium.
3.1.2 ARCHITECTURE ACOUSTIC
Architecture acoustic is the science of controlling sound in a space which might include the design of spaces,
structures and mechanical system that meet the hearing needs for instance concert hall, classroom and etc.
Building acoustic is vital in attaining sound quality that is appropriate for a space. Pleasing sound quality and
safe sound level are very important for creating suitable mood and safety in a space but it is hard to be
achieved without proper design effort. The acoustic mood created in a space is highly affected by the buffer
from the building exterior outdoor noise and building interior design and indoor noise.
3.1.3 SOUND PRESSURE LEVEL
Sound pressure is the difference between the pressure produced by a sound wave and the barometric
(ambient) pressure at the same point in space, symbol p or p. Sound pressure level are used in measuring
the magnitude of sound in decibel (dB).
Page | 55
3.1.4 REVERBERATION TIME
Reverberation, in acoustics, is the persistence of sound after a sound is produced. A reverberation, or reverb,
is created when a sound or signal is reflected causing a large number of reflections to build up and then
decay as the sound is absorbed by the surfaces of objects in the space โ€“ which could include furniture,
people, and air. This is most noticeable when the sound source stops but the reflections continue, decreasing
in amplitude, until they reach zero amplitude.
The time it takes for a signal to drop by 60 dB is the reverberation time. Reverberation time (RT) is an
important index for describing the acoustical quality of an enclosure.
where: RT = reverberation time (sec)
V = volume of the room (cu.m)
A = total absorption of room surfaces (sq.m sabins)
3.1.5 SOUND REDUCTION INDEX
Sound pressure is the difference, in a given medium, between average local pressure and the pressure in
the sound wave. The Sound Reduction Index SRI or Transmission Loss TL of a partition measure the
number of decibels lost when a sound of a given frequency is transmitted through the partition.
Where TL= transmission loss
Page | 56
3.2 ACOUSTIC PRECEDENT STUDIES
CAVE RESTAURANT BY KOICHI TAKADA
Figure 3.2.1. (Source: http://architectureau.com/articles/ocean-room-and-cave/#img=2)
The Cave Restaurant was planned by Koichi Takada Architects with the acoustics built in. It is located
in Sydney, Australia. Initially, the design theme originated from a reality that the planners needed an eatery
which considered an acoustic as the principle centered component. Timber ribs are the fundamental
materials utilized as a part of this place. โ€œMy work is often concerned with the invisible,โ€ says Koichi Takada.
We are standing under his forty-thousand-piece balsa chandelier at the Ocean Room in Sydney Harbour. โ€œIn
every project I try to respond to a central idea that affects the senses, but in a subtle, indiscernible way.
Sound, shadow, light and texture - these are ideas that really excite me,โ€ he explains. Itโ€™s an idea that Takada
has pushed to the limit in another of his latest projects, a Sushi Train franchise restaurant in Maroubra which
he has dubbed โ€œThe Cave.โ€ โ€œIt was my umpteenth restaurant interior for the client,โ€ he explains. โ€œI felt that,
based on the brief and our history, it was time to push the boundaries. My first instinct was to address the
issue of acoustics โ€“ most popular establishments are really noisy. It is important to me that my design results
in a comfortable and pleasant place to eat.โ€ Through an intensive process of experimentation with various
materials and their acoustic properties, Takada generated the idea of a cave-like shape, composed of
Page | 57
laminated plywood pieces, forming the walls and ceiling of the space. Each curved shape, various bread
jointed fragments, was then cut utilizing refined three-dimensional programming instruments before being
physically fitted together on location. The outcome is amazing - a muted decibel level, notwithstanding when
the eatery is at limit. It's a comparative ordeal to remaining in the Ocean Room where the sound-retentive
characteristics of the timber keeps the foundation buzz to a base.
Figure 3.2.2 (Source: https://www.google.com/maps/place/Sushi+Train+Maroubra/@-
33.9043549,151.1958412,12z/data=!4m8!1m2!2m1!1scave+restaurant+sydney!3m4!1s0x6b12b3d15bd51425:0xd6f11c457ebc0
ae8!8m2!3d-33.943486!4d151.240306)
3.2.1 EXTERNAL AND INTERNAL NOISES
In this case, the timbers were arranged at regular intervals down the length of the space, absorbing
sound and promoting a good dining noises as well as acting to divide individual seating into their own
acoustical zones. Once the visitors entered this restaurant, they were totally screened off from the clamor of
the city outside. The timber ribs additionally veil a current ventilation conduit that runs corner to corner over

More Related Content

What's hot

Bscience report
Bscience reportBscience report
Bscience report
kerneng
ย 
Lighting design concept for hotels bars restaurants
Lighting design concept for hotels bars restaurantsLighting design concept for hotels bars restaurants
Lighting design concept for hotels bars restaurants
Martin Weiser
ย 
Final bscience report compilation
Final bscience report compilationFinal bscience report compilation
Final bscience report compilation
kerneng
ย 
Building science ii final report
Building science ii final reportBuilding science ii final report
Building science ii final report
michelle siaw
ย 

What's hot (19)

B science 2 project 1
B science 2 project 1B science 2 project 1
B science 2 project 1
ย 
BUILDING SCIENCE II: ACOUSTICS AND LIGHTING ANALYSIS OF DONUTES CAFE, SS15
BUILDING SCIENCE II: ACOUSTICS AND LIGHTING ANALYSIS OF DONUTES CAFE, SS15BUILDING SCIENCE II: ACOUSTICS AND LIGHTING ANALYSIS OF DONUTES CAFE, SS15
BUILDING SCIENCE II: ACOUSTICS AND LIGHTING ANALYSIS OF DONUTES CAFE, SS15
ย 
Building science 2 report pdf
Building science 2 report pdfBuilding science 2 report pdf
Building science 2 report pdf
ย 
Lighting & Acoustic Performance Evaluation and Design
Lighting & Acoustic Performance Evaluation and DesignLighting & Acoustic Performance Evaluation and Design
Lighting & Acoustic Performance Evaluation and Design
ย 
Bscience report
Bscience reportBscience report
Bscience report
ย 
Bscience 2-project-2
Bscience 2-project-2Bscience 2-project-2
Bscience 2-project-2
ย 
Acoustic Analysis Project 1
Acoustic Analysis Project 1Acoustic Analysis Project 1
Acoustic Analysis Project 1
ย 
Building science 2 project 1
Building science 2 project 1Building science 2 project 1
Building science 2 project 1
ย 
Building science 2 project 2 light integration
Building science 2 project 2 light integrationBuilding science 2 project 2 light integration
Building science 2 project 2 light integration
ย 
Building Science 1 (Project 1)
Building Science 1 (Project 1)Building Science 1 (Project 1)
Building Science 1 (Project 1)
ย 
Lighting and Acoustic Performance - Absolute Coffee
Lighting and Acoustic Performance - Absolute CoffeeLighting and Acoustic Performance - Absolute Coffee
Lighting and Acoustic Performance - Absolute Coffee
ย 
Lighting design concept for hotels bars restaurants
Lighting design concept for hotels bars restaurantsLighting design concept for hotels bars restaurants
Lighting design concept for hotels bars restaurants
ย 
Architecture lighting thesis presentation
Architecture lighting thesis presentationArchitecture lighting thesis presentation
Architecture lighting thesis presentation
ย 
Light and shadow
Light and shadowLight and shadow
Light and shadow
ย 
219291453 interior-lighting
219291453 interior-lighting219291453 interior-lighting
219291453 interior-lighting
ย 
Final bscience report compilation
Final bscience report compilationFinal bscience report compilation
Final bscience report compilation
ย 
Building Science II
Building Science IIBuilding Science II
Building Science II
ย 
Building science ii final report
Building science ii final reportBuilding science ii final report
Building science ii final report
ย 
Light and architecture
Light and architectureLight and architecture
Light and architecture
ย 

