SlideShare a Scribd company logo
1 of 15
Download to read offline
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 19 | P a g e 
Pressure Gradient Influence on MHD Flow for Generalized 
Burgers’ Fluid with Slip Condition 
Ghada H. Ibraheem, Ahmed M. Abdulhadi 
Department of Mathematics, University of Baghdad College of Education, Pure Science, Ibn A-Haitham 
Department of Mathematics, University of Baghdad College of Science 
Abstract 
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized 
Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the 
no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is 
introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete 
Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear 
stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant 
pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for no – slip condition 
and no magnetic field, can be derived as special cases of our solutions. Furthermore, the effects of various 
parameters on the velocity distribution characteristics are analyzed and discussed in detail. Comparison between 
the two cases is also made. 
Keywords: Generalized Burgers’ fluid, Constant pressure gradient, Sinusoidal pressure gradient, Fox H-function. 
I. Introduction 
In recent years, the flow of non- Newton fluid has received much attention for their increasing industrial 
and technological applications, such as extrusion of polymer fluids, exotic lubricants, colloidal and suspension 
solutions food stuffs and many others. Because of the complicated behavior, there is no model which can alone 
describe the behavior of all non- Newtonian fluids. For this reason, several constitutive equations for all non- 
Newtonian fluid models have been proposed. Among them, rate type models have special importance and many 
researchers are using equations of motion of Maxwell and Oldroyd fluid flow [5, 9, 13, 16, 17]. Recently, a 
thermodynamic framework has been put into place to develop a rate type model known as Burgers’ model [8] 
which is used to describe the motion of the earth’s mantle. The Burgers’ model is the preferred model to 
describe the response of asphalt and asphalt concrete [5]. Many applications of this type of fluid can be found in 
[3, 6, 11, 14, 15, 18]. Fluids exhibiting boundary slip are important in technological applications, such as the 
polishing of artificial heart values, polymer melts often exhibit macroscopic wall slip that in general is governed 
by a non- linear and non- monotone relation between the slip velocity and the traction [4]. Ebaid [1] and Ali [10] 
studied the effect of magnetic field and slip condition on peristaltic transform. Khaleda [2] gives the exact 
solution for the slip effect on Stokes and Couette flows due to an oscillating wall. Liancun eta. [19] investigated 
effect of slip condition on MHD flow of a generalized Oldroyd- B fluid with fractional derivative. They used the 
fractional approach to write down the constitutive equations for a viscoelastic fluid. A closed form of the 
velocity distribution and shear stress are obtained in terms of Fox H- function by using the discrete Laplace 
transform of the sequential fractional derivative. 
No attempt has been made regarding the exact solutions for flows due to constant and sinusoidal pressure 
gradient of generalized Burgers’ fluid with fractional derivative and the non- slip condition is no longer valid. 
The exact solutions for velocity field and shear stress are obtained by using discrete Laplace transform and they 
are written in term of Fox H- function. Many cases are recovered from our solutions. 
II. Governing Equations 
The constitutive equations for an incompressible fractional Burger’s fluid given by 
S I T    p , A S ) D ~ 
+ (1 = ) D ~ 
D ~ 
(1+ 3 t 
2 
t t 1 2 
          (1) 
where T denoted the cauchy stress, pI is the indeterminate spherical stress, S is the extra stress tensor, 
T A  LL is the first Rivlin- Ericksen tensor with the velocity gradient where L  grad V ,  is the dynamic 
viscosity of the fluid, 1  
and 3  (< 1  
) are the relaxation and retardation times, respectively, 2  is the new 
RESEARCH ARTICLE OPEN ACCESS
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 20 | P a g e 
material parameter of Burger’s fluid,  and  the fractional calculus parameters such that 0   1 and 
p 
t D ~ 
the upper convected fractional derivative define by 
T ( . ) 
~ 
S  S  V S  LS  SL   
t t D D (2) 
T ( . ) 
~ 
A  A V ALA AL   
t t D D (3) 
in which  
t D and  
t D are the fractional differentiation operators of order  and  based on the Riemann- 
Liouville definition, defined as 
,0 1 
( ) 
( ) 
(1 ) 
1 
[ ( )] 
0 
  
   
  d p 
t 
f 
dt 
d 
p 
D f t 
t 
p 
p 
t  
 
 
(4) 
here (.) denotes the Gamma function and 
( ) 2 S S p 
t 
p 
t 
p 
t D  D D (5) 
The model reduced to the generalized Oldroyd- B model when 0 2   and if, in addition to that,   1 
the ordinary Oldroyd- B model will be obtained. 
We consider the MHD flow of an incompressible generalized Burger’s fluid due to an infinite accelerating plate. 
For unidirectional flow, we assume that the velocity field and shear stress of the form 
V  u(y, t)i ,S  S(y, t) (6) 
where u is the velocity and i is the unit vector in the x- direction .Substituting equation (6) into (1) and taking 
account of the initial condition 
S(y,0)  0 , y  0 (7) 
we obtain 
(1+ D D )S = (1+ D ) ( , ) xy 3 t y 
2 
1 t 2 t   u y t           (8) 
where S S S S 0 xz yy yz zz     , xy yx S  S . Furthermore, it assumes that the conducting fluid is permeated by 
an imposed magnetic field [0,B ,0] 0 B  which acts in the positive y- direction. In the low- magnetic Reynolds 
number approximation, the magnetic body force is represented as u 2 
0  B , where  is the electrical conductivity 
of the fluid. Then in the present of a pressure gradient in the x- direction, the equation of motion yields the 
following scalar equation: 
u 
dt x y 
du 
xy 
2 
0 S B 
p 
   
 
 
 
 
 
  (9) 
where  is the constant density of the fluid. Eliminating xy S between Eqs. (8) and (9), we obtain the following 
fractional differential equation 
u 
y 
u 
v 
u 
(1+ D ) M(1+ D D ) 
dx 
dp 
(1+ D D ) 
1 
t 
(1+ D D ) 2 
2 1 t 2 t 
2 
3 t 
2 
1 t 2 t 
2 
1 t 2 t 
                   
 
    
 
 
    
 
 
 (10) 
where 
 
 
v  is the kinematic viscosity and 
 
 2 
0 B 
M  is the magnetic dimensionless number. 
III. Flow induced by a constant pressure gradient: 
Let us consider the flow problem of an incompressible generalized Burgers’ fluid over an infinite plate at 
y  0 with fluid occupies the space y  0 and flowing under the action of a constant pressure gradient. Also, 
we assumed the existence of slip boundary between the velocity of fluid at the wall u(0, t) and the speed of the 
wall, the relative velocity between u(0, t) and the wall is assumed to be proportional to the shear rate at wall. 
Initially, the system is at rest and at time  t  0 the fluid is suddenly set in motion due to a constant pressure 
gradient and by the existence of the slip boundary condition. Referring to Eq. (10), the corresponding fractional 
partial differential equation that described such flow takes the form 
u 
t 
u 
v 
u t t 
(1+ D ) M(1+ D D ) 
(1 ) (1 2 ) 
A 1+ 
t 
(1+ D D ) 
2 
2 1 t 2 t 
2 
3 t 
2 
1 2 
2 
1 t 2 t 
      
 
 
 
     
   
 
 
 
   
  
 
 
   
 
 
  
 
 
  
 
  
  
 
 
 
  
(11)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 21 | P a g e 
where 
dx 
dp 
 
1 
A  is the constant pressure gradient 
The associated initial and boundary conditions are as follow 
( ,0) ( ,0)  0 ,  0 
 
 
 u y y 
t 
u y (12) 
(0, ) ,  0 
 
 
  t 
y 
u 
u t a tb  (13) 
( , ) , ( , )0  ,  0 
 
 
u y t as y t 
y 
u y t (14) 
where a and b are constants,  is the slip strength or slip coefficient. If  0then the general assumed no-slip 
boundary condition is obtained. If  is finite, fluid slip occurs at the wall but its effect depends upon the length 
scale of the flow. 
Employing the non- dimensionless quantities 
 
  
 
 
 
 
 
 
 
 
 
 
    
   
 
v 
av 
v 
av t 
t 
v 
av y 
y 
av 
u 
u 
b b b b b b 
b b 
2 1 
2 
1 
* 
1 
2 1 
2 
* 
2 1 
1 
* 
2 1 
1 
* ( ) 
, 
( ) 
, 
( ) 
, 
( ) 
v 
av 
av 
v 
v 
av 
v 
av b b 
b b 
b b b b  
     
  
2 1 
2 
* 
2 1 
2 
* 
2 1 
2 
3 
* 
3 
2 
2 1 
2 
2 
* 
2 
( ) 
, 
( ) 
M 
, M 
( ) 
, 
( )  
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Eqs. (11- 14) in dimensionless form are: 
u 
y 
u 
u t t 
(1+ D ) M(1+ D D ) 
(1 ) (1 2 ) 
A 1+ 
t 
(1+ D D ) 
2 
2 1 t 2 t 
2 
3 t 
2 
1 2 
2 
1 t 2 t 
      
 
 
 
     
   
 
 
 
   
  
 
 
   
 
 
  
 
 
  
 
  
  
 
 
 
  
(15) 
( ,0) ( ,0)  0 ,  0 
 
 
 u y y 
t 
u y (16) 
(0, ) ,  0 
 
 
  t 
y 
u 
u t t b  (17) 
( , ) , ( , )0  ,  0 
 
 
u y t as y t 
y 
u y t (18) 
where the dimensionless mark “  ” has been omitted for simplicity. 
Now applying Laplace transform principle [7] to Eq. (15) and taking into account the boundary condition (16), 
we find that 
(1+ s ) 
A 
(1+ ) 
( M)(1+ s ) 2 
1 2 
3 
2 
1 2 
2 
2 
    
  
    
  
 
  
s 
s 
u 
s 
s s 
dy 
d u 
  
  
 (19) 
Subject to boundary conditions 
0 
1 
( 1) 
(0, ) 
 
 
 
  
 
y 
b dy 
du 
s 
b 
u s  (20) 
  
 
 
y s as y 
y 
u(y, s) , ( , ) 0 (21) 
where u(y, s) is the image function of u(y, t) and s is a transform parameter. Solving Eqs. (19)- (21), we get 
( M) 
A 
( M) (1 ) 
A 
(1 ) 
( 1) 
( , ) 1  
 
  
 
 
  
 
  
 c s s 
e 
c s s 
e 
s 
b 
u y s 
c y c y 
b   
(22) 
where 
2 
1 
3 
2 
1 2 
(1+ ) 
( M)(1+ s ) 
  
 
 
  
 
   
   
    
 
  
s 
s s 
c
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 22 | P a g e 
The shear stress can be calculated from Eq. (8), taking Laplace transform of Eq. (8) and introducing Eq. (22), 
we get 
  
 
 
  
 
 
 
 
  
 
 
 
 
  
    
 
 
