SlideShare a Scribd company logo
1 of 15
Download to read offline
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 58 | P a g e
Influence of MHD on Unsteady Helical Flows of Generalized
Oldoyd-B Fluid between Two Infinite Coaxial Circular
Cylinders
Sundos Bader ,Ahmed M, Abdulhadi
Department of Mathematic, College of Science ,University of Baghdad ,,Baghdad,, Iraq
Email:badersundos@gmail.com,ahm6161@yahoo.com
ABSTRACT
Considering a fractional derivative model for unsteady magetohydrodynamic (MHD)helical flows of an
Oldoyd-B fluid in concentric cylinders and circular cylinder are studied by using finite Hankel and Laplace
transforms .The solution of velocity fields and the shear stresses of unsteady magetohydrodynamic
(MHD)helical flows of an Oldoyd-B fluid in an annular pipe are obtained under series form in terms of
Mittag –leffler function,satisfy all imposed initial and boundary condition , Finally the influence of model
parameters on the velocity and shear stress are analyzed by graphical illustrations.
I. Introduction
Recently , a considerable attention has been
devoted to the problem of how to predict the
behavior of non-Newtonian fluid .The main reason
for this is probably that fluids(such a molten
plastics ,pulps ,slurries ,elmulsions, ect..) which do
not obey the assumption of Newtonian fluid that
the stress tensor is directing proportional to the
deformation tensor ,are found in various
engineering applications .An important class of
non-Newtonian fluids is in the viscoelastic
Oldroyd-B fluid has been intensively studied , and
it has been widely applied to flow problems of
small relaxation and retardation times.
Rheological constitutive equations with fractional
derivatives have been proved to be a valuable tool
to handle viscoelastic properties . The fractional
derivative models of the viscoelastic fluids are
derived from the classical equations which are
modified by replacing the time derivative of an
integer order by precise non-integer order integrals
or derivatives.
In recent years , the Oldroyd –B has been acquired
a special status amongst the many fluids
of the rate type ,as it includes as special case the
classical Newtonian fluid and Maxwell fluid.As a
result of their wide implications ,a lot of papers
regarding
these fluids have been published in the last time .
The Oldroyd –B fluid model [11], which takes
into account elastic and memory effects exhibited
by most polymeric and biological liquids, has been
used quite widely [4] .Existence ,uniqueness and
stability results for some shearing motions of such
a fluid have been obtained in[13] . the exact
solution for the flow of an Oldroyd –B fluid was
established by Waters and Kings [14], Rajagopal
and Bhatnager [12],Fetecau [3], and Fetecau [2],
other analytical results were given by Georgious
[8] for small one- dimensional perturbations and
for the limiting case of zero Reynold number
unsteady( unidirectional and rotating )transient
flows of an Oldroyd –B fluid in an annular
areobtained by Tong[7] .thegeneral case of helical
flow of Oldroyd –B fluid due to combine action of
rotating cylinders(with constant angular velocities )
and a constant axial pressure gradient has consider
byWood [16].The velocity fields and the associated
tangential stresses corresponding to helical flows of
Oldroyd –B fluids using forms of series in term of
Bessel functions are given by Fetecau et al [1].
Recently , the velocity field ,shear stress and vortex
sheet of a generalized second –order fluid with
fractional , fractional derivative using to the
constitutive relationship models of Maxwell
viscoelastic fluid and second order ,and some
unsteady flows of a viscoelastic fluid and of second
order fluids between two parallel platesare
examined by Mingyo and wenchang
[17].Unidirectionalflows of a viscoelastics fluid
with the fractional Maxwell model helical flows of
a generalized Oldroyd-B fluid with fractional
calculus between two infinite coaxial circular
cylinders are investigated by Dengke [6].
In this paper ,we study the effect of MHD on the
helical flows of a generalized Oldroyd-B fluid with
fractional calculus between two infinite coaxial
circular cylinders. The velocity fields and the
resulting shear stresses are determined by means of
Laplace and finite Hankel transform and are
presented under integral and series forms in the
Mittag –leffler function.
RESEARCH ARTICLE OPEN ACCESS
E
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 59 | P a g e
II. Basic governing equations of Helcial flow
between concentric cylinders1
We consider here an unsteady helical flow
between two infinite coaxial cylinders located
at π‘Ÿ = 𝑅1 and π‘Ÿ = 𝑅2 (𝑅1 < 𝑅2) in the cylindrical
coordinates (π‘Ÿ , πœƒ, 𝑧) , the helcial velocity is given
by
𝑽 = π‘Ÿ 𝑣 π‘Ÿ, 𝑑 𝑒 πœƒ + 𝑀 π‘Ÿ, 𝑑 𝑒𝑧 (1)
is called helical , because its streamlines are helical
and𝑒 πœƒ and 𝑒𝑧 are the unit vectors in the πœƒ and
𝑧 βˆ’ directions , respectively . Since the velocity
field is independent of πœƒ and 𝑧 and the constraint
of incompressibility is automatically satisfied .
The constitutive equation of generalized Oldroyd-
B (G Oldroyd-B) fluid has the form [1]
𝑺 + πœ†1
𝛼
𝛿 𝛼
𝑺
𝛿𝑑 𝛼
= πœ‡ 1 + πœ†2
𝛽 𝛿 𝛽
𝛿𝑑 𝛽
𝑨1 (2)
Where 𝑺 is the extra stress tensor , πœ‡ is the
dynamic viscosity, πœ†1and πœ†2 are material time
constants referred to, the characteristic relaxation
and characteristic retardation times , respectively .
it is assumed that πœ†1 β‰₯ πœ†2 β‰₯ 0 .𝑨1 = 𝐿 + 𝐿𝑇
is the
first Rivlin –Erickscn tensor with 𝐿 the velocity
gradient , 𝛼 and 𝛽are fractional calculus parameters
such that 0 ≀ 𝛼 ≀ 𝛽 ≀ 1 and the fractional
operator
𝛿 𝛼 𝑺
𝛿 𝑑 𝛼 on any tensor 𝑺 is defined by
𝛿 𝛼
𝑺
𝛿𝑑 𝛼
= 𝐷𝑑
𝛼
𝑺 + 𝑽. βˆ‡π‘Ί βˆ’ 𝐿𝑺 βˆ’ 𝑺 𝐿𝑇
(3)
The operator 𝐷𝑑
𝛼
based on Caputo's fractional
differential of order 𝛼 is defined as
𝐷𝑑
𝛼
𝑦 𝑑 =
1
Ξ“ 𝑛 βˆ’ π‘Ž
𝑓 𝑛
𝜏
𝑑 βˆ’ 𝜏 π›Όβˆ’π‘›+1
π‘‘πœ ,
𝑑
0
𝑛 βˆ’ 1 < 𝛼 ≀ 𝑛 (4)
where Ξ“ . denotes the Gamma function. This
model can be reduced to the ordinary Maxwell
fluid model when Ξ± = 1 ,to a generalized
theMaxwell fluid model when Ξ² = 1 and to an
ordinary Oldroyd-B model 𝛽 = Ξ± = 1.
𝑣 π‘Ÿ, 0 = 𝑀 π‘Ÿ, 0 = 0 and 𝑺 π‘Ÿ, 0 = 0 (5)
Here we assume that the generalized Oldroyd-B
fluid is incompressible then
βˆ‡. 𝑽 = 0 (6)
Substituting Eq.(1) into Eq.(2) and Eq.(3) and
taking into account (5), we find that 𝑺 π‘Ÿπ‘Ÿ = 0 ,
𝝉 π‘Ÿ, 𝑑 = 𝑺 π‘Ÿπœƒ π‘Ÿ, 𝑑 is the shear stress and
1 + πœ†1
𝛼
𝐷𝑑
𝛼
π‘Ίπ‘Ÿπœƒ = πœ‡ 1 + πœ†2
𝛽
𝐷𝑑
𝛽
π‘Ÿ
πœ•v
πœ•π‘Ÿ
(7)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•π‘€
πœ•π‘Ÿ
(8)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπ‘§ = πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ +
πœ•π‘€
πœ•π‘Ÿ
𝑺 π‘Ÿπœƒ
βˆ’ 2πœ‡ πœ†2
𝛽 πœ•π‘€
πœ•π‘Ÿ
π‘Ÿ
πœ•v
πœ•π‘Ÿ
(9)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπœƒ = 2πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπœƒ
βˆ’ 2πœ‡ πœ†2
𝛽
π‘Ÿ
πœ•v
πœ•π‘Ÿ
2
(10)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 𝑧𝑧 = 2πœ†1
𝛼
πœ•π‘€
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2
𝛽 πœ•π‘€
πœ•π‘Ÿ
2
(11)
III. Momentum and continuity equation
We will write the formula of the momentum
equation which governing the
magnetohydrodynamic as fallows :
𝜌
𝑑𝑽
𝑑𝑑
= βˆ’βˆ‡π‘ + βˆ‡. 𝑺 + 𝑱 Γ— 𝑩 (12)
Where𝜌 is the density of the fluid , 𝑱 is the current
density and 𝑩 = 0, 𝛽0, 0 is the total magnetic field
.
In the absence of body forces and a pressure
gradient, the equation of motion reduce to the
relevant equations
𝜌
πœ•π‘€
πœ•π‘‘
=
πœ•
πœ•π‘Ÿ
+
1
π‘Ÿ
𝑺 π‘Ÿπ‘§ βˆ’ πœπ›½0
2
𝑀 (13)
πœŒπ‘Ÿ
πœ•v
πœ•π‘‘
=
πœ•
πœ•π‘Ÿ
+
1
π‘Ÿ
𝑺 π‘Ÿπœƒ βˆ’ πœπ›½0
2
π‘Ÿv (14)
πœ•π‘
πœ•π‘Ÿ
+
𝑺 πœƒπœƒ
π‘Ÿ
= πœŒπ‘Ÿv2
(15)
Where 𝜍 is the electric conductivity .
Eliminating 𝑺 π‘Ÿπ‘§ and 𝑺 π‘Ÿπœƒ among Eqs(7),(8),(13)
and(14) ,we attain to the governing equations are
𝜌
πœ•π‘€
πœ•π‘‘
= πœ‡
1 + πœ†2
𝛽
𝐷𝑑
𝛽
1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•2
𝑀
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘€
πœ•π‘Ÿ
βˆ’ πœπ›½0
2
𝑀 (16)
𝜌 π‘Ÿ
πœ•v
πœ•π‘‘
= πœ‡
1 + πœ†2
𝛽
𝐷𝑑
𝛽
1 + πœ†1
𝛼
𝐷𝑑
𝛼 π‘Ÿ
πœ•2
v
πœ•π‘Ÿ2
+
1
π‘Ÿ
π‘Ÿ
πœ•v
πœ•π‘‘
βˆ’ πœπ›½0
2
π‘Ÿv (17)
Multiply above two equations by 1 + πœ†1
𝛼
𝐷𝑑
𝛼
,we
get
𝜌 1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•π‘€
πœ•π‘‘
= πœ‡ 1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•2
𝑀
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘€
πœ•π‘Ÿ
βˆ’ πœπ›½0
2
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑀 (18)
𝜌 π‘Ÿ 1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•v
πœ•π‘‘
= πœ‡ 1 + πœ†2
𝛽
𝐷𝑑
𝛽
π‘Ÿ
πœ•2
v
πœ•π‘Ÿ2
+
1
π‘Ÿ
π‘Ÿ
πœ•v
πœ•π‘‘
βˆ’ πœπ›½0
2
π‘Ÿ 1 + πœ†1
𝛼
𝐷𝑑
𝛼
(19)
Divide Eq(18) by 𝜌 and divide Eq(19) by 𝜌 π‘Ÿ ,we
get
1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•π‘€
πœ•π‘‘
= 𝜐 1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•2
𝑀
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘€
πœ•π‘Ÿ
βˆ’
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑀 (20)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•v
πœ•π‘‘
= 𝜐 1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•2
v
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•v
πœ•π‘‘
βˆ’
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝐷𝑑
𝛼
v (21)
Where 𝜐 =
πœ‡
𝜌
is the kinematic viscosity of the fluid.
The boundary conditions are expressed by
𝑀 𝑅1, 𝑑 = π‘ˆ1 , 𝑀 𝑅2, 𝑑 = π‘ˆ2 , 𝑑 > 0 (22)
And
v 𝑅1, 𝑑 = 𝛺1 , v 𝑅2, 𝑑 = 𝛺2 , 𝑑 > 0 (23)
The initial conditions are expressed by
𝑀 π‘Ÿ, 0 = v π‘Ÿ, 0 = 0 (24)
πœ•π‘‘ 𝑀 π‘Ÿ, 0 = πœ•π‘‘v π‘Ÿ, 0 = 0 (25)
3.1.Calculation of the velocity field
Making the change of unknown function
v π‘Ÿ, 𝑑 =
𝑒(π‘Ÿ, 𝑑)
π‘Ÿ
(26)
substitute the value of velocity v π‘Ÿ, 𝑑 in Eq. (21)
with initial and boundary conditions ,we get
1 + πœ†1
𝛼
𝐷𝑑
𝛼
1
π‘Ÿ
πœ•u
πœ•π‘‘
=
𝜐
π‘Ÿ
1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•2
u
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•u
πœ•π‘‘
βˆ’
𝑒
π‘Ÿ2
βˆ’
πœπ›½0
2
πœŒπ‘Ÿ
1 + πœ†1
𝛼
𝐷𝑑
𝛼
u (27)
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 60 | P a g e
Multiply above equation by r ,we get
1 + πœ†1
𝛼
𝐷𝑑
𝛼
πœ•u
πœ•π‘‘
= 𝜐 1 + πœ†2
𝛽
𝐷𝑑
𝛽 πœ•2
u
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•u
πœ•π‘‘
βˆ’
𝑒
π‘Ÿ2
βˆ’
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝐷𝑑
𝛼
u (28)
And
𝑒 𝑅1, 𝑑 = 𝑅1 𝛺1 , 𝑒 𝑅2, 𝑑 = 𝑅2 𝛺2 , 𝑑 > 0 (29)
𝑒 π‘Ÿ, 0 = πœ•π‘‘u π‘Ÿ, 0 = 0 (30)
To obtain the exact analytical solution of the above
problems Eq.(20) and Eq.(28) , and using initial
conditions(24),(25) and (30) ,we first apply
Laplace transform of fractional derivatives , with
respect to t ,we get
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
𝑀 = 𝜐 1 + πœ†2
𝛽
𝑠 𝛽
πœ•2
𝑀
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘€
πœ•π‘Ÿ
βˆ’
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
𝑀 (31)
𝑀 𝑅1, 𝑠 =
π‘ˆ1
𝑠
, 𝑀 𝑅2, 𝑠 =
π‘ˆ2
𝑠
(32)
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
𝑒 = 𝜐 1 + πœ†2
𝛽
𝑠 𝛽
πœ•2
𝑒
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘’
πœ•π‘Ÿ
βˆ’
𝑒
π‘Ÿ2
βˆ’
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
𝑒 (33)
𝑒 𝑅1, 𝑠 =
𝑅1 𝛺1
𝑠
, 𝑒 𝑅2, 𝑠 =
𝑅2 𝛺2
𝑠
(34)
The solutions in Laplace space for above problems
are given
𝑀 π‘Ÿ, 𝑠
=
π‘ˆ1 πœ“0,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ π‘ˆ2 πœ“0,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠
π‘ πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠
(35)
u π‘Ÿ, 𝑠
=
𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠
π‘ πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠
(36)
v π‘Ÿ, 𝑠
=
𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠
π‘Ÿπ‘ πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠
(37)
Where π‘₯ 𝑠 =
(𝑠 1+πœ†1
𝛼 𝑠 𝛼 +
𝜍 𝛽0
2
𝜌
1+πœ†1
𝛼 𝑠 𝛼 )
𝜐 1+πœ†2
𝛽
𝑠 𝛽
, and
πœ“ π‘š,𝑛 π‘Ž, 𝑏, 𝑦 = 𝐾 π‘š π‘Žπ‘¦ 𝐼𝑛 𝑏𝑦 + βˆ’1 π‘š+𝑛+1
𝐼 π‘š π‘Žπ‘¦ 𝐾𝑛 𝑏𝑦
,𝐾 π‘š and 𝐼𝑛 are the Bessel functions of the first and
second kind , respectively.
The velocity field of helical flow between
concentric cylinder is obtained by applying the
Stehfest's method [9,10] of the numerical inversion
of Laplace transform to Eqs,(35)and(36).
We use the finite Hankel transform with respect to
r [5],defined as follows
𝑀 = π‘Ÿ
𝑅2
𝑅1
𝑀 π‘Ÿ, 𝑠 πœ“1 𝑠1𝑛 π‘Ÿ π‘‘π‘Ÿ (38)
𝑒 = π‘Ÿ
𝑅2
𝑅1
𝑒 π‘Ÿ, 𝑠 πœ“2 𝑠2𝑛 π‘Ÿ π‘‘π‘Ÿ 39
And the inverse Hankel transform are
𝑀 π‘Ÿ, 𝑠 =
πœ‹2
2
𝑠1𝑛
2
𝐽0
2
(𝑠1𝑛 𝑅1)𝑀 π‘Ÿ, 𝑠 πœ“1 𝑠1𝑛 π‘Ÿ
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
(40)
𝑒 π‘Ÿ, 𝑠 =
πœ‹2
2
𝑠2𝑛
2
𝐽1
2
(𝑠2𝑛 𝑅1)𝑒 π‘Ÿ, 𝑠 πœ“2 𝑠2𝑛 π‘Ÿ
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
(41)
Where 𝑠1𝑛 and 𝑠2𝑛 are the positive roots of
πœ“1 𝑠1𝑛 𝑅1 = 0and πœ“2 𝑠2𝑛 𝑅1 = 0 ,respectively.
πœ“1 𝑠1𝑛 π‘Ÿ = π‘Œ0 𝑠1𝑛 𝑅2 𝐽0 𝑠1𝑛 π‘Ÿ βˆ’ 𝐽0 𝑠1𝑛 𝑅2 π‘Œ0 𝑠1𝑛 π‘Ÿ ,
πœ“2 𝑠2𝑛 π‘Ÿ = π‘Œ1 𝑠2𝑛 𝑅2 𝐽1 𝑠2𝑛 π‘Ÿ βˆ’ 𝐽1 𝑠2𝑛 𝑅2 π‘Œ1 𝑠2𝑛 π‘Ÿ
π‘Œπ‘– and 𝐽𝑖 are the Bessel functions of the first and
second kinds of order zero and one (i=0,1) ,
respectively.
Now applying finite Hankel transform to Eqs.(40)
and (41) ,we get
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
+ 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑀
=
2
πœ‹
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
π‘ˆ2 𝐽0(𝑠1𝑛 𝑅1) βˆ’ π‘ˆ1 𝐽0(𝑠1𝑛 𝑅2)
𝑠 𝐽0 𝑠1𝑛 𝑅1
(42)
𝑀
=
2𝜐 1 + πœ†2
𝛽
𝑠 𝛽
π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
πœ‹π‘  𝐽0 𝑠1𝑛 𝑅1
Γ—
1
𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(43)
And
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
+ 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑒
=
2
πœ‹
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
𝑠 𝐽1 𝑠2𝑛 𝑅1
(44)
𝑒
=
2𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
πœ‹π‘  𝐽1 𝑠2𝑛 𝑅1
Γ—
1
𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(45)
Substitute Eq.(43) and (45) into (40) and (41) ,we
obtain
𝑀 π‘Ÿ, 𝑠
= πœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐴1( 𝑠1𝑛, 𝑠) (46)
where
𝐴1 𝑠1𝑛, 𝑠
=
𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(47)
And
𝑒 π‘Ÿ, 𝑠
= πœ‹
𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐴1( 𝑠2𝑛, (48)
where
𝐴1 𝑠2𝑛 , 𝑠
=
𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(49)
Now ,rewrite Eqs.(47) and (48) in series form as
𝐴1 𝑠1𝑛, 𝑠
=
1
𝑠
βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠1𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
𝑠 𝛿
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ—
1
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (50)
Where 𝛿 = βˆ’π‘š βˆ’ 2 + 𝛼 βˆ— 𝑏 + 𝛽 βˆ— 𝑑.
And
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 61 | P a g e
𝐴1 𝑠1𝑛, 𝑠
=
1
𝑠
βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠2𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
𝑠 𝛿
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ—
1
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (51)
Now , applying inverse Laplace transform to
Eqs.(50) and (51) , we obtain
𝐴1 𝑠1𝑛, 𝑑
= 1 βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠1𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— πΏβˆ’1
𝑠 𝛿
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (52)
And
𝐴1 𝑠2𝑛 , 𝑑
= 1 βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠2𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— πΏβˆ’1
𝑠 𝛿
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (53)
We will use the following property of Mittag-
leffler function [5]
πΏβˆ’1
𝑛! 𝑠 πœ‡βˆ’π‘£
𝑠 πœ‡ βˆ“ 𝑐
= 𝑑 πœ‡π‘› +π‘£βˆ’1
πΈπœ‡,𝑣
(𝑛)
±𝑐𝑑 πœ‡
𝑅𝑒 𝑠
> 𝑐 1/πœ‡
(54)
Then Eqs.(52) and (53) , are become
𝐴1 𝑠1𝑛, 𝑑
= 1 βˆ’ 𝑑 + πœ†1
𝛼
𝑑 𝛼+1
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑑 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠1𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(55)
and
𝐴1 𝑠2𝑛 , 𝑑
= 1 βˆ’ 𝑑 + πœ†1
𝛼
𝑑 𝛼+1
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑑 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠2𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(56)
Substitute Eqs.(55) and (56) into (46) and (48) ,we
get
𝑀 π‘Ÿ, 𝑑
= πœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— 1 βˆ’ 𝐺1 𝑠1𝑛, 𝑑 (57)
Where
𝐺1 𝑠1𝑛, 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠1𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
πœ†1
𝛼
𝑑 𝛼
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(58)
And
𝑒 π‘Ÿ, 𝑑
= πœ‹
𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ— 1 βˆ’ 𝐺1 𝑠2𝑛, 𝑑 (59)
Where
𝐺1 𝑠2𝑛, 𝑑
= (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠2𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
πœ†1
𝛼
𝑑 𝛼
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(60)
Finally ,the inverse finite Hankel transform on
π‘Š(π‘Ÿ) and π‘ˆ(π‘Ÿ)