Viewers also liked (8)

Gestao de combustivel
Gestao de combustivelGestao de combustivel
Gestao de combustivel
ย 
20090715 64congresso Bh Fabiano Fonseca
20090715 64congresso Bh Fabiano Fonseca20090715 64congresso Bh Fabiano Fonseca
20090715 64congresso Bh Fabiano Fonseca
ย 
Apresentaรงรฃo seguranรงa no armazenamento de combustรญveis
Apresentaรงรฃo seguranรงa no armazenamento de combustรญveisApresentaรงรฃo seguranรงa no armazenamento de combustรญveis
Apresentaรงรฃo seguranรงa no armazenamento de combustรญveis
ย 
Diapositiva calibracion-de-tanques-de-hidrocarburos
Diapositiva calibracion-de-tanques-de-hidrocarburosDiapositiva calibracion-de-tanques-de-hidrocarburos
Diapositiva calibracion-de-tanques-de-hidrocarburos
ย 
Armazenamento Em Tanques - Estudante do curso INSPETOR DE EQUIPAMENTOS
Armazenamento Em Tanques - Estudante do curso INSPETOR DE EQUIPAMENTOSArmazenamento Em Tanques - Estudante do curso INSPETOR DE EQUIPAMENTOS
Armazenamento Em Tanques - Estudante do curso INSPETOR DE EQUIPAMENTOS
ย 
Calibracion.de.tanques.y.recipientes.en.plantas
Calibracion.de.tanques.y.recipientes.en.plantasCalibracion.de.tanques.y.recipientes.en.plantas
Calibracion.de.tanques.y.recipientes.en.plantas
ย 
Llenado de tanques
Llenado de tanquesLlenado de tanques
Llenado de tanques
ย 
PHP: Linguagem + Mysql + MVC + AJAX
PHP: Linguagem + Mysql + MVC + AJAX PHP: Linguagem + Mysql + MVC + AJAX
PHP: Linguagem + Mysql + MVC + AJAX
ย 

Similar to Bscience group proj

Tryst final
Tryst finalTryst final
Tryst final
Celine Tan
ย 

Similar to Bscience group proj (20)

Building science ii project 1 compiled
Building science ii project 1 compiledBuilding science ii project 1 compiled
Building science ii project 1 compiled
ย 
Building Science II
Building Science IIBuilding Science II
Building Science II
ย 
Building Science 2
Building Science 2Building Science 2
Building Science 2
ย 
Light report compiled
Light report compiledLight report compiled
Light report compiled
ย 
Final bscience report compilation
Final bscience report compilationFinal bscience report compilation
Final bscience report compilation
ย 
Illumination of an IT building
Illumination of an IT buildingIllumination of an IT building
Illumination of an IT building
ย 
Building science 2 P1 report pdf
Building science 2 P1 report pdfBuilding science 2 P1 report pdf
Building science 2 P1 report pdf
ย 
Report Bscience 2 Evaluation Performance Lighting & Acoustics
Report Bscience 2 Evaluation Performance Lighting & AcousticsReport Bscience 2 Evaluation Performance Lighting & Acoustics
Report Bscience 2 Evaluation Performance Lighting & Acoustics
ย 
LIGHTING
LIGHTINGLIGHTING
LIGHTING
ย 
Building science 2 final report
Building science 2 final reportBuilding science 2 final report
Building science 2 final report
ย 
School of architecture
School of architectureSchool of architecture
School of architecture
ย 
Building Science Project 2 Report
Building Science Project 2 ReportBuilding Science Project 2 Report
Building Science Project 2 Report
ย 
Bscience 2 report
Bscience 2 reportBscience 2 report
Bscience 2 report
ย 
Building Science 2 Project 2 Report
Building Science 2 Project 2 ReportBuilding Science 2 Project 2 Report
Building Science 2 Project 2 Report
ย 
Building Science II: Studio V Integration
Building Science II: Studio V IntegrationBuilding Science II: Studio V Integration
Building Science II: Studio V Integration
ย 
Tryst final
Tryst finalTryst final
Tryst final
ย 
Building Science Project 2 Integration Report Calculation
Building Science Project 2 Integration Report CalculationBuilding Science Project 2 Integration Report Calculation
Building Science Project 2 Integration Report Calculation
ย 
Lighting and energy efficiency; KAED Gallery of International Islamic Univers...
Lighting and energy efficiency; KAED Gallery of International Islamic Univers...Lighting and energy efficiency; KAED Gallery of International Islamic Univers...
Lighting and energy efficiency; KAED Gallery of International Islamic Univers...
ย 
B.science ii final
B.science ii finalB.science ii final
B.science ii final
ย 
Building Science P02
Building Science P02Building Science P02
Building Science P02
ย 

More from jerryycc (20)

Project management container pavilion
Project management container pavilionProject management container pavilion
Project management container pavilion
ย 
Studio 6 Design Report
Studio 6 Design ReportStudio 6 Design Report
Studio 6 Design Report
ย 
Project Management Project 2
Project Management Project 2Project Management Project 2
Project Management Project 2
ย 
Sem 6 site analysis
Sem 6 site analysisSem 6 site analysis
Sem 6 site analysis
ย 
Internship Log Sheet and Report
Internship Log Sheet and ReportInternship Log Sheet and Report
Internship Log Sheet and Report
ย 
Building technology
Building technologyBuilding technology
Building technology
ย 
Petaling st analysis
Petaling st analysisPetaling st analysis
Petaling st analysis
ย 
Precedent study sep 2016
Precedent study sep 2016Precedent study sep 2016
Precedent study sep 2016
ย 
Slide petaling st
Slide petaling stSlide petaling st
Slide petaling st
ย 
Print theory
Print theoryPrint theory
Print theory
ย 
reaction paper
reaction paperreaction paper
reaction paper
ย 
Bscience
Bscience Bscience
Bscience
ย 
Aa paper
Aa paperAa paper
Aa paper
ย 
Aa slide cyc
Aa slide cycAa slide cyc
Aa slide cyc
ย 
Proposal aa
Proposal aaProposal aa
Proposal aa
ย 
Site
SiteSite
Site
ย 
Drawings
DrawingsDrawings
Drawings
ย 
Sketch
SketchSketch
Sketch
ย 
Bcon report
Bcon reportBcon report
Bcon report
ย 
04.06.15 essay-proofread
04.06.15 essay-proofread04.06.15 essay-proofread
04.06.15 essay-proofread
ย 

Recently uploaded

Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
delhimunirka15
ย 
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu DhabiMussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
romeke1848
ย 
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptxEngineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
DanielRemache4
ย 
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
Nitya salvi
ย 
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
Nitya salvi
ย 
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
delhimunirka15
ย 
THE ARTS OF THE PHILIPPINE BALLET PRESN
THE ARTS OF  THE PHILIPPINE BALLET PRESNTHE ARTS OF  THE PHILIPPINE BALLET PRESN
THE ARTS OF THE PHILIPPINE BALLET PRESN
AlvinFerdinandAceCas
ย 
Van Gogh Powerpoint for art lesson today
Van Gogh Powerpoint for art lesson todayVan Gogh Powerpoint for art lesson today
Van Gogh Powerpoint for art lesson today
lucygibson17
ย 
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
delhimunirka15
ย 
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
mvxpw22gfc
ย 

Recently uploaded (20)