( M) 
( 1) A 
(1+ ) (1 ) 
(1+ s ) 
( , ) ( M) 1 
2 
1 
3 
2 
2 1 2 
1 
s s s 
b 
c 
e 
s 
s 
y s s b 
a y 
  
  
   
    
(23) 
where  (y, s) is the Laplace transform of 
2 1 
2 
( ) 
S 
( , ) 
 
 
b b 
xy 
av 
y t 
 
 . 
In order to avoid the burdensome calculations of residues and contour integrals, we will apply the discrete 
inverse Laplace transform to get the velocity and the shear stress fields. Now, writing Eq. (22) in series form as 
( 1) 2 2 
2 
0 
3 
0 0 
2 
0 
1 
0 
0 
2 
3 
1 
1 
( 1) 2 2 
0 2 
3 
0 0 
2 
0 
1 
1 0 
2 
3 
1 
( 1) 2 1 
2 
0 
3 
0 
2 
0 
1 
0 0 
2 
3 
1 
( 1) 2 1 1 
2 
0 
3 
0 
2 
0 
1 
1 0 
2 
3 
1 
1 
2 
2 
2 2 
2 2 
! 
( ) 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
A ( ) 
2 2 2 
2 2 2 
! 
( ) 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
A ( ) ( ) 
1 
2 2 2 
2 2 2 
! 
( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( 1) ( ) 
2 2 2 
2 2 2 
! 
( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( 1) ( ) ( ) 
( 1) 
( , ) 
        
 
 
 
  
  
 
 
  
 
 
 
  
 
        
 
 
 
 
  
 
 
  
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
  
         
 
 
 
 
 
 
  
 
 
 
 
 
 
 
  
 
 
 
 
  
  
 
 
 
  
   
 
 
  
  
 
 
   
   
 
 
  
  
 
 
 
  
 
  
 
 
 
 
  
 
 
 
   
 
 
 
  
 
 
 
 
   
 
 
 
   
 
 
 
  
 
 
 
  
  
 
 
 
  
  
 
 
  
   
 
 
  
  
 
 
 
  
   
 
 
  
   
 
 
  
  
 
 
 
  
    
 
 
 
 
  
 
 
 
   
 
 
 
  
 
 
 
 
   
 
 
 
   
 
 
 
  
 
 
  
    
  
 
     
   
     
   
   
     
l m n p i 
k j 
n 
n 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
l m n p i 
k 
n 
n 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
l m n p b 
k j 
n 
m n 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
l m n p b 
k 
n 
m n 
p 
p 
m 
m 
l 
l 
k 
k 
k 
b 
s 
k j 
k j 
n 
k j k j 
k j 
m 
k j 
l 
p m p n 
m 
l m 
j 
y 
s 
k k k 
k 
n 
k 
m 
k 
l 
n 
p m p 
m 
l m 
s 
k j k j k j 
k j 
n 
k j 
m 
k j 
l 
p m p n 
m 
m 
j l 
y 
b 
s 
k k k 
k 
n 
k 
m 
k 
l 
p m p n 
m 
l m 
b 
s 
b 
u y s 
     
   
 
 
     
 
  
 
 
     
   
 
 
     
   
 
 
   
 
 
 
 
  
 
 
 
   
 
 
 
   
 
 
 
(24) 
Applying the discrete inverse Laplace transform to Eq. (24), we get 
 
 
 
 
          
 
 
 
  
 
 
 
    
 
 
  
 
 
 
 
   
 
 
 
   
 
 
 
  
 
 
  
     
 
    
 
 
 
      
 
 
 
  
 
 
 
( 1) 2 1 
2 2 2 2 
2 2 2 
! 
( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( , ) ( 1) ( ) ( ) 
0 
3 
2 
2 
|( 1) 
0 
2 
0 
1 
1 0 
2 
3 
1 
l m p n b 
k k k k 
k 
n 
k 
m 
k 
l 
n 
t 
t 
p m p 
m 
l m 
u y t t b 
n 
n 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
b k 
     
 
  
 
 
 
  
    
  
 
 
l m p b 
m k j 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k t 
p m p 
m 
j l m 
y 
b 
    
 
  
 
 
 
  
 
 
 
  
 
      
   
    
    
  
 
   
 
 
 
2 
2 
( 1) 
0 
2 
0 
1 
0 0 
2 
3 
1 
1 !( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( 1) ( ) 
 
 
 
 
        
 
  
 
 
  
  
 
 
  
   
 
 
  
  
 
 
 
  
   
 
 
  
   
 
 
  
  
 
 
 
 
 
( 1) 2 1 
2 2 2 2 
2 2 2 
! 
( ) 
0 
3 
l m p n b 
k j k j k j k j 
k j 
n 
k j 
m 
k j 
l 
n 
t 
n 
n 
     
  
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 23 | P a g e 
 
 
 
 
        
 
  
 
 
  
  
 
 
  
   
 
 
  
  
 
 
 
  
   
 
 
  
   
 
 
  
  
 
 
 
   
 
 
 
 
 
 
          
 
 
 
  
 
 
 
   
 
 
 
  
 
 
 
 
   
 
 
 
   
 
 
 
  
 
 
 
  
  
 
      
 
     
 
 
 
     
 
   
  
 
 
  
 
 
 
  
 
 
 
 
        
  
 
 
  
 
 
 
( 1) 2 2 
2 2 2 2 
2 2 2 
! 
( ) 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
A ( ) 
( 1) 2 2 
2 2 2 2 
2 2 2 
! 
( ) 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
A ( ) ( ) 
0 
3 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
0 0 
2 
3 
1 
1 
0 
3 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
1 0 
2 
3 
1 
l m p n i 
k j k j k j k j 
k j 
n 
k j 
m 
k j 
l 
n 
t 
t 
p m p 
m 
j l m 
y 
l m p n i 
k k k k 
k 
n 
k 
m 
k 
l 
n 
t 
t 
p m p 
m 
l m 
n 
n 
l m p i 
k j 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
n 
n 
l m p i 
k 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
     
 
  
 
 
 
     
 
  
 
 
 
  
    
  
 
 
  
    
  
 
 
(25) 
In terms of Fox H- function, Eq. (25) takes the simpler from: 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
  
 
    
 
 
 
 
 
 
 
 
 
 
 
  
     
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
   
  
 
 
  
 
 
 
  
 
     
          
        
  
 
 
  
 
 
 
 
 
 
  
 
  
    
 
  
 
 
 
 
 
 
    
 
  
 
 
 
  
 
 
 
  
 
     
         
      
 
 
 
  
 
 
 
      
  
   
   
  
    
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
0 0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
1 0 
2 
3 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 
2 
( 1) 
0 
2 
0 
1 
0 
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 
2 
|( 1) 
0 
2 
0 
1 
1 0 
2 
3 
1 
H 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
A ( ) 
( M) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
H A ( ) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
H ( 1) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( , ) ( 1) ( ) ( ) 
k j k j 
m 
k j 
l 
l m p i 
k j k j k j k j 
l m p i 
k j 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
k k 
m 
k 
l 
l m p i 
k k k k 
l m p i 
k 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
k j k j 
m 
k j 
l 
l m p b 
k j k j k j k j 
l m p b 
m k j 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
k k 
m 
k 
l 
l m p b 
k k k k 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
b k 
t 
t 
p m p 
m 
j l m 
y 
t 
t 
p m p 
m 
l m 
t 
t 
p m p 
m 
l m 
j 
y 
b 
t 
t 
p m p 
m 
l m 
u y t t b 
     
 
 
    
  
 
 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
(26) 
where the property of the Fox H- function is 
 (1 , ), ,(1 , )  
(0,1),(1 , ), ,(1 , ) 
1, 
, 1 
0 
1 
1 1 1 
1 1 
H 
! ( ) 
( ) ( ) 
p p 
q q 
a A a A 
b B b B 
p 
p q 
n 
q 
j 
j j 
p 
j 
j j 
n 
z 
n b B n 
z a A n 
  
   
 
 
 
  
  
   
 
 
 
 
 
The solution Eq. (26) should satisfy the boundary condition Eq. (17). To see this, from Eq. (26) it is easy to 
obtain
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 24 | P a g e 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
  
     
     
          
       
 
  
 
 
  
 
 
 
     
         
      
 
 
 
  
 
 
 
  
   
    
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
1 0 
2 
3 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 
2 
|( 1) 
0 
2 
0 
1 
1 0 
2 
3 
1 
( M) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
H A ( ) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
(0, ) ( 1) ( ) ( ) 
k k 
m 
k 
l 
l m p i 
k k k k 
l m p i 
k 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
k k 
m 
k 
l 
l m p b 
k k k k 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
b k 
t 
t 
p m p 
m 
l m 
t 
t 
p m p 
m 
l m 
u t t b 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
 
  
 
 
 
and 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
  
    
 
 
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
  
 
  
 
 
  
 
 
 
 
 
 
 
  
 
  
    
 
  
 
 
 
 
 
 
    
 
  
 
 
 
  
 
 
 
 
 
  
   
    
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
0 0 
2 
0 
1 
1 0 
2 
1 
3 
1 
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 
2 
1 
( 1) 
0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 
( M) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
H A ( ) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( 1) ( ) ( ) 
( , ) 
k k 
m 
k 
l 
l m p i 
k k k k 
l m p i 
k 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
k k 
m 
k 
l 
l m p b 
k k k k 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
k 
y 
t 
t 
p m p 
m 
l m 
t 
t 
p m p 
m 
l m 
b 
y 
u y t 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
 
  
 
 
 
then 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
  
    
 
 
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
  
 
  
 
 
  
 
 
 
 
 
 
 
  
 
  
    
 
  
 
 
 
 
 
 
    
 
  
 
 
 
  
 
 
 
 
 
  
   
    
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
0 0 
2 
0 
1 
1 0 
2 
1 
3 
1 
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 
2 
1 
( 1) 
0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 
( M) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
H A ( ) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( 1) ( ) ( ) 
( , ) 
k k 
m 
k 
l 
l m p i 
k k k k 
l m p i 
k 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
k k 
m 
k 
l 
l m p b 
k k k k 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
k 
y 
t 
t 
p m p 
m 
l m 
t 
t 
p m p 
m 
l m 
b 
y 
u y t 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
 
  
 
 
 
i.e. 
y 
u y t 
u t t b 
 
 
  
( , ) 
(0, )  
Adopting the similar procedure in Eq. (23), we obtain the shear stress: 
     
 
 
 
  
 
 
 
   
  
   
    
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
p m p 
m 
j l m 
y 
b 
0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 !( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( 1) ( ) 
  
 
   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
   
  
 
 
 
 
 
 
 
 
 
 
  
 
  
  
  
  
    
  
  
  
 
  
 
  
 
    
  
  
 
  
 
 
  
 
 
 
   
 
  
 
  
  
  
  
     
  
  
  
 
  
 
  
 
     
  
  
      
