SlideShare a Scribd company logo
1 of 6
Download to read offline
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724

www.ijera.com

RESEARCH ARTICLE

OPEN ACCESS

Usage Based Methodology for Calculating Of Complex Power
Dynamic Distribution Factor
K. Dharanisree*, C. Sreeharibabu**
*Department of Electrical and Electronics Engineering, S.V.C.E.T, Chittoor)
** Department of Electrical and Electronics Engineering, S.V.C.E.T, Chittoor)

ABSTRACT
In the environment of power market, It is an important index about system security performance and is the
foundation for normal operation of power market. So, to calculate PDF precisely and quickly is of great
significance. In this paper, an attempt has been made to provide a deterministic based approach to achieve
deregulated power systems calculation by using Dynamic Distribution Factor (DDF) without violating line
thermal limits.
Keywords – Distribution factor, Dynamic distribution factor, PTDF
Any voltage in the network can be described as:

I. INTRODUCTION
This paper does not address any issues
associated with attempts to include dynamic
constraints. Rather it focuses on a major simplification
that has been in use for many years for studies where
fast solutions are sought for the case involving static
constraints only. This simplification is the use of linear
methods to compute the line flow changes in response
to bus injections (and in response to contingencies
such as line outages)[8]–[11].. In order to avoid the
problems encountered in existed papers, this paper
attempts to analyze the distribution of source power
from the energy space, derive and define the complex
power dynamics distribution factors based on the
circuit theory. The form of these factors shows that the
power distribution is not only related to the network
topology and circuit parameters, but also related to the
state of the system. The source powers are linear
distribution in the network according to these factors
the branch flows and losses in the network are different
forms of source powers. The example demonstrates
that the results calculated by proposed method is
unique and they satisfy complex power conservation,
so it provides a new way to solve the series of
economic problems in the electricity market such as
determining the cost of transmission services and
wheeling service cost.

II. THE MODEL OF ELECTRIC
NETWORK
Considering the electric network with n nodes
and q sources, where the number of source nodes is
defined from 1to q and others are random. The sources
are expressed as current sources Iks ( k =1,2,. q ).
Because the loads are regarded as the constant
impedance to ground in the network, so the node
voltage equation can be written as follows:

(2)
Where Zmi is the element in Z =

matrix.

A. Power Distribution based on the energy space
The electric energy just spread by the
electromagnetic field from the sources to the wires and
the loads, this process occurs ceaselessly in DC or AC
circuit [16, 17]. Therefore, the physical basis is
sufficient to analyze the distribution of source power
based on the circuit theory. Physical definition about
electric power is the speed of electric energy
consumption. Power supplied by sources is equal to the
rate of energy absorption in the network [18], the
difference between power and electric energy is just a
time factor, so they are equivalent in the unit time,
therefore, the power is same to the energy and they all
satisfies the superposition theorem and conservation
law. The one-dimensional characteristic of energy
makes the analysis of the power distribution into linear
analysis, so that it can help to avoid the question of
how to allocate the nonlinear function value to its
independent variables. The proposed method in this
paper provides a new way for analyzing the
distribution of source power.
B. Power dynamic distribution factors in line flows
Using the network model provided in Section
I, the flows on transmission line ij can be expressed as:
.
.

.

.

.

.

S ij  U i I ij  U i (
*

Ui U j
Z ij

)*

(1)
www.ijera.com

719 | P a g e
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724


.
.
1
[(Z i1  Z j1 ) I 1s  ( Z i 2  Z j 2 ) I 2 s  ..
*
Z ij
.

.

.

.

.

.

.

 Z i1 ( Z i 2  Z j 2 )* I1s I 2 s  ..  Z iq ( Z i 2  Z j 2 )* I qs I 2 s
*

.

*

*

.

( Z ik  Z jk ) ( Z im  Z jm ) S ms S ks
  [
( . )]. .
*
Z ij
k 1 m 1
U
U
q

.

 Zi1 (Ziq  Z jq )* I1s I qs  ..  Ziq (Ziq  Z jq )* I qs I qs ]
*

.
.
1 q q
*
( Zik  Z jk )* ( Zim  Z jm ) I ms I ks
* 
Zij k 1 m1

.

.

.



(i,j=1,2,….,n)
(7)
Similar to (5),(7) can be expressed as

.
.

.

.

.

( Z i 2  Z j 2 ) I 2 s  ...  ( Z iq  Z jq ) I qs ]*

 ( Z iq  Z jq ) I qs ] .(Z i1 I 1s  Z i 2 I 1s  Z i 2 I 2 s  ...  Z iq I qs )
*

www.ijera.com

S Lossij

*

q

ms

1
*
Z ij



q

q

 Z
k 1 m 1

im

1
*
ij
if * ( Z ij  Z jk ) ( Z im  Z jm )   m / k ,the (7) can
Z ij

.

.

( Z ik  Z jk )* I ms I ks

*

(i,j=1,2,…..,n )
(3)
Because the current sources can be expressed by power
sources that

be written as

S Lossij   [

.

S ks

.

I ks  (

.

q

.

k 1

)*

(4)

.

q

.

Z im ( Z ik  Z jk )* S ms * S ks
Sij  
( . ) .( . ) (5)
*
Z ij
k 1 m 1
U
U
ms

ks

1
ij
Z im ( Z ik  Z jk )*   m / k , (5) can be written as
*
Z ij

If

.
q

.

Sij   [

:

k 1

q

1
.

U ks
q

ij
.  m / k (
m 1

S ms

*

.

)].S ks

.

U ms
.

k 1

.

  S ij  ks



k 1

(6)

is defined as the dynamics power distribution
factors of source k on line ij and Sij _ ks is the power
component supplied by source k on line ij . The sum of
components supplied by each source is equal to the
flows on transmission lines.
C. Power dynamic distribution factors in net loss:
In this case find the distribution factor in lines
loss which is connected source to the load. Using the
network model provided in Section I[10], the flows on
transmission line ij can be expressed as:
.

.

S Lossij  (U i  U j ) I ij
.

= ( Z iq

.

.

.

*

.

Ui U j *
 (U i  U j )(
)
Z ij
.

.

 Z jq ) I qs ].[( Z i1  Z j1 ) I1s 

www.ijera.com

.

)].S ks

U ms
.

.

  S Lossij ks

(8)

k 1

 ij  ks is defined as the dynamics distribution
.

factors of source k on line loss ij and S Lossij  ks is the
power component supplied by source k to losses on
line ij . The sum of components supplied by each
source is equal to the losses on transmission lines.

D. Power dynamic distribution factors on loads:
In this case find the distribution factor on
loads which is connected source to the load. Using the
network model provided in Section I[9], the flows on
transmission line ij can be expressed as:
The load flows on bus i can be written
.



.

.

U
 U i . I i  U i .( i )*
Zi
.

as S Loadi

ij-ks

.

.

*

   ij  ks . S ks
q

m 1

(

S ms

k 1

.
q

U ks

. 

ij
m/k

   Lossij  ks . S ks

So (3) can be written as
q

.

.

q

q

U ks
.

1

.

*

.
.
.
1
*
.(Zi1 I1s  ... Zik I ks  ... Ziq I qs ).
Zi*
.

.

.

( Z i1 I1s  ...  Z ik I ks  ...  Z iq I qs )*
.
.
.
.
1
*
*
*
 * .[Zi1 (Zi1 ) I1s I1s  ... Ziq (Zi1 ) I qs I1s 
Zi
.

.

.

.

Zi1 (Zi 2 ) I1s I 2 s  ... Ziq (Zi 2 ) I qs I 2 s  .....
*

*

*

*

.
.

.

.

.

*
 Z i1 ( Z iq ) I1s I qs  .......  Z iq ( Z iq )* I qs I qs ]
*

*

.
*
.
Zik
*
Zim I ms I ks
Zi*
k 1 m1
q

q

 

(i,j=1,2,…..,n) (9)

720 | P a g e

ks
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724

www.ijera.com

Similar to (5),(9) can be expressed as
.
q

.

S Loadi ks

If



i
m/ k

.

*

*
ik
*
i

q

Z
S
S
  [
Z im ( ms )]. .ks
.
*
k 1 m 1 Z
U ms U ks

*
Z ik
 * Z im , the (9) can be written as
Zi
q

.

S Loadi   [
k 1

1
.

U ks

.

q

. 
m 1

i
m/k

S ms

(

.

.

)].S ks

U ms

q

.

   Loadi  ks . S ks
k 1

q

.

  S Loadi ks
k 1

(10)

 Loadi  ks is

defined

as

the

dynamics

distribution factors of source k on load i and
.
S Loadi  ks is the power component supplied by source k
to load i . The sum of components supplied by each
source is equal to the flows on load.



i , jn
.

S ks 

ij  ks

  Loadi ks  1
im
.

.