Call Girls Sultanpur Just Call ๐Ÿ“ž 8617370543 Top Class Call Girl Service Avail...
Call Girls Sultanpur Just Call ๐Ÿ“ž 8617370543 Top Class Call Girl Service Avail...Call Girls Sultanpur Just Call ๐Ÿ“ž 8617370543 Top Class Call Girl Service Avail...
Call Girls Sultanpur Just Call ๐Ÿ“ž 8617370543 Top Class Call Girl Service Avail...
ย 
Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
Pari Chowk Call Girls โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuine...
ย 
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu DhabiMussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
Mussafah Call Girls +971525373611 Call Girls in Mussafah Abu Dhabi
ย 
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptxEngineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
Engineering Major for College_ Environmental Health Engineering by Slidesgo.pptx
ย 
Azamgarh Call Girls WhatsApp Chat: ๐Ÿ“ž 8617370543 (24x7 ) Service Available Nea...
Azamgarh Call Girls WhatsApp Chat: ๐Ÿ“ž 8617370543 (24x7 ) Service Available Nea...Azamgarh Call Girls WhatsApp Chat: ๐Ÿ“ž 8617370543 (24x7 ) Service Available Nea...
Azamgarh Call Girls WhatsApp Chat: ๐Ÿ“ž 8617370543 (24x7 ) Service Available Nea...
ย 
Jaunpur Escorts Service Girl ^ 9332606886, WhatsApp Anytime Jaunpur
Jaunpur Escorts Service Girl ^ 9332606886, WhatsApp Anytime JaunpurJaunpur Escorts Service Girl ^ 9332606886, WhatsApp Anytime Jaunpur
Jaunpur Escorts Service Girl ^ 9332606886, WhatsApp Anytime Jaunpur
ย 
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
Call Girls In Sindhudurg Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service E...
ย 
Khambhalia Escorts 8617370543 Khambhalia Call Girls Service
Khambhalia Escorts 8617370543 Khambhalia Call Girls ServiceKhambhalia Escorts 8617370543 Khambhalia Call Girls Service
Khambhalia Escorts 8617370543 Khambhalia Call Girls Service
ย 
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
Russian Call Girls Lucknow Just Call ๐Ÿ‘‰๐Ÿ‘‰ ๐Ÿ“ž 8617370543 Top Class Call Girl Serv...
ย 
Call Girls Mehsana - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you with...
Call Girls Mehsana - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you with...Call Girls Mehsana - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you with...
Call Girls Mehsana - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you with...
ย 
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
Azad Nagar Call Girls ,โ˜Ž๏ธ ((#9711106444)), ๐Ÿ’˜ Full enjoy Low rate girl๐Ÿ’˜ Genuin...
ย 
THE ARTS OF THE PHILIPPINE BALLET PRESN
THE ARTS OF  THE PHILIPPINE BALLET PRESNTHE ARTS OF  THE PHILIPPINE BALLET PRESN
THE ARTS OF THE PHILIPPINE BALLET PRESN
ย 
Van Gogh Powerpoint for art lesson today
Van Gogh Powerpoint for art lesson todayVan Gogh Powerpoint for art lesson today
Van Gogh Powerpoint for art lesson today
ย 
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
9711106444 Ghaziabad, Call Girls @ โ‚น. 1500โ€“ Per Shot Per Night 7000 Delhi
ย 
Call Girls Bhavnagar - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you wi...
Call Girls Bhavnagar - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you wi...Call Girls Bhavnagar - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you wi...
Call Girls Bhavnagar - ๐Ÿ“ž 8617370543 Our call girls are sure to provide you wi...
ย 
Call Girls In Firozabad Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service En...
Call Girls In Firozabad Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service En...Call Girls In Firozabad Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service En...
Call Girls In Firozabad Escorts โ˜Ž๏ธ8617370543 ๐Ÿ” ๐Ÿ’ƒ Enjoy 24/7 Escort Service En...
ย 
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
Museum of fine arts Lauren Simpsonโ€ฆโ€ฆโ€ฆโ€ฆ..
ย 
Russian Call Girls In Bhubaneswar ๐Ÿ“ฑ Odisha 9777949614 Indore
Russian Call Girls In Bhubaneswar ๐Ÿ“ฑ Odisha 9777949614 IndoreRussian Call Girls In Bhubaneswar ๐Ÿ“ฑ Odisha 9777949614 Indore
Russian Call Girls In Bhubaneswar ๐Ÿ“ฑ Odisha 9777949614 Indore
ย 
Jaro je tady - Spring is here (Judith) 3
Jaro je tady - Spring is here (Judith) 3Jaro je tady - Spring is here (Judith) 3
Jaro je tady - Spring is here (Judith) 3
ย 
SB_ Scott Pilgrim_ Rough_ RiverPhan (2024)
SB_ Scott Pilgrim_ Rough_ RiverPhan (2024)SB_ Scott Pilgrim_ Rough_ RiverPhan (2024)
SB_ Scott Pilgrim_ Rough_ RiverPhan (2024)
ย 