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 
2 
1 
( 1) 
0 0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
H 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
A ( ) 
H 
k j k j 
m 
k j 
l 
l m p i 
k j k j k j k j 
l m p i 
k j 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
k j k j 
m 
k j 
l 
l m p b 
k j k j k j k j 
l m p b 
k j 
t 
t 
p m p 
m 
j l m 
y 
t 
t 
     
 
 
    
  
 
 
     
 
 
    
 
  
 
 
 
 
(27) 
Special Cases: 
1- If   0 then the no- slip condition is obtained. In this special case Eqs. (26) and (27) are simplified 
to
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 25 | P a g e 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
   
    
     
          
       
 
  
 
 
  
 
 
 
     
         
      
 
 
 
  
 
 
 
  
   
    
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
( 1) 
0 0 
2 
0 
1 
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 
2 
( 1) 
0 
2 
0 
1 
0 
2 
3 
1 
1 
( M) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
H A 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( , ) ( 1) 
j j 
m 
j 
l 
l m p i 
j j j j 
l m p i 
j 
i 
i 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
j j 
m 
j 
l 
l m p b 
j j j j 
l m p b 
m j 
p 
p 
m 
m 
l 
j l 
j 
j 
b 
t 
t 
p m p 
m 
j l m 
t y 
t 
p m p 
m 
j l m 
y 
u y t t b 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
   
   
 
 
 
  
 
  
    
 
  
 
 
 
 
 
 
    
 
  
 
  
 
 
  
 
  
 
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
  
 
 
 
  
 
  
 
     
    
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 
2 
1 
( 1) 
0 0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
H 
( M) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
A 
H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( , ) ( 1) 
j j 
m 
j 
l 
l m p i 
j j j j 
l m p i 
j 
i 
i 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
j j 
m 
j 
l 
l m p b 
j j j j 
l m p b 
j 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
t 
t 
p m p 
m 
j l m 
y 
t 
t 
p m p 
m 
j l m 
y 
y t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
  
 
 
 
2- If   0 and M 0 then Eqs. (26) and (27) reduce to 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
  
   
 
  
 
 
 
 
   
 
  
 
 
 
 
 
 
  
 
   
       
     
 
 
 
  
 
  
  
   
,1) 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 
2 
( 1) 
0 
2 
0 
1 
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 
2 
|( 1) 
0 
2 
0 
1 
1 
2 
3 
1 
H 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
H ( 1) ( ) 
!( )! 
( ) ! 
! 
( ) 
( , ) ( 1) ( ) ( ) 
k j k j 
m 
m p b 
k j k j k j 
m p b 
m k j 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k k 
m 
m p b 
k k k 
m p b 
m k 
p 
p 
m 
m 
k 
k 
b k 
t 
t 
p m p 
m 
m 
j 
y 
b 
t 
t 
p m p 
m 
m 
u y t t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
   
 
  
 
 
 
 
   
 
  
 
 
 
  
 
  
 
   
       
     
 
 
 
  
 
 
   
   
,1) 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 1 
2 
( 1) 
0 
2 
0 
1 
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
(1 
2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 1 
2 
( 1) 
0 
2 
0 
1 
1 
2 
3 
1 
H 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
H A ( ) 
!( )! 
( ) ! 
! 
( ) 
A ( ) ( ) 
k j k j 
m 
m p 
k j k j k j 
m p 
m k j 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k k 
m 
m p 
k k k 
m p 
m k 
p 
p 
m 
m 
k 
k 
k 
t 
t 
p m p 
m 
j m 
t y 
t 
p m p 
m 
m 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
 
  
 
 

Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 26 | P a g e 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
  
    
  
 
  
  
  
  
  
  
 
  
 
  
  
  
 
 
 
  
 
   
 
  
 
  
  
    
  
  
  
 
  
 
    
  
  
 
 
 
  
 
   
 
    
    
,1) 
2 
1 
,0),(1 
2 
1 
(1 
2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,2 
2,4 
2 
2 
1 
( 1) 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
,1) 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,2 
2,4 
2 1 
2 
1 
( 1) 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
H 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
A ( ) 
H 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
( , ) ( 1) ( ) 
k j k j 
m 
m p 
k j k j k j 
m p 
k j 
m 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k j k j 
m 
m p b 
k j k j k j 
m p b 
k j 
m 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
t 
t 
p m p 
m 
j m 
y 
t 
t 
p m p 
m 
j m 
y 
y t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
  
 
 
  
which correspond to the flow of a generalized Burgers’ magnetic field effect. 
3- Making 0 2   and A0 in Eqs. (26) and (27) the solutions corresponds to slip effects of a 
generalized Oldroyd- B fluid in absence of pressure gradient can be recovered, as found by Zheng … etc in 
[19]. 
4- If we set 0 2   ,   0 and M 0 in Eqs. (26) and (27) the similar solutions for generalized 
Oldroyd- B fluid are recovered, as found by Hyder … etc in [12]. 
IV. Flow due to a sinusoidal pressure gradient: 
Let us consider the flow problem of generalized Burgers’ fluid bounded by an infinite plane wall at y  0 , 
under the action of sinusoidal pressure gradient with the same initial and boundary conditions, Eqs. (16- 18). 
In this case the governing equation can be written as 
u 
y 
u 
p wt 
u 
M(1+ D D ) 
(1+ D D ) cos( ) (1+ D ) 
t 
(1+ D D ) 
2 
1 t 2 t 
2 
2 
3 t 
2 
0 1 t 2 t 
2 
1 t 2 t 
    
          
  
     
  
 
 
    
 
 
 
(28) 
where cos( ) 
1 
cos( ) 0 0 p wt 
dx 
dp 
p wt 
dx 
dp 
   
 
 and 0 p is constant. The associated initial and boundary 
condition are as given in Eqs. (16- 18). 
Again, by similar procedure as in the previous case the velocity field is found in the form of 
  
    
 
 
  
 
     
         
      
 
 
 
  
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
  
     
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 
2 
|( 1) 
0 
2 
0 
1 
1 0 
2 
3 
1 
( ) 
! 
( ) 
H ( 1) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( , ) ( 1) ( ) ( ) 
k 
k j 
j 
j 
k 
k k 
m 
k 
l 
l m p b 
k k k k 
l m p b 
m k 
p 
p 
m 
m 
l 
l 
k 
k 
b k 
j 
y 
b 
t 
t 
p m p 
m 
l m 
u y t t b 
 
 
     
 
 
    
  
 
 
 
 
 
 
  
 
 
 
l m p b 
m k j 
p 
p 
m 
m 
l 
l 
t 
p m p 
m 
l m 
    
 
  
 
 
 
  
 
    
      
    2 
2 
( 1) 
0 
2 
0 
1 
0 !( )! 
( ) ! 
! 
( ) 
! 
( M) 
2 2 1 
2 
( 1) 
0 
2 
0 0 
2 
0 
1 
0 0 
2 
3 
1 
1 
0 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
2 2 1 
2 
( 1) 
0 
2 
0 0 
2 
0 
1 
1 0 
2 
3 
1 
0 
,1) 
2 
,0),(1 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
,0),(1 
2 
3 (0,1),(1 
1,3 
3,5 
( M) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
H ( ) 
( M) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
H ( ) ( ) 
      
 
   
 
 
  
 
 
 
 
 
 
 
  
 
     
           
         
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
  
    
 
  
 
 
 
 
 
 
    
   
    
  
  
 
 
  
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
l m p i r 
k j 
r 
r 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
k k 
m 
k 
l 
l m p i r 
k k k k 
l m p i r 
k 
r 
r 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k 
k 
k j k j 
m 
k j 
l 
l m p b 
k j k j k j k j 
w t 
p m p 
m 
m 
j l 
y 
p 
t 
w t 
p m p 
m 
m 
l 
p 
t 
    
  
 
 
     
 
 
    
  
 
 
     
 
 
  
 
 
 
 
  
 
 
 
 
(29)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 27 | P a g e 
and, by using Eq. (8), the corresponding stress is found in the form of 
 
 
 
 
 
 
 
 
 
 
  
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
   
    
  
 
  
  
  
  
     
  
  
  
 
  
 
  
 
     
  
  
 
 
 
  
 
 
  
 
 
 
   
 
  
 
  
  
  
  
     
  
  
  
 
  
 
  
 
     
  
  
 
 
 
  
 
 
 
   
 
       
     
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 2 
2 
1 
( 1) 
0 
2 
0 0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 
0 
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
0 
2 
0 
1 
0 0 
2 
1 
3 
1 
0 
H 
( M) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( ) 
H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( , ) ( 1) ( ) 
k j k j 
m 
k j 
l 
l m p i r 
k j k j k j k j 
l m p i r 
k j 
r 
r 
i 
i 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
k j k j 
m 
k j 
l 
l m p b 
k j k j k j k j 
l m p b 
k j 
m 
p 
p 
m 
m 
l 
l 
k 
k j 
j 
j 
k 
t 
t 
w 
p m p 
m 
j l m 
y 
p 
t 
t 
p m p 
m 
j l m 
y 
y t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
  
 
 
  
(30) 
Special Cases: 
1- If   0 then the no- slip condition is obtained. In this special case Eqs. (29) and (30) are simplified 
into 
 
 
 
 
 
 
 
 
 
 
  
 
   
 
 
 
 
 
 
 
 
 
 
 
 
   
    
     
           
         
 
 
  
 
 
  
 
 
 
     
         
      
 
 
 
  
 
 
 
   
   
    
,1) 
2 
,0), (1 
2 
,0), (1 
2 
(1 
2 2 1, ) 
2 
,0), (( 1) 
2 
,0), (1 
2 
,0), (1 
2 
3 (0,1), (1 
1,3 
3,5 
2 2 1 
2 
( 1) 
0 
2 
0 0 
2 
0 
1 
0 
2 
3 
1 
1 
0 
,1) 
2 
,0), (1 
2 
,0), (1 
2 
(1 
2 , ) 
2 
,0), (( 1) 
2 
,0), (1 
2 
,0), (1 
2 
3 (0,1), (1 
1,3 
3,5 
2 
2 
( 1) 
0 
2 
0 
1 
0 
2 
3 
1 
1 
( M) ( ) H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( , ) ( 1) 
j j 
m 
j 
l 
l m p i r 
j j j j 
l m p i r 
j 
r 
r 
i 
i 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
j j 
m 
j 
l 
l m p b 
j j j j 
l m p b 
m j 
p 
p 
m 
m 
l 
j l 
j 
j 
b 
t 
w t 
p m p 
m 
j l m 
y 
p 
t 
t 
p m p 
m 
j l m 
y 
u y t t b 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
  
 
 
 
  
 
  
 
    
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 1 
2 
1 
( 1) 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
H 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
( 1) 
j j 
m 
j 
l 
l m p b 
j j j j 
l m p b 
j 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
t 
t 
p m p 
m 
j l m 
y 
b 
     
 
 
    
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
   
 
 
 
  
 
  
     
 
  
 
 
 
 
 
 
     
 
  
 
 
 
  