  Sij ks   S Loadi ks

i , jn

im

Where n and m denote the bus and load number
respectively. The power supplied by source k equal to
the consumption of network, which shows that the
proposed method satisfies power conversation.
IEEE 24-Buses reliability test system

The above fig shows that IEEE 24 bus system
for three cases:
(a) Distribution of source components on line
flows
(b) Distribution of source power components on
loss
(c) Distribution of source power components on
loads
Distribution of source components on line flows
(power)
GEN 1

GEN 2

GEN 3

TOTAL

146.025+1
15.68i
92.782+65
.489i
68.151+49
.774i

0.0000+0.
0000i
-16.98113.880i
20.660+4.
721i

0.0000+
0.000i
31.204+
3.161i
-28.1262.847i

2-4

26.854+23
.233i

-81.0666.691i

-46.8111.224i

146.025+
115.68i
107.00+5
1.647i
60.685+5
1.647i
101.02+4
9.810i

2-6

21.559+22
.06i

92.310+1
4.335i

24.8479+1
8.11i
-21.00916.70i
0.0000+0.
0000i
0.000+0.0
000i
116.894+1

-31.6486.326i
30.321+7.
326i
184.50+4
0.540i
0.000+0.0
00i
0.000+0.0

1-2
1-3
1-5

3-9
324
4-9
510
6www.ijera.com

40.613+
13.41i
-109.6416.48i
-114.0322.32i
0.000+0.
000i
245.18+
81.14i
0.000+0.

73.256+4
9.810i
-116.8031.702i
-104.8031.702i
184.506+
40.540i
245.18+8
1.140i
162.54+1

721 | P a g e
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724
10

27.46i
80.841+57
.061i
67.095+49
.002i

00i
-16.9713.878i
17.421+3.
981i

000i
29.780+
3.016i
-29.773.015i

810

26.611+23
.023i

-68.1485.624i

-47.13911.30i

911

24.000+24
.559i

94.221+1
4.632i

912
1011
1012
1113
1114
1213
1213

21.683+15
.812i
-22.03917.45i
0.000+0.0
00i
0.000+0.0
00i
160.894+1
27.46i
80.848+57
.065i
67.0956+4
9.0025i

-34.9956.995i
33.994+8.
213i
166.87+3
6.665i
0.000+0.0
00i
0.000+0.0
00i
-20.0754.587i
17.359+3.
966i

42.800+
14.13i
-97.5514.66i
-120.7523.63i
0.000+0.
000i
250.39+
182.8i
0.000+0.
000i
28.20+2.
85i
-32.653.306i

1323

26.611+23
.023i

-78.2136.455i

-42.7910.261i

1416

24.000+24
.55i

90.140+1
3.998i

1516

21.683+15
.812i

-33.4716.691i

1521
1521
1524
1617
1619
1718

-22.03917.452i
0.000+0.0
00i
0.000+0.0
00i
151.439+1
19.97i
89.467+63
.149i
72.664+53
.07i

32.8950+
7.947i
186.783+
41.040i
0.000+0.0
00i
0.000+0.0
00i
-19.96524.562i
20.034+4.
578i

45.23+1
4.940i
93.40+1
4.041i
-131.4925.73i
0.000+0.
000i
224.6+7
4.34i
0.000+0.
000i
32.62+3.
304i
-31.833.22i

1722

24.468+21
.169i

-83.1146.860i

-46.8811.214i

1821

24.017+24
.576i

96.983+1
5.061i

1821
1920
1920
20-

21.783+15
.883i
-21.34316.901i
0.000+0.0
00i
0.000+0.0

-30.7186.140i
34.450+8.
323i
158.03+3
4.724i
0.000+0.0

7-8
8-9

www.ijera.com

43.773+
14.44i
-99.825.006i
-115.3822.58i
0.000+0.
000i
248.73+

08.7i
94.55+56.
837i
56.070+5
0.942i
90.44+4.5
65i
77.521+5
5.476i
-110.095.286i
-107.4931.847i
166.87+3
6.665i
250.39+8
2.864i
160.89+1
27.460i
88.970+5
5.331i
51.801+4
9.663i
94.39+6.3
06i
68.904+5
3.49i
-105.194.919i
-120.63635.24i
186.76+4
1.040i
224.66+7
4.348i
151.43+1
19.97i
102.12+6
1.892i
60.865+5
40425i
105.52+3.
068i
77.267+5
4.081i
-108.2831.164i
-102.28031.16i
158.103+
34.724i
248.73+8

23
2023
2122

00i
0.000+0.0
00i
0.000+0.0
00i

00i
158.57+3
4.841i
0.000+0.0
00i

www.ijera.com
82.316i
0.000+0.
000i
207.70+
68.736i

2.396i
158.17+3
4.84i
207.70+6
8.73i

The table represents complex power flows in each
individual generators with respective all the lines and
total power flow in the system.
Distribution of source power components on line
flows (PDF):
SGEN 1
GEN 2
GEN 3
R
1-2 1.2789+ 0.0000+ 0.0000+0.0000i
0.0000i
0.0000i
1-3 0.6492- -0.1556- 0.1894-0.0422i
0.0346i
0.0014i
1-5 0.5792- 0.1346+
0.0228i
2-4 0.2163+ 0.0012i 0.1682+0.0375i
0.0091i
0.2023+ 0.5793+ 0.2547+0.0220i
0.69922-6
0.0780i 0.2820+0.0001i
0.0254i
0.0435i
3-9 0.1700+
0.0071i 0.2899+ 0.6121+0.1054i
30.2655+
24 0.1346+ 0.1346+ 0.0000+0.0000i
0.0056i
0.0000+ 0.0062i
4-9 0.1958+ 1.555+0 0.6646+0.0839i
j0.0012
j0.0012
0.0000i
.0000i
5- 0.00000i 0.0000+ 1.3695+0.0000i
0.00000
10 +0.0000 0.0000+ 0.0000+0.0000i
61.4226+ 0.0000i
i
10
0.0000i
0.0000i
7-8 0.6702+ -0.1722- 0.1550-0.0346i
-0.0357i 0.1690+
0.0016i
8-9 0.69850.0275i
0.1682+ 0.1682+ 0.1937+0.0432i
80.2019+ 0.0015i 0.2422+0.0209i
j0.0375
j0.03
10 0.2412+ 0.5519+ 0.2761+0.0001i
0.0085i
90.672211 0.1744+ 0.0743i
0.0303i
0.0419i
912
10- 0.0073i 0.2696+ 0.5733+0.0988i
0.2756+
0.0057i 0.0000+0.0000i
11 0.2121+ 1.3088+ 0.8014+0.1011i
0.0058i
10- 0.0000+
0.0000i
12
0.0000i
11- 0.0000+ 0.0000+ 1.4697+0.0000i
13
0.0000i
0.0000i
11- 1.3739+ 0.0000+ 0.0000+0.0000i
14
0.0000i
0.0000i
12- 0.7184- -0.1562- 0.1969-0.0439i
13
0.0383i
0.0014i
12- 0.6842- 0.1544+
13
0.0269i
0.0014i
13- 0.2111+ 0.65675 0.1624+0.0362i
23 0.2288+ +0.0885 0.2199+0.0190i
0.0089i
140.6790i
16
0.0288i
15- 0.2084+ 0.0423i 0.2952+0.0002i
16
15- 0.0087i 0.2583+ 0.5695+0.0981i
0.2732+
21 0.0000+ 0.0055i 0.0000+0.0000i
0.0058i
15- 0.1717+ 1.3824+ 0.6246+0.0788i
0.0000i
21
0.0000i
15- 0.0000+ 0.0000+
1.462+0.0000i
24
0.0000i
0.0000i
16- 1.2364+ 0.0000+ 0.0000+0.0000i
17
0.0000i
0.0000i
16- 0.7907- -0.1576- 0.1939-0.0433i
19
0.0421i
0.0014i
17- 0.6209- 0.1482+
18
0.0244i
17- 0.2009+ 0.0013i 0.1952+0.0435i
22 0.2223+ 0.821218- 0.00845i 0.5301+ 0.2304+0.0199i
21
0.0280i
0.0511i -0.5787+0.997i
18- 0.1718+ 0.0713i 0.2822+0.0001i
21
19- 0.0072i 0.2509+
0.2713+
20 0.0000+ 0.0053i 0.0000+0.0000i
0.0057i
19- 0.1918+ 1.3471+ 0.7448+0.0940i
0.0000i
20
0.0000i
20- 0.0000+ 0.0000+ 1.2193+0.0000i
23
0.0000i
0.0000i
20- 0.0000+ 1.2554+ 0.0000+0.0000i
23
0.0000i
0.0000i
21- 0.0000+ 0.0000+ 1.5389+0.0000i
22
0.0000i
0.0000i
The table represents distribution factors of each
individual generator with respect to all line connected
to that bus.