Bscience group proj

  • 1. SCHOOL OF ARCHITECTURE. BUILDING AND DESIGN BACHELOR OF SCIENCE (HONS) IN ARCHITECTURE BUILDING SCIENCE 2 (BLD61303) __________________PULP BY PAPA PALHETA @ BANGSAR, KUALA LUMPUR_______________ Angoline Boo Lee Zhuang 0316144 Chong Yee Ching 0316102 Lai Jia Yi 0315957 Muhammad Muzhammil bin Azham 0311446 Ng Ming Hwee 0319511 Kelvin Fong Jia Zheng 0317166 TUTOR: MR MOHAMED RIZAL
  • 2. CONTENTS PAGE 1.0 INTRODUCTION 1.1 Aim and Objective 1 1.2 Site Information 1-2 1.2.1 Site Introduction 1.2.2 Site Selection Reasons 1.3 Measured Drawings 2-3 1.3.1 Ground Floor Plan 1.3.1 Section A-Aโ€™ 1.3.2 Section B-Bโ€™ 2.0 LIGHTING PERFORMANCE EVALUATION 2.1 Literature Review 4-6 2.1.1 Lighting 2.1.2 Lumen 2.1.3 Illuminance 2.1.4 Brightness & Illuminance 2.1.5 Natural daylighting & Artificial lighting 2.1.6 Daylight factor 2.1.7 Lumen method 2.2 Precedent Studies 7-12 2.2.1 Design Strategies 2.2.2 Existing Light Source 2.2.3 Conclusion 2.3 Research Methodology 13-14 2.3.1 Lighting Data Collection Equipment 2.3.2 Lighting Data Collection Method 2.4 Case Study 15-53 2.4.1 Site Introduction 2.4.2 Zoning
  • 3. 2.4.3 Materials 2.4.4 Light Specifications 2.4.5 Lux Reading and Light Contour Diagram 2.5 Lighting Data Analysis 2.5.1 Zone A (Public Dinning Area) 2.5.2 Zone B (Cafรฉ Room Divider) 2.5.3 Zone C (Cafรฉ Room Divider) 2.6 Observation and Discussion 2.7 Conclusion 3.0 ACOUSTIC PERFORMANCE EVALUATION 3.1 Literature Review 54-55 3.1.1 Sound 3.1.2 Architecture Acoustic 3.1.3 Sound Pressure Level 3.1.4 Reverberation Level 3.1.5 Sound Reduction Index 3.2 Precedent Studies 56-61 3.2.1 External and Internal Noises 3.2.2 Design Strategies 3.2.3 Conclusion 3.3 Research Methodology 62-63 3.3.1 Acoustic Data Collection Equipment 3.3.2 Acoustic Data Collection Method 3.4 Case Study 64-112
  • 4. 3.5 Existing Noise Sources 3.5.1 External Noise 3.5.2 Internal Noise 3.6 Material and Properties 3.7 Acoustic Tabulation and Analysis 3.7.1 Sound Level Measurement 3.7.2 Reverberation Time 3.7.3 Sound Reflection Index 4.0 BIBLOGRAPHY 113
  • 5. Page | 1 1.0 INTRODUCTION 1.1 AIM AND OBJECTIVE The aim and objective of conducting this study is to understand and explore on day lighting, artificial lighting performance and characteristics as well as acoustic performance and characteristics in a suggested space. Through understanding of the site and its surrounding aid in producing a critical and analytical report which educate students the ways of designing a good lighting and acoustic system. 1.2 SITE INFORMATION 1.2.1 SITE INTRODUCTION PULP is a new cafรฉ that located at Jalan Riong which in the Bangsar area. PULP is the single storey building which rests in between the Riong's Balai Berita building and the head office of the New Straits Times Press. PULP isnโ€™t just a cafe. Housed in the old paper-cutting space of Art Printing Works, PULPโ€™s interior is designed to be functional; perhaps in homage to its roots. The site was built in 1965, and The Royal Press and Art Printing Works were in the process of revamping it when the Papa Palheta came along. There was enough of a link between the ethos of each business that they decided to collaborate, and, as you may have already gleaned, the name gives a nod to pulp in both the paper- and coffee-making processes. Figure 1.2.1.1 Exterior view of the cafe
  • 6. Page | 2 1.2.2 SITE SELECTION REASONS The pedigree, experience & expertise of the people behind PULP ensure that it's well worth visiting. This is a welcoming cafe with a friendly team, easygoing vibe, singular look & clean layout; even with the legion of coffee bars stirring in the Klang Valley every week, PULP looks to be one of 2014's best bets. 1) The interior of the cafe is well lit with natural lighting during daytime due to the materials used. 2) Double volume space create a sense of openness in the enclosed interior space. 3) Artificial lighting are well used to create comfortable vibe in the cafรฉ. 1.3 MEASURED DRAWING 1.3.1 GROUND FLOOR PLAN Figure 1.2.2.1 Interior view during daytime Figure 1.2.2.2 Exterior view during night time Figure 1.3.1 Ground floor plan
  • 7. Page | 3 1.3.2 SECTION A-Aโ€™ 1.3.3 SECTION B-Bโ€™ Figure 1.3.2 Section A-Aโ€™ Figure 1.3.3 Section B-Bโ€™
  • 8. Page | 4 2.0 LIGHTING STUDY 2.1 LITERATURE REVIEW 2.1.1 LIGHTING Lighting or illumination is the deliberate use of light to achieve a practical or aesthetic effect. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting (using windows, skylights, or light shelves) is sometimes used as the main source of light during daytime in buildings. 2.1.2 LUMEN The lumen (symbol: lm) is the SI derived unit of luminous flux, a measure of the total quantity of visible light emitted by a source. Luminous flux differs from power (radiant flux) in that radiant flux includes all electromagnetic waves emitted, while luminous flux is weighted according to a model of the human eye's sensitivity to various wavelengths. Lumens are related to lux in that one lux is one lumen per square meter. 2.1.3 ILLUMINANCE Illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. 2.1.4 BRIGHTNESS & ILLUMINANCE Illuminance was formerly often called brightness, but this leads to confusion with other uses of the word, such as to mean luminance. "Brightness" should never be used for quantitative description, but only for non- quantitative references to physiological sensations and perceptions of light. .
  • 9. Page | 5 2.1.5 NATURAL DAYLIGHTING & ELECTRICAL ARTIFICIAL LIGHTING Natural light is the light generated naturally. The most common source of natural light on Earth is the Sun. We receive natural light throughout our sunlight hours, whether we want it or not. That is, we cannot control the amount, duration and intensity of the natural light. The light we obtain from Sun covers the entire visible spectrum, with violet at one end and red at the other. This light is good for our health and is necessary for plants to carry out photosynthesis. Fire is another source of natural light. Artificial light is generated by artificial sources, such as incandescent lamps, compact fluorescent lamps (CFLs), LEDs, etc. We can control the quality, quantity and duration of this light by controlling a number of factors. Artificial light is necessary for us to work during hours of low lighting (evening and/or night). The artificial light does not cover the entire light spectrum and is not too conducive to photosynthesis or health of life forms. 2.1.6 DAYLIGHT FACTOR It is a ratio that represents the amount of illumination available indoors relative to the illumination present outdoors at the same time under overcast skies. Daylight factor is usually to obtain the internal natural lighting levels as perceived on a plane or surface, in order to determine the sufficient of natural lighting for the users in a particular space to conduct their activities. It is also simply known to be the ratio of internal light level to external light level, as shown below: Daylight Factor, DF Indoor Illuminance, Ei Outdoor Illuminance, Eo Where, Ei = Illuminance due to daylight at a point on the indoor working plances, Eo = Simultaneous outdoor illuminance on a horizontal plane from an unobstructed hemisphere of overcast sky.
  • 10. Page | 6 2.1.7 LUMEN METHOD Lumen method is used to determine the number of lamps that should be installed in a space. This can be done by calculating the total illuminance of the space based on the number of fixtures and determine whether or not that particular space has enough lighting below: Where, N = Number of lamps required. illuminance level E = required (lux) A = area at working plane height (m2) F = initial luminous flux from each lamp (lm) UF = utilization factor, an allowance for the light distribution of the luminaire and the room surfaces. MF = maintenance factor, an allowance for reduced light output because of deterioration and dirt Room Index, RI, is the ratio of room plan area to half wall area between the working and luminaire planes. Which can be calculated by: Where, L = Length of room W = Width of room Hm = Mounting height, the vertical distance between the working plane and the luminaire