 
 
  
 
  
 
      
,1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
(1 
2 2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,3 
3,5 
2 2 
2 
1 
( 1) 
0 
2 
0 0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
0 
H 
( M) ( ) 
!( )! 
( ) ! 
! 
( ) 
! 
( M) 
( ) 
! 
( ) 
j j 
m 
j 
l 
l m p i r 
j j j j 
l m p i r 
j 
r 
r 
i 
i 
m 
p 
p 
m 
m 
l 
j l 
j 
j 
t 
t 
w 
p m p 
m 
j l m 
y 
p 
     
 
 
    
  
 
 
 
  
 
 
2- If   0 and M 0 then Eqs. (29) and (30) reduce to
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 28 | P a g e 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
  
    
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
  
    
 
  
 
 
 
 
    
 
   
  
 
 
  
 
  
 
   
        
       
  
 
 
 
 
 
 
 
 
  
   
 
  
 
 
 
 
   
 
  
 
 
 
  
 
  
 
   
       
     
 
 
 
  
 
     
   
  
   
   
,1) 
2 
,0),(1 
2 
(1 
2 2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 2 1 
2 
( 1) 
0 
2 
0 
2 
0 
1 
0 
2 
3 
1 
1 
0 
,1) 
2 
,0),(1 
2 
(1 
2 2 1, ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 2 1 
2 
( 1) 
0 
2 
0 
2 
0 
1 
1 
2 
3 
1 
0 
,1) 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 
2 
( 1) 
0 
2 
0 
1 
0 
2 
3 
1 
1 
,1) 
2 
,0),(1 
2 
(1 
2 , ) 
2 
,0),(( 1) 
2 
,0),(1 
2 
3 (0,1),(1 
1,2 
2,4 
2 
2 
|( 1) 
0 
2 
0 
1 
1 
2 
3 
1 
H 
( ) 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
( ) 
( ) H 
!( )! 
( ) ! 
! 
( ) 
H ( ) ( ) 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
H ( 1) ( ) 
!( )! 
( ) ! 
! 
( ) 
( , ) ( 1) ( ) ( ) 
k j k j 
m 
m p r 
k j k j k j 
m p r 
k j 
r 
r 
m 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k k 
m 
m p r 
k k k 
m p r 
k 
r 
r 
m 
p 
p 
m 
m 
k 
k 
k 
k j k j 
m 
m p b 
k j k j k j 
m p b 
m k j 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k k 
m 
m p b 
k k k 
m p b 
m k 
p 
p 
m 
m 
k 
k 
b k 
t 
w t 
p m p 
m 
j m 
y 
p 
t 
w t 
p m p 
m 
m 
p 
t 
t 
p m p 
m 
j m 
y 
b 
t 
t 
p m p 
m 
m 
u y t t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
     
 
 
    
 
 
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    
  
 
  
  
   
  
  
  
 
  
 
   
  
  
 
  
 
 
  
 
   
 
  
 
  
  
    
  
  
  
 
  
 
    
  
  
 
 
 
  
 
   
 
     
    
,1) 
2 
1 
,0),(1 
2 
1 
(1 
2 2 , ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,2 
2,4 
2 2 
2 
1 
( 1) 
0 
2 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
0 
,1) 
2 
1 
,0),(1 
2 
1 
(1 
2 1, ) 
2 
1 
,0),(( 1) 
2 
1 
,0),(1 
2 
1 
3 (0,1),(1 
1,2 
2,4 
2 1 
2 
1 
( 1) 
0 
2 
0 
1 
0 
2 
1 
3 
1 
0 
H 
( ) 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
( ) 
H 
!( )! 
( ) ! 
! 
( ) 
( ) 
! 
( ) 
( , ) ( 1) ( ) 
k j k j 
m 
m p r 
k j k j k j 
m p r 
k j 
r 
r 
m 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
k j k j 
m 
m p b 
k j k j k j 
m p b 
k j 
m 
p 
p 
m 
m 
k 
k j 
j 
j 
k 
t 
t 
w 
p m p 
m 
j m 
y 
p 
t 
t 
p m p 
m 
j m 
y 
y t b 
     
 
 
    
  
 
 
     
 
 
    
  
 
 
 
  
 
 
 
 
  
 
 
  
which correspond to the flow of a generalized Burgers’ magnetic field effect. 
V. Numerical results and discussion: 
In this work, we have discussed the MHD flow of generalized Burger’s fluid due to accelerating plate with 
slip effects. The exact solutions for the velocity field u and the stress  in terms of the Fox H-function are 
obtained by using the discrete Laplace transform. Moreover, some figures are plotted to show the behavior of 
various parameters involved in the expressions of velocity u . 
A comparison between non- slip effect (Panel a) and slip effect (Panel b) is also made graphically. Figs. 1- 
7 are prepared for flow due to constant pressure gradient where as Figs. 8- 14 for flow due to sinusoidal pressure 
gradient. 
Fig. 1 shows the variation of the non- integer fractional parameter  and the slip coefficient . The velocity 
is increasing with the increase of  and  . 
Fig. 2 is depicted to show the changes of the velocity with fractional parameter  . In the case of non- slip 
condition is fullfield, the influence of  is same as that of  . However, it is observed that as  increasing 
there is a variation in velocity value a bout some value of  which is greater than 0.4. 
Figs. 3 and 4 provide the graphically illustrations for the effects of relaxation and retardation parameters 1  
and 
3  on the velocity fields. The velocity is increasing with the increased the 1  
and 3  for both cases, the slip and 
no- slip condition. 
The effect of 2  is illustrated in Fig. 5 which shows that 2  has quite the opposite effect to that of 1  
and 
3  for both cases (  0&   0 ). 
Fig. 6 demonstrates the influence of the magnetic field M. It is noticed for both cases   0&   0 , when 
M < 2 there is increasing in the velocity field, however when M > 2 show an opposite effect on the velocity. 
In Fig. 7, the variations of the slip coefficient  on velocity with the magnetic field parameter. The velocity is 
decreasing with increase of the magnetic parameter.
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 29 | P a g e 
Figs. 8- 14 provide the graphically illustrations for the velocity for flow due to sinusoidal pressure gradient. 
Qualitatively, the observations for sinusoidal pressure gradient flow are similar to that of constant pressure 
gradient flow. However, the velocity profile in flow of constant and sinusoidal pressure gradient are not similar 
quantitatively. 
Fig. 15 demonstrate the velocity changes with time at given points (y=1 and y=2) for Panel (a)   0 and 
Panel (b)   0.5 for two types of flows. Comparison shows that the velocity profile in sinusoidal pressure 
gradient flow are larger when compared to those of constant pressure gradient flow. The effects of the slip 
coefficient and magnetic field are the similar on the both flows. 
Fig. 1. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.) 
Fig. 2. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.) 
Fig. 3. The velocity for different value of 1  when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 30 | P a g e 
Fig. 4. The velocity for different value of 3  when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.) 
Fig. 5. The velocity for different value of 2  when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.) 
Fig. 6. The velocity for different value of M when keeping other parameters fixed a)   0 b)  0.5 (Constant 
p. g.) 
Fig. 7. The velocity for different value of  when keeping other parameters fixed a) M 0 b) M 4.5 
(Constant p. g.)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 31 | P a g e 
Fig. 8. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.) 
Fig. 9. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.) 
Fig. 10. The velocity for different value of 1  when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.) 
Fig. 11. The velocity for different value of 3  when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 32 | P a g e 
Fig. 12. The velocity for different value of 2  when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.) 
Fig. 13. The velocity for different value of M when keeping other parameters fixed a)   0 b)  0.5 ( 
Sinusoidal p. g.) 
Fig. 14. The velocity for different value of  when keeping other parameters fixed a) M 0 b) M 4.5 ( 
Sinusoidal p. g.) 
Fig. 15. The velocity for different value of y when keeping other parameters fixed a)   0 b)  0.5 ( Constant 
P. & Sinusoidal P.)
Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 
www.ijera.com 33 | P a g e 
References 
[1] A. Ebaid; “ Effects of Mgnetic Field and Wall Slip Conditions on the Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel”, Phys. Lett. A 372 (2008) 4493- 4499. [2] A.-R. A. Khaleda and K. Vafaib; “ The Effect of the Slip Condition on Stokes and Couette Flows due to an Oscillating Wall: Exact Solutions”, Int. J. Nonlinear Mech. 39 (2004) 795- 809. [3] B. H. Tan, I. Jackson and J. D. F. Gerald; “ High- Temperature Viscoelasiticity of Fine- Grained Polycystalline Olivine”, Phys. Chem. Miner. 28 (2001) 641. [4] C. Derek, D. C. Tretheway and C. D. Meinhart; “ Apparent Fluid Slip at Hydrophibic Microchannel Walls”, Phys. Fluids 14 (2002) 9- 12. [5] C. Fetecau and Corina Fetecau; “ Decary of Potential Vovtex in Maxwell fluid”, Internet. J. Non- Linear Mech. 38 (2003) 985. [6] C. Fetecau, T. Hayat and Corina Fetecau; “ Steady- State Solutions for Simple Flows of Generalized Burgers’ Fluid”, Int. J. Non- linear Mech. 41 (2006) 880. [7] I. Podlubny;”Fractional Differentional Equations” Academic Press, San Diego, 1999. [8] J. M. Burgers; “ Mechanical Considerations- Model Systems- Phenomenological Theoies of Relaxation and of Viscosity”, in: J. M. Burgers (Ed.), First Report on Viscosity and Plasticity, Nordemann Publishing Company, New York, 1985. [9] K. R. Rajagopal and R. K. Bhatnagar; “ Exact Solutions for Some Simple Flows of an Oldroyd- B Fluid”, Acta Mech. 13 (1995) 233. [10] N. Ali, Q. Hussain, T. Hayat and S. Asghar; “ Slip Effects on the Peristaltic Transport of MHD Fluid with Variable Viscosity”, Phys. Lett. A 372 (2008) 1477- 1489. [11] P. Ravindran, J. M. Krishnan and K. R. Rajagopal; “ Anote on the Flow of Burgers’ Fluid in an Orthogonal Rheometer, Internat. J. Engrg. Sci. 42 (2004) 1973. [12] S. Hyder, M. Khan and H. Qi; “ Exact Solutions for a Viscoelastic Fluid with the Generalized Oldroyd- B Model”, Nonlinear Anal.: RWA 10 (2009) 2590- 2599. [13] T. Hayat, A. M. Siddiqui and S. Asghar; “ Some Simple Flows of an Oldroyd- B Fluid”, Internat. J. Engrg. Sci. 39 (2001) 135. [14] T. Hayat, C. Fetecau and S. Asghar; “ Some Simple Flows of Burgers’ Fluid”, Internat. J. Engrg. Sci. 44 (2006) 1423. [15] T. Hayat, C. Fetecau and S. Asghar; “ Some Simple Flows of Burgers’ Fluid”, Comput. Math. Appl. 52 (2006) 1413. [16] T. Hayat, M. Hussain and M. Khan; “ Hall Effects on Flows of an Oldriyd- B Fluid Through Porous Medium for Cylindical Geometries”, Comput. Math. Appl. 52 (2006) 333. [17] T. Hayat, M. Khan and M. Ayub; “ Exact Solutions of Flow Problem of an Oldroyd- B fluid”, Appl. Math. Comput. 151 (2004) 105. [18] W. R. Peltier, P. We and D. A. Yuen; “ The Viscosities of the Earth Manthe”, in: F. D. Stocey, M. S. Paterson, A. Nicholas (Eds), Auelasticity in the Eearth, American Geophysical Union, Colorado, 1981. [19] Zheng, L., Liu, Y. and Zheng, X.; “ Slip effect on MHD Flow of a Generalized Oldroyd- B Fluid with Fractional Derivative”, Nonlinear Anal. RWA 13 (2012) 513- 523.