722 | P a g e
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724

SR
12
13
15
24
26
39
324
49
510
610
78
89
810
911
912
10
10
11
11
12
11
13
12
14
12
13
13
13
14
23
15
16
15
16
15
21
15
21
16
24
16
17
17
19
17
18
18
22
18
21
19
21
19
20
20
20
20
23
21
23
22

Distribution of source power components on loss
(power component):
GEN 1
GEN 2
GEN 3
TOTAL
0.0000+33.6 0.0000+0.00 0.0000+0.00i
0.0000+33.6
1i
i
1i
0.7066+16.3
-1.36753.39992+5.42i 2.7384+18.8
3i
2.93i
2i
3.5442+12.1 1.8632+2.25 -2.9893-2.82i
2.4181+11.5
1i
i
4i
5.74811.2982+22.4 -1.3676+13.6i 5.7388+27.2
8.89i
8i
3i
3.1329+10.8 -0.4940-4.21i
1.3334+10.0
1.3055+3.46 0.9150+13.1 3.8617+32.60i 8.2559+36.5
3i
8i
3.4792i
9.15i
4i
9i
-1.34857.1274+32.38i 4.3672+29.9
1.4117+5.30 0.0000+31.2 0.0000+0.00i
7.70i
7i
0.0000+0.00
0.0000+31.2
i
i
6i
64i
0.0000+0.00 0.0000+0.00 0.0000+53.40i 0.0000+53.4
i
i
0i
0.0000+46.0 0.0000+0.00 0.0000+0.00i
0.0000+46.0
6i
i
6i
0.6775+15.6
-1.31102.3241+17.5
2.9575+4.72i
5i
2.81i
6i
3.2259+11.0 1.7509+2.11 -3.0488-2.87i
1.9281+10.2
2i
i
6i
5.36921.2967+22.4 -1.1896+12.4i 5.4736+26.5
8.312i
6i
6i
3.0612+10.5
1.3249+9.07
-0.5470-4.6i
1.1893+3.15 0.9651+13.8 4.7263+39.90i 9.6663+43.3
8i
4i
3.9749i
10.46i
6i
1i
-1.40982.3301+22.6
5.3953+24.5i
1.6553+6.22 0.0000+36.4 0.0000+0.00i
8.05i
7i
0.0000+0.00
0.0000+36.4
i
i
4i
4i
0.0000+0.00 0.0000+0.00 0.0000+51.16i 0.0000+51.1
i
i
6i
0.0000+38.8 0.0000+0.00 0.0000+0.00i
0.0000+38.8
5i
i
5i
0.7202+16.6
-1.38302.0988+18.0
2.7616+4.41i
4i
2.97i
8i
3.6044+12.3 1.6130+1.95 -3.241-0.0580i 1.9764+11.2
1i
i
1i
5.33551.3265+22.9
5.5832+25.9
8.25i
7i
7i
2.7813+9.61 1.0788+11.25 1.1036+7.62i
-0.57604i
1.1017+2.92 0.8604+12.3 5.0893+42.97
i
4.9159i
4.068110.0178+44.
i
10.70i
6i
10i
6i
-1.41616.4947+29.50 3.323028.00i
1.7556+6.59 0.0000+30.8 0.0000+0.000
8.09i
66i
0.0000+0.00
0.0000+30.8
i
i
4i
0i
4i
0.0000+0.00 0.0000+0.00 0.0000+50.63
0.0000+50.6
i
i
67i
3i
0.0000+37.6 0.0000+0.00 0.0000+0.000
0.0000+37.6
8i
i
0i
8i
0.7417+17.1
-1.35462.9284+4.676
2.3155+18.9
4i
2.90i
4i
0i
3.9051+13.3 1.6208+1.95 -3.772-3.5591i 1.7538+11.7
4i
i
4i
5.37891.4502+25.1
5.6396+29.2
8.32i
2i
0i
2.7461+9.49 1.1895+12.40 0.8469+8.03i
-0.58079i
1.3185+3.49 0.7523+10.8 4.0478+34.17
i
4.9558i
4.06658.8660+34.2
i
10.70i
0i
72i
8i
-1.34396.8206+30.98
3.9910+28.8
1.4857+5.58 0.0000+35.9 0.0000+0.000
7.68i
7i
8i
0.0000+0.00
0.0000+35.9
i
i
0i
0i
0i
0.0000+0.00 0.0000+0.00 0.0000+55.46
0.0000+55.4
i
i
81i
6i
6.21121.0930+18.9
6.0133+22.7
9.61i
3i
1.2908+13.46 0.8794+7.99i
8i
2.7555+9.53
-0.58186i
1.2943+3.43
i
4.9656i
iThe table represents complex power loss in each
individual generators with respective all the lines and
total power loss in the system.

www.ijera.com

www.ijera.com

Distribution of source power components on loss
(power distribution factor):
SGEN 1
GEN 2
GEN 3
TOTAL
R
1- 0.0000+33.
0.0000+0. 0.0000+0.00i 0.0000+33.6
2
61i
00i
1i
1- 0.7066+16.
-1.36753.39992+5.42 2.7384+18.8
3
33i
2.93i
i
2i
1- 3.5442+12.
1.8632+2. -2.9893-2.82i 2.4181+11.5
5
11i
25i
4i
25.74811.2982+22
5.7388+27.2
4
8.89i
.48i
1.3676+13.6i
3i
23.1329+10 -0.4940-4.21i 1.3334+10.0
6
.83i
8i
3- 1.3055+3.4 0.9150+13 3.8617+32.60 8.2559+36.5
3.47926i
9
9.15i
.14i
i
9i
3-1.34857.1274+32.38 4.3672+29.9
24 0.0000+0.0 0.0000+31 0.0000+0.00i 0.0000+31.2
7.70i
i
7i
4- 1.4117+5.3
0i
9
0i
.26i
64i
5- 0.0000+0.0
0.0000+0. 0.0000+53.40 0.0000+53.4
10 0.0000+46.
0i
00i
i
0i
60.0000+0. 0.0000+0.00i 0.0000+46.0
10 0.6775+15.
06i
00i
6i
7-1.31102.9575+4.72i 2.3241+17.5
8
65i
2.81i
6i
8- 3.2259+11.
1.7509+2. -3.0488-2.87i 1.9281+10.2
9
02i
11i
6i
85.36921.2967+22
5.4736+26.5
10
8.312i
.46i
1.1896+12.4i 1.3249+9.07
6i
93.0612+10
-0.5470-4.6i
11 1.1893+3.1 0.9651+13 4.7263+39.90 9.6663+43.3
.58i
4i
93.97495i
12
10.46i
.86i
i
1i
10
-1.40985.3953+24.5i 2.3301+22.6
1.6553+6.2 0.0000+36 0.0000+0.00i 0.0000+36.4
8.05i
7i
10 0.0000+0.0
11
2i
0i
.44i
4i
11 0.0000+0.0
0.0000+0. 0.0000+51.16 0.0000+51.1
12
0i
00i
i
6i
11 0.0000+38.
0.0000+0. 0.0000+0.00i 0.0000+38.8
13
85i
00i
5i
12 0.7202+16.
-1.38302.7616+4.41i 2.0988+18.0
14
64i
2.97i
8i
12 3.6044+12.
1.6130+1.
-3.2411.9764+11.2
13
31i
95i
0.0580i
1i
13
5.33551.3265+22
5.5832+25.9
13
8.25i
.97i
7i
14
2.7813+9. 1.0788+11.25 1.1036+7.62i
-0.576023 1.1017+2.9
4i
61i
4.9159i
15
4.06810.8604+12 5.0893+42.97 10.0178+44.
16
2i
10.70i
.36i
10i
6i
15
-1.41616.4947+29.50 3.323028.00i
16 1.7556+6.5
8.09i
66i
15 0.0000+0.0 0.0000+30 0.0000+0.000 0.0000+30.8
21
9i
0i
.84i
0i
4i
15 0.0000+0.0
0.0000+0. 0.0000+50.63 0.0000+50.6
21
0i
00i
67i
3i
16 0.0000+37.
0.0000+0. 0.0000+0.000 0.0000+37.6
24
68i
00i
0i
8i
16 0.7417+17.
-1.35462.9284+4.676 2.3155+18.9
17
14i
2.90i
4i
0i
17 3.9051+13.
1.6208+1.
-3.7721.7538+11.7
19
34i
95i
3.5591i
4i
17
5.37891.4502+25
5.6396+29.2
18
8.32i
.12i
1.1895+12.40 0.8469+8.03i
0i
18
2.7461+9.
-0.580722 1.3185+3.4
9i
49i
4.9558i
18
4.06650.7523+10 4.0478+34.17 8.8660+34.2
21
9i
10.70i
.80i
72i
8i
19
-1.34396.8206+30.98 3.9910+28.8
21 1.4857+5.5
7.68i
7i
8i
19 0.0000+0.0 0.0000+35 0.0000+0.000 0.0000+35.9
20
8i
0i
.90i
0i
0i
20 0.0000+0.0
0.0000+0. 0.0000+55.46 0.0000+55.4
20
0i
00i
81i
6i
20
6.21121.0930+18
6.0133+22.7
23
9.61i
.93i
8i
21
2.7555+9. 1.2908+13.46 0.8794+7.99i
-0.581823 1.2943+3.4
6i
53i
4.9656i
22
3i
The table represents loss distribution factors of each
individual generator with respect to all line connected
to that bus.