  • 11. Page | 7 2.2 LIGHTING PRECEDENT STUDIES OJALA Cafรฉ Figure 2.2.1 (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Ojala Cafรฉ had Andrรฉs Jaque as the architect designer and it is located in Calle de San Andrรฉs, 1, 28004 Madrid, Madrid, Spain. Collaborating with Sebastian Bech-Ravn, Ljubo Dragomirov, Roberto Gonzรกlez Garcรญa, Senne Meesters, William Mondejar, Jorge Noguera Facuseh, Silvia Rueda Cuellar, JarcฬŒa Slamova, this project was done in 2014 and with the advice of Juan Pablo Prieto (Technical Architect), Miguel de Guzman (Photographer) and Jorge Lopez Conde (Graphic Design). It has a well-planned lighting system that illuminates natural and artificial lighting throughout the building. Figure 2.2.2 Ground Floor Plan (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.3 First Floor Plan (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
  • 12. Page | 8 2.2.1 DESIGN STRATEGIES The concept of the cafรฉ from an architectural response to the social diversity and community of the locals living in Malasana according to the architectโ€™s point of view. A community or a diversity that manifests itself in everyday life as an accumulation of various ways to talk, meet, eat and drink. The design of the cafรฉ has an indoor and outdoor relation whereby it creates a continuous space where everyone can be establish and be involved to stay aware of each otherโ€™s action. In order to maintain such relationship across spatial boundaries, the cafรฉ has installed number of glass doors, which can be seen in Figure 1.1.2.2. In addition, shows that a geometric like glass wall is placed connecting the transition spaces between the eating area and the entrance. Where the geometric glass divider mirrors the inexhaustible characteristic light coming in and making an iridescent common lighting impact. Subsequently, clients can appreciate espresso in bistro space, while looking open air and indoor through glass entryways and the geometric glass divider. Furthermore, unique lighting apparatuses are utilized as a part of various spaces of the bistro. Many hued halogen globules and brilliant bulbs are utilized inside the entire bistro to make diverse spatial encounters. Figure 2.2.4 Section A-Aโ€™ (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.5 Section D-Dโ€™ (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
  • 13. Page | 9 Figure 2.2.1.3 (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.1.1 (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.1.2 (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
  • 14. Page | 10 Figure 2.2.1.6 (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.1.4 (Source: http://www.archdaily.com/621388/ojala-andres-jaque) Figure 2.2.1.5 (Source: http://www.archdaily.com/621388/ojala-andres-jaque)
  • 15. Page | 11 2.2.2 EXISTING LIGHT SOURCE
  • 16. Page | 12 2.2.3 CONCLUSION LIGHT ANALYSIS DIAGRAM The Ojala Cafรฉ has a low lighting design and depend more on daylighting to enlighten its spaces. The lux level amid the day-time is around 300 lux which is only decent for a cafe bistro, yet at evening time the lux level is reduced to normal 150 lux due to the lack of daylighting. A few architectural lighting can be spotted in the space, the colored wall and cabinet bulbs to brighten up the spaces and gives the mood for the interior design even with daylight. Other than that, the material utilization and shading gives the lighting a congruous and difference relationship relying upon the separating of space.
  • 17. Page | 13 2.3 METHODOLOGY OF LIGHTING RESEARCH 2.3.1 LIGHTING DATA COLLECTION EQUIPMENT (a) Lux Meter Lux meter is an electronic equipment that measures luminous flux per unit area and illuminance level. The device picks up accurate reading as it is sensitive to illuminance. The lux meter registers brightness with an integrated photodetector. The photodetector is held perpendicular to the light source for optional exposure. Readout are presented via LCD display. The model of lux meter used in this case study is Lux LX-101. (b) Camera Camera is used to capture the type of furniture and materials that used on the site. Other than that, it also used to capture the light condition of the place and also capture the lighting appliances. LCD display Interface Tether Photodetector Figure 2.3.1.1 Lux Meter
  • 18. Page | 14 (c) Laser Measuring Device It is used to measure the 1.0m and 1.5m height to make sure the lux meter is position at a constant height. The tape also used to measure the dimension of the site and the distance between the light fixtures. 2.3.2 LIGHTING DATA COLLECTION METHOD Lighting measurement were taken on the same day in two different period of time, which is 12-2pm (daytime) and 8-10pm (nighttime) which we able to clearly differentiate the different lighting qualities in both times. 1) Identified the type of light source and indicate on the floor plan. 2) 1.5m x 1.5m gridlines are marked on the floorplan to provide a proper standard for the data collection. 3) Measurement is taken at 1.5m and 1.0m at each intersection point of the gridlines at daytime and nighttime. 4) Procedure 3 is repeated. Figure 2.3.2.1 Section diagram
  • 19. Page | 15 2.4 CASE STUDY 2.4.1 SITE INTRODUCTION Figure 2.4.1.1 Location of PULP by Papa Palheta Figure2.4.1.2 Spatial arrangement of PULP at the area
  • 20. Page | 16 Figure 2.4.1.3 Exterior view of PULP at daytime . Figure 2.4.1.4 Exterior view of PULP at night time
  • 21. Page | 17 Pulp by Papa Palheta is a newly open specialty coffee bar, located at Jalan Riong, Bangsar. The store resides within the premises of Art Printing Works, a historical printing plant which still functions since 1965. It is a single storey building, with a modern looking faรงade, built by mainly glass and steel. It successfully create a sense of openness, blur the boundary within inside and outside. Figure 2.4.1.5 Glass Facade create sense of openness The cafรฉ is where mostly office staff relax after long hours of work during weekdays. While during weekend, the cafรฉ is almost full house from day to night. Peak hours of PULP is usually from afternoon to evening. The building itself is situated along the main road, surrounded by several industrial building, but due to its strategic location, which is quite hidden from the city, it will not disturb by transportation noise pollution. Faรงade of the building allows large amount of natural sunlight to penetrate in during day time, besides being illuminated with artificial lightings.
  • 22. Page | 18 Figure 2.4.1.6 Interior space during daytime Figure 2.4.1.7 Interior space during night time
  • 23. Page | 19 2.4.2 ZONING ZONE A (PUBLIC DINING AREA) ZONE B (CAFร‰ ROOM DIVIDER) ZONE C (SCULLERY) Zone A covered the entrances, coffee making area, and dining area. A total of 41 intersection points are covered in Zone A. Zone B is a cafรฉ room divider. It was separated from Zone C, which is the seating area to provide customers an enclosed space to enjoy their food and coffee. A total of 9 intersection points are covered in Zone B. Zone C covered the coffee making area, scullery and storage. A total of 15 intersection points are covered in Zone C. In a nutshell, there are a total of 65 points in these three zones.
  • 24. Page | 20 2.4.3 MATERIALS Laminated woodblock on solid floor Laminated wood Kitchen Shelves and wall Twin wall reinforced plastic panels Laminated Woodblock Floor Wood Panel Wall Reinforced Plastic Panel
  • 25. Page | 21 Concrete wall with plaster finish. Glass as the faรงade at one side of the cafรฉ Wood Frame with Laminated Tops An antique machine act as table Silver coffee machine Concrete wall Glass Wood Furniture Laminated wood panel counter table Steel Silver
  • 26. Page | 22 Component Material Colour Surface Finish Reflectance Value (%) Wall Concrete wall with plaster finish Dark Grey Matte 20 White Matte 80 Wood Panel Dark Brown Glossy 20 Ceiling Fibreglass with aluminium foil insulation Silver Glossy 55 Curtain Wall Aluminium Frame Black Matte 10 Glass Transparent Glossy 6 Reinforced Plastic Panel Semi- transparent Glossy 40 Floor Laminated Woodblock Floor Brown Glossy 20 Glass Door Aluminium Frame Black Matte 10 Glass Transparent Glossy 6 Furniture Wood Furniture Grey Glossy 10 Cafรฉ counter table Brown Glossy 20 Silver grey Glossy 55 Steel Silver Blue Glossy 40