More Related Content

What's hot

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
 
Shuwang Li Moving Interface Modeling and Computation
Shuwang Li Moving Interface Modeling and ComputationShuwang Li Moving Interface Modeling and Computation
Shuwang Li Moving Interface Modeling and ComputationSciCompIIT
 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...IOSRJM
 
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeEffect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeIJARIDEA Journal
 
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...IOSR Journals
 
MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...IJERA Editor
 
Sudden Accelerated Plate
Sudden Accelerated PlateSudden Accelerated Plate
Sudden Accelerated PlateAndi Firdaus
 
Analysis of three dimensional couette flow and heat
Analysis of three dimensional couette flow and heatAnalysis of three dimensional couette flow and heat
Analysis of three dimensional couette flow and heateSAT Publishing House
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...ijmech
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014Cristina Staicu
 
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...IOSR Journals
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)Amro Elfeki
 

What's hot (19)

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
O0131492100
O0131492100O0131492100
O0131492100
 
Shuwang Li Moving Interface Modeling and Computation
Shuwang Li Moving Interface Modeling and ComputationShuwang Li Moving Interface Modeling and Computation
Shuwang Li Moving Interface Modeling and Computation
 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
 
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeEffect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
 
Lecture notes 02
Lecture notes 02Lecture notes 02
Lecture notes 02
 
Jh3616111616
Jh3616111616Jh3616111616
Jh3616111616
 
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...
A solution of the Burger’s equation arising in the Longitudinal Dispersion Ph...
 
MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...MHD convection flow of viscous incompressible fluid over a stretched vertical...
MHD convection flow of viscous incompressible fluid over a stretched vertical...
 
Sudden Accelerated Plate
Sudden Accelerated PlateSudden Accelerated Plate
Sudden Accelerated Plate
 
poster
posterposter
poster
 
Analysis of three dimensional couette flow and heat
Analysis of three dimensional couette flow and heatAnalysis of three dimensional couette flow and heat
Analysis of three dimensional couette flow and heat
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...
 
CFD
CFDCFD
CFD
 
Rough Wall Kolmogorov Length-Scale Proposal
Rough Wall Kolmogorov Length-Scale ProposalRough Wall Kolmogorov Length-Scale Proposal
Rough Wall Kolmogorov Length-Scale Proposal
 
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
INRIA-USFD-KCL- Identification of artery wall stiffness - 2014
 
Lecture notes 06
Lecture notes 06Lecture notes 06
Lecture notes 06
 
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
 

Viewers also liked

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Hydromechanics exercises
Hydromechanics exercisesHydromechanics exercises
Hydromechanics exercisesPhuc An
 
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...IJERA Editor
 
Intensify Denoisy Image Using Adaptive Multiscale Product Thresholding
Intensify Denoisy Image Using Adaptive Multiscale Product ThresholdingIntensify Denoisy Image Using Adaptive Multiscale Product Thresholding
Intensify Denoisy Image Using Adaptive Multiscale Product ThresholdingIJERA Editor
 
Centralizing security on the mainframe
Centralizing security on the mainframeCentralizing security on the mainframe
Centralizing security on the mainframeArun Gopinath
 
Evaluation of Antioxidant Phytochemicals in Different Genotypes of Potato
Evaluation of Antioxidant Phytochemicals in Different Genotypes of PotatoEvaluation of Antioxidant Phytochemicals in Different Genotypes of Potato
Evaluation of Antioxidant Phytochemicals in Different Genotypes of PotatoIJERA Editor
 
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...IJERA Editor
 
An Investigative and Concise Review on Evaporation and Condensation Processes...
An Investigative and Concise Review on Evaporation and Condensation Processes...An Investigative and Concise Review on Evaporation and Condensation Processes...
An Investigative and Concise Review on Evaporation and Condensation Processes...IJERA Editor
 
Mechanical properties of rice husk flour reinforced epoxy bio-composite
Mechanical properties of rice husk flour reinforced epoxy bio-compositeMechanical properties of rice husk flour reinforced epoxy bio-composite
Mechanical properties of rice husk flour reinforced epoxy bio-compositeIJERA Editor
 
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...IJERA Editor
 
Hankel Determinent for Certain Classes of Analytic Functions
Hankel Determinent for Certain Classes of Analytic FunctionsHankel Determinent for Certain Classes of Analytic Functions
Hankel Determinent for Certain Classes of Analytic FunctionsIJERA Editor
 
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...IJERA Editor
 
A Survey on Constellation Based Attribute Selection Method for High Dimension...
A Survey on Constellation Based Attribute Selection Method for High Dimension...A Survey on Constellation Based Attribute Selection Method for High Dimension...
A Survey on Constellation Based Attribute Selection Method for High Dimension...IJERA Editor
 

Viewers also liked (20)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Hydromechanics exercises
Hydromechanics exercisesHydromechanics exercises
Hydromechanics exercises
 
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...
Statistical Optimization of process parameters for SiO2-Nickel nanocomposites...
 
Intensify Denoisy Image Using Adaptive Multiscale Product Thresholding
Intensify Denoisy Image Using Adaptive Multiscale Product ThresholdingIntensify Denoisy Image Using Adaptive Multiscale Product Thresholding
Intensify Denoisy Image Using Adaptive Multiscale Product Thresholding
 
Centralizing security on the mainframe
Centralizing security on the mainframeCentralizing security on the mainframe
Centralizing security on the mainframe
 
Ae4301167171
Ae4301167171Ae4301167171
Ae4301167171
 
Evaluation of Antioxidant Phytochemicals in Different Genotypes of Potato
Evaluation of Antioxidant Phytochemicals in Different Genotypes of PotatoEvaluation of Antioxidant Phytochemicals in Different Genotypes of Potato
Evaluation of Antioxidant Phytochemicals in Different Genotypes of Potato
 
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...
The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case o...
 
O045078588
O045078588O045078588
O045078588
 
An Investigative and Concise Review on Evaporation and Condensation Processes...
An Investigative and Concise Review on Evaporation and Condensation Processes...An Investigative and Concise Review on Evaporation and Condensation Processes...
An Investigative and Concise Review on Evaporation and Condensation Processes...
 
Mechanical properties of rice husk flour reinforced epoxy bio-composite
Mechanical properties of rice husk flour reinforced epoxy bio-compositeMechanical properties of rice husk flour reinforced epoxy bio-composite
Mechanical properties of rice husk flour reinforced epoxy bio-composite
 
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
Investigation on the Growth and Physio-Chemical Properties of L-Alanine Mixed...
 
J046015861
J046015861J046015861
J046015861
 
Hankel Determinent for Certain Classes of Analytic Functions
Hankel Determinent for Certain Classes of Analytic FunctionsHankel Determinent for Certain Classes of Analytic Functions
Hankel Determinent for Certain Classes of Analytic Functions
 
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
 
Ea4301770773
Ea4301770773Ea4301770773
Ea4301770773
 
Dn4301681689
Dn4301681689Dn4301681689
Dn4301681689
 
H43023946
H43023946H43023946
H43023946
 
A Survey on Constellation Based Attribute Selection Method for High Dimension...
A Survey on Constellation Based Attribute Selection Method for High Dimension...A Survey on Constellation Based Attribute Selection Method for High Dimension...
A Survey on Constellation Based Attribute Selection Method for High Dimension...
 
Q43019295
Q43019295Q43019295
Q43019295
 

Similar to Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition

Numerical simulation on laminar convection flow and heat transfer over an iso...
Numerical simulation on laminar convection flow and heat transfer over an iso...Numerical simulation on laminar convection flow and heat transfer over an iso...
Numerical simulation on laminar convection flow and heat transfer over an iso...eSAT Journals
 
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Alexander Decker
 
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Alexander Decker
 
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...IJERA Editor
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...iosrjce
 
Numerical simulation on laminar convection flow and heat transfer over a non ...
Numerical simulation on laminar convection flow and heat transfer over a non ...Numerical simulation on laminar convection flow and heat transfer over a non ...
Numerical simulation on laminar convection flow and heat transfer over a non ...eSAT Journals
 
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...mathsjournal
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 

Similar to Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition (20)

A04402001015
A04402001015A04402001015
A04402001015
 
Numerical simulation on laminar convection flow and heat transfer over an iso...
Numerical simulation on laminar convection flow and heat transfer over an iso...Numerical simulation on laminar convection flow and heat transfer over an iso...
Numerical simulation on laminar convection flow and heat transfer over an iso...
 
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
 
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
Aligned magnetic field, radiation and chemical reaction effects on unsteady d...
 
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...
Influence of MHD on Unsteady Helical Flows of Generalized Oldoyd-B Fluid betw...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...
Homotopy Analysis to Soret and Dufour Effects on Heat and Mass Transfer of a ...
 
C012630913
C012630913C012630913
C012630913
 
C012630913
C012630913C012630913
C012630913
 
Numerical simulation on laminar convection flow and heat transfer over a non ...
Numerical simulation on laminar convection flow and heat transfer over a non ...Numerical simulation on laminar convection flow and heat transfer over a non ...
Numerical simulation on laminar convection flow and heat transfer over a non ...
 