723 | P a g e
C. Sreeharibabu al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724
Distribution of source power components on loads
(power component):
S
GEN 1
GEN 2
GEN 3
TOTAL
- 16.8477+9 18.1405+ 15.9325+ 50.9208+1
1
R
.3764i
0.9000i
2.6299i
2.9062i
2 13.6377+9 11.7505+ 20.7513+ 46.1395+5
.1975i
2.3567i
3.8016i
.3559i
3 13.4294+1 11.6558+ 24.4659+ 49.5510+1
1.8439i
0.7738i
3.4569i
6.0745i
4 18.7247+1 14.0935+ 22.6138+ 55.4320+1
0.4210i
0.6992i
3.7327i
4.8529i
5 12.9584+8 9.4318+1. 13.5799+ 35.9700+1
.7394i
8917i
2.4878i
3.1189i
6 10.6818+9 17.6419+ 23.9876+ 52.1313+1
.4207i
1.1592i
3.3898i
3.9692i
7 16.8435+9 12.2704+ 18.4108+ 47.5247+1
.3741i
0.6087i
3.0389i
3.0217i
8 8.8941+5. 9.0802+1. 12.8604+ 30.8346+1
9984i
8212i
2.3560i
0.1755i
9 12.7445+1 14.9303+ 15.6324+ 43.3073+1
1.2399i
0.9911i
2.2088i
4.1398i
1 14.0680+7 10.6798+ 12.6611+ 37.4089+1
0
.8294i
0.5298i
2.0899i
0.4491i
1 15.1020+1 12.7463+ 21.8390+ 49.6873+1
1 12.8813+1 15.8052+ 23.8538+ 52.5402+1
0.1851i
2.5564i
4.0009i
6.7425i
1
2
1.3605i
1.0492i
3.3704i
5.7801i
1 17.6815+9 18.5091+ 12.0076+ 48.1982+1
3 15.2221+1 13.1711+ 22.5219+ 50.9152+1
.8404i
0.9182i
1.9820i
2.7407i
1
4 11.5983+1 14.7740+ 23.6692+ 50.0415+1
0.2661i
2.6416i
4.1260i
7.0338i
1
5
0.2290i
0.9808i
3.3443i
4.5541i
1 11.5540+6 13.9415+ 22.8127+ 48.3082+1
6
.4302i
0.6916i
3.7655i
0.8874i
The table represents complex load power in each
individual generators with respective all the lines and
total power load in the system

factor (PTDF) methods with and without reactive
powers. It has been shown the deregulated power
systems calculation using dynamic distribution factor
dynamic distribution factor (DDF) method is much
precise and accurate without violating the line thermal
limits. The method applied to 4- bus and IEEE 24- bus
system and implemented using MATLAB software
package.

References
[1]

[2]

[3]

[4]

[5]
Distribution of source power components on loads
(dynamic distribution factor):
SGEN 1
GEN 2
GEN 3
R
0.19820.17761
0.1691-0.0276i
0.0335i
0.0282i
0.12110.16192
0.1572-0.0121i
0.0021i
0.0226i
0.18810.18443 0.1106+0.0057i
0.0285i
0.0335i
0.20310.20244
0.1858-0.0303i
0.0344i
0.0321i
0.15370.18745
0.1754-0.0134i
0.0026i
0.0261i
0.11760.12456 0.1614+0.0084i
0.0178i
0.0226i
0.15940.18847
0.2001-0.0326i
0.0270i
0.0299i
0.15080.15848
0.1199-0.0092i
0.0026i
0.0221i
0.18680.15139 0.1054+0.0055i
0.0283i
0.0275i
0.16000.121810 0.1127-0.0184i
0.0271i
0.0193i
0.11710.111411 0.1113-0.0085i
0.0020i
0.0155i
0.12060.181612 0.1214+0.0063i
0.0183i
0.0330i
0.16530.173113 0.1377-0.0225i
0.0280i
0.0275i
0.14920.140414 0.1486-0.0114i
0.0025i
0.0196i
0.17240.205815 0.1148+0.0059i
0.0261i
0.0374i
0.12340.117416 0.1858-0.0142i
0.0021i
0.0164i
The table represents load distribution factors of each
individual generator with respect to all line connected
to that bus.

www.ijera.com

[6]

[7]
[8]

[9]

Santiago Greave, Member, Peter W. Sauer,
Fellow, and James D. Weber, “Enhancement
of Linear ATC Calculations by the
Incorporation of Reactive Power Flows”,
IEEE transactions on power systems, VOL.
18, NO. 2, MAY 2003. 619-624.
S. Greave and P. W. Sauer, “Reactive power
considerations in linear ATC computation,”
in Proc. 32nd Annul. HI Int. Conf. Syst. Sci.,
HI, 1999, HICSS-32.
G.W. Stagg, A.H. El-Abiad, Computer
Methods in Power System analysis, McGrawHill, New York, 1968.
TINNEY, W.F., and HART,C.E “Power flow
solution by Newton’s method” IEEE Trans.
Power Appar. Syst., 1967, PAS-96,(11), pp
1449-1460.
H. Saadat, Power system analysis, McGrawHill Primis Custom Publishing, ISBN:0-07284796-4.
A. J. Wood and B. F. Wollenburg, Power
Generation, Operation, and Control. New
York, NY: Wiley, 1996.
Matlab Version 7.4.0, the Mathworks, Inc.,
Natick, MA, USA, May 2008.
Multale J,Strbac G, curcic “ allocation pf
losses in ditribution systems with embeded
generation
“
IEE
proc-generation,
transmission and distribution, 2000, 147(1);714.
Ai Dongping, Bao Hai,Yang Yihan, “A New
method of calculating complex power
dynamic distribution factor by circuit
theory”.978-1-4244-4813-5/10 2010 IEEE.

III. Conclusion
The dynamic distribution factor (DDF)
method is compared with power transfer distribution
www.ijera.com

724 | P a g e

More Related Content

Viewers also liked (20)

Hu3513551364
Hu3513551364Hu3513551364
Hu3513551364
 
Ed35736740
Ed35736740Ed35736740
Ed35736740
 
Ds35676681
Ds35676681Ds35676681
Ds35676681
 
Eb35725731
Eb35725731Eb35725731
Eb35725731
 
Eg35750753
Eg35750753Eg35750753
Eg35750753
 
Gn3511531161
Gn3511531161Gn3511531161
Gn3511531161
 
Ec35732735
Ec35732735Ec35732735
Ec35732735
 
Ef35745749
Ef35745749Ef35745749
Ef35745749
 
Dt35682686
Dt35682686Dt35682686
Dt35682686
 
Dy35710714
Dy35710714Dy35710714
Dy35710714
 
Dq35655671
Dq35655671Dq35655671
Dq35655671
 
Ee35741744
Ee35741744Ee35741744
Ee35741744
 
Dw35701704
Dw35701704Dw35701704
Dw35701704
 
Du35687693
Du35687693Du35687693
Du35687693
 
Ho3513201325
Ho3513201325Ho3513201325
Ho3513201325
 
Ey35869874
Ey35869874Ey35869874
Ey35869874
 
Dx35705709
Dx35705709Dx35705709
Dx35705709
 
Dp35648654
Dp35648654Dp35648654
Dp35648654
 
In3514801485
In3514801485In3514801485
In3514801485
 
Dz35715718
Dz35715718Dz35715718
Dz35715718
 

Similar to Ea35719724

Experimental investigations of microstrip distributed mems
Experimental investigations of microstrip distributed memsExperimental investigations of microstrip distributed mems
Experimental investigations of microstrip distributed memsIAEME Publication
 
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE Mellah Hacene
 
Analysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesAnalysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesIJRTEMJOURNAL
 
Analysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesAnalysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesIJRTEMJOURNAL
 
Three dimensional analytical subthreshold current model of fully
Three dimensional analytical subthreshold current model of fullyThree dimensional analytical subthreshold current model of fully
Three dimensional analytical subthreshold current model of fullyIAEME Publication
 
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...Determining Nodal Prices for Radial Distribution System with Wind and Solar P...
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...IRJET Journal
 
Evaluation of Structural Materials for Space Elevator Applications
Evaluation of Structural Materials for Space Elevator ApplicationsEvaluation of Structural Materials for Space Elevator Applications
Evaluation of Structural Materials for Space Elevator ApplicationsIRJET Journal
 
Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SiteIJERA Editor
 
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINK
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINKMathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINK
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINKijsrd.com
 
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot Cable
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot CableCalculation Method for Normal Inducedlongitudinal Voltage on Pilot Cable
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot CableIJERA Editor
 
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM Mellah Hacene
 
Three dimensional integration of cmos inverter
Three dimensional integration of cmos inverterThree dimensional integration of cmos inverter
Three dimensional integration of cmos inverterIAEME Publication
 