𝐻 π‘Š π‘Ÿ = π‘Ÿ π‘ˆ2 +
𝐼𝑛
π‘Ÿ
𝑅2
𝐼𝑛
𝑅2
𝑅1
βˆ— π‘ˆ2 βˆ’ π‘ˆ1
𝑅2
𝑅1
πœ“1 𝑠1𝑛 π‘Ÿ π‘‘π‘Ÿ
=
2 π‘ˆ2 𝐽0(𝑠1𝑛 𝑅1) βˆ’ π‘ˆ1 𝐽0(𝑠1𝑛 𝑅2)
πœ‹π‘ 1𝑛
2
𝐽0 𝑠1𝑛 𝑅1
Where π‘Š π‘Ÿ = π‘ˆ2 +
𝐼𝑛
π‘Ÿ
𝑅2
𝐼𝑛
𝑅2
𝑅1
βˆ— π‘ˆ2 βˆ’ π‘ˆ1 ,
We get
𝑀 π‘Ÿ, 𝑑 = π‘Š π‘Ÿ βˆ’ πœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1
βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐺1 𝑠1𝑛, 𝑑 (61)
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 62 | P a g e
𝐻 π‘ˆ π‘Ÿ = π‘Ÿ π‘Ÿπ›Ί2 +
𝑅1
2
(π‘Ÿ2
βˆ’ 𝑅2
2
)
π‘Ÿ(𝑅2
2
βˆ’ 𝑅1
2
)
𝑅2
𝑅1
βˆ— 𝛺2 βˆ’ 𝛺1 πœ“2 𝑠2𝑛 π‘Ÿ π‘‘π‘Ÿ
=
2 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
πœ‹π‘ 2𝑛
2
𝐽1 𝑠2𝑛 𝑅1
Where π‘ˆ π‘Ÿ = π‘Ÿπ›Ί2 +
𝑅1
2
(π‘Ÿ2βˆ’π‘…2
2
)
π‘Ÿ(𝑅2
2βˆ’π‘…1
2)
βˆ— 𝛺2 βˆ’ 𝛺1 , we get
𝑒 π‘Ÿ, 𝑑 = π‘ˆ π‘Ÿ βˆ’ πœ‹
𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ— 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐺1 𝑠2𝑛, 𝑑 (62)
3.2.Calculation of the tangential tensions and
normal tensions
Applying the Laplace transform to Eqs.(7) and (8) ,
and using the initial conditions
𝑀 π‘Ÿ, 0 = u π‘Ÿ, 0 = 0
πœ•π‘‘ 𝑀 π‘Ÿ, 0 = πœ•π‘‘u π‘Ÿ, 0 = 0
we find that
𝑺 π‘Ÿπ‘§ =
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
πœ•π‘€
πœ•π‘Ÿ
(63)
𝑺 π‘Ÿπœƒ =
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
(64)
Differentiating the Eqs. (35) and (36) with respect
to r, we obtain
πœ•π‘€
πœ•π‘Ÿ
=
π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠
π‘ πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠
(65)
π‘Ÿ
πœ•v
πœ•π‘Ÿ
=
πœ•u
πœ•π‘Ÿ
βˆ’
u
π‘Ÿ
=
𝑅2 𝛺2 πœ“1,1 π‘Ÿ,𝑅1,π‘₯ 𝑠 βˆ’π‘…1 𝛺1 πœ“1,1 π‘Ÿ,𝑅2,π‘₯ 𝑠
π‘Ÿπ‘  πœ“1,1 𝑅1,𝑅2,π‘₯ 𝑠
+
𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 +
1
π‘Ÿ
πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’
𝑅1𝛺1βˆ’πœ“0,1π‘Ÿ,𝑅2,π‘₯𝑠+1 π‘Ÿπœ“1,1π‘Ÿ,𝑅2,π‘₯𝑠/ π‘Ÿπ‘ πœ“1,1𝑅1,𝑅2,π‘₯𝑠
(66)
Substitute Eqs.(65) and (66) into Eqs(63) and (64)
,respectively ,we get
𝑺 π‘Ÿπ‘§ =
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠
πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠
(67)
𝑺 π‘Ÿπœƒ
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠
π‘Ÿπœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠
+ 𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 +
1
π‘Ÿ
πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠
βˆ’ 𝑅1 𝛺1 βˆ’πœ“0,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 +
1
π‘Ÿ
πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠
/ π‘Ÿπœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (68)
𝑺 π‘Ÿπ‘§
= 𝜌
π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠
π‘₯1
2
𝑠 πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠
(69)
𝑺 π‘Ÿπœƒ
= 𝜌
𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠
π‘Ÿπ‘₯1
2
𝑠 πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠
+ 𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 +
1
π‘Ÿ
πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠
βˆ’ 𝑅1 𝛺1 βˆ’πœ“0,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 +
1
π‘Ÿ
πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠
/ π‘Ÿπ‘₯1
2
𝑠 πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (70)
Where π‘₯1
2
𝑠 =
𝑠 1+πœ†1
𝛼
𝑠 𝛼
𝑣 1+πœ†2
𝛽
𝑠 𝛽
.
Differentiating the Eqs. (42) and (55) with respect
to r, we obtain
πœ•π‘€
πœ•π‘Ÿ
=
𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ—
𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(71)
Where πœ“3 𝑠2𝑛 π‘Ÿ = π‘Œ0 𝑠2𝑛 𝑅2 𝐽1 𝑠2𝑛 π‘Ÿ βˆ’ 𝐽0 𝑠2𝑛 𝑅2 π‘Œ1 𝑠2𝑛 π‘Ÿ
.
πœ•v
πœ•π‘Ÿ
=
πœ•u
πœ•π‘Ÿ
βˆ’
u
π‘Ÿ
= πœ‹
𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’
1
π‘Ÿ
πœ“2 𝑠2𝑛 π‘Ÿ
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
Γ—
𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
𝜍 𝛽0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(72)
Substitute Eqs(71) and (72) into Eqs.(63) and (64),
respectively then we obtain
𝑺 π‘Ÿπ‘§
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼 πœ‹
𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 π‘Ÿ
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ—
π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(73)
𝑺 π‘Ÿπœƒ
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
πœ‹
𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’
1
π‘Ÿ
πœ“2 𝑠2𝑛 π‘Ÿ
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ—
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(74)
Applying the Laplace transform to Eqs(73) and
(74),we get
𝑺 π‘Ÿπ‘§
= πœŒπœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝑠1𝑛 𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
𝑠1𝑛 𝑅2
∞
𝑛=1
Γ— πΏβˆ’1
𝑠1𝑛
4
𝜐2
1 + πœ†2
𝛽
𝑠 𝛽
2
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠1𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
Γ— πΏβˆ’1
1
1 + πœ†1
𝛼
𝑠 𝛼
(75)
𝑺 π‘Ÿπœƒ
= πœ‹
𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ
π‘Ÿπ‘ 2𝑛
2
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— πΏβˆ’1 1
1 + πœ†1
𝛼
𝑠 𝛼
Γ— πΏβˆ’1
𝑠2𝑛
4
𝜐2
1 + πœ†2
𝛽
𝑠 𝛽
2
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
𝜍 𝛽0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(76)
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 63 | P a g e
Then Eqs(75) and (76) are become
𝑺 π‘Ÿπ‘§
= πœŒπœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝑠1𝑛 𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐺2 𝑠1𝑛, 𝑑 (77)
where
𝐺2 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠1𝑛
2
𝜐 2+𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ 2πœ†2
𝛽
𝑑 𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†2
2𝛽
𝑑2𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑 𝛼
𝑺 π‘Ÿπœƒ
= πœŒπœ‹
𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ
π‘Ÿπ‘ 2𝑛
2
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
𝑠2𝑛 𝑅2
∞
𝑛=1
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
Γ— 𝐺2 𝑠2𝑛, 𝑑 (78)
where
𝐺2 𝑠2𝑛, 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠2𝑛
2
𝜐 2+𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ 2πœ†2
𝛽
𝑑 𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†2
2𝛽
𝑑2𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑 𝛼
Let
𝐹1,1(π‘Ÿ, 𝑑) = πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ +
πœ•π‘€
πœ•π‘‘
𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡πœ†2
𝛽 πœ•π‘€
πœ•π‘‘
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝐹1,2 π‘Ÿ, 𝑑 = 2πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2
𝛽
π‘Ÿ
πœ•v
πœ•π‘Ÿ
2
𝐹1,3(π‘Ÿ, 𝑑) = 2πœ†1
𝛼
πœ•π‘€
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2
𝛽 πœ•π‘€
πœ•π‘Ÿ
2
We get
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπ‘§ = 𝐹1,1(π‘Ÿ, 𝑑) (79π‘Ž)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπœƒ = 𝐹1,2 π‘Ÿ, 𝑑 (79𝑏)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 𝑧𝑧 = 𝐹1,3(π‘Ÿ, 𝑑) (79𝑐)
Applying Laplace transform tπ‘œ 79π‘Ž , 79𝑏 and
(79c) ,we get
𝑺 πœƒπ‘§ =
𝐹1,1(π‘Ÿ, 𝑑)
1 + πœ†1
𝛼
𝑠 𝛼
(80π‘Ž)
𝑺 πœƒπœƒ =
𝐹1,2(π‘Ÿ, 𝑑)
1 + πœ†1
𝛼
𝑠 𝛼
(80𝑏)
𝑺 𝑧𝑧 =
𝐹1,3(π‘Ÿ, 𝑑)
1 + πœ†1
𝛼
𝑠 𝛼
(80𝑐)
The inverse of Laplace transform tπ‘œ 80π‘Ž , 80𝑏
and (80c) ,can be expressed by
𝑺 πœƒπ‘§ =
1
πœ†1
𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1
𝑑
0
𝐸 𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑
βˆ’ 𝜏 𝛼
𝐹1,1(π‘Ÿ, 𝑑) π‘‘πœ (81π‘Ž)
𝑺 πœƒπœƒ =
1
πœ†1
𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1
𝑑
0
𝐸 𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑
βˆ’ 𝜏 𝛼 𝐹1,2(π‘Ÿ, 𝑑) π‘‘πœ (81𝑏)
𝑺 𝑧𝑧 =
1
πœ†1
𝛼 (𝑑 βˆ’ 𝜏) π›Όβˆ’1
𝑑
0
𝐸 𝛼,𝛼 βˆ’πœ†1
𝛼
(𝑑
βˆ’ 𝜏) 𝛼
𝐹1,3(π‘Ÿ, 𝑑) π‘‘πœ (81𝑐)
The definition of the weiessenberg number π‘Šπ‘–is as
follows
π‘Šπ‘– =
𝑺 𝑧𝑧 βˆ’ 𝑺 πœƒπœƒ
𝑺 𝑧𝑧
(82)
The shear stresses (the frictional force ) i.e.,the
drag exerted per unit length of the inner or outer
cylinders or of the cylinder of radius π‘Ÿ = 𝑅2 , in
the second case ,can be calculated from
Eqs.(73)and(74) , we get
𝜏1= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
πœ‹
𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 𝑅2
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
𝑠1𝑛 𝑅2
∞
𝑛=1
Γ— π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 Γ—
𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(83)
𝜏2 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
Γ— πœ‹
𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’
1
π‘Ÿ
πœ“2 𝑠2𝑛 π‘Ÿ
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
Γ—
𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
𝜍 𝛽0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠2𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(84)
Now ,we applying the inverse Laplace transform
toEqs.(83)and(84) ,we obtain
𝜏1= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2
= πœŒπœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 𝑅2 π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝑠1𝑛 𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐺2 𝑠1𝑛, 𝑑 (85)
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 64 | P a g e
𝜏2 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2
= πœŒπœ‹
𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 𝑅2 βˆ’ πœ“2 𝑠2𝑛 𝑅2
π‘Ÿπ‘ 2𝑛
2
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— 𝐺2 𝑠2𝑛, 𝑑 (86)
IV.Helical flow through circular cylinder I
Taking the limit of Eqs(38) and (39), when
𝑅1 β†’ 0 and 𝑅2 β†’ 𝑅, we find the Hankel transform
𝑀 = π‘Ÿπ½0 𝑠3𝑛 π‘Ÿ
𝑅
0
𝑀 π‘Ÿ, 𝑠 π‘‘π‘Ÿ (87)
Where 𝑠3𝑛 is positive root of 𝐽0 𝑠3𝑛 𝑅 = 0 , and
𝑒 = π‘Ÿπ½1 𝑠4𝑛 π‘Ÿ
𝑅
0
𝑒 π‘Ÿ, 𝑠 π‘‘π‘Ÿ (88)
Where 𝑠4𝑛 is positive root of 𝐽1 𝑠4𝑛 𝑅 = 0 , and
the inverse Hankel transform are
𝑀 π‘Ÿ, 𝑠 =
2
𝑅2
𝑀 𝑠3𝑛, 𝑠 𝐽0 𝑠3𝑛 π‘Ÿ
𝐽1
2
𝑠3𝑛 𝑅
∞
𝑛=1
(89)
and
𝑒 π‘Ÿ, 𝑠 =
2
𝑅2
𝑒 𝑠4𝑛 , 𝑠 𝐽1 𝑠4𝑛 π‘Ÿ
𝐽2
2
𝑠4𝑛 𝑅
∞
𝑛=1
(90)
Corresponding to the helical flow through an
infinite circular cylinder . the boundary conditions
must be changed by
𝑀 0, 𝑑 < ∞ , 𝑀 𝑅, 𝑑 = π‘ˆ, 𝑒 0, 𝑑 < ∞ , 𝑒 𝑅, 𝑑 =
𝑅𝛺 (91)
Now apply Laplace transform to the boundary
conditions, with respect to t ,we get
𝑀 0, 𝑠 < ∞,𝑀 𝑅, 𝑠 =
π‘ˆ
𝑠
, 𝑒 0, 𝑠 < ∞ , 𝑒 𝑅, 𝑠 =
𝑅𝛺
𝑠
(92)
Now applying finite Hankel transform to Eqs.(31)
and (33) ,we get
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
+ 𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑀
= 𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑅 𝑠3𝑛
π‘ˆ
𝑠
𝐽1 𝑠3𝑛 𝑅 (93)
then
𝑀
=
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑅 𝑠3𝑛 π‘ˆ 𝐽1 𝑠3𝑛 𝑅
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
𝜍 𝛽0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(94)
and
𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
+ 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑒
= βˆ’
𝑅2
𝛺
𝑠
𝑠4𝑛 𝜐 1
+ πœ†2
𝛽
𝑠 𝛽
𝐽2 𝑠4𝑛 𝑅 (95)
Then
𝑒
= βˆ’
𝑅2
𝛺𝑠4𝑛 𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝐽2 𝑠4𝑛 𝑅
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(96)
Substitute Eqs.(94) and(96) into Eqs(89) and (90)respectively
and using the identity
𝐽 𝑛
β€²
𝑠1𝑛 π‘Ÿ = 𝐽 π‘›βˆ’1 𝑠1𝑛 π‘Ÿ = βˆ’π½ 𝑛+1 𝑠1𝑛 π‘Ÿ
,we find that
𝑀 π‘Ÿ, 𝑠 =
2π‘ˆ
𝑅
𝐽0 𝑠3𝑛 π‘Ÿ
𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
𝐴2 𝑠3𝑛, 𝑠 (97)
where
𝐴1 𝑠3𝑛 , 𝑠
=
𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(98)
and
𝑒 π‘Ÿ, 𝑠 = 2𝛺
𝐽1 𝑠4𝑛 π‘Ÿ
𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
𝐴2 𝑠4𝑛, 𝑠 (99)
where
𝐴1 𝑠4𝑛, 𝑠
=
𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(100)
Now ,rewrite Eqs.(98)and (100) in series form as
𝐴1 𝑠3𝑛 , 𝑠
=
1
𝑠
βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠3𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
𝑠 𝛿
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ—
1
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (101)
Where 𝛿 = βˆ’π‘š βˆ’ 2 + 𝛼 βˆ— 𝑏 + 𝛽 βˆ— 𝑑, and
𝐴1 𝑠4𝑛, 𝑠
=
1
𝑠
βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠4𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
𝑠 𝛿
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ—
1
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (102)
Now , applying inverse Laplace transform to
Eqs.(101)and(102) , we obtain
𝐴1 𝑠3𝑛 , 𝑑
= 1 βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠3𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— πΏβˆ’1
𝑠 𝛿
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (103)
𝐴1 𝑠4𝑛, 𝑑
= 1 βˆ’ 𝑠 1 + πœ†1
𝛼
𝑠 𝛼
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠4𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— πΏβˆ’1
𝑠 𝛿
πœπ›½0
2
𝜌
πœ†1
βˆ’π›Ό
π‘ βˆ’1 + 𝑠 𝛼 + πœ†1
βˆ’π›Ό
π‘š+1 (104)
Now ,we will use the property(54) of Mittag-
leffler function [5] ,Then Eqs.(103)and (104) ,are
become
𝐴1 𝑠3𝑛 , 𝑑
= 1 βˆ’ 𝑑 + πœ†1
𝛼
𝑑 𝛼+1
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑑 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠3𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 65 | P a g e
Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(105)
and
𝐴1 𝑠4𝑛, 𝑑
= 1 βˆ’ 𝑑 + πœ†1
𝛼
𝑑 𝛼+1
+
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑑 𝛼
Γ— (βˆ’1) π‘š
∞
π‘š=0
π‘š!
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
πœπ›½0
2
𝜌
𝒃
𝑠4𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(106)
Substitute Eqs.(105) and (106) into (97) and (99)
,we get
𝑀 π‘Ÿ, 𝑑 =
2π‘ˆ
𝑅
𝐽0 𝑠3𝑛 π‘Ÿ
𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
(1 βˆ’ 𝐺1 𝑠3𝑛, 𝑑 ) (107)
where
𝐺1 𝑠3𝑛, 𝑑
= (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠3𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
πœ†1
𝛼
𝑑 𝛼
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(108)
and
𝑒 π‘Ÿ, 𝑑 = 2𝛺
𝐽1 𝑠4𝑛 π‘Ÿ
𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
1 βˆ’ 𝐺1 𝑠4𝑛, 𝑑 (109)
where
𝐺1 𝑠4𝑛, 𝑑
= (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠4𝑛
2
𝜐 𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+
πœπ›½0
2
𝜌
πœ†1
𝛼
𝑑 𝛼
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
(110)
Finally ,the inverse finite Hankel transform on
π‘Š π‘Ÿ and π‘ˆ π‘Ÿ , we get
𝐻 π‘Š π‘Ÿ = π‘Ÿπ½0 𝑠3𝑛 π‘Ÿ
𝑅
0
π‘ˆπ‘‘π‘Ÿ =
π‘ˆπ‘…
𝑠3𝑛
𝐽1 𝑠3𝑛 𝑅
where π‘Š π‘Ÿ = π‘ˆ , we get
𝑀 π‘Ÿ, 𝑑 = π‘ˆ βˆ’
2π‘ˆ
𝑅
𝐽0 𝑠3𝑛 π‘Ÿ
𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
𝐺1 𝑠3𝑛, 𝑑 (111)
and
𝐻 π‘ˆ π‘Ÿ = π‘Ÿπ½1 𝑠4𝑛 π‘Ÿ
𝑅
0
2π›Ίπ‘‘π‘Ÿ =
2𝛺
𝑠4𝑛
𝐽2 𝑠4𝑛 𝑅 =
βˆ’2𝛺
𝑠4𝑛
𝐽0 𝑠4𝑛 𝑅
Where π‘ˆ π‘Ÿ = βˆ’2𝛺 , we get
𝑒 π‘Ÿ, 𝑑 = βˆ’2𝛺 + 2𝛺
𝐽1 𝑠4𝑛 π‘Ÿ
𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
𝐺1 𝑠4𝑛, 𝑑 (112)
4.1.Calculation of the tangential tensions and
normal tensions
Differentiating the Eqs. (97) and (99) with
respect to r, and substitute into Eqs. (63) and (64)
respectively, we obtain
𝑺 π‘Ÿπ‘§
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
βˆ’
2π‘ˆ
𝑅
𝐽1 𝑠3𝑛 π‘Ÿ
𝑠3𝑛
2
𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
Γ—
𝑠3𝑛
4
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(113)
𝑺 π‘Ÿπœƒ
=
πœ‡ 1 + πœ†2
𝛽
𝑠 𝛽
1 + πœ†1
𝛼
𝑠 𝛼
2𝛺
𝐽1 𝑠4𝑛 π‘Ÿ /π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ
π‘Ÿπ‘ 4𝑛
3
𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
Γ—
βˆ’π‘Ÿ 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
(114)
Applying the Laplace transform to Eqs(113) and
(114),we get
𝑺 π‘Ÿπ‘§
= βˆ’
2πœŒπ‘ˆ
𝑅
𝐽1 𝑠3𝑛 π‘Ÿ
𝑠3𝑛
2
𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
Γ— πΏβˆ’1
𝑠3𝑛
4
𝜐2
1 + πœ†2
𝛽
𝑠 𝛽
2
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠3𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽 Γ— 1 + πœ†1
𝛼
𝑠 𝛼
(115)
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 66 | P a g e
𝑺 π‘Ÿπœƒ
= 2πœŒπ›Ί
𝐽1 𝑠4𝑛 π‘Ÿ /π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ
π‘Ÿπ‘ 4𝑛
3
𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
Γ— πΏβˆ’1
βˆ’π‘Ÿ 𝑠4𝑛
2
𝜐2
1 + πœ†2
𝛽
𝑠 𝛽
2
𝑠 𝑠 1 + πœ†1
𝛼
𝑠 𝛼 +
πœπ›½0
2
𝜌
1 + πœ†1
𝛼
𝑠 𝛼 + 𝑠4𝑛
2
𝜐 1 + πœ†2
𝛽
𝑠 𝛽
Γ— πΏβˆ’1
1
1 + πœ†1
𝛼
𝑠 𝛼
(116)
Then Eqs(115) and (116) are become
𝑺 π‘Ÿπ‘§ = βˆ’
2πœŒπ‘ˆ
𝑅
𝐽1 𝑠3𝑛 π‘Ÿ
𝑠3𝑛
2
𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
Γ— 𝐺2 𝑠3𝑛, 𝑑 (117)
where
𝐺2 𝑠3𝑛, 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠3𝑛
2
𝜐 2+𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ 2πœ†2
𝛽
𝑑 𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†2
2𝛽
𝑑2𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑 𝛼
and
𝑺 π‘Ÿπœƒ
= 2πœŒπ›Ί
𝐽1 𝑠4𝑛 π‘Ÿ
π‘Ÿ
βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ
π‘Ÿπ‘ 4𝑛
3
𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
Γ— 𝐺2 𝑠4𝑛, 𝑑 (118)
where
𝐺2 𝑠4𝑛 , 𝑑 = (βˆ’1) π‘š+1
∞
π‘š=0
πœπ›½0
2
𝜌
𝒃
π‘Ÿ
𝑏! 𝑐! 𝑑!
𝑏,𝑐,𝑑β‰₯0
𝑏+𝑐+𝑑=π‘š
𝑠4𝑛 𝜐 2+𝑐+𝑑
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘šβˆ’π‘+1
βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ 2πœ†2
𝛽
𝑑 𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1 +
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
+ πœ†2
2𝛽
𝑑2𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’
1
πœ†1
𝛼 1
+
πœπ›½0
2
𝜌
𝑑
𝑑 𝛼
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑 𝛼
Let
𝐹2,1(π‘Ÿ, 𝑑) = πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ +
πœ•π‘€
πœ•π‘‘
𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡πœ†2
𝛽 πœ•π‘€
πœ•π‘‘
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝐹2,2 π‘Ÿ, 𝑑 = 2πœ†1
𝛼
π‘Ÿ
πœ•v
πœ•π‘Ÿ
𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2
𝛽
π‘Ÿ
πœ•v
πœ•π‘Ÿ
2
𝐹2,3(π‘Ÿ, 𝑑) = 2πœ†1
𝛼
πœ•π‘€
πœ•π‘Ÿ
𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2
𝛽 πœ•π‘€
πœ•π‘Ÿ
2
We get
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπ‘§ = 𝐹2,1(π‘Ÿ, 𝑑) (119π‘Ž)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 πœƒπœƒ = 𝐹2,2 π‘Ÿ, 𝑑 (119𝑏)
1 + πœ†1
𝛼
𝐷𝑑
𝛼
𝑺 𝑧𝑧 = 𝐹2,3(π‘Ÿ, 𝑑) (119𝑐)
Applying Laplace transform tπ‘œ(119π‘Ž), (119𝑏)
and(119𝑐) ,we get
𝑺 πœƒπ‘§ =
𝐹2,1(π‘Ÿ, 𝑑)
1 + πœ†1
𝛼
𝑠 𝛼
(120π‘Ž)
𝑺 πœƒπœƒ =
𝐹2,2 π‘Ÿ, 𝑑
1 + πœ†1
𝛼
𝑠 𝛼
(120𝑏)
𝑺 𝑧𝑧 =
𝐹2,2 π‘Ÿ, 𝑑
1 + πœ†1
𝛼
𝑠 𝛼
(120𝑐)
The inverse of Laplace transform
tπ‘œ(120π‘Ž), 120𝑏 and (120c) ,can be expressed by
𝑺 πœƒπ‘§ =
1
πœ†1
𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1
𝑑
0
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑
βˆ’ 𝜏 𝛼
𝐹2,1(π‘Ÿ, 𝑑) π‘‘πœ (121π‘Ž)
𝑺 πœƒπœƒ =
1
πœ†1
𝛼 (𝑑 βˆ’ 𝜏) π›Όβˆ’1
𝑑
0
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
(𝑑
βˆ’ 𝜏) 𝛼
𝐹2,2 π‘Ÿ, 𝑑 π‘‘πœ (121𝑏)
𝑺 𝑧𝑧 =
1
πœ†1
𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1
𝑑
0
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑
βˆ’ 𝜏 𝛼
𝐹2,3(π‘Ÿ, 𝑑) π‘‘πœ (121𝑐)
The definition of the weiessenberg number π‘Šπ‘–is as
follows
π‘Šπ‘– =
𝑺 𝑧𝑧 βˆ’ 𝑺 πœƒπœƒ
𝑺 𝑧𝑧
(122)
The shear stresses (the frictional force ) i.e.,the
drag exerted per unit length of the inner or outer
cylinders or of the cylinder of radius π‘Ÿ = 𝑅2 , in
the second case ,can be calculated from
Eqs.(117)and(118) , we get
𝜏3= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2
= βˆ’
2πœŒπ‘ˆ
𝑅
𝐽1 𝑠3𝑛 𝑅2
𝑠3𝑛
2
𝐽1 𝑠3𝑛 𝑅
∞
𝑛=1
Γ— 𝐺2 𝑠3𝑛, 𝑑 (123)
𝜏4 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2
= 2πœŒπ›Ί
𝐽1 𝑠4𝑛 𝑅2
π‘Ÿ
βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅2
𝑅2 𝑠4𝑛
3
𝐽0 𝑠4𝑛 𝑅
∞
𝑛=1
Γ— 𝐺2 𝑠4𝑛, 𝑑 (124)
V. Limiting case
1- Making the limit of Eqs(61) and (63) when
𝛼 β‰  0 , 𝛽 β‰  0 and
πœπ›½0
2
𝜌
= 𝑀 = 0 ,we can attain
the similar solution velocity distribution for
unsteady helical flows of a generalized Oldroyd –B
fluid , as obtained in [6] , thus velocity fields
reduces to
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 67 | P a g e
𝑀 π‘Ÿ, 𝑑
= π‘Š π‘Ÿ
βˆ’ πœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐺1 𝑠1𝑛 , 𝑑 (125)
where
𝐺1 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
𝑠1𝑛
2
𝜐 𝑐+𝑑
𝑐! 𝑑!
𝑐,𝑑β‰₯0
𝑐+𝑑=π‘š
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘š+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
Or
𝐺1 𝑠1𝑛, 𝑑 =
βˆ’1 π‘š
π‘š βˆ’ 1 !
𝑠1𝑛
2
𝜐
πœ†1
𝛼
π‘šβˆž
π‘š=0
Γ—
π‘š
π‘˜
πœ†2
𝛽 π‘˜
π‘š
π‘˜=0
𝑑(1+𝛼)π‘šβˆ’π›½π‘˜
𝐸𝛼,(𝛼+π‘š+1βˆ’π›½π‘˜)
(π‘šβˆ’1)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
And
𝑒 π‘Ÿ, 𝑑
= π‘ˆ π‘Ÿ
βˆ’ πœ‹
𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2)
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ— 𝐺1 𝑠2𝑛, 𝑑 (126)
Where
𝐺1 𝑠2𝑛, 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
𝑠2𝑛
2
𝜐 𝑐+𝑑
𝑐! 𝑑!
𝑐,𝑑β‰₯0
𝑐+𝑑=π‘š
πœ†2
𝛽
𝑑
πœ†1
𝛼 π‘š+1
βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1
𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
+ πœ†1
𝛼
𝑑 𝛼+1
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
Or
𝐺1 𝑠1𝑛, 𝑑 =
βˆ’1 π‘š
π‘š βˆ’ 1 !
𝑠2𝑛
2
𝜐
πœ†1
𝛼
π‘šβˆž
π‘š=0
π‘š
π‘˜
πœ†2
𝛽 π‘˜
π‘š
π‘˜=0
𝑑 1+𝛼 π‘šβˆ’π›½π‘˜
𝐸𝛼,(𝛼+π‘š+1βˆ’π›½π‘˜)
(π‘šβˆ’1)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
2- Making the limit of Eqs(77) and (78) when
𝛼 β‰  0 , 𝛽 β‰  0 and
πœπ›½0
2
𝜌
= 𝑀 = 0 ,we can attain
the similar solution shear stress for unsteady
helical flows of a generalized Oldroyd –B fluid , as
obtained in [6] , thus shear stress reduces to
𝑺 π‘Ÿπ‘§ = πœŒπœ‹
𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ
𝑠1𝑛 𝐽0
2
𝑠1𝑛 𝑅1 βˆ’ 𝐽0
2
(𝑠1𝑛 𝑅2)
∞
𝑛=1
π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1
βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2
Γ— 𝐺2 𝑠1𝑛, 𝑑 (127)
where
𝐺2 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š
∞
π‘š=0
𝑠1𝑛
2
𝜐 2+𝑐+𝑑
𝑐! 𝑑!
𝑐,𝑑β‰₯0
𝑐+𝑑=π‘š
πœ†2
𝛽 𝑑
πœ†1
𝛼 π‘š+1
βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2
βˆ— 𝐸𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
+ 2πœ†2
𝛽
𝑑 𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
+ πœ†2
2𝛽
𝑑2𝛽
𝐸 𝛼,(π›Όβˆ’π›Ώ)
(π‘š)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
𝐸𝛼,𝛼 βˆ’πœ†1
𝛼
𝑑 𝛼
Or
𝐺2 𝑠1𝑛 , 𝑑 =
βˆ’1 π‘š
π‘š + 1 !
𝑠1𝑛
2
𝜐
πœ†1
𝛼
π‘š+2∞
π‘š=0
π‘š + 2
π‘˜
πœ†2
𝛽 π‘˜
π‘š
π‘˜=0
Γ— 𝑑 1+𝛼 π‘š+2 βˆ’π›½π‘˜βˆ’1
𝐸𝛼,(𝛼+π‘š+2βˆ’π›½π‘˜)
(π‘š+1)
βˆ’πœ†1
βˆ’π›Ό
𝑑 𝛼
𝑺 π‘Ÿπœƒ = πœŒπœ‹
𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ
π‘Ÿπ‘ 2𝑛
2
𝐽1
2
𝑠2𝑛 𝑅1 βˆ’ 𝐽1
2
(𝑠2𝑛 𝑅2)
∞
𝑛=1
Γ— 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1)
βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐺2 𝑠2𝑛, 𝑑 (128)
VI.Numerical result and conclusion
In this paper we established the effect of MHD
flow of the unsteadyhelical flows of an Oldroyd-B
fluid in concentric cylinders and circular cylinder.
The exact solutionof the unsteadyhelical flows of
an Oldroyd-B fluid in an annular for the velocity
field u , w and the associated shear stresses 𝜏1 , 𝜏2
are obtained by using Hankel transform and
Laplace transform for fractional calculus .
Moreover , some figures are plotted to show the
behavior of various parameters involved in the
expression of velocities w ,u ( Eqs(61 and 62)) ,
shear stresses 𝜏1 , 𝜏2(Eqs(85 and 86)) ,respectively
.
All theresult in this section are plotting graph by
using MATHEMATICA package .
Fig(1) is depicted to show the change of the
velocity w(r,t) with the non-integer fractional
parameter 𝛼 . the velocity is decreasing with
increase of 𝛼. Fig(2) is prepared to show the effect
of the variations of fractional parameter 𝛽 .the
velocity field w is increasing with
increasefractional parameter 𝛽 .Fig(3) represents
the variation of velocity w for different values of
relaxation πœ†1 . The velocity is decreasing with
increase πœ†1.Fig(4 and 5) are prepared to show the
effect of the variation of retardation πœ†2 and
kinematic viscosity v on the velocity field .The
velocity field w is increasing with increase the
parameters πœ†2 and v .Fig (6) is established value of
magnetic parameter M .the velocity field is
decreases with increasing of M .Fig(7) illustrate the
influence of time t on the velocity field w. the
velocity is increasing with increase the time t.
Fig(8) is provided the graphically illustrations for
effects ofthe non-integer fractional parameter 𝛼 on
the velocity u(r,t) with the non-integer fractional
parameter 𝛼 . the velocity is decreasing with
increase of 𝛼.Fig(9) is prepared to show the effect
of the variations of fractional parameter 𝛽 .the
velocity field w is increasing with
increasefractional parameter 𝛽 .Fig(10) represents
the variation of velocity w for different values of
relaxation πœ†1 . The velocity is decreasing with
increase πœ†1.Fig(11 and 12) are prepared to show the
effect of the variation of retardation πœ†2 and
kinematic viscosity v on the velocity field .The
velocity field w is increasing with increase the
parameters πœ†2 and v .Fig (13) is established value
of magnetic parameter M .the velocity field is
decreases with increasing of M .Fig(14) illustrate
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 68 | P a g e
the influence of time t on the velocity field w. the
velocity is increasing with increase the time t.
Figs(15-20) provide the graphically illustrations
for the effects of (fractional parameters(𝛼 , 𝛽) ,
relaxation πœ†1 , retardation πœ†2 , kinematic viscosity v
, magnetic parameter M and time t) on the shear
stress 𝜏1 . The shear stress decreasing with increase
the different parameters.
Figs(21-26) are established to show the behavior
of the parameters (fractional parameters(𝛼 , 𝛽) ,
relaxation πœ†1 , retardation πœ†2 , kinematic viscosity v
, magnetic parameter M and time t) on the shear
stress 𝜏2 . The shear stress decreasing with increase
the different parameters.
The velocity w
Fig1:- the velocity w for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2}
Fig2:- the velocity w for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.4ο€  ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2}
Fig3:- the velocity w for different value 1 { 2ο€½8 , v=0.165 ,
Mο€½0.1,=0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2}
Fig4:- the velocity w for different value 2 { 1ο€½15 , v=0.165 ,
Mο€½0.1, =0.6 , =0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2,
u2=2}
Fig5:- the velocity w for different value v {1ο€½15 , 2ο€½8 ,
M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2,
u2=2}
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­4
ο€­3
ο€­2
ο€­1
1
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­4
ο€­3
ο€­2
ο€­1
1
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­3
ο€­2
ο€­1
1
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­3
ο€­2
ο€­1
1
2
ο€­
……. =0.2
____ =0.4
------ =0.6
……. =0.2
____ 0.8
------ 1.4
……. 1ο€½5
____ 1
------1ο€½25
……. 2ο€½8
____ 2ο€½ο€±ο€Ά
------2ο€½24
……..v=0.165
____v=0.265
_ _ _v=0.365
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 69 | P a g e
Fig6:- the velocity w for different value M { 1ο€½15 , 2ο€½8,
v=0.165,=0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2}
Fig7:- the velocity w for different value t { 1ο€½15 ,
2ο€½8,Mο€½0.1, v=0.165,=0.4ο€  , K1ο€½3.31114 , R1=1, R2=2,
u1=2, u2=2}
The velocity of u
Fig8:- the velocity u for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2}
Fig9:- the velocity u for different value  {1ο€½15 , 2ο€½8 ,
v=0.165 , Mο€½0.1, =0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2,
u2=2}
Fig10:- the velocity u for different value 1 { 2ο€½8 , v=0.165 ,
Mο€½0.1, =0.4,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2,
u2=2}
Fig11:- the velocity u for different value 2 {1ο€½15, v=0.165 ,
Mο€½0.1, =0.6 ,=0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2,
u2=2}
1.2 1.4 1.6 1.8 2.0
r
ο€­3
ο€­2
ο€­1
1
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­8
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
……. Mο€½0.1
____ Mο€½0.2
------ Mο€½0.3
……. tο€½1
____ tο€½2
------ tο€½3
…….=0.2
____ =0.4
------ =0.6
……. =0.2
____ 0.8
------ 1.4
……. 2ο€½8
____ 2ο€½ο€±ο€Ά
------2ο€½24
……. 1
____ 1
------1ο€½25
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 70 | P a g e
Fig12:- the velocity u for different value v {1ο€½15 , 2ο€½8 ,
M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2, u1=2,
u2=2}
Fig13:- the velocity u for different value M {1ο€½15 , 2ο€½8 ,
v=0.165 , Mο€½0.1,=0.6 , =0.4, K1ο€½3.31114 , tο€½2,R1=1,
R2=2, u1=2, u2=2}
Fig14:- the velocity u for different value t {1ο€½15 , 2ο€½8 ,
v=0.165 , Mο€½0.1, =0.6 ,=0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2,
u1=2, u2=2}
The shree stress
Fig .15. the shear stress for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig .16. the shear stress for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig .17. the shear stress for different value of 12ο€½8 ,
v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 , tο€½2,R1=1,
R2=2, u1=1, u2=1,rο€½2, 0.1}
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­6
ο€­4
ο€­2
2
ο€­
1.2 1.4 1.6 1.8 2.0
r
ο€­12
ο€­10
ο€­8
ο€­6
ο€­4
ο€­2
2
ο€­
8 10 12 14 16 18 20
t
ο€­50
ο€­40
ο€­30
ο€­20
ο€­10
10
ο€­
8 10 12 14 16
t
ο€­20
ο€­15
ο€­10
ο€­5
ο€­
8 10 12 14 16
t
ο€­8
ο€­6
ο€­4
ο€­2
ο€­
……..v=0.165
____v=0.265
_ _ _v=0.365
……. Mο€½0.1
____ Mο€½0.2
------ Mο€½0.3
……. tο€½1
____ tο€½2
------ tο€½3
…….=0.2
____ =0.4
------ =0.6
……. =0.2
____ 0.8
------ 1.4
……. 1
____ 1
------1ο€½25
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 71 | P a g e
Fig .18. the shear stress for different value of 21ο€½15 ,
v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 , tο€½2,R1=1,
R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig19:- the the shear stress for different value v {1ο€½15 ,
2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2,
u1=2, u2=2,rο€½2,0.1}
Fig .20. the shear stress for different value of M1ο€½15
2ο€½8, v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 ,
tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1}
the sheer stress 2
Fig .21 the shear stress for different value of fractional
parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig .22. the shear stress for different value of fractional
parameter {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 ,
K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig .23. the shear stress for different value of 1 {2ο€½8 ,
v=0.165 , Mο€½0.1 ,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1,
R2=2, u1=1, u2=1,rο€½2, 0.1}
8 10 12 14
t
ο€­12
ο€­10
ο€­8
ο€­6
ο€­2
0
ο€­
8 10 12 14
t
ο€­12
ο€­10
ο€­8
ο€­6
ο€­2
0
ο€­
8 10 12 14
t
ο€­4.0
ο€­3.0
ο€­2.5
ο€­2.0
ο€­1.5
ο€­1.0
ο€­
8 10 12 14 16 18 20
t
ο€­40
ο€­30
ο€­20
ο€­10
10
ο€­
8 10 12 14
t
ο€­15
ο€­10
ο€­5
ο€­
8 10 12 14 16
t
ο€­6
ο€­5
ο€­4
ο€­3
ο€­2
ο€­1
1
ο€­
……. 2ο€½8
____ 2ο€½ο€±ο€Ά
------2ο€½24
……..v=0.165
____v=0.265
_ _ _v=0.365
……. Mο€½0.1
____ Mο€½0.2
------ Mο€½0.3
…….=0.2
____ =0.4
------ =0.6
……. 1
____ 1
------1ο€½25
……. =0.2
____ 0.8
------ 1.4
Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82
www.ijera.com 72 | P a g e
Fig .24. the shear stress for different value of 2 {1ο€½15 ,
v=0.165 , Mο€½0.1 ,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1,
R2=2, u1=1, u2=1,rο€½2, 0.1}
Fig25:- the the shear stress for different value v {1ο€½15 ,
2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2,
u1=2, u2=2,rο€½2,0.1}
Fig .26. the shear stress for different value of M {1ο€½15 ,
2ο€½8, v=0.165,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2,
u1=1, u2=1,rο€½2, 0.1}
References
[1] C.Fetecau,C.Fetecau,D.Vieru ,On some helical
flows of Oldroyd –B fluids, Acta Mech . 189
(2007) 53-63.
[2] C.Fetecau,C.Fetecau, The first problem of Stokes
for an Oldroyd –B fluid, Int .J.Non –Linear
Mech.38(2003) 1539-1544.
[3] C.Fetecau , The Rayleigh –Stokes problem for an
edge in an Oldroyd –B fluid .C.R.Acad.
Paris Ser.1335(2003) 979-984.
[4] C.Guilope ,J.c ,Saut ,Global existence and one-
dimensional non –linear stability of shearing
motion of viscoelastic fluids of Oldroyd type
,RAIRO Model ,Math .Anal ,Number
24)1990)369-401.
[5] -Debnath,l.and Bhatta,D.Integral transforms and
Their Application Boca Rato ,London , Newyork
, chapman &Hall.CRC;2007.
[6] Dengke Tong , Xianmin Zhang ,Xinhong Zhang
,Unsteady helical flows of a generalized Oldroyd-
B fluid ,J.Non-Newtonian fluid Mech. 156
(2009) 75-83 .
[7] D.K.Tong,R.H.Wang ,Exact solution for the flow
of non-Newtonian fluid with fractional derivative
in an annular pipe , Sci .Chin .Sec G 48 (2005)
485-495
[8] G.C.Georgiou ,On the stability of the shear flow
of a viscoelasic fluid with slip along the fixed
wall ,Rheol .Acta 35 (1996) 39-47.
[9] H.Stechfest ,Algorithm 368 numerical inversion
of Laplace transform ,Commum ,ACM 13(1)
(1970) 47-49.
[10] H.Stechfest .Remark on Alrorithim 368numerical
inversion of Laplace transform ,Commum ,ACM
13(10) (1970) 624-625.
[11] J.G. Oldroyd , on the formulation of rheological
equation of state ,Proc,R.Soc . Lond .A
200(1950)523-541.
[12] K.R. Rajagopal ,P.K.Bahtngar .Exact solution for
some simple flows of an Oldroyd-B
fluid. Acta Mech 113(1995)233-239.
[13] M.A .Fontelos ,A.Friedman .Stationary non-
Newtonian fluid flows in channel-like and pipe –
like domains. Arch .Rational Mech .Anal
151(2001) 1-43.
[14] N.D.Waters M.J. King ,Unsteady flow of an
elastico –viscous liquid ,Rheol .Acta 93(1970)
345-355.
[15] T.Wenchang ,P.Wenxian .X. Mingyu,Anote on
unsteady flows of a viscoelastic fluids with the
fractional Maxwell model between two parallel
plates ,Int.J.Non –Linear Mech.38(5)(2003) 645-
650.
[16] W.P.Wood , Transient viscoelastic helical flows
in pipe of circular and annular cross –section ,J.
Non -Newtonian fluid Mech.100(2001) 115-126.
[17] X.Mingyu,T.Wenchang ,Theoretical analysis of
the velocity field , stress field and vortex sheet of
generalized second order fluid with fractional
anomalous diffusion ,Sci,Chin (Ser.A)
44(11)(2001) 1387-1399.
8 10 12 14 16
t
ο€­10
ο€­8
ο€­6
ο€­4
ο€­2
ο€­
8 10 12 14 16
t
ο€­10
ο€­8
ο€­6
ο€­4
ο€­2
ο€­
8 10 12 14 16
t
ο€­3.0
ο€­2.5
ο€­2.0
ο€­1.5
ο€­1.0
ο€­0.5
ο€­
……. 2ο€½8
____ 2ο€½ο€±ο€Ά
------2ο€½24
……..v=0.165
____v=0.265
_ _ _v=0.365
……. Mο€½0.1
____ Mο€½0.2
------ Mο€½0.3