C05421827
C05421827C05421827
C05421827
 
K0457278
K0457278K0457278
K0457278
 
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
 
3. UJRRA_22_04.pdf
3. UJRRA_22_04.pdf3. UJRRA_22_04.pdf
3. UJRRA_22_04.pdf
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Bk36372377
Bk36372377Bk36372377
Bk36372377
 
I24056076
I24056076I24056076
I24056076
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 

Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition

  • 1. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 19 | P a g e Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition Ghada H. Ibraheem, Ahmed M. Abdulhadi Department of Mathematics, University of Baghdad College of Education, Pure Science, Ibn A-Haitham Department of Mathematics, University of Baghdad College of Science Abstract This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for no – slip condition and no magnetic field, can be derived as special cases of our solutions. Furthermore, the effects of various parameters on the velocity distribution characteristics are analyzed and discussed in detail. Comparison between the two cases is also made. Keywords: Generalized Burgers’ fluid, Constant pressure gradient, Sinusoidal pressure gradient, Fox H-function. I. Introduction In recent years, the flow of non- Newton fluid has received much attention for their increasing industrial and technological applications, such as extrusion of polymer fluids, exotic lubricants, colloidal and suspension solutions food stuffs and many others. Because of the complicated behavior, there is no model which can alone describe the behavior of all non- Newtonian fluids. For this reason, several constitutive equations for all non- Newtonian fluid models have been proposed. Among them, rate type models have special importance and many researchers are using equations of motion of Maxwell and Oldroyd fluid flow [5, 9, 13, 16, 17]. Recently, a thermodynamic framework has been put into place to develop a rate type model known as Burgers’ model [8] which is used to describe the motion of the earth’s mantle. The Burgers’ model is the preferred model to describe the response of asphalt and asphalt concrete [5]. Many applications of this type of fluid can be found in [3, 6, 11, 14, 15, 18]. Fluids exhibiting boundary slip are important in technological applications, such as the polishing of artificial heart values, polymer melts often exhibit macroscopic wall slip that in general is governed by a non- linear and non- monotone relation between the slip velocity and the traction [4]. Ebaid [1] and Ali [10] studied the effect of magnetic field and slip condition on peristaltic transform. Khaleda [2] gives the exact solution for the slip effect on Stokes and Couette flows due to an oscillating wall. Liancun eta. [19] investigated effect of slip condition on MHD flow of a generalized Oldroyd- B fluid with fractional derivative. They used the fractional approach to write down the constitutive equations for a viscoelastic fluid. A closed form of the velocity distribution and shear stress are obtained in terms of Fox H- function by using the discrete Laplace transform of the sequential fractional derivative. No attempt has been made regarding the exact solutions for flows due to constant and sinusoidal pressure gradient of generalized Burgers’ fluid with fractional derivative and the non- slip condition is no longer valid. The exact solutions for velocity field and shear stress are obtained by using discrete Laplace transform and they are written in term of Fox H- function. Many cases are recovered from our solutions. II. Governing Equations The constitutive equations for an incompressible fractional Burger’s fluid given by S I T    p , A S ) D ~ + (1 = ) D ~ D ~ (1+ 3 t 2 t t 1 2           (1) where T denoted the cauchy stress, pI is the indeterminate spherical stress, S is the extra stress tensor, T A  LL is the first Rivlin- Ericksen tensor with the velocity gradient where L  grad V ,  is the dynamic viscosity of the fluid, 1  and 3  (< 1  ) are the relaxation and retardation times, respectively, 2  is the new RESEARCH ARTICLE OPEN ACCESS
  • 2. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 20 | P a g e material parameter of Burger’s fluid,  and  the fractional calculus parameters such that 0   1 and p t D ~ the upper convected fractional derivative define by T ( . ) ~ S  S  V S  LS  SL   t t D D (2) T ( . ) ~ A  A V ALA AL   t t D D (3) in which  t D and  t D are the fractional differentiation operators of order  and  based on the Riemann- Liouville definition, defined as ,0 1 ( ) ( ) (1 ) 1 [ ( )] 0        d p t f dt d p D f t t p p t    (4) here (.) denotes the Gamma function and ( ) 2 S S p t p t p t D  D D (5) The model reduced to the generalized Oldroyd- B model when 0 2   and if, in addition to that,   1 the ordinary Oldroyd- B model will be obtained. We consider the MHD flow of an incompressible generalized Burger’s fluid due to an infinite accelerating plate. For unidirectional flow, we assume that the velocity field and shear stress of the form V  u(y, t)i ,S  S(y, t) (6) where u is the velocity and i is the unit vector in the x- direction .Substituting equation (6) into (1) and taking account of the initial condition S(y,0)  0 , y  0 (7) we obtain (1+ D D )S = (1+ D ) ( , ) xy 3 t y 2 1 t 2 t   u y t           (8) where S S S S 0 xz yy yz zz     , xy yx S  S . Furthermore, it assumes that the conducting fluid is permeated by an imposed magnetic field [0,B ,0] 0 B  which acts in the positive y- direction. In the low- magnetic Reynolds number approximation, the magnetic body force is represented as u 2 0  B , where  is the electrical conductivity of the fluid. Then in the present of a pressure gradient in the x- direction, the equation of motion yields the following scalar equation: u dt x y du xy 2 0 S B p           (9) where  is the constant density of the fluid. Eliminating xy S between Eqs. (8) and (9), we obtain the following fractional differential equation u y u v u (1+ D ) M(1+ D D ) dx dp (1+ D D ) 1 t (1+ D D ) 2 2 1 t 2 t 2 3 t 2 1 t 2 t 2 1 t 2 t                                  (10) where   v  is the kinematic viscosity and   2 0 B M  is the magnetic dimensionless number. III. Flow induced by a constant pressure gradient: Let us consider the flow problem of an incompressible generalized Burgers’ fluid over an infinite plate at y  0 with fluid occupies the space y  0 and flowing under the action of a constant pressure gradient. Also, we assumed the existence of slip boundary between the velocity of fluid at the wall u(0, t) and the speed of the wall, the relative velocity between u(0, t) and the wall is assumed to be proportional to the shear rate at wall. Initially, the system is at rest and at time  t  0 the fluid is suddenly set in motion due to a constant pressure gradient and by the existence of the slip boundary condition. Referring to Eq. (10), the corresponding fractional partial differential equation that described such flow takes the form u t u v u t t (1+ D ) M(1+ D D ) (1 ) (1 2 ) A 1+ t (1+ D D ) 2 2 1 t 2 t 2 3 t 2 1 2 2 1 t 2 t                                                 (11)
  • 3. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 21 | P a g e where dx dp  1 A  is the constant pressure gradient The associated initial and boundary conditions are as follow ( ,0) ( ,0)  0 ,  0    u y y t u y (12) (0, ) ,  0     t y u u t a tb  (13) ( , ) , ( , )0  ,  0   u y t as y t y u y t (14) where a and b are constants,  is the slip strength or slip coefficient. If  0then the general assumed no-slip boundary condition is obtained. If  is finite, fluid slip occurs at the wall but its effect depends upon the length scale of the flow. Employing the non- dimensionless quantities                      v av v av t t v av y y av u u b b b b b b b b 2 1 2 1 * 1 2 1 2 * 2 1 1 * 2 1 1 * ( ) , ( ) , ( ) , ( ) v av av v v av v av b b b b b b b b         2 1 2 * 2 1 2 * 2 1 2 3 * 3 2 2 1 2 2 * 2 ( ) , ( ) M , M ( ) , ( )                             Eqs. (11- 14) in dimensionless form are: u y u u t t (1+ D ) M(1+ D D ) (1 ) (1 2 ) A 1+ t (1+ D D ) 2 2 1 t 2 t 2 3 t 2 1 2 2 1 t 2 t                                                 (15) ( ,0) ( ,0)  0 ,  0    u y y t u y (16) (0, ) ,  0     t y u u t t b  (17) ( , ) , ( , )0  ,  0   u y t as y t y u y t (18) where the dimensionless mark “  ” has been omitted for simplicity. Now applying Laplace transform principle [7] to Eq. (15) and taking into account the boundary condition (16), we find that (1+ s ) A (1+ ) ( M)(1+ s ) 2 1 2 3 2 1 2 2 2                s s u s s s dy d u      (19) Subject to boundary conditions 0 1 ( 1) (0, )       y b dy du s b u s  (20)     y s as y y u(y, s) , ( , ) 0 (21) where u(y, s) is the image function of u(y, t) and s is a transform parameter. Solving Eqs. (19)- (21), we get ( M) A ( M) (1 ) A (1 ) ( 1) ( , ) 1             c s s e c s s e s b u y s c y c y b   (22) where 2 1 3 2 1 2 (1+ ) ( M)(1+ s )                     s s s c
  • 4. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 22 | P a g e The shear stress can be calculated from Eq. (8), taking Laplace transform of Eq. (8) and introducing Eq. (22), we get                         ( M) ( 1) A (1+ ) (1 ) (1+ s ) ( , ) ( M) 1 2 1 3 2 2 1 2 1 s s s b c e s s y s s b a y            (23) where  (y, s) is the Laplace transform of 2 1 2 ( ) S ( , )   b b xy av y t   . In order to avoid the burdensome calculations of residues and contour integrals, we will apply the discrete inverse Laplace transform to get the velocity and the shear stress fields. Now, writing Eq. (22) in series form as ( 1) 2 2 2 0 3 0 0 2 0 1 0 0 2 3 1 1 ( 1) 2 2 0 2 3 0 0 2 0 1 1 0 2 3 1 ( 1) 2 1 2 0 3 0 2 0 1 0 0 2 3 1 ( 1) 2 1 1 2 0 3 0 2 0 1 1 0 2 3 1 1 2 2 2 2 2 2 ! ( ) ( M) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) A ( ) 2 2 2 2 2 2 ! ( ) ( M) !( )! ( ) ! ! ( ) ! ( M) A ( ) ( ) 1 2 2 2 2 2 2 ! ( ) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( 1) ( ) 2 2 2 2 2 2 ! ( ) !( )! ( ) ! ! ( ) ! ( M) ( 1) ( ) ( ) ( 1) ( , )                                                                                                                                                                                                                                                                                                             l m n p i k j n n i i m p p m m l l k k j j j k l m n p i k n n i i m p p m m l l k k k l m n p b k j n m n p p m m l l k k j j j k l m n p b k n m n p p m m l l k k k b s k j k j n k j k j k j m k j l p m p n m l m j y s k k k k n k m k l n p m p m l m s k j k j k j k j n k j m k j l p m p n m m j l y b s k k k k n k m k l p m p n m l m b s b u y s                                                                 (24) Applying the discrete inverse Laplace transform to Eq. (24), we get                                                                                ( 1) 2 1 2 2 2 2 2 2 2 ! ( ) !( )! ( ) ! ! ( ) ! ( M) ( , ) ( 1) ( ) ( ) 0 3 2 2 |( 1) 0 2 0 1 1 0 2 3 1 l m p n b k k k k k n k m k l n t t p m p m l m u y t t b n n l m p b m k p p m m l l k k b k                      l m p b m k j p p m m l l k k j j j k t p m p m j l m y b                                             2 2 ( 1) 0 2 0 1 0 0 2 3 1 1 !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( 1) ( )                                                             ( 1) 2 1 2 2 2 2 2 2 2 ! ( ) 0 3 l m p n b k j k j k j k j k j n k j m k j l n t n n        