  • 27. Page | 23 2.4.4 LIGHT SPECIFICATIONS Image Light Type Fluid Pendant Light Bulb Lamp Luminous Flux (lm) 800 lm Specification Life time approx. 4.000 hours Rated Colour Temperature 2700K Colour Rendering Index 100 (very good) Luminaire Type Decorative pendant Downward Wattage 60 Placement Ceiling Lamp Light Type Leadare LED Bulb Lamp Luminous Flux (lm) 400 lm Specification E27 Life time approx. 25.000 hours Rated Colour Temperature 5000K Colour Rendering Index 82 (very good) Luminaire Type Built in LED lamps Wattage 9 Placement Wall Lamp Light Type Lamp Luminous Flux (lm) 2250 lm Specification E27 Life time approx. 25.000 hours Rated Colour Temperature 3500K Colour Rendering Index 82 (very good) Luminaire Type Built in LED lamps Wattage 9 Placement Ceiling Light
  • 28. Page | 24 Light Type LED Downlight Lamp Luminous Flux 400 lm Specification Life time approx. 35.000 hours Rated Colour Temperature 5000K Colour Rendering Index 82 (very good) Luminaire Type Built in LED lamps Wattage 40 Placement Ceiling Lamp Light Type LED Surface Mounted Light Lamp Luminous Flux 740 lm Specification Life time approx. 15.000 hours Rated Colour Temperature 2700 K Colour Rendering Index 80 (very good) Luminaire Type Built in LED lamps Wattage 30 Placement Wall Light
  • 29. Page | 25 2.4.5 LUX READING AND LIGHT CONTOUR DIAGRAM DAYTIME (2-4PM), PEAK HOUR Figure 2.4.5.1 Daytime lux reading at PULP
  • 30. Page | 26 Figure 2.4.5.2 Daytime light contour diagram at PULP Lux reading as shown shows the lux level during 2pm to 4pm interval, which is the peak hour as PULP is always full house within the time. The artificial lighting were switched on while we were conducting data collection, but due to the translucent wall panel as the main faรงade for the building, the main source of light during daytime is the sunlight. Referring to diagram shown above, the readings for the inner space (Zone C) are lower as it rarely exposes to sunlight. The highest reading recorded is at the entrance area (Zone A), where the sunlight penetrates in through the glass faรงade.
  • 31. Page | 27 NIGHTTIME (7-9), NON PEAK HOUR Diagram 2.4.5.3 Daytime lux reading at PULP
  • 32. Page | 28 Figure 2.4.5.4 Night time light contour diagram at PULP According to the diagram shown above. The area rendered with blue and purple area has lower luminance level while red and orange area has higher luminance level. More LED spotlights are installed at Zone C, where the apparatus and machines are kept, to provide brighter environment for the stuff to work and thus exceed standard 200lux. While the luminance level is lower at the walkway towards kitchen. Referring to Figure 2.4.4.4, artificial light provide brightness to only targeted place, but generally the area is still considered as average as the amount of spotlight is high.
  • 33. Page | 29 2.5 LIGHTING ANALYSIS Figure 2.5.1 Floor plan indicating section cut
  • 34. Page | 30 2.5.1 ZONE A (Public Dining Area) 2.5.1.1 Indication of light sources and light distribution Figure 2.5.1.1.1 Floor plan indicating light source and distribution of zone A
  • 35. Page | 31 Figure 2.5.1.1.1 Section A-A diagram of Zone A showing light fixtures and light distribution Zone A is the main area of the cafรฉ for serving customer purpose. Making coffee counter and dessert display area are located at here as well. Large surface of this zone is covered by the reinforced plastic panel. This semi- transparent material let some of the outside natural light penetrates into this public dining area. Figure 2.5.1.1.2 Section B-B diagram of Zone A showing light fixtures and light distribution Some of the part of zone A is covered by the glass wall, it allows the natural light directly penetrates into the space of the dining area. This diagram is also showing the relationship between public dining area (Zone A) and cafรฉ room divider area (Zone B).
  • 36. Page | 32 2.5.1.2 Existing Light Fixture SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION Spotlight (multilightbar) 30 LED- PAR16 (spotlight) 2 LED spotlight 6 Leadare LED wall lamp 1
  • 37. Page | 33 2.5.1.3 Daylight Factor Calculation Zone A: Public Dining Area Time Weather Luminance at 1m height Average Luminance at 1.5m height Average 2pm -4pm Clear Sky 60- 4040 1128.5 lux 60- 3700 1242.9 lux Table 1 Lux Reading at Zone A Average Lux Reading 2pm- 4pm 1m 1128.5 1.5m 1242.9 Average lux value 1185.7 lux Table 2 Average Lux Value at Zone A Luminance Level Example 120,000 lux Brightest sunlight 110,000 lux Bright sunlight 20,000 lux Shade illuminated by entire clear blue sky, midday 1000 โ€“ 2000 lux Typical over cast day, midday 400 lux Sunrise or sunset on clear day(ambient illumination) <200 lux Extreme of darkest storm clouds, midday 40 lux Fully overcast, sunset/ sunrise < 1 lux Extreme of darkest storm cloud, sunset/ rise Table 3 Daylight intensity at different condition Date and Time 2pm- 4pm (1 October 2016) Average lux value reading (E internal) 1186 lux Daylight Factor Calculation Formula ๐ท๐น = ๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ร— 100% Standard direct sunlight (E external) 20,000 lux Calculation ๐ท๐น = 1186 20,000 ร— 100% = 5.93% DF. % Distribution >6 Very Bright With thermal and glare problem 3-6 Bright 1-3 Average 0-1 Dark Table 4 Daylight Factor, DF
  • 38. Page | 34 According to table provided in MS1525, the 5.9% daylight factor of public dining area is categorized under the bright category. That is because the public dining area is mostly covered by the reinforced plastic panel and glass wall. Therefore, the natural lighting are allowed to penetrate through the transparent and semi- transparent material into the space. Daylight play an important role in public dining area because it act as a main gathering space for the customer. At the same time, the lighting is sufficient for the working purpose of the cafรฉ counter at Zone A. The use of the reinforced plastic panel is perfectly controlling the exposure of the sunlight and provide the warm feeling in the space. 2.5.1.4 Calculation of luminance level in Zone A (Public Dining Area) Dimension of room (m) (5.27 x 12.36) + (3.84 x 1.2) + (1.78 x 3.27) Total floor area /m2 75.54 m2 Type of lighting fixtures Wall and ceiling light Type of lighting Spotlight 1 Spotlight 2 Spotlight 3 Wall lamp Number of lighting fixtures/ N 30 6 2 1 Lumen of lighting fixtures 800 740 400 2250 Height of luminaire (m) 3.6 2.3 Work level (m) 0.8 Mounting height/ H (hm) 2.8 1.5 Assumption of reflectance value Ceiling 0.5 Wall 0.4 Floor 0.2 Room Index/ RI (K) K= ( ๐ฟ ๐‘ฅ ๐‘Š (๐ฟ+๐‘€)โ„Ž๐‘š ) =( 10.89 ๐‘ฅ 16.83 (10.89+16.83)2.8 ) = 2.36 =( 10.89 ๐‘ฅ 16.83 (10.89+16.83)1.5 ) = 4.41 Utilization factor/ UF 0.57 0.63 Maintenance Factor 0.8 (standard) Standard Luminance (lux) 200 Illuminance Level (lux) E= ( ๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น) ๐ด ) 30 x 800 x 0.57 x 0.8 75.54 =144.88 lux 6 ๐‘ฅ 740 ๐‘ฅ 0.57 ๐‘ฅ 0.8 75.54 =26.8 lux 2 ๐‘ฅ 400 ๐‘ฅ 0.63 ๐‘ฅ 0.8 75.54 = 5.34 lux 1 ๐‘ฅ 2250 ๐‘ฅ 0.63 ๐‘ฅ 0.8 75.54 = 15.01 lux
  • 39. Page | 35 According to the MS1525, the standard luminance for a dining area should be 200 lux. While the calculation shows that zone A has almost reach the standard, which is 192.03. 2 lamps needed in order to reach the standard. However, the overall environment of zone A at night is already good enough to provide a warm and friendly ambience. Number of lighting fixture required to reach the required illuminance 144.88 + 26.8 + 5.34 + 15.01 = 192.03 200- 192.03 =7.97 lux 7.97 more lux is required to fulfil the MS1525 ๐‘ = ๐ธ ๐‘ฅ ๐ด ๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น N = 7.97 ๐‘™๐‘ข๐‘ฅ (75.54) 800 ๐‘ฅ 0.57 ๐‘ฅ 0.8 N = 1.63 N = 2 lamps
  • 40. Page | 36 2.5.2 ZONE B (Cafรฉ room divider) 2.5.2.1 Indication of light sources and light distribution Figure 2.5.2.1.1 Floor plan indicating light source and distribution of zone B
  • 41. Page | 37 Section B - B Sections showing Zone B from both directions. As you can see, Zone B is separated from the public area, the height of the light fixtures mounted is lower compared to Zone A, it provides a brighter environment at night but during daytime, the reading for both of the zone is almost the same. LED up light installed to shine upward casting pools of light on the surface above. Figure 2.5.2.1.1 Section Bโ€“ B diagram of Zone B showing light fixtures and light distribution Figure 2.5.2.1.2 Section C- C. Diagram of Zone C showing light fixtures and light distribution