Compatibility Design of Non Salient Pole Synchronous Generator
Compatibility Design of Non Salient Pole Synchronous GeneratorCompatibility Design of Non Salient Pole Synchronous Generator
Compatibility Design of Non Salient Pole Synchronous Generatorijtsrd
 
OTP, Phishing, QR code, Shares, Visual Cryptography.
OTP, Phishing, QR code, Shares, Visual Cryptography.OTP, Phishing, QR code, Shares, Visual Cryptography.
OTP, Phishing, QR code, Shares, Visual Cryptography.IJERA Editor
 
Analysis and design of three legged 400 kv double circuit steel transmission
Analysis and design of three legged 400 kv double circuit steel transmissionAnalysis and design of three legged 400 kv double circuit steel transmission
Analysis and design of three legged 400 kv double circuit steel transmissionIAEME Publication
 
Experimental Study Using Different Tools/Electrodes E.G. Copper, Graphite on...
Experimental Study Using Different Tools/Electrodes E.G.  Copper, Graphite on...Experimental Study Using Different Tools/Electrodes E.G.  Copper, Graphite on...
Experimental Study Using Different Tools/Electrodes E.G. Copper, Graphite on...IJMER
 
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING adeij1
 

Similar to Ea35719724 (20)

Experimental investigations of microstrip distributed mems
Experimental investigations of microstrip distributed memsExperimental investigations of microstrip distributed mems
Experimental investigations of microstrip distributed mems
 
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
 
Analysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesAnalysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing Countries
 
Analysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing CountriesAnalysis of Hill Road Network Structure in Developing Countries
Analysis of Hill Road Network Structure in Developing Countries
 
Three dimensional analytical subthreshold current model of fully
Three dimensional analytical subthreshold current model of fullyThree dimensional analytical subthreshold current model of fully
Three dimensional analytical subthreshold current model of fully
 
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...Determining Nodal Prices for Radial Distribution System with Wind and Solar P...
Determining Nodal Prices for Radial Distribution System with Wind and Solar P...
 
Evaluation of Structural Materials for Space Elevator Applications
Evaluation of Structural Materials for Space Elevator ApplicationsEvaluation of Structural Materials for Space Elevator Applications
Evaluation of Structural Materials for Space Elevator Applications
 
Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud Site
 
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINK
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINKMathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINK
Mathematical Modeling 15kW Standard Induction Motor using MATLAB/SIMULINK
 
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot Cable
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot CableCalculation Method for Normal Inducedlongitudinal Voltage on Pilot Cable
Calculation Method for Normal Inducedlongitudinal Voltage on Pilot Cable
 
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM
MATHEMATICAL MODEL OF WIND TURBINE IN GRID-OFF SYSTEM
 
Three dimensional integration of cmos inverter
Three dimensional integration of cmos inverterThree dimensional integration of cmos inverter
Three dimensional integration of cmos inverter
 
Fi36983988
Fi36983988Fi36983988
Fi36983988
 
Performance of a vector control for DFIG driven by wind turbine: real time si...
Performance of a vector control for DFIG driven by wind turbine: real time si...Performance of a vector control for DFIG driven by wind turbine: real time si...
Performance of a vector control for DFIG driven by wind turbine: real time si...
 
Compatibility Design of Non Salient Pole Synchronous Generator
Compatibility Design of Non Salient Pole Synchronous GeneratorCompatibility Design of Non Salient Pole Synchronous Generator
Compatibility Design of Non Salient Pole Synchronous Generator
 
OTP, Phishing, QR code, Shares, Visual Cryptography.
OTP, Phishing, QR code, Shares, Visual Cryptography.OTP, Phishing, QR code, Shares, Visual Cryptography.
OTP, Phishing, QR code, Shares, Visual Cryptography.
 
Analysis and design of three legged 400 kv double circuit steel transmission
Analysis and design of three legged 400 kv double circuit steel transmissionAnalysis and design of three legged 400 kv double circuit steel transmission
Analysis and design of three legged 400 kv double circuit steel transmission
 
Experimental Study Using Different Tools/Electrodes E.G. Copper, Graphite on...
Experimental Study Using Different Tools/Electrodes E.G.  Copper, Graphite on...Experimental Study Using Different Tools/Electrodes E.G.  Copper, Graphite on...
Experimental Study Using Different Tools/Electrodes E.G. Copper, Graphite on...
 
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING
MODELING AND OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING
 
Fw3410821085
Fw3410821085Fw3410821085
Fw3410821085
 

Recently uploaded

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 

Recently uploaded (20)