  • 5. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 23 | P a g e                                                                                                                                                                                ( 1) 2 2 2 2 2 2 2 2 2 ! ( ) ( M) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) A ( ) ( 1) 2 2 2 2 2 2 2 2 2 ! ( ) ( M) !( )! ( ) ! ! ( ) ! ( M) A ( ) ( ) 0 3 2 1 2 ( 1) 0 0 2 0 1 0 0 2 3 1 1 0 3 2 1 2 ( 1) 0 0 2 0 1 1 0 2 3 1 l m p n i k j k j k j k j k j n k j m k j l n t t p m p m j l m y l m p n i k k k k k n k m k l n t t p m p m l m n n l m p i k j i i m p p m m l l k k j j j k n n l m p i k i i m p p m m l l k k k                                           (25) In terms of Fox H- function, Eq. (25) takes the simpler from:                                                                                                                                                                                                                                        ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 1 2 ( 1) 0 0 2 0 1 0 0 2 3 1 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 1 2 ( 1) 0 0 2 0 1 1 0 2 3 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 ( 1) 0 2 0 1 0 0 2 3 1 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 |( 1) 0 2 0 1 1 0 2 3 1 H ( M) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) A ( ) ( M) H !( )! ( ) ! ! ( ) ! ( M) H A ( ) ( ) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) H ( 1) ( ) !( )! ( ) ! ! ( ) ! ( M) ( , ) ( 1) ( ) ( ) k j k j m k j l l m p i k j k j k j k j l m p i k j i i m p p m m l l k k j j j k k k m k l l m p i k k k k l m p i k i i m p p m m l l k k k k j k j m k j l l m p b k j k j k j k j l m p b m k j p p m m l l k k j j j k k k m k l l m p b k k k k l m p b m k p p m m l l k k b k t t p m p m j l m y t t p m p m l m t t p m p m l m j y b t t p m p m l m u y t t b                                                                                     (26) where the property of the Fox H- function is  (1 , ), ,(1 , )  (0,1),(1 , ), ,(1 , ) 1, , 1 0 1 1 1 1 1 1 H ! ( ) ( ) ( ) p p q q a A a A b B b B p p q n q j j j p j j j n z n b B n z a A n                     The solution Eq. (26) should satisfy the boundary condition Eq. (17). To see this, from Eq. (26) it is easy to obtain
  • 6. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 24 | P a g e                                                                                                        ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 1 2 ( 1) 0 0 2 0 1 1 0 2 3 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 |( 1) 0 2 0 1 1 0 2 3 1 ( M) H !( )! ( ) ! ! ( ) ! ( M) H A ( ) ( ) !( )! ( ) ! ! ( ) ! ( M) (0, ) ( 1) ( ) ( ) k k m k l l m p i k k k k l m p i k i i m p p m m l l k k k k k m k l l m p b k k k k l m p b m k p p m m l l k k b k t t p m p m l m t t p m p m l m u t t b                                           and                                                                                                                            ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) 0 0 2 0 1 1 0 2 1 3 1 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 1 ( 1) 0 2 0 1 0 0 2 1 3 1 0 ( M) H !( )! ( ) ! ! ( ) ! ( M) H A ( ) ( ) !( )! ( ) ! ! ( ) ! ( M) ( 1) ( ) ( ) ( , ) k k m k l l m p i k k k k l m p i k i i m p p m m l l k k k k k m k l l m p b k k k k l m p b m k p p m m l l k k k y t t p m p m l m t t p m p m l m b y u y t                                           then                                                                                                                            ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) 0 0 2 0 1 1 0 2 1 3 1 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 1 ( 1) 0 2 0 1 0 0 2 1 3 1 0 ( M) H !( )! ( ) ! ! ( ) ! ( M) H A ( ) ( ) !( )! ( ) ! ! ( ) ! ( M) ( 1) ( ) ( ) ( , ) k k m k l l m p i k k k k l m p i k i i m p p m m l l k k k k k m k l l m p b k k k k l m p b m k p p m m l l k k k y t t p m p m l m t t p m p m l m b y u y t                                           i.e. y u y t u t t b     ( , ) (0, )  Adopting the similar procedure in Eq. (23), we obtain the shear stress:                          m p p m m l l k k j j j k p m p m j l m y b 0 2 0 1 0 0 2 1 3 1 0 !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( 1) ( )                                                                                                                                    ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 1 ( 1) 0 0 2 0 1 0 0 2 1 3 1 0 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) H ( M) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) A ( ) H k j k j m k j l l m p i k j k j k j k j l m p i k j i i m p p m m l l k k j j j k k j k j m k j l l m p b k j k j k j k j l m p b k j t t p m p m j l m y t t                                  (27) Special Cases: 1- If   0 then the no- slip condition is obtained. In this special case Eqs. (26) and (27) are simplified to
  • 7. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 25 | P a g e                                                                                                        ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 1 2 ( 1) 0 0 2 0 1 0 2 3 1 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 ( 1) 0 2 0 1 0 2 3 1 1 ( M) H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) H A !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( , ) ( 1) j j m j l l m p i j j j j l m p i j i i m p p m m l j l j j j j m j l l m p b j j j j l m p b m j p p m m l j l j j b t t p m p m j l m t y t p m p m j l m y u y t t b                                                                                                                                                                 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 1 ( 1) 0 0 2 0 1 0 2 1 3 1 0 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) 0 2 0 1 0 2 1 3 1 0 H ( M) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) A H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( , ) ( 1) j j m j l l m p i j j j j l m p i j i i m p p m m l j l j j j j m j l l m p b j j j j l m p b j m p p m m l j l j j t t p m p m j l m y t t p m p m j l m y y t b                                          2- If   0 and M 0 then Eqs. (26) and (27) reduce to                                                                                             ,1) 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 ( 1) 0 2 0 1 0 2 3 1 1 ,1) 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 |( 1) 0 2 0 1 1 2 3 1 H !( )! ( ) ! ! ( ) ( ) ! ( ) H ( 1) ( ) !( )! ( ) ! ! ( ) ( , ) ( 1) ( ) ( ) k j k j m m p b k j k j k j m p b m k j p p m m k k j j j k k k m m p b k k k m p b m k p p m m k k b k t t p m p m m j y b t t p m p m m u y t t b                                                                                                                                  ,1) 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 1 2 ( 1) 0 2 0 1 0 2 3 1 1 ,1) 2 ,0),(1 2 (1 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 1 2 ( 1) 0 2 0 1 1 2 3 1 H !( )! ( ) ! ! ( ) ( ) ! ( ) H A ( ) !( )! ( ) ! ! ( ) A ( ) ( ) k j k j m m p k j k j k j m p m k j p p m m k k j j j k k k m m p k k k m p m k p p m m k k k t t p m p m j m t y t p m p m m                                          
  • 8. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 26 | P a g e                                                                                                                   ,1) 2 1 ,0),(1 2 1 (1 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 3 (0,1),(1 1,2 2,4 2 2 1 ( 1) 0 2 0 1 0 2 1 3 1 0 ,1) 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 3 (0,1),(1 1,2 2,4 2 1 2 1 ( 1) 0 2 0 1 0 2 1 3 1 0 H !( )! ( ) ! ! ( ) ( ) ! ( ) A ( ) H !( )! ( ) ! ! ( ) ( ) ! ( ) ( , ) ( 1) ( ) k j k j m m p k j k j k j m p k j m p p m m k k j j j k k j k j m m p b k j k j k j m p b k j m p p m m k k j j j k t t p m p m j m y t t p m p m j m y y t b                                            which correspond to the flow of a generalized Burgers’ magnetic field effect. 3- Making 0 2   and A0 in Eqs. (26) and (27) the solutions corresponds to slip effects of a generalized Oldroyd- B fluid in absence of pressure gradient can be recovered, as found by Zheng … etc in [19]. 4- If we set 0 2   ,   0 and M 0 in Eqs. (26) and (27) the similar solutions for generalized Oldroyd- B fluid are recovered, as found by Hyder … etc in [12]. IV. Flow due to a sinusoidal pressure gradient: Let us consider the flow problem of generalized Burgers’ fluid bounded by an infinite plane wall at y  0 , under the action of sinusoidal pressure gradient with the same initial and boundary conditions, Eqs. (16- 18). In this case the governing equation can be written as u y u p wt u M(1+ D D ) (1+ D D ) cos( ) (1+ D ) t (1+ D D ) 2 1 t 2 t 2 2 3 t 2 0 1 t 2 t 2 1 t 2 t                                 (28) where cos( ) 1 cos( ) 0 0 p wt dx dp p wt dx dp      and 0 p is constant. The associated initial and boundary condition are as given in Eqs. (16- 18). Again, by similar procedure as in the previous case the velocity field is found in the form of                                                               0 2 3 1 1 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 |( 1) 0 2 0 1 1 0 2 3 1 ( ) ! ( ) H ( 1) ( ) !( )! ( ) ! ! ( ) ! ( M) ( , ) ( 1) ( ) ( ) k k j j j k k k m k l l m p b k k k k l m p b m k p p m m l l k k b k j y b t t p m p m l m u y t t b                           l m p b m k j p p m m l l t p m p m l m                            2 2 ( 1) 0 2 0 1 0 !( )! ( ) ! ! ( ) ! ( M) 2 2 1 2 ( 1) 0 2 0 0 2 0 1 0 0 2 3 1 1 0 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 2 2 1 2 ( 1) 0 2 0 0 2 0 1 1 0 2 3 1 0 ,1) 2 ,0),(1 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 ,0),(1 2 3 (0,1),(1 1,3 3,5 ( M) ( ) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) H ( ) ( M) ( ) !( )! ( ) ! ! ( ) ! ( M) H ( ) ( )                                                                                                                                  l m p i r k j r r i i m p p m m l l k k j j j k k k m k l l m p i r k k k k l m p i r k r r i i m p p m m l l k k k k j k j m k j l l m p b k j k j k j k j w t p m p m m j l y p t w t p m p m m l p t                                           (29)