More Related Content

What's hot

ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©MohammedRazzaqSalman
Β 
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeEffect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeIJARIDEA Journal
Β 
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...eSAT Journals
Β 
Comparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual changeComparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual changeeSAT Publishing House
Β 
0910 0118-0904-0501-0101062,ijaridea
0910 0118-0904-0501-0101062,ijaridea0910 0118-0904-0501-0101062,ijaridea
0910 0118-0904-0501-0101062,ijarideaIJARIDEA Journal
Β 
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...IJERA Editor
Β 
Jee Advanced 2018 Paper 1
Jee Advanced 2018 Paper 1Jee Advanced 2018 Paper 1
Jee Advanced 2018 Paper 1Abhinandan singh
Β 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsCik Minn
Β 
The Interaction Forces between Two non-Identical Cylinders Spinning around th...
The Interaction Forces between Two non-Identical Cylinders Spinning around th...The Interaction Forces between Two non-Identical Cylinders Spinning around th...
The Interaction Forces between Two non-Identical Cylinders Spinning around th...iosrjce
Β 
Fluids properties
Fluids propertiesFluids properties
Fluids propertiesernest duce
Β 
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)Shekh Muhsen Uddin Ahmed
Β 

What's hot (13)

ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
Β 
H0743842
H0743842H0743842
H0743842
Β 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
Β 
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeEffect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Β 
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Β 
Comparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual changeComparison of flow analysis of a sudden and gradual change
Comparison of flow analysis of a sudden and gradual change
Β 
0910 0118-0904-0501-0101062,ijaridea
0910 0118-0904-0501-0101062,ijaridea0910 0118-0904-0501-0101062,ijaridea
0910 0118-0904-0501-0101062,ijaridea
Β 
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Β 
Jee Advanced 2018 Paper 1
Jee Advanced 2018 Paper 1Jee Advanced 2018 Paper 1
Jee Advanced 2018 Paper 1
Β 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
Β 
The Interaction Forces between Two non-Identical Cylinders Spinning around th...
The Interaction Forces between Two non-Identical Cylinders Spinning around th...The Interaction Forces between Two non-Identical Cylinders Spinning around th...
The Interaction Forces between Two non-Identical Cylinders Spinning around th...
Β 
Fluids properties
Fluids propertiesFluids properties
Fluids properties
Β 
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
Β 