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 

Ea35719724

  • 1. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724 www.ijera.com RESEARCH ARTICLE OPEN ACCESS Usage Based Methodology for Calculating Of Complex Power Dynamic Distribution Factor K. Dharanisree*, C. Sreeharibabu** *Department of Electrical and Electronics Engineering, S.V.C.E.T, Chittoor) ** Department of Electrical and Electronics Engineering, S.V.C.E.T, Chittoor) ABSTRACT In the environment of power market, It is an important index about system security performance and is the foundation for normal operation of power market. So, to calculate PDF precisely and quickly is of great significance. In this paper, an attempt has been made to provide a deterministic based approach to achieve deregulated power systems calculation by using Dynamic Distribution Factor (DDF) without violating line thermal limits. Keywords – Distribution factor, Dynamic distribution factor, PTDF Any voltage in the network can be described as: I. INTRODUCTION This paper does not address any issues associated with attempts to include dynamic constraints. Rather it focuses on a major simplification that has been in use for many years for studies where fast solutions are sought for the case involving static constraints only. This simplification is the use of linear methods to compute the line flow changes in response to bus injections (and in response to contingencies such as line outages)[8]–[11].. In order to avoid the problems encountered in existed papers, this paper attempts to analyze the distribution of source power from the energy space, derive and define the complex power dynamics distribution factors based on the circuit theory. The form of these factors shows that the power distribution is not only related to the network topology and circuit parameters, but also related to the state of the system. The source powers are linear distribution in the network according to these factors the branch flows and losses in the network are different forms of source powers. The example demonstrates that the results calculated by proposed method is unique and they satisfy complex power conservation, so it provides a new way to solve the series of economic problems in the electricity market such as determining the cost of transmission services and wheeling service cost. II. THE MODEL OF ELECTRIC NETWORK Considering the electric network with n nodes and q sources, where the number of source nodes is defined from 1to q and others are random. The sources are expressed as current sources Iks ( k =1,2,. q ). Because the loads are regarded as the constant impedance to ground in the network, so the node voltage equation can be written as follows: (2) Where Zmi is the element in Z = matrix. A. Power Distribution based on the energy space The electric energy just spread by the electromagnetic field from the sources to the wires and the loads, this process occurs ceaselessly in DC or AC circuit [16, 17]. Therefore, the physical basis is sufficient to analyze the distribution of source power based on the circuit theory. Physical definition about electric power is the speed of electric energy consumption. Power supplied by sources is equal to the rate of energy absorption in the network [18], the difference between power and electric energy is just a time factor, so they are equivalent in the unit time, therefore, the power is same to the energy and they all satisfies the superposition theorem and conservation law. The one-dimensional characteristic of energy makes the analysis of the power distribution into linear analysis, so that it can help to avoid the question of how to allocate the nonlinear function value to its independent variables. The proposed method in this paper provides a new way for analyzing the distribution of source power. B. Power dynamic distribution factors in line flows Using the network model provided in Section I, the flows on transmission line ij can be expressed as: . . . . . . S ij  U i I ij  U i ( * Ui U j Z ij )* (1) www.ijera.com 719 | P a g e
  • 2. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724  . . 1 [(Z i1  Z j1 ) I 1s  ( Z i 2  Z j 2 ) I 2 s  .. * Z ij . . . . . . .  Z i1 ( Z i 2  Z j 2 )* I1s I 2 s  ..  Z iq ( Z i 2  Z j 2 )* I qs I 2 s * . * * . ( Z ik  Z jk ) ( Z im  Z jm ) S ms S ks   [ ( . )]. . * Z ij k 1 m 1 U U q .  Zi1 (Ziq  Z jq )* I1s I qs  ..  Ziq (Ziq  Z jq )* I qs I qs ] * . . 1 q q * ( Zik  Z jk )* ( Zim  Z jm ) I ms I ks *  Zij k 1 m1 . . .  (i,j=1,2,….,n) (7) Similar to (5),(7) can be expressed as . . . . . ( Z i 2  Z j 2 ) I 2 s  ...  ( Z iq  Z jq ) I qs ]*  ( Z iq  Z jq ) I qs ] .(Z i1 I 1s  Z i 2 I 1s  Z i 2 I 2 s  ...  Z iq I qs ) * www.ijera.com S Lossij * q ms 1 * Z ij  q q  Z k 1 m 1 im 1 * ij if * ( Z ij  Z jk ) ( Z im  Z jm )   m / k ,the (7) can Z ij . . ( Z ik  Z jk )* I ms I ks * (i,j=1,2,…..,n ) (3) Because the current sources can be expressed by power sources that be written as S Lossij   [ . S ks . I ks  ( . q . k 1 )* (4) . q . Z im ( Z ik  Z jk )* S ms * S ks Sij   ( . ) .( . ) (5) * Z ij k 1 m 1 U U ms ks 1 ij Z im ( Z ik  Z jk )*   m / k , (5) can be written as * Z ij If . q . Sij   [ : k 1 q 1 . U ks q ij .  m / k ( m 1 S ms * . )].S ks . U ms . k 1 .   S ij  ks  k 1 (6) is defined as the dynamics power distribution factors of source k on line ij and Sij _ ks is the power component supplied by source k on line ij . The sum of components supplied by each source is equal to the flows on transmission lines. C. Power dynamic distribution factors in net loss: In this case find the distribution factor in lines loss which is connected source to the load. Using the network model provided in Section I[10], the flows on transmission line ij can be expressed as: . . S Lossij  (U i  U j ) I ij . = ( Z iq . . . * . Ui U j *  (U i  U j )( ) Z ij . .  Z jq ) I qs ].[( Z i1  Z j1 ) I1s  www.ijera.com . )].S ks U ms . .   S Lossij ks (8) k 1  ij  ks is defined as the dynamics distribution . factors of source k on line loss ij and S Lossij  ks is the power component supplied by source k to losses on line ij . The sum of components supplied by each source is equal to the losses on transmission lines. D. Power dynamic distribution factors on loads: In this case find the distribution factor on loads which is connected source to the load. Using the network model provided in Section I[9], the flows on transmission line ij can be expressed as: The load flows on bus i can be written .  . . U  U i . I i  U i .( i )* Zi . as S Loadi ij-ks . . *    ij  ks . S ks q m 1 ( S ms k 1 . q U ks .  ij m/k    Lossij  ks . S ks So (3) can be written as q . . q q U ks . 1 . * . . . 1 * .(Zi1 I1s  ... Zik I ks  ... Ziq I qs ). Zi* . . . ( Z i1 I1s  ...  Z ik I ks  ...  Z iq I qs )* . . . . 1 * * *  * .[Zi1 (Zi1 ) I1s I1s  ... Ziq (Zi1 ) I qs I1s  Zi . . . . Zi1 (Zi 2 ) I1s I 2 s  ... Ziq (Zi 2 ) I qs I 2 s  ..... * * * * . . . . . *  Z i1 ( Z iq ) I1s I qs  .......  Z iq ( Z iq )* I qs I qs ] * * . * . Zik * Zim I ms I ks Zi* k 1 m1 q q   (i,j=1,2,…..,n) (9) 720 | P a g e ks