  • 42. Page | 38 2.5.2.2 Existing Light Fixture SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION Spotlight (multilightbar) 2 Fluid Pendant Ceiling Lamp 1
  • 43. Page | 39 2.5.2.3 Calculation of daylight factor Zone B: Cafรฉ Room Divider Time Weather Luminance at 1m height Average Luminance at 1.5m height Average 2pm -4pm Clear Sky 220 - 1500 504.4lux 310 - 2860 748.9lux Table 5 Lux Reading at Zone B Average Lux Reading 2pm- 4pm 1m 504.4 1.5m 748.9 Average lux value 626.65 lux Table 6 Average Lux Value at Zone B Luminance Level Example 120,000 lux Brightest sunlight 110,000 lux Bright sunlight 20,000 lux Shade illuminated by entire clear blue sky, midday 1000 โ€“ 2000 lux Typical over cast day, midday 400 lux Sunrise or sunset on clear day(ambient illumination) <200 lux Extreme of darkest storm clouds, midday 40 lux Fully overcast, sunset/ sunrise < 1 lux Extreme of darkest storm cloud, sunset/ rise Table 7 Daylight intensity at different condition Date and Time 2pm- 4pm (1 October 2016) Average lux value reading (E internal) 626.65 lux Daylight Factor Calculation Formula ๐ท๐น = ๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ร— 100% Standard direct sunlight (E external) 20,000 lux Calculation ๐ท๐น = 626.65 20,000 ร— 100% = 3.1% DF. % Distribution >6 Very Bright With thermal and glare problem 3-6 Bright 1-3 Average 0-1 Dark Table 8 Daylight Factor, DF According to table provided in MS1525, the 3.1% daylight factor of cafรฉ room divider is categorized under the bright category. This zone is located at the east of the cafรฉ, one opening face to the east side let the natural light brighten up the room. This cafรฉ room divider has sufficient light for the dining purpose.
  • 44. Page | 40 2.5.2.4 Calculation of illuminance level in Zone B (Cafรฉ room divider) Dimension of room (m) 3.85 x 3.29 Total floor area /m2 12.67 Type of lighting fixtures Ceilingl light Type of lighting Spotlight 1 Pendant lamp Number of lighting fixtures/ N 6 1 Lumen of lighting fixtures 800 400 Height of luminaire (m) 2.3 Work level (m) 1 Mounting height/ H (hm) 1.3 Assumption of reflectance value Ceiling 0.5 Wall 0.4 Floor 0.2 Room Index/ RI (K) K= ( ๐ฟ ๐‘ฅ ๐‘€ (๐ฟ+๐‘€)โ„Ž๐‘š ) =( 3.85 ๐‘ฅ 3.29 (3.85+3.29)1.3 ) = 1.37 Utilization factor/ UF 0.48 Maintenance Factor 0.8 (standard) Standard Luminance (lux) 200 Illuminance Level (lux) E= ( ๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น) ๐ด ) 6 x 800 x 0.48 x 0.8 12.67 = 145.48 lux 1 x 400 x 0.48 x 0.8 12.67 = 12.12 lux Number of lighting fixture required to reach the required illuminance 145.48 + 12.12 = 157.6 200- 157.6 = 42.4 lux 42.4 more lux is required to fulfil the MS1525 ๐‘ = ๐ธ ๐‘ฅ ๐ด ๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น N = 42.4 ๐‘™๐‘ข๐‘ฅ (12.67) 800 ๐‘ฅ 0.48 ๐‘ฅ 0.8 N = 1.75 N = 2 lamps Same goes to Zone B, which is also a dining area, the required standard luminance is 200 lux, the lighting provided is 157.6, 2 more lamps are needed in order to reach the standard luminance.
  • 45. Page | 41 2.5.3 ZONE C (Cafรฉ room divider) 2.5.3.1 Indication of light sources and light distribution Figure 2.5.3.1.1 Section C - C diagram of Zone C showing light fixtures and light distribution
  • 46. Page | 42 While for Zone C, it function as two purposes, which is a workplace for food preparation while the room beside act as a storage. The amount of LED lights is high because it requires a brighter view to provide better work environment, as Zone C is separated from exterior as well. This zone has a highest reading at night but lowest at daytime. 2.5.3.2 Existing Light Fixture SYMBOL PICTURE LIGHT TYPE UNIT LIGHT DISTRIBUTION Spotlight (multilightbar) 4 Fluid Pendant Ceiling Lamp 1 LED- PAR16 (spotlight) 13
  • 47. Page | 43 Zone C: Scullery Time Weather Luminance at 1m height Average Luminance at 1.5m height Average 2pm -4pm Clear Sky 190 - 520 280 lux 180 - 490 346.7 lux Table 9 Lux Reading at Zone C Average Lux Reading 2pm- 4pm 1m 280 1.5m 346.7 Average lux value 313.35 lux Table 10 Average Lux Value at Zone C Luminance Level Example 120,000 lux Brightest sunlight 110,000 lux Bright sunlight 20,000 lux Shade illuminated by entire clear blue sky, midday 1000 โ€“ 2000 lux Typical over cast day, midday 400 lux Sunrise or sunset on clear day(ambient illumination) <200 lux Extreme of darkest storm clouds, midday 40 lux Fully overcast, sunset/ sunrise < 1 lux Extreme of darkest storm cloud, sunset/ rise Table 11 Daylight intensity at different condition Date and Time 2pm- 4pm (1 October 2016) Average lux value reading (E internal) 313.35 lux Daylight Factor Calculation Formula ๐ท๐น = ๐ธ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ๐ธ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ ร— 100% Standard direct sunlight (E external) 20,000 lux Calculation ๐ท๐น = 313.35 20,000 ร— 100% = 1.57% DF. % Distribution >6 Very Bright With thermal and glare problem 3-6 Bright 1-3 Average 0-1 Dark Table 12 Daylight Factor, DF According to table provided in MS1525, the 1.57% daylight factor of scullery is categorized under the average category. Here is darker than the other zone as it is located at the middle of the cafe. Therefore, the artificial light is needed during the daytime. Even though the daylight factor is lower, it is sufficient for the working purpose and storage use as here is not a serving purpose area and public use.
  • 48. Page | 44 2.5.3.3 Calculation of illuminance level in Zone C (Scullery) Dimension of room (m) 3.85 x 7.26 Total floor area /m2 27.95 Type of lighting fixtures Ceiling light Type of lighting Spotlight 1 Spotlight 2 Pendant Lamp Number of lighting fixtures/ N 6 13 1 Lumen of lighting fixtures 800 740 400 Height of luminaire (m) 2.3 Work level (m) 0.9 Mounting height/ H (hm) 1.4 Assumption of reflectance value Ceiling 0.5 Wall 0.4 Floor 0.2 Room Index/ RI (K) K= ( ๐ฟ ๐‘ฅ ๐‘€ (๐ฟ+๐‘€)โ„Ž๐‘š ) =( 3.85 ๐‘ฅ 7.26 (3.85+7.26)1.4 ) = 1.8 Utilization factor/ UF 0.53 Maintenance Factor 0.8 (standard) Standard Luminance (lux) 200 Illuminance Level (lux) E= ( ๐‘(๐น ๐‘ฅ ๐‘ˆ๐น ๐‘ฅ ๐‘€๐น) ๐ด ) 6 x 800 x 0.53 x 0.8 27.95 = 72.82 lux 13 x 740 x 0.53 x 0.8 27.95 = 145.93 lux 1 x 400 x 0.53 x 0.8 27.95 = 6.07 lux Number of lighting fixture required to reach the required illuminance 72.82 + 145.93 + 6.07 = 224.82 224.82 โ€“ 200 = 24.82 lux 24.82 lux is exceed to fulfil the MS1525 As for Zone C, the standard luminance required is 200 but the lighting provided is 224.82, which is already exceed the requirement. Compared with the other two zones, this zone is the brightest due to its function as a place to keep apparatus and machines, and act as a workplace for the stuff to prepare food. Besides, there is no opening connected from this Zone to exterior, so extra lighting is needed for this zone especially during day time.
  • 49. Page | 45 2.6 OBSERVATIONS AND DISCUSSIONS 2.6.1 Zone A (Public Dining Area) Figure 2.6.1.1 Panoramic view of zone A Observation Zone A is the biggest area, function as a place to serve customers, make coffee and for customers to have their meal. At day, readings are higher at the perimeter along the translucent faรงade where daylight could penetrate in; while at night, the readings are various depending on the position of light fixture. Discussion Figure 2.6.1.2 Dining area located right in front of the entrance
  • 50. Page | 46 Figure 2.6.1.3 Wall lamp located right above the decorative element Figure 2.6.1.4 Furniture of the dining area of Zone A
  • 51. Page | 47 Figure 2.6.1.5 Pastry displayed in glass box Figure 2.6.1.6 Counter to serve customer and to make coffee Discussion Zone A consists of three different light fixtures, to create different ambience at the area base on different functions. There is no much different during daytime where the readings are almost the same, the readings are higher only when it is closed to the translucent plastic panel along the parameter. At night, the counter area is brighter as it act as a space to serve customer, in order to provide a clearer vision for customer to look at the menu, while the lighting effect of the other dining area is depends on the position of the light fixture.