Similar to Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid between Two Infinite Coaxial Circular Cylinders

Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
Β 
Non- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vesselsNon- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vesselsIOSR Journals
Β 
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...IJERA Editor
Β 
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...IJMERJOURNAL
Β 
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...susheelpote
Β 
Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...eSAT Journals
Β 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 dAnurak Atthasit
Β 
Oscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tubeOscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tubeAlexander Decker
Β 
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...IJMTST Journal
Β 
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©MohammedRazzaqSalman
Β 
Weak and strong oblique shock waves
Weak and strong oblique shock wavesWeak and strong oblique shock waves
Weak and strong oblique shock wavesSaif al-din ali
Β 
MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...IJERA Editor
Β 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...AEIJjournal2
Β 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfJamesLumales
Β 

Similar to Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid between Two Infinite Coaxial Circular Cylinders (20)

Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Β 
Non- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vesselsNon- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vessels
Β 
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with S...
Β 
A012620107
A012620107A012620107
A012620107
Β 
A012620107
A012620107A012620107
A012620107
Β 
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...
Heat Transfer in the flow of a Non-Newtonian second-order fluid over an enclo...
Β 
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...
On the-steady-state-performance-characteristics-of-finite-hydrodynamic-journa...
Β 
20120140506001
2012014050600120120140506001
20120140506001
Β 
Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...
Β 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
Β 
Oscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tubeOscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tube
Β 
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Effects on Study MHD Free Convection Flow Past a Vertical Porous Plate with H...
Β 
Ijciet 10 01_093
Ijciet 10 01_093Ijciet 10 01_093
Ijciet 10 01_093
Β 
B012620814
B012620814B012620814
B012620814
Β 
B012620814
B012620814B012620814
B012620814
Β 
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
ΨͺΨ·Ψ¨ΩŠΩ‚Ψ§Ψͺ Ψ§Ω„Ω…ΨΉΨ§Ψ―Ω„Ψ§Ψͺ Ψ§Ω„ΨͺΩΨ§ΨΆΩ„ΩŠΨ©
Β 
Weak and strong oblique shock waves
Weak and strong oblique shock wavesWeak and strong oblique shock waves
Weak and strong oblique shock waves
Β 
MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...
Β 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
Β 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdf
Β 

Recently uploaded

UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
Β 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)dollysharma2066
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
Β 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
Β 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
Β 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
Β 

Recently uploaded (20)

UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
Β 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
Β 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
Β 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
Β 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
Β 

Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid between Two Infinite Coaxial Circular Cylinders