  • 3. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724 www.ijera.com Similar to (5),(9) can be expressed as . q . S Loadi ks If  i m/ k . * * ik * i q Z S S   [ Z im ( ms )]. .ks . * k 1 m 1 Z U ms U ks * Z ik  * Z im , the (9) can be written as Zi q . S Loadi   [ k 1 1 . U ks . q .  m 1 i m/k S ms ( . . )].S ks U ms q .    Loadi  ks . S ks k 1 q .   S Loadi ks k 1 (10)  Loadi  ks is defined as the dynamics distribution factors of source k on load i and . S Loadi  ks is the power component supplied by source k to load i . The sum of components supplied by each source is equal to the flows on load.  i , jn . S ks  ij  ks   Loadi ks  1 im . .   Sij ks   S Loadi ks i , jn im Where n and m denote the bus and load number respectively. The power supplied by source k equal to the consumption of network, which shows that the proposed method satisfies power conversation. IEEE 24-Buses reliability test system The above fig shows that IEEE 24 bus system for three cases: (a) Distribution of source components on line flows (b) Distribution of source power components on loss (c) Distribution of source power components on loads Distribution of source components on line flows (power) GEN 1 GEN 2 GEN 3 TOTAL 146.025+1 15.68i 92.782+65 .489i 68.151+49 .774i 0.0000+0. 0000i -16.98113.880i 20.660+4. 721i 0.0000+ 0.000i 31.204+ 3.161i -28.1262.847i 2-4 26.854+23 .233i -81.0666.691i -46.8111.224i 146.025+ 115.68i 107.00+5 1.647i 60.685+5 1.647i 101.02+4 9.810i 2-6 21.559+22 .06i 92.310+1 4.335i 24.8479+1 8.11i -21.00916.70i 0.0000+0. 0000i 0.000+0.0 000i 116.894+1 -31.6486.326i 30.321+7. 326i 184.50+4 0.540i 0.000+0.0 00i 0.000+0.0 1-2 1-3 1-5 3-9 324 4-9 510 6www.ijera.com 40.613+ 13.41i -109.6416.48i -114.0322.32i 0.000+0. 000i 245.18+ 81.14i 0.000+0. 73.256+4 9.810i -116.8031.702i -104.8031.702i 184.506+ 40.540i 245.18+8 1.140i 162.54+1 721 | P a g e
  • 4. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724 10 27.46i 80.841+57 .061i 67.095+49 .002i 00i -16.9713.878i 17.421+3. 981i 000i 29.780+ 3.016i -29.773.015i 810 26.611+23 .023i -68.1485.624i -47.13911.30i 911 24.000+24 .559i 94.221+1 4.632i 912 1011 1012 1113 1114 1213 1213 21.683+15 .812i -22.03917.45i 0.000+0.0 00i 0.000+0.0 00i 160.894+1 27.46i 80.848+57 .065i 67.0956+4 9.0025i -34.9956.995i 33.994+8. 213i 166.87+3 6.665i 0.000+0.0 00i 0.000+0.0 00i -20.0754.587i 17.359+3. 966i 42.800+ 14.13i -97.5514.66i -120.7523.63i 0.000+0. 000i 250.39+ 182.8i 0.000+0. 000i 28.20+2. 85i -32.653.306i 1323 26.611+23 .023i -78.2136.455i -42.7910.261i 1416 24.000+24 .55i 90.140+1 3.998i 1516 21.683+15 .812i -33.4716.691i 1521 1521 1524 1617 1619 1718 -22.03917.452i 0.000+0.0 00i 0.000+0.0 00i 151.439+1 19.97i 89.467+63 .149i 72.664+53 .07i 32.8950+ 7.947i 186.783+ 41.040i 0.000+0.0 00i 0.000+0.0 00i -19.96524.562i 20.034+4. 578i 45.23+1 4.940i 93.40+1 4.041i -131.4925.73i 0.000+0. 000i 224.6+7 4.34i 0.000+0. 000i 32.62+3. 304i -31.833.22i 1722 24.468+21 .169i -83.1146.860i -46.8811.214i 1821 24.017+24 .576i 96.983+1 5.061i 1821 1920 1920 20- 21.783+15 .883i -21.34316.901i 0.000+0.0 00i 0.000+0.0 -30.7186.140i 34.450+8. 323i 158.03+3 4.724i 0.000+0.0 7-8 8-9 www.ijera.com 43.773+ 14.44i -99.825.006i -115.3822.58i 0.000+0. 000i 248.73+ 08.7i 94.55+56. 837i 56.070+5 0.942i 90.44+4.5 65i 77.521+5 5.476i -110.095.286i -107.4931.847i 166.87+3 6.665i 250.39+8 2.864i 160.89+1 27.460i 88.970+5 5.331i 51.801+4 9.663i 94.39+6.3 06i 68.904+5 3.49i -105.194.919i -120.63635.24i 186.76+4 1.040i 224.66+7 4.348i 151.43+1 19.97i 102.12+6 1.892i 60.865+5 40425i 105.52+3. 068i 77.267+5 4.081i -108.2831.164i -102.28031.16i 158.103+ 34.724i 248.73+8 23 2023 2122 00i 0.000+0.0 00i 0.000+0.0 00i 00i 158.57+3 4.841i 0.000+0.0 00i www.ijera.com 82.316i 0.000+0. 000i 207.70+ 68.736i 2.396i 158.17+3 4.84i 207.70+6 8.73i The table represents complex power flows in each individual generators with respective all the lines and total power flow in the system. Distribution of source power components on line flows (PDF): SGEN 1 GEN 2 GEN 3 R 1-2 1.2789+ 0.0000+ 0.0000+0.0000i 0.0000i 0.0000i 1-3 0.6492- -0.1556- 0.1894-0.0422i 0.0346i 0.0014i 1-5 0.5792- 0.1346+ 0.0228i 2-4 0.2163+ 0.0012i 0.1682+0.0375i 0.0091i 0.2023+ 0.5793+ 0.2547+0.0220i 0.69922-6 0.0780i 0.2820+0.0001i 0.0254i 0.0435i 3-9 0.1700+ 0.0071i 0.2899+ 0.6121+0.1054i 30.2655+ 24 0.1346+ 0.1346+ 0.0000+0.0000i 0.0056i 0.0000+ 0.0062i 4-9 0.1958+ 1.555+0 0.6646+0.0839i j0.0012 j0.0012 0.0000i .0000i 5- 0.00000i 0.0000+ 1.3695+0.0000i 0.00000 10 +0.0000 0.0000+ 0.0000+0.0000i 61.4226+ 0.0000i i 10 0.0000i 0.0000i 7-8 0.6702+ -0.1722- 0.1550-0.0346i -0.0357i 0.1690+ 0.0016i 8-9 0.69850.0275i 0.1682+ 0.1682+ 0.1937+0.0432i 80.2019+ 0.0015i 0.2422+0.0209i j0.0375 j0.03 10 0.2412+ 0.5519+ 0.2761+0.0001i 0.0085i 90.672211 0.1744+ 0.0743i 0.0303i 0.0419i 912 10- 0.0073i 0.2696+ 0.5733+0.0988i 0.2756+ 0.0057i 0.0000+0.0000i 11 0.2121+ 1.3088+ 0.8014+0.1011i 0.0058i 10- 0.0000+ 0.0000i 12 0.0000i 11- 0.0000+ 0.0000+ 1.4697+0.0000i 13 0.0000i 0.0000i 11- 1.3739+ 0.0000+ 0.0000+0.0000i 14 0.0000i 0.0000i 12- 0.7184- -0.1562- 0.1969-0.0439i 13 0.0383i 0.0014i 12- 0.6842- 0.1544+ 13 0.0269i 0.0014i 13- 0.2111+ 0.65675 0.1624+0.0362i 23 0.2288+ +0.0885 0.2199+0.0190i 0.0089i 140.6790i 16 0.0288i 15- 0.2084+ 0.0423i 0.2952+0.0002i 16 15- 0.0087i 0.2583+ 0.5695+0.0981i 0.2732+ 21 0.0000+ 0.0055i 0.0000+0.0000i 0.0058i 15- 0.1717+ 1.3824+ 0.6246+0.0788i 0.0000i 21 0.0000i 15- 0.0000+ 0.0000+ 1.462+0.0000i 24 0.0000i 0.0000i 16- 1.2364+ 0.0000+ 0.0000+0.0000i 17 0.0000i 0.0000i 16- 0.7907- -0.1576- 0.1939-0.0433i 19 0.0421i 0.0014i 17- 0.6209- 0.1482+ 18 0.0244i 17- 0.2009+ 0.0013i 0.1952+0.0435i 22 0.2223+ 0.821218- 0.00845i 0.5301+ 0.2304+0.0199i 21 0.0280i 0.0511i -0.5787+0.997i 18- 0.1718+ 0.0713i 0.2822+0.0001i 21 19- 0.0072i 0.2509+ 0.2713+ 20 0.0000+ 0.0053i 0.0000+0.0000i 0.0057i 19- 0.1918+ 1.3471+ 0.7448+0.0940i 0.0000i 20 0.0000i 20- 0.0000+ 0.0000+ 1.2193+0.0000i 23 0.0000i 0.0000i 20- 0.0000+ 1.2554+ 0.0000+0.0000i 23 0.0000i 0.0000i 21- 0.0000+ 0.0000+ 1.5389+0.0000i 22 0.0000i 0.0000i The table represents distribution factors of each individual generator with respect to all line connected to that bus. 722 | P a g e
  • 5. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724 SR 12 13 15 24 26 39 324 49 510 610 78 89 810 911 912 10 10 11 11 12 11 13 12 14 12 13 13 13 14 23 15 16 15 16 15 21 15 21 16 24 16 17 17 19 17 18 18 22 18 21 19 21 19 20 20 20 20 23 21 23 22 Distribution of source power components on loss (power component): GEN 1 GEN 2 GEN 3 TOTAL 0.0000+33.6 0.0000+0.00 0.0000+0.00i 0.0000+33.6 1i i 1i 0.7066+16.3 -1.36753.39992+5.42i 2.7384+18.8 3i 2.93i 2i 3.5442+12.1 1.8632+2.25 -2.9893-2.82i 2.4181+11.5 1i i 4i 5.74811.2982+22.4 -1.3676+13.6i 5.7388+27.2 8.89i 8i 3i 3.1329+10.8 -0.4940-4.21i 1.3334+10.0 1.3055+3.46 0.9150+13.1 3.8617+32.60i 8.2559+36.5 3i 8i 3.4792i 9.15i 4i 9i -1.34857.1274+32.38i 4.3672+29.9 1.4117+5.30 0.0000+31.2 0.0000+0.00i 7.70i 7i 0.0000+0.00 0.0000+31.2 i i 6i 64i 0.0000+0.00 0.0000+0.00 0.0000+53.40i 0.0000+53.4 i i 0i 0.0000+46.0 0.0000+0.00 0.0000+0.00i 0.0000+46.0 6i i 6i 0.6775+15.6 -1.31102.3241+17.5 2.9575+4.72i 5i 2.81i 6i 3.2259+11.0 1.7509+2.11 -3.0488-2.87i 1.9281+10.2 2i i 6i 5.36921.2967+22.4 -1.1896+12.4i 5.4736+26.5 8.312i 6i 6i 3.0612+10.5 1.3249+9.07 -0.5470-4.6i 1.1893+3.15 0.9651+13.8 4.7263+39.90i 9.6663+43.3 8i 4i 3.9749i 10.46i 6i 1i -1.40982.3301+22.6 5.3953+24.5i 1.6553+6.22 0.0000+36.4 0.0000+0.00i 8.05i 7i 0.0000+0.00 0.0000+36.4 i i 4i 4i 0.0000+0.00 0.0000+0.00 0.0000+51.16i 0.0000+51.1 i i 6i 0.0000+38.8 0.0000+0.00 0.0000+0.00i 0.0000+38.8 5i i 5i 0.7202+16.6 -1.38302.0988+18.0 2.7616+4.41i 4i 2.97i 8i 3.6044+12.3 1.6130+1.95 -3.241-0.0580i 1.9764+11.2 1i i 1i 5.33551.3265+22.9 5.5832+25.9 8.25i 7i 7i 2.7813+9.61 1.0788+11.25 1.1036+7.62i -0.57604i 1.1017+2.92 0.8604+12.3 5.0893+42.97 i 4.9159i 4.068110.0178+44. i 10.70i 6i 10i 6i -1.41616.4947+29.50 3.323028.00i 1.7556+6.59 0.0000+30.8 0.0000+0.000 8.09i 66i 0.0000+0.00 0.0000+30.8 i i 4i 0i 4i 0.0000+0.00 0.0000+0.00 0.0000+50.63 0.0000+50.6 i i 67i 3i 0.0000+37.6 0.0000+0.00 0.0000+0.000 0.0000+37.6 8i i 0i 8i 0.7417+17.1 -1.35462.9284+4.676 2.3155+18.9 4i 2.90i 4i 0i 3.9051+13.3 1.6208+1.95 -3.772-3.5591i 1.7538+11.7 4i i 4i 5.37891.4502+25.1 5.6396+29.2 8.32i 2i 0i 2.7461+9.49 1.1895+12.40 0.8469+8.03i -0.58079i 1.3185+3.49 0.7523+10.8 4.0478+34.17 i 4.9558i 4.06658.8660+34.2 i 10.70i 0i 72i 8i -1.34396.8206+30.98 3.9910+28.8 1.4857+5.58 0.0000+35.9 0.0000+0.000 7.68i 7i 8i 0.0000+0.00 0.0000+35.9 i i 0i 0i 0i 0.0000+0.00 0.0000+0.00 0.0000+55.46 0.0000+55.4 i i 81i 6i 6.21121.0930+18.9 6.0133+22.7 9.61i 3i 1.2908+13.46 0.8794+7.99i 8i 2.7555+9.53 -0.58186i 1.2943+3.43 i 4.9656i iThe table represents complex power loss in each individual generators with respective all the lines and total power loss in the system. www.ijera.com www.ijera.com Distribution of source power components on loss (power distribution factor): SGEN 1 GEN 2 GEN 3 TOTAL R 1- 0.0000+33. 