  • 9. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 27 | P a g e and, by using Eq. (8), the corresponding stress is found in the form of                                                                                                                                                         ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 2 1 ( 1) 0 2 0 0 2 0 1 0 0 2 1 3 1 0 0 ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) 0 2 0 1 0 0 2 1 3 1 0 H ( M) ( ) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( ) H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( , ) ( 1) ( ) k j k j m k j l l m p i r k j k j k j k j l m p i r k j r r i i m p p m m l l k k j j j k k j k j m k j l l m p b k j k j k j k j l m p b k j m p p m m l l k k j j j k t t w p m p m j l m y p t t p m p m j l m y y t b                                            (30) Special Cases: 1- If   0 then the no- slip condition is obtained. In this special case Eqs. (29) and (30) are simplified into                                                                                                              ,1) 2 ,0), (1 2 ,0), (1 2 (1 2 2 1, ) 2 ,0), (( 1) 2 ,0), (1 2 ,0), (1 2 3 (0,1), (1 1,3 3,5 2 2 1 2 ( 1) 0 2 0 0 2 0 1 0 2 3 1 1 0 ,1) 2 ,0), (1 2 ,0), (1 2 (1 2 , ) 2 ,0), (( 1) 2 ,0), (1 2 ,0), (1 2 3 (0,1), (1 1,3 3,5 2 2 ( 1) 0 2 0 1 0 2 3 1 1 ( M) ( ) H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( , ) ( 1) j j m j l l m p i r j j j j l m p i r j r r i i m p p m m l j l j j j j m j l l m p b j j j j l m p b m j p p m m l j l j j b t w t p m p m j l m y p t t p m p m j l m y u y t t b                                                                                                      ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 1 2 1 ( 1) 0 2 0 1 0 2 1 3 1 0 H !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) ( 1) j j m j l l m p b j j j j l m p b j m p p m m l j l j j t t p m p m j l m y b                                                                                       ,1) 2 1 ,0),(1 2 1 ,0),(1 2 1 (1 2 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 ,0),(1 2 1 3 (0,1),(1 1,3 3,5 2 2 2 1 ( 1) 0 2 0 0 2 0 1 0 2 1 3 1 0 0 H ( M) ( ) !( )! ( ) ! ! ( ) ! ( M) ( ) ! ( ) j j m j l l m p i r j j j j l m p i r j r r i i m p p m m l j l j j t t w p m p m j l m y p                     2- If   0 and M 0 then Eqs. (29) and (30) reduce to
  • 10. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 28 | P a g e                                                                                                                                                                                                ,1) 2 ,0),(1 2 (1 2 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 1 2 ( 1) 0 2 0 2 0 1 0 2 3 1 1 0 ,1) 2 ,0),(1 2 (1 2 2 1, ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 1 2 ( 1) 0 2 0 2 0 1 1 2 3 1 0 ,1) 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 ( 1) 0 2 0 1 0 2 3 1 1 ,1) 2 ,0),(1 2 (1 2 , ) 2 ,0),(( 1) 2 ,0),(1 2 3 (0,1),(1 1,2 2,4 2 2 |( 1) 0 2 0 1 1 2 3 1 H ( ) !( )! ( ) ! ! ( ) ( ) ! ( ) ( ) ( ) H !( )! ( ) ! ! ( ) H ( ) ( ) !( )! ( ) ! ! ( ) ( ) ! ( ) H ( 1) ( ) !( )! ( ) ! ! ( ) ( , ) ( 1) ( ) ( ) k j k j m m p r k j k j k j m p r k j r r m p p m m k k j j j k k k m m p r k k k m p r k r r m p p m m k k k k j k j m m p b k j k j k j m p b m k j p p m m k k j j j k k k m m p b k k k m p b m k p p m m k k b k t w t p m p m j m y p t w t p m p m m p t t p m p m j m y b t t p m p m m u y t t b                                                                                                                                                                                                             ,1) 2 1 ,0),(1 2 1 (1 2 2 , ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 3 (0,1),(1 1,2 2,4 2 2 2 1 ( 1) 0 2 0 2 0 1 0 2 1 3 1 0 0 ,1) 2 1 ,0),(1 2 1 (1 2 1, ) 2 1 ,0),(( 1) 2 1 ,0),(1 2 1 3 (0,1),(1 1,2 2,4 2 1 2 1 ( 1) 0 2 0 1 0 2 1 3 1 0 H ( ) !( )! ( ) ! ! ( ) ( ) ! ( ) ( ) H !( )! ( ) ! ! ( ) ( ) ! ( ) ( , ) ( 1) ( ) k j k j m m p r k j k j k j m p r k j r r m p p m m k k j j j k k j k j m m p b k j k j k j m p b k j m p p m m k k j j j k t t w p m p m j m y p t t p m p m j m y y t b                                            which correspond to the flow of a generalized Burgers’ magnetic field effect. V. Numerical results and discussion: In this work, we have discussed the MHD flow of generalized Burger’s fluid due to accelerating plate with slip effects. The exact solutions for the velocity field u and the stress  in terms of the Fox H-function are obtained by using the discrete Laplace transform. Moreover, some figures are plotted to show the behavior of various parameters involved in the expressions of velocity u . A comparison between non- slip effect (Panel a) and slip effect (Panel b) is also made graphically. Figs. 1- 7 are prepared for flow due to constant pressure gradient where as Figs. 8- 14 for flow due to sinusoidal pressure gradient. Fig. 1 shows the variation of the non- integer fractional parameter  and the slip coefficient . The velocity is increasing with the increase of  and  . Fig. 2 is depicted to show the changes of the velocity with fractional parameter  . In the case of non- slip condition is fullfield, the influence of  is same as that of  . However, it is observed that as  increasing there is a variation in velocity value a bout some value of  which is greater than 0.4. Figs. 3 and 4 provide the graphically illustrations for the effects of relaxation and retardation parameters 1  and 3  on the velocity fields. The velocity is increasing with the increased the 1  and 3  for both cases, the slip and no- slip condition. The effect of 2  is illustrated in Fig. 5 which shows that 2  has quite the opposite effect to that of 1  and 3  for both cases (  0&   0 ). Fig. 6 demonstrates the influence of the magnetic field M. It is noticed for both cases   0&   0 , when M < 2 there is increasing in the velocity field, however when M > 2 show an opposite effect on the velocity. In Fig. 7, the variations of the slip coefficient  on velocity with the magnetic field parameter. The velocity is decreasing with increase of the magnetic parameter.
  • 11. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 29 | P a g e Figs. 8- 14 provide the graphically illustrations for the velocity for flow due to sinusoidal pressure gradient. Qualitatively, the observations for sinusoidal pressure gradient flow are similar to that of constant pressure gradient flow. However, the velocity profile in flow of constant and sinusoidal pressure gradient are not similar quantitatively. Fig. 15 demonstrate the velocity changes with time at given points (y=1 and y=2) for Panel (a)   0 and Panel (b)   0.5 for two types of flows. Comparison shows that the velocity profile in sinusoidal pressure gradient flow are larger when compared to those of constant pressure gradient flow. The effects of the slip coefficient and magnetic field are the similar on the both flows. Fig. 1. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.) Fig. 2. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.) Fig. 3. The velocity for different value of 1  when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.)
  • 12. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 30 | P a g e Fig. 4. The velocity for different value of 3  when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.) Fig. 5. The velocity for different value of 2  when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.) Fig. 6. The velocity for different value of M when keeping other parameters fixed a)   0 b)  0.5 (Constant p. g.) Fig. 7. The velocity for different value of  when keeping other parameters fixed a) M 0 b) M 4.5 (Constant p. g.)
  • 13. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 31 | P a g e Fig. 8. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.) Fig. 9. The velocity for different value of  when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.) Fig. 10. The velocity for different value of 1  when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.) Fig. 11. The velocity for different value of 3  when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.)
  • 14. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 32 | P a g e Fig. 12. The velocity for different value of 2  when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.) Fig. 13. The velocity for different value of M when keeping other parameters fixed a)   0 b)  0.5 ( Sinusoidal p. g.) Fig. 14. The velocity for different value of  when keeping other parameters fixed a) M 0 b) M 4.5 ( Sinusoidal p. g.) Fig. 15. The velocity for different value of y when keeping other parameters fixed a)   0 b)  0.5 ( Constant P. & Sinusoidal P.)
  • 15. Ghada H. Ibraheem Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.19-33 www.ijera.com 33 | P a g e References [1] A. Ebaid; “ Effects of Mgnetic Field and Wall Slip Conditions on the Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel”, Phys. Lett. A 372 (2008) 4493- 4499. [2] A.-R. A. Khaleda and K. Vafaib; “ The Effect of the Slip Condition on Stokes and Couette Flows due to an Oscillating Wall: Exact Solutions”, Int. J. Nonlinear Mech. 39 (2004) 795- 809. [3] B. H. Tan, I. Jackson and J. D. F. Gerald; “ High- Temperature Viscoelasiticity of Fine- Grained Polycystalline Olivine”, Phys. Chem. Miner. 28 (2001) 641. [4] C. Derek, D. C. Tretheway and C. D. Meinhart; “ Apparent Fluid Slip at Hydrophibic Microchannel Walls”, Phys. Fluids 14 (2002) 9- 12. [5] C. Fetecau and Corina Fetecau; “ Decary of Potential Vovtex in Maxwell fluid”, Internet. J. Non- Linear Mech. 38 (2003) 985. [6] C. Fetecau, T. Hayat and Corina Fetecau; “ Steady- State Solutions for Simple Flows of Generalized Burgers’ Fluid”, Int. J. Non- linear Mech. 41 (2006) 880. [7] I. Podlubny;”Fractional Differentional Equations” Academic Press, San Diego, 1999. [8] J. M. Burgers; “ Mechanical Considerations- Model Systems- Phenomenological Theoies of Relaxation and of Viscosity”, in: J. M. Burgers (Ed.), First Report on Viscosity and Plasticity, Nordemann Publishing Company, New York, 1985. [9] K. R. Rajagopal and R. K. Bhatnagar; “ Exact Solutions for Some Simple Flows of an Oldroyd- B Fluid”, Acta Mech. 13 (1995) 233. [10] N. Ali, Q. Hussain, T. Hayat and S. Asghar; “ Slip Effects on the Peristaltic Transport of MHD Fluid with Variable Viscosity”, Phys. Lett. A 372 (2008) 1477- 1489. [11] P. Ravindran, J. M. Krishnan and K. R. Rajagopal; “ Anote on the Flow of Burgers’ Fluid in an Orthogonal Rheometer, Internat. J. Engrg. Sci. 42 (2004) 1973. [12] S. Hyder, M. Khan and H. Qi; “ Exact Solutions for a Viscoelastic Fluid with the Generalized Oldroyd- B Model”, Nonlinear Anal.: RWA 10 (2009) 2590- 2599. [13] T. Hayat, A. M. Siddiqui and S. Asghar; “ Some Simple Flows of an Oldroyd- B Fluid”, Internat. J. Engrg. Sci. 39 (2001) 135. [14] T. Hayat, C. Fetecau and S. Asghar; “ Some Simple Flows of Burgers’ Fluid”, Internat. J. Engrg. Sci. 44 (2006) 1423. [15] T. Hayat, C. Fetecau and S. Asghar; “ Some Simple Flows of Burgers’ Fluid”, Comput. Math. Appl. 52 (2006) 1413. [16] T. Hayat, M. Hussain and M. Khan; “ Hall Effects on Flows of an Oldriyd- B Fluid Through Porous Medium for Cylindical Geometries”, Comput. Math. Appl. 52 (2006) 333. [17] T. Hayat, M. Khan and M. Ayub; “ Exact Solutions of Flow Problem of an Oldroyd- B fluid”, Appl. Math. Comput. 151 (2004) 105. [18] W. R. Peltier, P. We and D. A. Yuen; “ The Viscosities of the Earth Manthe”, in: F. D. Stocey, M. S. Paterson, A. Nicholas (Eds), Auelasticity in the Eearth, American Geophysical Union, Colorado, 1981. [19] Zheng, L., Liu, Y. and Zheng, X.; “ Slip effect on MHD Flow of a Generalized Oldroyd- B Fluid with Fractional Derivative”, Nonlinear Anal. RWA 13 (2012) 513- 523.