  • 1. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 58 | P a g e Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid between Two Infinite Coaxial Circular Cylinders Sundos Bader ,Ahmed M, Abdulhadi Department of Mathematic, College of Science ,University of Baghdad ,,Baghdad,, Iraq Email:badersundos@gmail.com,ahm6161@yahoo.com ABSTRACT Considering a fractional derivative model for unsteady magetohydrodynamic (MHD)helical flows of an Oldoyd-B fluid in concentric cylinders and circular cylinder are studied by using finite Hankel and Laplace transforms .The solution of velocity fields and the shear stresses of unsteady magetohydrodynamic (MHD)helical flows of an Oldoyd-B fluid in an annular pipe are obtained under series form in terms of Mittag –leffler function,satisfy all imposed initial and boundary condition , Finally the influence of model parameters on the velocity and shear stress are analyzed by graphical illustrations. I. Introduction Recently , a considerable attention has been devoted to the problem of how to predict the behavior of non-Newtonian fluid .The main reason for this is probably that fluids(such a molten plastics ,pulps ,slurries ,elmulsions, ect..) which do not obey the assumption of Newtonian fluid that the stress tensor is directing proportional to the deformation tensor ,are found in various engineering applications .An important class of non-Newtonian fluids is in the viscoelastic Oldroyd-B fluid has been intensively studied , and it has been widely applied to flow problems of small relaxation and retardation times. Rheological constitutive equations with fractional derivatives have been proved to be a valuable tool to handle viscoelastic properties . The fractional derivative models of the viscoelastic fluids are derived from the classical equations which are modified by replacing the time derivative of an integer order by precise non-integer order integrals or derivatives. In recent years , the Oldroyd –B has been acquired a special status amongst the many fluids of the rate type ,as it includes as special case the classical Newtonian fluid and Maxwell fluid.As a result of their wide implications ,a lot of papers regarding these fluids have been published in the last time . The Oldroyd –B fluid model [11], which takes into account elastic and memory effects exhibited by most polymeric and biological liquids, has been used quite widely [4] .Existence ,uniqueness and stability results for some shearing motions of such a fluid have been obtained in[13] . the exact solution for the flow of an Oldroyd –B fluid was established by Waters and Kings [14], Rajagopal and Bhatnager [12],Fetecau [3], and Fetecau [2], other analytical results were given by Georgious [8] for small one- dimensional perturbations and for the limiting case of zero Reynold number unsteady( unidirectional and rotating )transient flows of an Oldroyd –B fluid in an annular areobtained by Tong[7] .thegeneral case of helical flow of Oldroyd –B fluid due to combine action of rotating cylinders(with constant angular velocities ) and a constant axial pressure gradient has consider byWood [16].The velocity fields and the associated tangential stresses corresponding to helical flows of Oldroyd –B fluids using forms of series in term of Bessel functions are given by Fetecau et al [1]. Recently , the velocity field ,shear stress and vortex sheet of a generalized second –order fluid with fractional , fractional derivative using to the constitutive relationship models of Maxwell viscoelastic fluid and second order ,and some unsteady flows of a viscoelastic fluid and of second order fluids between two parallel platesare examined by Mingyo and wenchang [17].Unidirectionalflows of a viscoelastics fluid with the fractional Maxwell model helical flows of a generalized Oldroyd-B fluid with fractional calculus between two infinite coaxial circular cylinders are investigated by Dengke [6]. In this paper ,we study the effect of MHD on the helical flows of a generalized Oldroyd-B fluid with fractional calculus between two infinite coaxial circular cylinders. The velocity fields and the resulting shear stresses are determined by means of Laplace and finite Hankel transform and are presented under integral and series forms in the Mittag –leffler function. RESEARCH ARTICLE OPEN ACCESS E
  • 2. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 59 | P a g e II. Basic governing equations of Helcial flow between concentric cylinders1 We consider here an unsteady helical flow between two infinite coaxial cylinders located at π‘Ÿ = 𝑅1 and π‘Ÿ = 𝑅2 (𝑅1 < 𝑅2) in the cylindrical coordinates (π‘Ÿ , πœƒ, 𝑧) , the helcial velocity is given by 𝑽 = π‘Ÿ 𝑣 π‘Ÿ, 𝑑 𝑒 πœƒ + 𝑀 π‘Ÿ, 𝑑 𝑒𝑧 (1) is called helical , because its streamlines are helical and𝑒 πœƒ and 𝑒𝑧 are the unit vectors in the πœƒ and 𝑧 βˆ’ directions , respectively . Since the velocity field is independent of πœƒ and 𝑧 and the constraint of incompressibility is automatically satisfied . The constitutive equation of generalized Oldroyd- B (G Oldroyd-B) fluid has the form [1] 𝑺 + πœ†1 𝛼 𝛿 𝛼 𝑺 𝛿𝑑 𝛼 = πœ‡ 1 + πœ†2 𝛽 𝛿 𝛽 𝛿𝑑 𝛽 𝑨1 (2) Where 𝑺 is the extra stress tensor , πœ‡ is the dynamic viscosity, πœ†1and πœ†2 are material time constants referred to, the characteristic relaxation and characteristic retardation times , respectively . it is assumed that πœ†1 β‰₯ πœ†2 β‰₯ 0 .𝑨1 = 𝐿 + 𝐿𝑇 is the first Rivlin –Erickscn tensor with 𝐿 the velocity gradient , 𝛼 and 𝛽are fractional calculus parameters such that 0 ≀ 𝛼 ≀ 𝛽 ≀ 1 and the fractional operator 𝛿 𝛼 𝑺 𝛿 𝑑 𝛼 on any tensor 𝑺 is defined by 𝛿 𝛼 𝑺 𝛿𝑑 𝛼 = 𝐷𝑑 𝛼 𝑺 + 𝑽. βˆ‡π‘Ί βˆ’ 𝐿𝑺 βˆ’ 𝑺 𝐿𝑇 (3) The operator 𝐷𝑑 𝛼 based on Caputo's fractional differential of order 𝛼 is defined as 𝐷𝑑 𝛼 𝑦 𝑑 = 1 Ξ“ 𝑛 βˆ’ π‘Ž 𝑓 𝑛 𝜏 𝑑 βˆ’ 𝜏 π›Όβˆ’π‘›+1 π‘‘πœ , 𝑑 0 𝑛 βˆ’ 1 < 𝛼 ≀ 𝑛 (4) where Ξ“ . denotes the Gamma function. This model can be reduced to the ordinary Maxwell fluid model when Ξ± = 1 ,to a generalized theMaxwell fluid model when Ξ² = 1 and to an ordinary Oldroyd-B model 𝛽 = Ξ± = 1. 𝑣 π‘Ÿ, 0 = 𝑀 π‘Ÿ, 0 = 0 and 𝑺 π‘Ÿ, 0 = 0 (5) Here we assume that the generalized Oldroyd-B fluid is incompressible then βˆ‡. 𝑽 = 0 (6) Substituting Eq.(1) into Eq.(2) and Eq.(3) and taking into account (5), we find that 𝑺 π‘Ÿπ‘Ÿ = 0 , 𝝉 π‘Ÿ, 𝑑 = 𝑺 π‘Ÿπœƒ π‘Ÿ, 𝑑 is the shear stress and 1 + πœ†1 𝛼 𝐷𝑑 𝛼 π‘Ίπ‘Ÿπœƒ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 π‘Ÿ πœ•v πœ•π‘Ÿ (7) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•π‘€ πœ•π‘Ÿ (8) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπ‘§ = πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ + πœ•π‘€ πœ•π‘Ÿ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2 𝛽 πœ•π‘€ πœ•π‘Ÿ π‘Ÿ πœ•v πœ•π‘Ÿ (9) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπœƒ = 2πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2 𝛽 π‘Ÿ πœ•v πœ•π‘Ÿ 2 (10) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 𝑧𝑧 = 2πœ†1 𝛼 πœ•π‘€ πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2 𝛽 πœ•π‘€ πœ•π‘Ÿ 2 (11) III. Momentum and continuity equation We will write the formula of the momentum equation which governing the magnetohydrodynamic as fallows : 𝜌 𝑑𝑽 𝑑𝑑 = βˆ’βˆ‡π‘ + βˆ‡. 𝑺 + 𝑱 Γ— 𝑩 (12) Where𝜌 is the density of the fluid , 𝑱 is the current density and 𝑩 = 0, 𝛽0, 0 is the total magnetic field . In the absence of body forces and a pressure gradient, the equation of motion reduce to the relevant equations 𝜌 πœ•π‘€ πœ•π‘‘ = πœ• πœ•π‘Ÿ + 1 π‘Ÿ 𝑺 π‘Ÿπ‘§ βˆ’ πœπ›½0 2 𝑀 (13) πœŒπ‘Ÿ πœ•v πœ•π‘‘ = πœ• πœ•π‘Ÿ + 1 π‘Ÿ 𝑺 π‘Ÿπœƒ βˆ’ πœπ›½0 2 π‘Ÿv (14) πœ•π‘ πœ•π‘Ÿ + 𝑺 πœƒπœƒ π‘Ÿ = πœŒπ‘Ÿv2 (15) Where 𝜍 is the electric conductivity . Eliminating 𝑺 π‘Ÿπ‘§ and 𝑺 π‘Ÿπœƒ among Eqs(7),(8),(13) and(14) ,we attain to the governing equations are 𝜌 πœ•π‘€ πœ•π‘‘ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•2 𝑀 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘€ πœ•π‘Ÿ βˆ’ πœπ›½0 2 𝑀 (16) 𝜌 π‘Ÿ πœ•v πœ•π‘‘ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 1 + πœ†1 𝛼 𝐷𝑑 𝛼 π‘Ÿ πœ•2 v πœ•π‘Ÿ2 + 1 π‘Ÿ π‘Ÿ πœ•v πœ•π‘‘ βˆ’ πœπ›½0 2 π‘Ÿv (17) Multiply above two equations by 1 + πœ†1 𝛼 𝐷𝑑 𝛼 ,we get 𝜌 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•π‘€ πœ•π‘‘ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•2 𝑀 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘€ πœ•π‘Ÿ βˆ’ πœπ›½0 2 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑀 (18) 𝜌 π‘Ÿ 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•v πœ•π‘‘ = πœ‡ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 π‘Ÿ πœ•2 v πœ•π‘Ÿ2 + 1 π‘Ÿ π‘Ÿ πœ•v πœ•π‘‘ βˆ’ πœπ›½0 2 π‘Ÿ 1 + πœ†1 𝛼 𝐷𝑑 𝛼 (19) Divide Eq(18) by 𝜌 and divide Eq(19) by 𝜌 π‘Ÿ ,we get 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•π‘€ πœ•π‘‘ = 𝜐 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•2 𝑀 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘€ πœ•π‘Ÿ βˆ’ πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑀 (20) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•v πœ•π‘‘ = 𝜐 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•2 v πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•v πœ•π‘‘ βˆ’ πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝐷𝑑 𝛼 v (21) Where 𝜐 = πœ‡ 𝜌 is the kinematic viscosity of the fluid. The boundary conditions are expressed by 𝑀 𝑅1, 𝑑 = π‘ˆ1 , 𝑀 𝑅2, 𝑑 = π‘ˆ2 , 𝑑 > 0 (22) And v 𝑅1, 𝑑 = 𝛺1 , v 𝑅2, 𝑑 = 𝛺2 , 𝑑 > 0 (23) The initial conditions are expressed by 𝑀 π‘Ÿ, 0 = v π‘Ÿ, 0 = 0 (24) πœ•π‘‘ 𝑀 π‘Ÿ, 0 = πœ•π‘‘v π‘Ÿ, 0 = 0 (25) 3.1.Calculation of the velocity field Making the change of unknown function v π‘Ÿ, 𝑑 = 𝑒(π‘Ÿ, 𝑑) π‘Ÿ (26) substitute the value of velocity v π‘Ÿ, 𝑑 in Eq. (21) with initial and boundary conditions ,we get 1 + πœ†1 𝛼 𝐷𝑑 𝛼 1 π‘Ÿ πœ•u πœ•π‘‘ = 𝜐 π‘Ÿ 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•2 u πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•u πœ•π‘‘ βˆ’ 𝑒 π‘Ÿ2 βˆ’ πœπ›½0 2 πœŒπ‘Ÿ 1 + πœ†1 𝛼 𝐷𝑑 𝛼 u (27)
  • 3. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 60 | P a g e Multiply above equation by r ,we get 1 + πœ†1 𝛼 𝐷𝑑 𝛼 πœ•u πœ•π‘‘ = 𝜐 1 + πœ†2 𝛽 𝐷𝑑 𝛽 πœ•2 u πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•u πœ•π‘‘ βˆ’ 𝑒 π‘Ÿ2 βˆ’ πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝐷𝑑 𝛼 u (28) And 𝑒 𝑅1, 𝑑 = 𝑅1 𝛺1 , 𝑒 𝑅2, 𝑑 = 𝑅2 𝛺2 , 𝑑 > 0 (29) 𝑒 π‘Ÿ, 0 = πœ•π‘‘u π‘Ÿ, 0 = 0 (30) To obtain the exact analytical solution of the above problems Eq.(20) and Eq.(28) , and using initial conditions(24),(25) and (30) ,we first apply Laplace transform of fractional derivatives , with respect to t ,we get 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 𝑀 = 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 πœ•2 𝑀 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘€ πœ•π‘Ÿ βˆ’ πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 𝑀 (31) 𝑀 𝑅1, 𝑠 = π‘ˆ1 𝑠 , 𝑀 𝑅2, 𝑠 = π‘ˆ2 𝑠 (32) 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 𝑒 = 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 πœ•2 𝑒 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘’ πœ•π‘Ÿ βˆ’ 𝑒 π‘Ÿ2 βˆ’ πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 𝑒 (33) 𝑒 𝑅1, 𝑠 = 𝑅1 𝛺1 𝑠 , 𝑒 𝑅2, 𝑠 = 𝑅2 𝛺2 𝑠 (34) The solutions in Laplace space for above problems are given 𝑀 π‘Ÿ, 𝑠 = π‘ˆ1 πœ“0,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ π‘ˆ2 πœ“0,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 π‘ πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠 (35) u π‘Ÿ, 𝑠 = 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 π‘ πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (36) v π‘Ÿ, 𝑠 = 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 βˆ’ 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 π‘Ÿπ‘ πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (37) Where π‘₯ 𝑠 = (𝑠 1+πœ†1 𝛼 𝑠 𝛼 + 𝜍 𝛽0 2 𝜌 1+πœ†1 𝛼 𝑠 𝛼 ) 𝜐 1+πœ†2 𝛽 𝑠 𝛽 , and πœ“ π‘š,𝑛 π‘Ž, 𝑏, 𝑦 = 𝐾 π‘š π‘Žπ‘¦ 𝐼𝑛 𝑏𝑦 + βˆ’1 π‘š+𝑛+1 𝐼 π‘š π‘Žπ‘¦ 𝐾𝑛 𝑏𝑦 ,𝐾 π‘š and 𝐼𝑛 are the Bessel functions of the first and second kind , respectively. The velocity field of helical flow between concentric cylinder is obtained by applying the Stehfest's method [9,10] of the numerical inversion of Laplace transform to Eqs,(35)and(36). We use the finite Hankel transform with respect to r [5],defined as follows 𝑀 = π‘Ÿ 𝑅2 𝑅1 𝑀 π‘Ÿ, 𝑠 πœ“1 𝑠1𝑛 π‘Ÿ π‘‘π‘Ÿ (38) 𝑒 = π‘Ÿ 𝑅2 𝑅1 𝑒 π‘Ÿ, 𝑠 πœ“2 𝑠2𝑛 π‘Ÿ π‘‘π‘Ÿ 39 And the inverse Hankel transform are 𝑀 π‘Ÿ, 𝑠 = πœ‹2 2 𝑠1𝑛 2 𝐽0 2 (𝑠1𝑛 𝑅1)𝑀 π‘Ÿ, 𝑠 πœ“1 𝑠1𝑛 π‘Ÿ 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 (40) 𝑒 π‘Ÿ, 𝑠 = πœ‹2 2 𝑠2𝑛 2 𝐽1 2 (𝑠2𝑛 𝑅1)𝑒 π‘Ÿ, 𝑠 πœ“2 𝑠2𝑛 π‘Ÿ 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 (41) Where 𝑠1𝑛 and 𝑠2𝑛 are the positive roots of πœ“1 𝑠1𝑛 𝑅1 = 0and πœ“2 𝑠2𝑛 𝑅1 = 0 ,respectively. πœ“1 𝑠1𝑛 π‘Ÿ = π‘Œ0 𝑠1𝑛 𝑅2 𝐽0 𝑠1𝑛 π‘Ÿ βˆ’ 𝐽0 𝑠1𝑛 𝑅2 π‘Œ0 𝑠1𝑛 π‘Ÿ , πœ“2 𝑠2𝑛 π‘Ÿ = π‘Œ1 𝑠2𝑛 𝑅2 𝐽1 𝑠2𝑛 π‘Ÿ βˆ’ 𝐽1 𝑠2𝑛 𝑅2 π‘Œ1 𝑠2𝑛 π‘Ÿ π‘Œπ‘– and 𝐽𝑖 are the Bessel functions of the first and second kinds of order zero and one (i=0,1) , respectively. Now applying finite Hankel transform to Eqs.(40) and (41) ,we get 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑀 = 2 πœ‹ 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 π‘ˆ2 𝐽0(𝑠1𝑛 𝑅1) βˆ’ π‘ˆ1 𝐽0(𝑠1𝑛 𝑅2) 𝑠 𝐽0 𝑠1𝑛 𝑅1 (42) 𝑀 = 2𝜐 1 + πœ†2 𝛽 𝑠 𝛽 π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 πœ‹π‘  𝐽0 𝑠1𝑛 𝑅1 Γ— 1 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (43) And 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑒 = 2 πœ‹ 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝑠 𝐽1 𝑠2𝑛 𝑅1 (44) 𝑒 = 2𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) πœ‹π‘  𝐽1 𝑠2𝑛 𝑅1 Γ— 1 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (45) Substitute Eq.(43) and (45) into (40) and (41) ,we obtain 𝑀 π‘Ÿ, 𝑠 = πœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐴1( 𝑠1𝑛, 𝑠) (46) where 𝐴1 𝑠1𝑛, 𝑠 = 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (47) And 𝑒 π‘Ÿ, 𝑠 = πœ‹ 𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐴1( 𝑠2𝑛, (48) where 𝐴1 𝑠2𝑛 , 𝑠 = 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (49) Now ,rewrite Eqs.(47) and (48) in series form as 𝐴1 𝑠1𝑛, 𝑠 = 1 𝑠 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠1𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 𝑠 𝛿 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 1 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (50) Where 𝛿 = βˆ’π‘š βˆ’ 2 + 𝛼 βˆ— 𝑏 + 𝛽 βˆ— 𝑑. And
  • 4. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 61 | P a g e 𝐴1 𝑠1𝑛, 𝑠 = 1 𝑠 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠2𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 𝑠 𝛿 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 1 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (51) Now , applying inverse Laplace transform to Eqs.(50) and (51) , we obtain 𝐴1 𝑠1𝑛, 𝑑 = 1 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠1𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— πΏβˆ’1 𝑠 𝛿 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (52) And 𝐴1 𝑠2𝑛 , 𝑑 = 1 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠2𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— πΏβˆ’1 𝑠 𝛿 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (53) We will use the following property of Mittag- leffler function [5] πΏβˆ’1 𝑛! 𝑠 πœ‡βˆ’π‘£ 𝑠 πœ‡ βˆ“ 𝑐 = 𝑑 πœ‡π‘› +π‘£βˆ’1 πΈπœ‡,𝑣 (𝑛) ±𝑐𝑑 πœ‡ 𝑅𝑒 𝑠 > 𝑐 1/πœ‡ (54) Then Eqs.(52) and (53) , are become 𝐴1 𝑠1𝑛, 𝑑 = 1 βˆ’ 𝑑 + πœ†1 𝛼 𝑑 𝛼+1 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑑 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠1𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (55) and 𝐴1 𝑠2𝑛 , 𝑑 = 1 βˆ’ 𝑑 + πœ†1 𝛼 𝑑 𝛼+1 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑑 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠2𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (56) Substitute Eqs.(55) and (56) into (46) and (48) ,we get 𝑀 π‘Ÿ, 𝑑 = πœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 1 βˆ’ 𝐺1 𝑠1𝑛, 𝑑 (57) Where 𝐺1 𝑠1𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠1𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 πœ†1 𝛼 𝑑 𝛼 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (58) And 𝑒 π‘Ÿ, 𝑑 = πœ‹ 𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 1 βˆ’ 𝐺1 𝑠2𝑛, 𝑑 (59) Where 𝐺1 𝑠2𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠2𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 πœ†1 𝛼 𝑑 𝛼 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (60) Finally ,the inverse finite Hankel transform on π‘Š(π‘Ÿ) and π‘ˆ(π‘Ÿ) 𝐻 π‘Š π‘Ÿ = π‘Ÿ π‘ˆ2 + 𝐼𝑛 π‘Ÿ 𝑅2 𝐼𝑛 𝑅2 𝑅1 βˆ— π‘ˆ2 βˆ’ π‘ˆ1 𝑅2 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘‘π‘Ÿ = 2 π‘ˆ2 𝐽0(𝑠1𝑛 𝑅1) βˆ’ π‘ˆ1 𝐽0(𝑠1𝑛 𝑅2) πœ‹π‘ 1𝑛 2 𝐽0 𝑠1𝑛 𝑅1 Where π‘Š π‘Ÿ = π‘ˆ2 + 𝐼𝑛 π‘Ÿ 𝑅2 𝐼𝑛 𝑅2 𝑅1 βˆ— π‘ˆ2 βˆ’ π‘ˆ1 , We get 𝑀 π‘Ÿ, 𝑑 = π‘Š π‘Ÿ βˆ’ πœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐺1 𝑠1𝑛, 𝑑 (61)