0.0000+0. 0.0000+0.00i 0.0000+33.6 2 61i 00i 1i 1- 0.7066+16. -1.36753.39992+5.42 2.7384+18.8 3 33i 2.93i i 2i 1- 3.5442+12. 1.8632+2. -2.9893-2.82i 2.4181+11.5 5 11i 25i 4i 25.74811.2982+22 5.7388+27.2 4 8.89i .48i 1.3676+13.6i 3i 23.1329+10 -0.4940-4.21i 1.3334+10.0 6 .83i 8i 3- 1.3055+3.4 0.9150+13 3.8617+32.60 8.2559+36.5 3.47926i 9 9.15i .14i i 9i 3-1.34857.1274+32.38 4.3672+29.9 24 0.0000+0.0 0.0000+31 0.0000+0.00i 0.0000+31.2 7.70i i 7i 4- 1.4117+5.3 0i 9 0i .26i 64i 5- 0.0000+0.0 0.0000+0. 0.0000+53.40 0.0000+53.4 10 0.0000+46. 0i 00i i 0i 60.0000+0. 0.0000+0.00i 0.0000+46.0 10 0.6775+15. 06i 00i 6i 7-1.31102.9575+4.72i 2.3241+17.5 8 65i 2.81i 6i 8- 3.2259+11. 1.7509+2. -3.0488-2.87i 1.9281+10.2 9 02i 11i 6i 85.36921.2967+22 5.4736+26.5 10 8.312i .46i 1.1896+12.4i 1.3249+9.07 6i 93.0612+10 -0.5470-4.6i 11 1.1893+3.1 0.9651+13 4.7263+39.90 9.6663+43.3 .58i 4i 93.97495i 12 10.46i .86i i 1i 10 -1.40985.3953+24.5i 2.3301+22.6 1.6553+6.2 0.0000+36 0.0000+0.00i 0.0000+36.4 8.05i 7i 10 0.0000+0.0 11 2i 0i .44i 4i 11 0.0000+0.0 0.0000+0. 0.0000+51.16 0.0000+51.1 12 0i 00i i 6i 11 0.0000+38. 0.0000+0. 0.0000+0.00i 0.0000+38.8 13 85i 00i 5i 12 0.7202+16. -1.38302.7616+4.41i 2.0988+18.0 14 64i 2.97i 8i 12 3.6044+12. 1.6130+1. -3.2411.9764+11.2 13 31i 95i 0.0580i 1i 13 5.33551.3265+22 5.5832+25.9 13 8.25i .97i 7i 14 2.7813+9. 1.0788+11.25 1.1036+7.62i -0.576023 1.1017+2.9 4i 61i 4.9159i 15 4.06810.8604+12 5.0893+42.97 10.0178+44. 16 2i 10.70i .36i 10i 6i 15 -1.41616.4947+29.50 3.323028.00i 16 1.7556+6.5 8.09i 66i 15 0.0000+0.0 0.0000+30 0.0000+0.000 0.0000+30.8 21 9i 0i .84i 0i 4i 15 0.0000+0.0 0.0000+0. 0.0000+50.63 0.0000+50.6 21 0i 00i 67i 3i 16 0.0000+37. 0.0000+0. 0.0000+0.000 0.0000+37.6 24 68i 00i 0i 8i 16 0.7417+17. -1.35462.9284+4.676 2.3155+18.9 17 14i 2.90i 4i 0i 17 3.9051+13. 1.6208+1. -3.7721.7538+11.7 19 34i 95i 3.5591i 4i 17 5.37891.4502+25 5.6396+29.2 18 8.32i .12i 1.1895+12.40 0.8469+8.03i 0i 18 2.7461+9. -0.580722 1.3185+3.4 9i 49i 4.9558i 18 4.06650.7523+10 4.0478+34.17 8.8660+34.2 21 9i 10.70i .80i 72i 8i 19 -1.34396.8206+30.98 3.9910+28.8 21 1.4857+5.5 7.68i 7i 8i 19 0.0000+0.0 0.0000+35 0.0000+0.000 0.0000+35.9 20 8i 0i .90i 0i 0i 20 0.0000+0.0 0.0000+0. 0.0000+55.46 0.0000+55.4 20 0i 00i 81i 6i 20 6.21121.0930+18 6.0133+22.7 23 9.61i .93i 8i 21 2.7555+9. 1.2908+13.46 0.8794+7.99i -0.581823 1.2943+3.4 6i 53i 4.9656i 22 3i The table represents loss distribution factors of each individual generator with respect to all line connected to that bus. 723 | P a g e
  • 6. C. Sreeharibabu al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.719-724 Distribution of source power components on loads (power component): S GEN 1 GEN 2 GEN 3 TOTAL - 16.8477+9 18.1405+ 15.9325+ 50.9208+1 1 R .3764i 0.9000i 2.6299i 2.9062i 2 13.6377+9 11.7505+ 20.7513+ 46.1395+5 .1975i 2.3567i 3.8016i .3559i 3 13.4294+1 11.6558+ 24.4659+ 49.5510+1 1.8439i 0.7738i 3.4569i 6.0745i 4 18.7247+1 14.0935+ 22.6138+ 55.4320+1 0.4210i 0.6992i 3.7327i 4.8529i 5 12.9584+8 9.4318+1. 13.5799+ 35.9700+1 .7394i 8917i 2.4878i 3.1189i 6 10.6818+9 17.6419+ 23.9876+ 52.1313+1 .4207i 1.1592i 3.3898i 3.9692i 7 16.8435+9 12.2704+ 18.4108+ 47.5247+1 .3741i 0.6087i 3.0389i 3.0217i 8 8.8941+5. 9.0802+1. 12.8604+ 30.8346+1 9984i 8212i 2.3560i 0.1755i 9 12.7445+1 14.9303+ 15.6324+ 43.3073+1 1.2399i 0.9911i 2.2088i 4.1398i 1 14.0680+7 10.6798+ 12.6611+ 37.4089+1 0 .8294i 0.5298i 2.0899i 0.4491i 1 15.1020+1 12.7463+ 21.8390+ 49.6873+1 1 12.8813+1 15.8052+ 23.8538+ 52.5402+1 0.1851i 2.5564i 4.0009i 6.7425i 1 2 1.3605i 1.0492i 3.3704i 5.7801i 1 17.6815+9 18.5091+ 12.0076+ 48.1982+1 3 15.2221+1 13.1711+ 22.5219+ 50.9152+1 .8404i 0.9182i 1.9820i 2.7407i 1 4 11.5983+1 14.7740+ 23.6692+ 50.0415+1 0.2661i 2.6416i 4.1260i 7.0338i 1 5 0.2290i 0.9808i 3.3443i 4.5541i 1 11.5540+6 13.9415+ 22.8127+ 48.3082+1 6 .4302i 0.6916i 3.7655i 0.8874i The table represents complex load power in each individual generators with respective all the lines and total power load in the system factor (PTDF) methods with and without reactive powers. It has been shown the deregulated power systems calculation using dynamic distribution factor dynamic distribution factor (DDF) method is much precise and accurate without violating the line thermal limits. The method applied to 4- bus and IEEE 24- bus system and implemented using MATLAB software package. References [1] [2] [3] [4] [5] Distribution of source power components on loads (dynamic distribution factor): SGEN 1 GEN 2 GEN 3 R 0.19820.17761 0.1691-0.0276i 0.0335i 0.0282i 0.12110.16192 0.1572-0.0121i 0.0021i 0.0226i 0.18810.18443 0.1106+0.0057i 0.0285i 0.0335i 0.20310.20244 0.1858-0.0303i 0.0344i 0.0321i 0.15370.18745 0.1754-0.0134i 0.0026i 0.0261i 0.11760.12456 0.1614+0.0084i 0.0178i 0.0226i 0.15940.18847 0.2001-0.0326i 0.0270i 0.0299i 0.15080.15848 0.1199-0.0092i 0.0026i 0.0221i 0.18680.15139 0.1054+0.0055i 0.0283i 0.0275i 0.16000.121810 0.1127-0.0184i 0.0271i 0.0193i 0.11710.111411 0.1113-0.0085i 0.0020i 0.0155i 0.12060.181612 0.1214+0.0063i 0.0183i 0.0330i 0.16530.173113 0.1377-0.0225i 0.0280i 0.0275i 0.14920.140414 0.1486-0.0114i 0.0025i 0.0196i 0.17240.205815 0.1148+0.0059i 0.0261i 0.0374i 0.12340.117416 0.1858-0.0142i 0.0021i 0.0164i The table represents load distribution factors of each individual generator with respect to all line connected to that bus. www.ijera.com [6] [7] [8] [9] Santiago Greave, Member, Peter W. Sauer, Fellow, and James D. Weber, “Enhancement of Linear ATC Calculations by the Incorporation of Reactive Power Flows”, IEEE transactions on power systems, VOL. 18, NO. 2, MAY 2003. 619-624. S. Greave and P. W. Sauer, “Reactive power considerations in linear ATC computation,” in Proc. 32nd Annul. HI Int. Conf. Syst. Sci., HI, 1999, HICSS-32. G.W. Stagg, A.H. El-Abiad, Computer Methods in Power System analysis, McGrawHill, New York, 1968. TINNEY, W.F., and HART,C.E “Power flow solution by Newton’s method” IEEE Trans. Power Appar. Syst., 1967, PAS-96,(11), pp 1449-1460. H. Saadat, Power system analysis, McGrawHill Primis Custom Publishing, ISBN:0-07284796-4. A. J. Wood and B. F. Wollenburg, Power Generation, Operation, and Control. New York, NY: Wiley, 1996. Matlab Version 7.4.0, the Mathworks, Inc., Natick, MA, USA, May 2008. Multale J,Strbac G, curcic “ allocation pf losses in ditribution systems with embeded generation “ IEE proc-generation, transmission and distribution, 2000, 147(1);714. Ai Dongping, Bao Hai,Yang Yihan, “A New method of calculating complex power dynamic distribution factor by circuit theory”.978-1-4244-4813-5/10 2010 IEEE. III. Conclusion The dynamic distribution factor (DDF) method is compared with power transfer distribution www.ijera.com 724 | P a g e