  • 52. Page | 48 2.6.2 Zone B Figure 2.6.2.1 Panoramic view of Zone B Observation Zone B is one of the eating areas in PULP. Furniture provided for this zone is different with other zones as well as the lighting effect. The readings collected at this zone are lower at morning and higher at night due to the openings and also type of lighting provided. Discussion Figure 2.6.2.2 Furniture provided at Zone B
  • 53. Page | 49 Figure 2.6.2.3 Openings at Zone B during day and night Figure 2.6.2.4 Romantic ambience creating by lighting effect at Zone B at night
  • 54. Page | 50 Figure 2.6.2.5 Light Fixtures at Zone B At night, the space is brighter as the LED multilightbar is right above the seatings, and the light reflecting from ceiling and glasses successfully brighten up this zone. The lighting condition is already perfect as it provide sufficient daylight during daytime while at night, it also create a warm ambience for customer to enjoy the atmosphere. It is more suitable for a closer interaction.
  • 55. Page | 51 2.6.3 Zone C Figure 2.6.3.1 Panoramic View of Zone C Observation Zone C is an area where all the apparatus and machines are kept. The reading for this zone is the highest at night and the lowest during day time. Discussion Figure 2.6.3.2 large quantity of LED down light at Zone C
  • 56. Page | 52 Figure 2.6.3.3 Apparatus and machines placed at Zone C Figure 2.6.3.4 Laminated wood shelves at Zone C At Zone C, the reason of light readings is the lowest at day because it does not have any openings direct to outdoor. Sandwiched by zone B and the store room, zone C is the darkest zone at day; while at night, large amount of down lights located right on top the apparatus and machines, light reflects and it bright up the whole space. This zone need to be the brightest as zone C is a working space where the stuff need to go in and out to prepare food and beverages.
  • 57. Page | 53 2.7 Conclusion In a conclusion, PULP has more than average daylight due to the selection of material which is glass, and translucent wall panel as main faรงade. While for the interior, the use of fiberglass with aluminium as material for ceiling successfully reflects light to bright up the interior. The cafรฉ receives sufficient day lighting focuses on certain area with the aid of glass wall at the entrance. While at night, the use of artificial light is about to reach the standard, but the overall environment is warm to provide a very calm ambience for the customer. The use of dim light bulb has become a trend in many cafes. In order to create a pleasing working environment, additional lightings should be add on at certain area, for example Zone C, for a better environment to work. Different arrangement can be applied with the combination of several types of luminaires in the spaces. Florescent light can be added to create equal luminance throughout the space as beam angle spreads. The sharp angle of the light catches any variation in the surface it shines upon, creating sharp shadows that give the walls life and dimension. White or gently warm LED light can be added so that foods and people look better under white light than they do under intense color.
  • 58. Page | 54 3.1 LITERATURE REVIEW 3.1.1 SOUND The sensation stimulated in the organs of hearing by mechanical radiant energy transmitted as longitudinal pressure waves through the air or other medium. 3.1.2 ARCHITECTURE ACOUSTIC Architecture acoustic is the science of controlling sound in a space which might include the design of spaces, structures and mechanical system that meet the hearing needs for instance concert hall, classroom and etc. Building acoustic is vital in attaining sound quality that is appropriate for a space. Pleasing sound quality and safe sound level are very important for creating suitable mood and safety in a space but it is hard to be achieved without proper design effort. The acoustic mood created in a space is highly affected by the buffer from the building exterior outdoor noise and building interior design and indoor noise. 3.1.3 SOUND PRESSURE LEVEL Sound pressure is the difference between the pressure produced by a sound wave and the barometric (ambient) pressure at the same point in space, symbol p or p. Sound pressure level are used in measuring the magnitude of sound in decibel (dB).
  • 59. Page | 55 3.1.4 REVERBERATION TIME Reverberation, in acoustics, is the persistence of sound after a sound is produced. A reverberation, or reverb, is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space โ€“ which could include furniture, people, and air. This is most noticeable when the sound source stops but the reflections continue, decreasing in amplitude, until they reach zero amplitude. The time it takes for a signal to drop by 60 dB is the reverberation time. Reverberation time (RT) is an important index for describing the acoustical quality of an enclosure. where: RT = reverberation time (sec) V = volume of the room (cu.m) A = total absorption of room surfaces (sq.m sabins) 3.1.5 SOUND REDUCTION INDEX Sound pressure is the difference, in a given medium, between average local pressure and the pressure in the sound wave. The Sound Reduction Index SRI or Transmission Loss TL of a partition measure the number of decibels lost when a sound of a given frequency is transmitted through the partition. Where TL= transmission loss
  • 60. Page | 56 3.2 ACOUSTIC PRECEDENT STUDIES CAVE RESTAURANT BY KOICHI TAKADA Figure 3.2.1. (Source: http://architectureau.com/articles/ocean-room-and-cave/#img=2) The Cave Restaurant was planned by Koichi Takada Architects with the acoustics built in. It is located in Sydney, Australia. Initially, the design theme originated from a reality that the planners needed an eatery which considered an acoustic as the principle centered component. Timber ribs are the fundamental materials utilized as a part of this place. โ€œMy work is often concerned with the invisible,โ€ says Koichi Takada. We are standing under his forty-thousand-piece balsa chandelier at the Ocean Room in Sydney Harbour. โ€œIn every project I try to respond to a central idea that affects the senses, but in a subtle, indiscernible way. Sound, shadow, light and texture - these are ideas that really excite me,โ€ he explains. Itโ€™s an idea that Takada has pushed to the limit in another of his latest projects, a Sushi Train franchise restaurant in Maroubra which he has dubbed โ€œThe Cave.โ€ โ€œIt was my umpteenth restaurant interior for the client,โ€ he explains. โ€œI felt that, based on the brief and our history, it was time to push the boundaries. My first instinct was to address the issue of acoustics โ€“ most popular establishments are really noisy. It is important to me that my design results in a comfortable and pleasant place to eat.โ€ Through an intensive process of experimentation with various materials and their acoustic properties, Takada generated the idea of a cave-like shape, composed of
  • 61. Page | 57 laminated plywood pieces, forming the walls and ceiling of the space. Each curved shape, various bread jointed fragments, was then cut utilizing refined three-dimensional programming instruments before being physically fitted together on location. The outcome is amazing - a muted decibel level, notwithstanding when the eatery is at limit. It's a comparative ordeal to remaining in the Ocean Room where the sound-retentive characteristics of the timber keeps the foundation buzz to a base. Figure 3.2.2 (Source: https://www.google.com/maps/place/Sushi+Train+Maroubra/@- 33.9043549,151.1958412,12z/data=!4m8!1m2!2m1!1scave+restaurant+sydney!3m4!1s0x6b12b3d15bd51425:0xd6f11c457ebc0 ae8!8m2!3d-33.943486!4d151.240306) 3.2.1 EXTERNAL AND INTERNAL NOISES In this case, the timbers were arranged at regular intervals down the length of the space, absorbing sound and promoting a good dining noises as well as acting to divide individual seating into their own acoustical zones. Once the visitors entered this restaurant, they were totally screened off from the clamor of the city outside. The timber ribs additionally veil a current ventilation conduit that runs corner to corner over