  • 5. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 62 | P a g e 𝐻 π‘ˆ π‘Ÿ = π‘Ÿ π‘Ÿπ›Ί2 + 𝑅1 2 (π‘Ÿ2 βˆ’ 𝑅2 2 ) π‘Ÿ(𝑅2 2 βˆ’ 𝑅1 2 ) 𝑅2 𝑅1 βˆ— 𝛺2 βˆ’ 𝛺1 πœ“2 𝑠2𝑛 π‘Ÿ π‘‘π‘Ÿ = 2 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) πœ‹π‘ 2𝑛 2 𝐽1 𝑠2𝑛 𝑅1 Where π‘ˆ π‘Ÿ = π‘Ÿπ›Ί2 + 𝑅1 2 (π‘Ÿ2βˆ’π‘…2 2 ) π‘Ÿ(𝑅2 2βˆ’π‘…1 2) βˆ— 𝛺2 βˆ’ 𝛺1 , we get 𝑒 π‘Ÿ, 𝑑 = π‘ˆ π‘Ÿ βˆ’ πœ‹ 𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐺1 𝑠2𝑛, 𝑑 (62) 3.2.Calculation of the tangential tensions and normal tensions Applying the Laplace transform to Eqs.(7) and (8) , and using the initial conditions 𝑀 π‘Ÿ, 0 = u π‘Ÿ, 0 = 0 πœ•π‘‘ 𝑀 π‘Ÿ, 0 = πœ•π‘‘u π‘Ÿ, 0 = 0 we find that 𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 πœ•π‘€ πœ•π‘Ÿ (63) 𝑺 π‘Ÿπœƒ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ (64) Differentiating the Eqs. (35) and (36) with respect to r, we obtain πœ•π‘€ πœ•π‘Ÿ = π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠 π‘ πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠 (65) π‘Ÿ πœ•v πœ•π‘Ÿ = πœ•u πœ•π‘Ÿ βˆ’ u π‘Ÿ = 𝑅2 𝛺2 πœ“1,1 π‘Ÿ,𝑅1,π‘₯ 𝑠 βˆ’π‘…1 𝛺1 πœ“1,1 π‘Ÿ,𝑅2,π‘₯ 𝑠 π‘Ÿπ‘  πœ“1,1 𝑅1,𝑅2,π‘₯ 𝑠 + 𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 + 1 π‘Ÿ πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1𝛺1βˆ’πœ“0,1π‘Ÿ,𝑅2,π‘₯𝑠+1 π‘Ÿπœ“1,1π‘Ÿ,𝑅2,π‘₯𝑠/ π‘Ÿπ‘ πœ“1,1𝑅1,𝑅2,π‘₯𝑠 (66) Substitute Eqs.(65) and (66) into Eqs(63) and (64) ,respectively ,we get 𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠 πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠 (67) 𝑺 π‘Ÿπœƒ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 π‘Ÿπœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 + 𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 + 1 π‘Ÿ πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 βˆ’πœ“0,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 + 1 π‘Ÿ πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 / π‘Ÿπœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (68) 𝑺 π‘Ÿπ‘§ = 𝜌 π‘ˆ2 πœ“1,0 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ π‘ˆ1 πœ“1,0 π‘Ÿ, 𝑅2, π‘₯ 𝑠 π‘₯1 2 𝑠 πœ“0,0 𝑅1, 𝑅2, π‘₯ 𝑠 (69) 𝑺 π‘Ÿπœƒ = 𝜌 𝑅2 𝛺2 πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 π‘Ÿπ‘₯1 2 𝑠 πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 + 𝑅2 𝛺2 βˆ’πœ“0,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 + 1 π‘Ÿ πœ“1,1 π‘Ÿ, 𝑅1, π‘₯ 𝑠 βˆ’ 𝑅1 𝛺1 βˆ’πœ“0,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 + 1 π‘Ÿ πœ“1,1 π‘Ÿ, 𝑅2, π‘₯ 𝑠 / π‘Ÿπ‘₯1 2 𝑠 πœ“1,1 𝑅1, 𝑅2, π‘₯ 𝑠 (70) Where π‘₯1 2 𝑠 = 𝑠 1+πœ†1 𝛼 𝑠 𝛼 𝑣 1+πœ†2 𝛽 𝑠 𝛽 . Differentiating the Eqs. (42) and (55) with respect to r, we obtain πœ•π‘€ πœ•π‘Ÿ = 𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (71) Where πœ“3 𝑠2𝑛 π‘Ÿ = π‘Œ0 𝑠2𝑛 𝑅2 𝐽1 𝑠2𝑛 π‘Ÿ βˆ’ 𝐽0 𝑠2𝑛 𝑅2 π‘Œ1 𝑠2𝑛 π‘Ÿ . πœ•v πœ•π‘Ÿ = πœ•u πœ•π‘Ÿ βˆ’ u π‘Ÿ = πœ‹ 𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ 1 π‘Ÿ πœ“2 𝑠2𝑛 π‘Ÿ 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + 𝜍 𝛽0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (72) Substitute Eqs(71) and (72) into Eqs.(63) and (64), respectively then we obtain 𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 πœ‹ 𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 π‘Ÿ 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (73) 𝑺 π‘Ÿπœƒ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 πœ‹ 𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ 1 π‘Ÿ πœ“2 𝑠2𝑛 π‘Ÿ 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (74) Applying the Laplace transform to Eqs(73) and (74),we get 𝑺 π‘Ÿπ‘§ = πœŒπœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝑠1𝑛 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 𝑠1𝑛 𝑅2 ∞ 𝑛=1 Γ— πΏβˆ’1 𝑠1𝑛 4 𝜐2 1 + πœ†2 𝛽 𝑠 𝛽 2 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠1𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 Γ— πΏβˆ’1 1 1 + πœ†1 𝛼 𝑠 𝛼 (75) 𝑺 π‘Ÿπœƒ = πœ‹ 𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ π‘Ÿπ‘ 2𝑛 2 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— πΏβˆ’1 1 1 + πœ†1 𝛼 𝑠 𝛼 Γ— πΏβˆ’1 𝑠2𝑛 4 𝜐2 1 + πœ†2 𝛽 𝑠 𝛽 2 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + 𝜍 𝛽0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (76)
  • 6. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 63 | P a g e Then Eqs(75) and (76) are become 𝑺 π‘Ÿπ‘§ = πœŒπœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝑠1𝑛 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐺2 𝑠1𝑛, 𝑑 (77) where 𝐺2 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠1𝑛 2 𝜐 2+𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + 2πœ†2 𝛽 𝑑 𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†2 2𝛽 𝑑2𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 𝛼 𝑺 π‘Ÿπœƒ = πœŒπœ‹ 𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ π‘Ÿπ‘ 2𝑛 2 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 𝑠2𝑛 𝑅2 ∞ 𝑛=1 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— 𝐺2 𝑠2𝑛, 𝑑 (78) where 𝐺2 𝑠2𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠2𝑛 2 𝜐 2+𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + 2πœ†2 𝛽 𝑑 𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†2 2𝛽 𝑑2𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 𝛼 Let 𝐹1,1(π‘Ÿ, 𝑑) = πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ + πœ•π‘€ πœ•π‘‘ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡πœ†2 𝛽 πœ•π‘€ πœ•π‘‘ π‘Ÿ πœ•v πœ•π‘Ÿ 𝐹1,2 π‘Ÿ, 𝑑 = 2πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2 𝛽 π‘Ÿ πœ•v πœ•π‘Ÿ 2 𝐹1,3(π‘Ÿ, 𝑑) = 2πœ†1 𝛼 πœ•π‘€ πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2 𝛽 πœ•π‘€ πœ•π‘Ÿ 2 We get 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπ‘§ = 𝐹1,1(π‘Ÿ, 𝑑) (79π‘Ž) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπœƒ = 𝐹1,2 π‘Ÿ, 𝑑 (79𝑏) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 𝑧𝑧 = 𝐹1,3(π‘Ÿ, 𝑑) (79𝑐) Applying Laplace transform tπ‘œ 79π‘Ž , 79𝑏 and (79c) ,we get 𝑺 πœƒπ‘§ = 𝐹1,1(π‘Ÿ, 𝑑) 1 + πœ†1 𝛼 𝑠 𝛼 (80π‘Ž) 𝑺 πœƒπœƒ = 𝐹1,2(π‘Ÿ, 𝑑) 1 + πœ†1 𝛼 𝑠 𝛼 (80𝑏) 𝑺 𝑧𝑧 = 𝐹1,3(π‘Ÿ, 𝑑) 1 + πœ†1 𝛼 𝑠 𝛼 (80𝑐) The inverse of Laplace transform tπ‘œ 80π‘Ž , 80𝑏 and (80c) ,can be expressed by 𝑺 πœƒπ‘§ = 1 πœ†1 𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1 𝑑 0 𝐸 𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 βˆ’ 𝜏 𝛼 𝐹1,1(π‘Ÿ, 𝑑) π‘‘πœ (81π‘Ž) 𝑺 πœƒπœƒ = 1 πœ†1 𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1 𝑑 0 𝐸 𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 βˆ’ 𝜏 𝛼 𝐹1,2(π‘Ÿ, 𝑑) π‘‘πœ (81𝑏) 𝑺 𝑧𝑧 = 1 πœ†1 𝛼 (𝑑 βˆ’ 𝜏) π›Όβˆ’1 𝑑 0 𝐸 𝛼,𝛼 βˆ’πœ†1 𝛼 (𝑑 βˆ’ 𝜏) 𝛼 𝐹1,3(π‘Ÿ, 𝑑) π‘‘πœ (81𝑐) The definition of the weiessenberg number π‘Šπ‘–is as follows π‘Šπ‘– = 𝑺 𝑧𝑧 βˆ’ 𝑺 πœƒπœƒ 𝑺 𝑧𝑧 (82) The shear stresses (the frictional force ) i.e.,the drag exerted per unit length of the inner or outer cylinders or of the cylinder of radius π‘Ÿ = 𝑅2 , in the second case ,can be calculated from Eqs.(73)and(74) , we get 𝜏1= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2 = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 πœ‹ 𝐽0 𝑠1𝑛 𝑅1 𝑠1𝑛 πœ“3 𝑠1𝑛 𝑅2 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 𝑠1𝑛 𝑅2 ∞ 𝑛=1 Γ— π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 Γ— 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (83) 𝜏2 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2 = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 Γ— πœ‹ 𝐽1 𝑠2𝑛 𝑅1 𝑠2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ 1 π‘Ÿ πœ“2 𝑠2𝑛 π‘Ÿ 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + 𝜍 𝛽0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠2𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (84) Now ,we applying the inverse Laplace transform toEqs.(83)and(84) ,we obtain 𝜏1= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2 = πœŒπœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 𝑅2 π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝑠1𝑛 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐺2 𝑠1𝑛, 𝑑 (85)
  • 7. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 64 | P a g e 𝜏2 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2 = πœŒπœ‹ 𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 𝑅2 βˆ’ πœ“2 𝑠2𝑛 𝑅2 π‘Ÿπ‘ 2𝑛 2 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) Γ— 𝐺2 𝑠2𝑛, 𝑑 (86) IV.Helical flow through circular cylinder I Taking the limit of Eqs(38) and (39), when 𝑅1 β†’ 0 and 𝑅2 β†’ 𝑅, we find the Hankel transform 𝑀 = π‘Ÿπ½0 𝑠3𝑛 π‘Ÿ 𝑅 0 𝑀 π‘Ÿ, 𝑠 π‘‘π‘Ÿ (87) Where 𝑠3𝑛 is positive root of 𝐽0 𝑠3𝑛 𝑅 = 0 , and 𝑒 = π‘Ÿπ½1 𝑠4𝑛 π‘Ÿ 𝑅 0 𝑒 π‘Ÿ, 𝑠 π‘‘π‘Ÿ (88) Where 𝑠4𝑛 is positive root of 𝐽1 𝑠4𝑛 𝑅 = 0 , and the inverse Hankel transform are 𝑀 π‘Ÿ, 𝑠 = 2 𝑅2 𝑀 𝑠3𝑛, 𝑠 𝐽0 𝑠3𝑛 π‘Ÿ 𝐽1 2 𝑠3𝑛 𝑅 ∞ 𝑛=1 (89) and 𝑒 π‘Ÿ, 𝑠 = 2 𝑅2 𝑒 𝑠4𝑛 , 𝑠 𝐽1 𝑠4𝑛 π‘Ÿ 𝐽2 2 𝑠4𝑛 𝑅 ∞ 𝑛=1 (90) Corresponding to the helical flow through an infinite circular cylinder . the boundary conditions must be changed by 𝑀 0, 𝑑 < ∞ , 𝑀 𝑅, 𝑑 = π‘ˆ, 𝑒 0, 𝑑 < ∞ , 𝑒 𝑅, 𝑑 = 𝑅𝛺 (91) Now apply Laplace transform to the boundary conditions, with respect to t ,we get 𝑀 0, 𝑠 < ∞,𝑀 𝑅, 𝑠 = π‘ˆ 𝑠 , 𝑒 0, 𝑠 < ∞ , 𝑒 𝑅, 𝑠 = 𝑅𝛺 𝑠 (92) Now applying finite Hankel transform to Eqs.(31) and (33) ,we get 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑀 = 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑅 𝑠3𝑛 π‘ˆ 𝑠 𝐽1 𝑠3𝑛 𝑅 (93) then 𝑀 = 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑅 𝑠3𝑛 π‘ˆ 𝐽1 𝑠3𝑛 𝑅 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + 𝜍 𝛽0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (94) and 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑒 = βˆ’ 𝑅2 𝛺 𝑠 𝑠4𝑛 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝐽2 𝑠4𝑛 𝑅 (95) Then 𝑒 = βˆ’ 𝑅2 𝛺𝑠4𝑛 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝐽2 𝑠4𝑛 𝑅 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (96) Substitute Eqs.(94) and(96) into Eqs(89) and (90)respectively and using the identity 𝐽 𝑛 β€² 𝑠1𝑛 π‘Ÿ = 𝐽 π‘›βˆ’1 𝑠1𝑛 π‘Ÿ = βˆ’π½ 𝑛+1 𝑠1𝑛 π‘Ÿ ,we find that 𝑀 π‘Ÿ, 𝑠 = 2π‘ˆ 𝑅 𝐽0 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 𝐴2 𝑠3𝑛, 𝑠 (97) where 𝐴1 𝑠3𝑛 , 𝑠 = 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (98) and 𝑒 π‘Ÿ, 𝑠 = 2𝛺 𝐽1 𝑠4𝑛 π‘Ÿ 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 𝐴2 𝑠4𝑛, 𝑠 (99) where 𝐴1 𝑠4𝑛, 𝑠 = 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (100) Now ,rewrite Eqs.(98)and (100) in series form as 𝐴1 𝑠3𝑛 , 𝑠 = 1 𝑠 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠3𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 𝑠 𝛿 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 1 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (101) Where 𝛿 = βˆ’π‘š βˆ’ 2 + 𝛼 βˆ— 𝑏 + 𝛽 βˆ— 𝑑, and 𝐴1 𝑠4𝑛, 𝑠 = 1 𝑠 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠4𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 𝑠 𝛿 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 1 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (102) Now , applying inverse Laplace transform to Eqs.(101)and(102) , we obtain 𝐴1 𝑠3𝑛 , 𝑑 = 1 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠3𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— πΏβˆ’1 𝑠 𝛿 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (103) 𝐴1 𝑠4𝑛, 𝑑 = 1 βˆ’ 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠4𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— πΏβˆ’1 𝑠 𝛿 πœπ›½0 2 𝜌 πœ†1 βˆ’π›Ό π‘ βˆ’1 + 𝑠 𝛼 + πœ†1 βˆ’π›Ό π‘š+1 (104) Now ,we will use the property(54) of Mittag- leffler function [5] ,Then Eqs.(103)and (104) ,are become 𝐴1 𝑠3𝑛 , 𝑑 = 1 βˆ’ 𝑑 + πœ†1 𝛼 𝑑 𝛼+1 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑑 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠3𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1
  • 8. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 65 | P a g e Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (105) and 𝐴1 𝑠4𝑛, 𝑑 = 1 βˆ’ 𝑑 + πœ†1 𝛼 𝑑 𝛼+1 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑑 𝛼 Γ— (βˆ’1) π‘š ∞ π‘š=0 π‘š! 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š πœπ›½0 2 𝜌 𝒃 𝑠4𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 Γ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (106) Substitute Eqs.(105) and (106) into (97) and (99) ,we get 𝑀 π‘Ÿ, 𝑑 = 2π‘ˆ 𝑅 𝐽0 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 (1 βˆ’ 𝐺1 𝑠3𝑛, 𝑑 ) (107) where 𝐺1 𝑠3𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠3𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 πœ†1 𝛼 𝑑 𝛼 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (108) and 𝑒 π‘Ÿ, 𝑑 = 2𝛺 𝐽1 𝑠4𝑛 π‘Ÿ 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 1 βˆ’ 𝐺1 𝑠4𝑛, 𝑑 (109) where 𝐺1 𝑠4𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠4𝑛 2 𝜐 𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœπ›½0 2 𝜌 πœ†1 𝛼 𝑑 𝛼 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 (110) Finally ,the inverse finite Hankel transform on π‘Š π‘Ÿ and π‘ˆ π‘Ÿ , we get 𝐻 π‘Š π‘Ÿ = π‘Ÿπ½0 𝑠3𝑛 π‘Ÿ 𝑅 0 π‘ˆπ‘‘π‘Ÿ = π‘ˆπ‘… 𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅 where π‘Š π‘Ÿ = π‘ˆ , we get 𝑀 π‘Ÿ, 𝑑 = π‘ˆ βˆ’ 2π‘ˆ 𝑅 𝐽0 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 𝐺1 𝑠3𝑛, 𝑑 (111) and 𝐻 π‘ˆ π‘Ÿ = π‘Ÿπ½1 𝑠4𝑛 π‘Ÿ 𝑅 0 2π›Ίπ‘‘π‘Ÿ = 2𝛺 𝑠4𝑛 𝐽2 𝑠4𝑛 𝑅 = βˆ’2𝛺 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅 Where π‘ˆ π‘Ÿ = βˆ’2𝛺 , we get 𝑒 π‘Ÿ, 𝑑 = βˆ’2𝛺 + 2𝛺 𝐽1 𝑠4𝑛 π‘Ÿ 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 𝐺1 𝑠4𝑛, 𝑑 (112) 4.1.Calculation of the tangential tensions and normal tensions Differentiating the Eqs. (97) and (99) with respect to r, and substitute into Eqs. (63) and (64) respectively, we obtain 𝑺 π‘Ÿπ‘§ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 βˆ’ 2π‘ˆ 𝑅 𝐽1 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 2 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 Γ— 𝑠3𝑛 4 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (113) 𝑺 π‘Ÿπœƒ = πœ‡ 1 + πœ†2 𝛽 𝑠 𝛽 1 + πœ†1 𝛼 𝑠 𝛼 2𝛺 𝐽1 𝑠4𝑛 π‘Ÿ /π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ π‘Ÿπ‘ 4𝑛 3 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 Γ— βˆ’π‘Ÿ 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 (114) Applying the Laplace transform to Eqs(113) and (114),we get 𝑺 π‘Ÿπ‘§ = βˆ’ 2πœŒπ‘ˆ 𝑅 𝐽1 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 2 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 Γ— πΏβˆ’1 𝑠3𝑛 4 𝜐2 1 + πœ†2 𝛽 𝑠 𝛽 2 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠3𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 Γ— 1 + πœ†1 𝛼 𝑠 𝛼 (115)
  • 9. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 66 | P a g e 𝑺 π‘Ÿπœƒ = 2πœŒπ›Ί 𝐽1 𝑠4𝑛 π‘Ÿ /π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ π‘Ÿπ‘ 4𝑛 3 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 Γ— πΏβˆ’1 βˆ’π‘Ÿ 𝑠4𝑛 2 𝜐2 1 + πœ†2 𝛽 𝑠 𝛽 2 𝑠 𝑠 1 + πœ†1 𝛼 𝑠 𝛼 + πœπ›½0 2 𝜌 1 + πœ†1 𝛼 𝑠 𝛼 + 𝑠4𝑛 2 𝜐 1 + πœ†2 𝛽 𝑠 𝛽 Γ— πΏβˆ’1 1 1 + πœ†1 𝛼 𝑠 𝛼 (116) Then Eqs(115) and (116) are become 𝑺 π‘Ÿπ‘§ = βˆ’ 2πœŒπ‘ˆ 𝑅 𝐽1 𝑠3𝑛 π‘Ÿ 𝑠3𝑛 2 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 Γ— 𝐺2 𝑠3𝑛, 𝑑 (117) where 𝐺2 𝑠3𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠3𝑛 2 𝜐 2+𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + 2πœ†2 𝛽 𝑑 𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†2 2𝛽 𝑑2𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 𝛼 and 𝑺 π‘Ÿπœƒ = 2πœŒπ›Ί 𝐽1 𝑠4𝑛 π‘Ÿ π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 π‘Ÿ π‘Ÿπ‘ 4𝑛 3 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 Γ— 𝐺2 𝑠4𝑛, 𝑑 (118) where 𝐺2 𝑠4𝑛 , 𝑑 = (βˆ’1) π‘š+1 ∞ π‘š=0 πœπ›½0 2 𝜌 𝒃 π‘Ÿ 𝑏! 𝑐! 𝑑! 𝑏,𝑐,𝑑β‰₯0 𝑏+𝑐+𝑑=π‘š 𝑠4𝑛 𝜐 2+𝑐+𝑑 πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘šβˆ’π‘+1 βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + 2πœ†2 𝛽 𝑑 𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 + πœ†2 2𝛽 𝑑2𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’ 1 πœ†1 𝛼 1 + πœπ›½0 2 𝜌 𝑑 𝑑 𝛼 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 𝛼 Let 𝐹2,1(π‘Ÿ, 𝑑) = πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ + πœ•π‘€ πœ•π‘‘ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡πœ†2 𝛽 πœ•π‘€ πœ•π‘‘ π‘Ÿ πœ•v πœ•π‘Ÿ 𝐹2,2 π‘Ÿ, 𝑑 = 2πœ†1 𝛼 π‘Ÿ πœ•v πœ•π‘Ÿ 𝑺 π‘Ÿπœƒ βˆ’ 2πœ‡ πœ†2 𝛽 π‘Ÿ πœ•v πœ•π‘Ÿ 2 𝐹2,3(π‘Ÿ, 𝑑) = 2πœ†1 𝛼 πœ•π‘€ πœ•π‘Ÿ 𝑺 π‘Ÿπ‘§ βˆ’ 2πœ‡ πœ†2 𝛽 πœ•π‘€ πœ•π‘Ÿ 2 We get 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπ‘§ = 𝐹2,1(π‘Ÿ, 𝑑) (119π‘Ž) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 πœƒπœƒ = 𝐹2,2 π‘Ÿ, 𝑑 (119𝑏) 1 + πœ†1 𝛼 𝐷𝑑 𝛼 𝑺 𝑧𝑧 = 𝐹2,3(π‘Ÿ, 𝑑) (119𝑐) Applying Laplace transform tπ‘œ(119π‘Ž), (119𝑏) and(119𝑐) ,we get 𝑺 πœƒπ‘§ = 𝐹2,1(π‘Ÿ, 𝑑) 1 + πœ†1 𝛼 𝑠 𝛼 (120π‘Ž) 𝑺 πœƒπœƒ = 𝐹2,2 π‘Ÿ, 𝑑 1 + πœ†1 𝛼 𝑠 𝛼 (120𝑏) 𝑺 𝑧𝑧 = 𝐹2,2 π‘Ÿ, 𝑑 1 + πœ†1 𝛼 𝑠 𝛼 (120𝑐) The inverse of Laplace transform tπ‘œ(120π‘Ž), 120𝑏 and (120c) ,can be expressed by 𝑺 πœƒπ‘§ = 1 πœ†1 𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1 𝑑 0 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 βˆ’ 𝜏 𝛼 𝐹2,1(π‘Ÿ, 𝑑) π‘‘πœ (121π‘Ž) 𝑺 πœƒπœƒ = 1 πœ†1 𝛼 (𝑑 βˆ’ 𝜏) π›Όβˆ’1 𝑑 0 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 (𝑑 βˆ’ 𝜏) 𝛼 𝐹2,2 π‘Ÿ, 𝑑 π‘‘πœ (121𝑏) 𝑺 𝑧𝑧 = 1 πœ†1 𝛼 𝑑 βˆ’ 𝜏 π›Όβˆ’1 𝑑 0 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 βˆ’ 𝜏 𝛼 𝐹2,3(π‘Ÿ, 𝑑) π‘‘πœ (121𝑐) The definition of the weiessenberg number π‘Šπ‘–is as follows π‘Šπ‘– = 𝑺 𝑧𝑧 βˆ’ 𝑺 πœƒπœƒ 𝑺 𝑧𝑧 (122) The shear stresses (the frictional force ) i.e.,the drag exerted per unit length of the inner or outer cylinders or of the cylinder of radius π‘Ÿ = 𝑅2 , in the second case ,can be calculated from Eqs.(117)and(118) , we get 𝜏3= 𝑺 π‘Ÿπ‘§ π‘Ÿ=𝑅2 = βˆ’ 2πœŒπ‘ˆ 𝑅 𝐽1 𝑠3𝑛 𝑅2 𝑠3𝑛 2 𝐽1 𝑠3𝑛 𝑅 ∞ 𝑛=1 Γ— 𝐺2 𝑠3𝑛, 𝑑 (123) 𝜏4 = 𝑺 π‘Ÿπœƒ π‘Ÿ=𝑅2 = 2πœŒπ›Ί 𝐽1 𝑠4𝑛 𝑅2 π‘Ÿ βˆ’ 𝑠4𝑛 𝐽0 𝑠4𝑛 𝑅2 𝑅2 𝑠4𝑛 3 𝐽0 𝑠4𝑛 𝑅 ∞ 𝑛=1 Γ— 𝐺2 𝑠4𝑛, 𝑑 (124) V. Limiting case 1- Making the limit of Eqs(61) and (63) when 𝛼 β‰  0 , 𝛽 β‰  0 and πœπ›½0 2 𝜌 = 𝑀 = 0 ,we can attain the similar solution velocity distribution for unsteady helical flows of a generalized Oldroyd –B fluid , as obtained in [6] , thus velocity fields reduces to
  • 10. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 67 | P a g e 𝑀 π‘Ÿ, 𝑑 = π‘Š π‘Ÿ βˆ’ πœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“1 𝑠1𝑛 π‘Ÿ π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐺1 𝑠1𝑛 , 𝑑 (125) where 𝐺1 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 𝑠1𝑛 2 𝜐 𝑐+𝑑 𝑐! 𝑑! 𝑐,𝑑β‰₯0 𝑐+𝑑=π‘š πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘š+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 Or 𝐺1 𝑠1𝑛, 𝑑 = βˆ’1 π‘š π‘š βˆ’ 1 ! 𝑠1𝑛 2 𝜐 πœ†1 𝛼 π‘šβˆž π‘š=0 Γ— π‘š π‘˜ πœ†2 𝛽 π‘˜ π‘š π‘˜=0 𝑑(1+𝛼)π‘šβˆ’π›½π‘˜ 𝐸𝛼,(𝛼+π‘š+1βˆ’π›½π‘˜) (π‘šβˆ’1) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 And 𝑒 π‘Ÿ, 𝑑 = π‘ˆ π‘Ÿ βˆ’ πœ‹ 𝐽1 𝑠2𝑛 𝑅1 πœ“2 𝑠2𝑛 π‘Ÿ 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝐺1 𝑠2𝑛, 𝑑 (126) Where 𝐺1 𝑠2𝑛, 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 𝑠2𝑛 2 𝜐 𝑐+𝑑 𝑐! 𝑑! 𝑐,𝑑β‰₯0 𝑐+𝑑=π‘š πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘š+1 βˆ— 𝑑 π›Όπ‘š+(π›Όβˆ’π›Ώ)βˆ’1 𝑑𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 + πœ†1 𝛼 𝑑 𝛼+1 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 Or 𝐺1 𝑠1𝑛, 𝑑 = βˆ’1 π‘š π‘š βˆ’ 1 ! 𝑠2𝑛 2 𝜐 πœ†1 𝛼 π‘šβˆž π‘š=0 π‘š π‘˜ πœ†2 𝛽 π‘˜ π‘š π‘˜=0 𝑑 1+𝛼 π‘šβˆ’π›½π‘˜ 𝐸𝛼,(𝛼+π‘š+1βˆ’π›½π‘˜) (π‘šβˆ’1) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 2- Making the limit of Eqs(77) and (78) when 𝛼 β‰  0 , 𝛽 β‰  0 and πœπ›½0 2 𝜌 = 𝑀 = 0 ,we can attain the similar solution shear stress for unsteady helical flows of a generalized Oldroyd –B fluid , as obtained in [6] , thus shear stress reduces to 𝑺 π‘Ÿπ‘§ = πœŒπœ‹ 𝐽0 𝑠1𝑛 𝑅1 πœ“3 𝑠1𝑛 π‘Ÿ 𝑠1𝑛 𝐽0 2 𝑠1𝑛 𝑅1 βˆ’ 𝐽0 2 (𝑠1𝑛 𝑅2) ∞ 𝑛=1 π‘ˆ2 𝐽0 𝑠1𝑛 𝑅1 βˆ’ π‘ˆ1 𝐽0 𝑠1𝑛 𝑅2 Γ— 𝐺2 𝑠1𝑛, 𝑑 (127) where 𝐺2 𝑠1𝑛 , 𝑑 = (βˆ’1) π‘š ∞ π‘š=0 𝑠1𝑛 2 𝜐 2+𝑐+𝑑 𝑐! 𝑑! 𝑐,𝑑β‰₯0 𝑐+𝑑=π‘š πœ†2 𝛽 𝑑 πœ†1 𝛼 π‘š+1 βˆ— 𝑑 π›Όπ‘š+(2π›Όβˆ’π›Ώ)βˆ’2 βˆ— 𝐸𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 + 2πœ†2 𝛽 𝑑 𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 + πœ†2 2𝛽 𝑑2𝛽 𝐸 𝛼,(π›Όβˆ’π›Ώ) (π‘š) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 𝐸𝛼,𝛼 βˆ’πœ†1 𝛼 𝑑 𝛼 Or 𝐺2 𝑠1𝑛 , 𝑑 = βˆ’1 π‘š π‘š + 1 ! 𝑠1𝑛 2 𝜐 πœ†1 𝛼 π‘š+2∞ π‘š=0 π‘š + 2 π‘˜ πœ†2 𝛽 π‘˜ π‘š π‘˜=0 Γ— 𝑑 1+𝛼 π‘š+2 βˆ’π›½π‘˜βˆ’1 𝐸𝛼,(𝛼+π‘š+2βˆ’π›½π‘˜) (π‘š+1) βˆ’πœ†1 βˆ’π›Ό 𝑑 𝛼 𝑺 π‘Ÿπœƒ = πœŒπœ‹ 𝐽1 𝑠2𝑛 𝑅1 π‘Ÿπ‘ 2𝑛 πœ“3 𝑠2𝑛 π‘Ÿ βˆ’ πœ“2 𝑠2𝑛 π‘Ÿ π‘Ÿπ‘ 2𝑛 2 𝐽1 2 𝑠2𝑛 𝑅1 βˆ’ 𝐽1 2 (𝑠2𝑛 𝑅2) ∞ 𝑛=1 Γ— 𝑅2 𝛺2 𝐽1(𝑠2𝑛 𝑅1) βˆ’ 𝑅1 𝛺1 𝐽1(𝑠2𝑛 𝑅2) 𝐺2 𝑠2𝑛, 𝑑 (128) VI.Numerical result and conclusion In this paper we established the effect of MHD flow of the unsteadyhelical flows of an Oldroyd-B fluid in concentric cylinders and circular cylinder. The exact solutionof the unsteadyhelical flows of an Oldroyd-B fluid in an annular for the velocity field u , w and the associated shear stresses 𝜏1 , 𝜏2 are obtained by using Hankel transform and Laplace transform for fractional calculus . Moreover , some figures are plotted to show the behavior of various parameters involved in the expression of velocities w ,u ( Eqs(61 and 62)) , shear stresses 𝜏1 , 𝜏2(Eqs(85 and 86)) ,respectively . All theresult in this section are plotting graph by using MATHEMATICA package . Fig(1) is depicted to show the change of the velocity w(r,t) with the non-integer fractional parameter 𝛼 . the velocity is decreasing with increase of 𝛼. Fig(2) is prepared to show the effect of the variations of fractional parameter 𝛽 .the velocity field w is increasing with increasefractional parameter 𝛽 .Fig(3) represents the variation of velocity w for different values of relaxation πœ†1 . The velocity is decreasing with increase πœ†1.Fig(4 and 5) are prepared to show the effect of the variation of retardation πœ†2 and kinematic viscosity v on the velocity field .The velocity field w is increasing with increase the parameters πœ†2 and v .Fig (6) is established value of magnetic parameter M .the velocity field is decreases with increasing of M .Fig(7) illustrate the influence of time t on the velocity field w. the velocity is increasing with increase the time t. Fig(8) is provided the graphically illustrations for effects ofthe non-integer fractional parameter 𝛼 on the velocity u(r,t) with the non-integer fractional parameter 𝛼 . the velocity is decreasing with increase of 𝛼.Fig(9) is prepared to show the effect of the variations of fractional parameter 𝛽 .the velocity field w is increasing with increasefractional parameter 𝛽 .Fig(10) represents the variation of velocity w for different values of relaxation πœ†1 . The velocity is decreasing with increase πœ†1.Fig(11 and 12) are prepared to show the effect of the variation of retardation πœ†2 and kinematic viscosity v on the velocity field .The velocity field w is increasing with increase the parameters πœ†2 and v .Fig (13) is established value of magnetic parameter M .the velocity field is decreases with increasing of M .Fig(14) illustrate
  • 11. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 68 | P a g e the influence of time t on the velocity field w. the velocity is increasing with increase the time t. Figs(15-20) provide the graphically illustrations for the effects of (fractional parameters(𝛼 , 𝛽) , relaxation πœ†1 , retardation πœ†2 , kinematic viscosity v , magnetic parameter M and time t) on the shear stress 𝜏1 . The shear stress decreasing with increase the different parameters. Figs(21-26) are established to show the behavior of the parameters (fractional parameters(𝛼 , 𝛽) , relaxation πœ†1 , retardation πœ†2 , kinematic viscosity v , magnetic parameter M and time t) on the shear stress 𝜏2 . The shear stress decreasing with increase the different parameters. The velocity w Fig1:- the velocity w for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig2:- the velocity w for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig3:- the velocity w for different value 1 { 2ο€½8 , v=0.165 , Mο€½0.1,=0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig4:- the velocity w for different value 2 { 1ο€½15 , v=0.165 , Mο€½0.1, =0.6 , =0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig5:- the velocity w for different value v {1ο€½15 , 2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­4 ο€­3 ο€­2 ο€­1 1 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­4 ο€­3 ο€­2 ο€­1 1 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­3 ο€­2 ο€­1 1 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­3 ο€­2 ο€­1 1 2 ο€­ ……. =0.2 ____ =0.4 ------ =0.6 ……. =0.2 ____ 0.8 ------ 1.4 ……. 1ο€½5 ____ 1 ------1ο€½25 ……. 2ο€½8 ____ 2ο€½ο€±ο€Ά ------2ο€½24 ……..v=0.165 ____v=0.265 _ _ _v=0.365
  • 12. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 69 | P a g e Fig6:- the velocity w for different value M { 1ο€½15 , 2ο€½8, v=0.165,=0.4ο€  , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig7:- the velocity w for different value t { 1ο€½15 , 2ο€½8,Mο€½0.1, v=0.165,=0.4ο€  , K1ο€½3.31114 , R1=1, R2=2, u1=2, u2=2} The velocity of u Fig8:- the velocity u for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig9:- the velocity u for different value  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1, =0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig10:- the velocity u for different value 1 { 2ο€½8 , v=0.165 , Mο€½0.1, =0.4,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig11:- the velocity u for different value 2 {1ο€½15, v=0.165 , Mο€½0.1, =0.6 ,=0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} 1.2 1.4 1.6 1.8 2.0 r ο€­3 ο€­2 ο€­1 1 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­8 ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ ……. Mο€½0.1 ____ Mο€½0.2 ------ Mο€½0.3 ……. tο€½1 ____ tο€½2 ------ tο€½3 …….=0.2 ____ =0.4 ------ =0.6 ……. =0.2 ____ 0.8 ------ 1.4 ……. 2ο€½8 ____ 2ο€½ο€±ο€Ά ------2ο€½24 ……. 1 ____ 1 ------1ο€½25
  • 13. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 70 | P a g e Fig12:- the velocity u for different value v {1ο€½15 , 2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2, u1=2, u2=2} Fig13:- the velocity u for different value M {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , =0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} Fig14:- the velocity u for different value t {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1, =0.6 ,=0.4, K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=2, u2=2} The shree stress Fig .15. the shear stress for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig .16. the shear stress for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig .17. the shear stress for different value of 12ο€½8 , v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­6 ο€­4 ο€­2 2 ο€­ 1.2 1.4 1.6 1.8 2.0 r ο€­12 ο€­10 ο€­8 ο€­6 ο€­4 ο€­2 2 ο€­ 8 10 12 14 16 18 20 t ο€­50 ο€­40 ο€­30 ο€­20 ο€­10 10 ο€­ 8 10 12 14 16 t ο€­20 ο€­15 ο€­10 ο€­5 ο€­ 8 10 12 14 16 t ο€­8 ο€­6 ο€­4 ο€­2 ο€­ ……..v=0.165 ____v=0.265 _ _ _v=0.365 ……. Mο€½0.1 ____ Mο€½0.2 ------ Mο€½0.3 ……. tο€½1 ____ tο€½2 ------ tο€½3 …….=0.2 ____ =0.4 ------ =0.6 ……. =0.2 ____ 0.8 ------ 1.4 ……. 1 ____ 1 ------1ο€½25
  • 14. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 71 | P a g e Fig .18. the shear stress for different value of 21ο€½15 , v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig19:- the the shear stress for different value v {1ο€½15 , 2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2, u1=2, u2=2,rο€½2,0.1} Fig .20. the shear stress for different value of M1ο€½15 2ο€½8, v=0.165 , Mο€½0.1,=0.6 , =0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} the sheer stress 2 Fig .21 the shear stress for different value of fractional parameter  {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig .22. the shear stress for different value of fractional parameter {1ο€½15 , 2ο€½8 , v=0.165 , Mο€½0.1,=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig .23. the shear stress for different value of 1 {2ο€½8 , v=0.165 , Mο€½0.1 ,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} 8 10 12 14 t ο€­12 ο€­10 ο€­8 ο€­6 ο€­2 0 ο€­ 8 10 12 14 t ο€­12 ο€­10 ο€­8 ο€­6 ο€­2 0 ο€­ 8 10 12 14 t ο€­4.0 ο€­3.0 ο€­2.5 ο€­2.0 ο€­1.5 ο€­1.0 ο€­ 8 10 12 14 16 18 20 t ο€­40 ο€­30 ο€­20 ο€­10 10 ο€­ 8 10 12 14 t ο€­15 ο€­10 ο€­5 ο€­ 8 10 12 14 16 t ο€­6 ο€­5 ο€­4 ο€­3 ο€­2 ο€­1 1 ο€­ ……. 2ο€½8 ____ 2ο€½ο€±ο€Ά ------2ο€½24 ……..v=0.165 ____v=0.265 _ _ _v=0.365 ……. Mο€½0.1 ____ Mο€½0.2 ------ Mο€½0.3 …….=0.2 ____ =0.4 ------ =0.6 ……. 1 ____ 1 ------1ο€½25 ……. =0.2 ____ 0.8 ------ 1.4
  • 15. Sundos Bader et.al. . Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 3, ( Part -5) March 2016, pp.58-82 www.ijera.com 72 | P a g e Fig .24. the shear stress for different value of 2 {1ο€½15 , v=0.165 , Mο€½0.1 ,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} Fig25:- the the shear stress for different value v {1ο€½15 , 2ο€½8 , M=0.1 ,=0.6, =0.4, K1ο€½3.31114 , tο€½1,R1=1, R2=2, u1=2, u2=2,rο€½2,0.1} Fig .26. the shear stress for different value of M {1ο€½15 , 2ο€½8, v=0.165,=0.6=0.6 , K1ο€½3.31114 , tο€½2,R1=1, R2=2, u1=1, u2=1,rο€½2, 0.1} References [1] C.Fetecau,C.Fetecau,D.Vieru ,On some helical flows of Oldroyd –B fluids, Acta Mech . 189 (2007) 53-63. [2] C.Fetecau,C.Fetecau, The first problem of Stokes for an Oldroyd –B fluid, Int .J.Non –Linear Mech.38(2003) 1539-1544. [3] C.Fetecau , The Rayleigh –Stokes problem for an edge in an Oldroyd –B fluid .C.R.Acad. Paris Ser.1335(2003) 979-984. [4] C.Guilope ,J.c ,Saut ,Global existence and one- dimensional non –linear stability of shearing motion of viscoelastic fluids of Oldroyd type ,RAIRO Model ,Math .Anal ,Number 24)1990)369-401. [5] -Debnath,l.and Bhatta,D.Integral transforms and Their Application Boca Rato ,London , Newyork , chapman &Hall.CRC;2007. [6] Dengke Tong , Xianmin Zhang ,Xinhong Zhang ,Unsteady helical flows of a generalized Oldroyd- B fluid ,J.Non-Newtonian fluid Mech. 156 (2009) 75-83 . [7] D.K.Tong,R.H.Wang ,Exact solution for the flow of non-Newtonian fluid with fractional derivative in an annular pipe , Sci .Chin .Sec G 48 (2005) 485-495 [8] G.C.Georgiou ,On the stability of the shear flow of a viscoelasic fluid with slip along the fixed wall ,Rheol .Acta 35 (1996) 39-47. [9] H.Stechfest ,Algorithm 368 numerical inversion of Laplace transform ,Commum ,ACM 13(1) (1970) 47-49. [10] H.Stechfest .Remark on Alrorithim 368numerical inversion of Laplace transform ,Commum ,ACM 13(10) (1970) 624-625. [11] J.G. Oldroyd , on the formulation of rheological equation of state ,Proc,R.Soc . Lond .A 200(1950)523-541. [12] K.R. Rajagopal ,P.K.Bahtngar .Exact solution for some simple flows of an Oldroyd-B fluid. Acta Mech 113(1995)233-239. [13] M.A .Fontelos ,A.Friedman .Stationary non- Newtonian fluid flows in channel-like and pipe – like domains. Arch .Rational Mech .Anal 151(2001) 1-43. [14] N.D.Waters M.J. King ,Unsteady flow of an elastico –viscous liquid ,Rheol .Acta 93(1970) 345-355. [15] T.Wenchang ,P.Wenxian .X. Mingyu,Anote on unsteady flows of a viscoelastic fluids with the fractional Maxwell model between two parallel plates ,Int.J.Non –Linear Mech.38(5)(2003) 645- 650. [16] W.P.Wood , Transient viscoelastic helical flows in pipe of circular and annular cross –section ,J. Non -Newtonian fluid Mech.100(2001) 115-126. [17] X.Mingyu,T.Wenchang ,Theoretical analysis of the velocity field , stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion ,Sci,Chin (Ser.A) 44(11)(2001) 1387-1399. 8 10 12 14 16 t ο€­10 ο€­8 ο€­6 ο€­4 ο€­2 ο€­ 8 10 12 14 16 t ο€­10 ο€­8 ο€­6 ο€­4 ο€­2 ο€­ 8 10 12 14 16 t ο€­3.0 ο€­2.5 ο€­2.0 ο€­1.5 ο€­1.0 ο€­0.5 ο€­ ……. 2ο€½8 ____ 2ο€½ο€±ο€Ά ------2ο€½24 ……..v=0.165 ____v=0.265 _ _ _v=0.365 ……. Mο€½0.1 ____ Mο€½0.2 ------ Mο€½0.3