SlideShare a Scribd company logo
1 of 17
Download to read offline
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

RESEARCH ARTICLE

www.ijera.com

OPEN ACCESS

The Spinning Motion of a Gyrostat under the Influence of
Newtonian Force Field and a Gyrostatic Moment Vector
T. S. Amer1, Y. M. Abo Essa2, I. A. Ibrahim3 and W. S. Amer4
1,2,3

Mathematics Department, Faculty of Education and Science (AL-Khurmah Branch), Taif University,
Kingdom of Saudi Arabia
(4)
Mathematics Department, Faculty of Science, Minufiya University, Shebin El-Koum, Egypt.
In this paper, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field is
considered. This body is acted upon by a gyrostatic moment vector  . We consider the motion of the body in a
case analogous to Lagrange's case. The analytical periodic solutions of the equations of motion are obtained
using the Poincaré’s small parameter method. A geometric interpretation of motion is given by using Euler’s
angles to describe the orientation of the body at any instant of time. The graphical representations of these
solutions are presented when the different parameters of the body are acted. The fourth order Runge-Kutta
method is applied to investigate the numerical solutions of the autonomous system. A comparison between the
analytical and the numerical solutions shows a good agreement between them and the deviations are very small.
MSC (2000): 70E15, 70D05, 73V20
Keywords: Euler's Equations, Gyrostat, Newtonian force field, Perturbation methods

I.

Introduction

The rotational motion of a gyrostat about a
fixed point in a uniform force field or in a Newtonian
one is one of the important problems in the theoretical
classical mechanics. This problem had shed the interest
of many outstanding researchers e. g. [1-14]. In fact
this problems require complicated mathematical
techniques. It is known that this motion is governed by
six non-linear differential equations with three first
integrals [15].
Many attempts were made by outstanding
scientists to find the solution of these equations but
they have not found it in its full generality, except for
three special cases (Euler-Poinsot, Lagrange-Poisson
and Kovalevskaya). These cases have certain
restrictions on the location of the body’s centre of mass
and on the values of the principal moments of inertia
[1-3]. Arkhangel’skii, Iu. A. [1] showed that this fourth
algebraic integral exists only in two special cases
analogous to those of Euler and Lagrange and that,
other cases with single-valued integrals are not
additional cases but it can be reduced to previous
cases. The necessary and sufficient condition for some
functions to be a first integral for the Euler- Poisson
equations when the motion of a rigid body is acted
upon by a central Newtonian force field is investigated
in [4]. The Hess’s case for the motion of a rigid body
was studied in [5] having the assumption of giving
initial high value for the angular velocity about some
axis, is imparted to the body.
The motion of Kovalevskaya gyroscope was
studied in [6-11]. In [8], the existance of periodic
solutions for the equation of motion of a rigid body in
a Kovalevskaya top are obtained and it has been
www.ijera.com

extended in [9]. The periodic solutions nearby
equilibrium points for the same problem are
investigated in [10] using the Liapunov theorem of
holomorphic integral when the body moves under the
influence of a central Newtonian field. The author
generalized this problem in [11] when the body acted
by potential and groscopic forces. An exceptional case
of motion of this gyroscope was treated in [12].
In [16], the authors have obtained the ten
classical integrals for the generalized problem of the
roto-translatory motion of n gyrostats n  2 . This
problem was studied in [17], when a system was made
of two gyrostats attracting one another according to
Newton’s law. The problem of the earth’s rotation,
using a symmetrical gyrostat as a model was
considered in [18]. The authors considered the first two
components of the gyrostatic moment are null and the
third component is chosen as a constant. This study
was extended and was generalized in [19].
The small parameter method of Poincaré [20]
was used to find the first terms of the series expansion
of the periodic solutions of the equations of motion of
a rotating heavy rigid body about a fixed point when
the body spins rapidly about the dynamically
symmetric axis [21,22 ] and acted by the gravitaional
and Newtonian force field respectively. This problem
was generalized in [23] when the body moves under
the unfluence of Newtonian force field and the third
component of gyrostatic moment vector.
The problem of a perturbed rotational motion
of a heavy solid close to regular precession with
constant restoring moment was treated in [13] and
[14]. It is assumed that the angular velocity of the body
655 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
is sufficiently high, its direction is close to the axis of
dynamic symmetry of the body, and the perturbing
moments are small in comparison with the gravity
moments. Averaged systems of the equations of
motion are obtained in the first and second
approximations in terms of the small parameter. The
perturbed problem of the rotatory motion of a
symmetric gyrostat about a fixed point with the third
non-zero component of a gyrostatic moment vector
(about the axis of symmetry) and under the action of
some moments was considered in [24]. This problem is
generalized in [25]. The problem of existence of
periodic motions of a solid was studied in [26]. The
author used the Poincaré’s method of small parameter
to obtain the periodic solutions of the equations of
motion. It was assumed that the center of mass of the
solid differs little from a dynamically symmetric axis.
This problem was generalized in [27], when the body
rotates under the action of a central Newtonian force
field and the third component of the gyrostatic moment
vector.
In this work, the rotational motion of a
gyrostat about a fixed point in a central Newtonian
force field analogous to Lagrange's case is studied
when the body is acted upon by a gyrostatic moment
vector about the moving axes. The equations of motion
and their first integrals are obtained and have been
reduced to a quasilinear autonomous system of two
degrees of freedom with one first integral. Poincaré’s
small parameter method [20] is applied to investigate
the analytical periodic solutions of the equations of
motion of the body with one point fixed, rapidly
spinning about one of the principal axes of the
ellipsoid of inertia. A geometric interpretation of
motion is given by using Euler’s angles [28] to
describe the orientation of the body at any instant of
time. The numerical solutions of the autonomous
system are obtained using the fourth order RungeKutta method [29]. The phase plane diagrams describe

www.ijera.com

the stability are presented. A comparison between the
analytical and the numerical solutions shows a good
agreement between them and the deviations are very
small.
The model of a gyrostat has a wide range of
applications in various fields such as satellite, robot
manipulators, and spacecraft. Moreover, the study of
the rotational motion of a gyrostat has been motivated
by industrial applications in many fields. This is
because the gyrostat provides a convenient model for
the satellite-gyrostat, spacecraft and like; see [30,31]

II.

Equations of Motion and Change of
Variables

Consider a rigid body (gyrostat) of mass M ,
with one fixed point O ; its ellipsoid of inertia is
arbitrary and acted upon by a central Newtonian force
field arising from an attracting centre O1 being located
on a downward fixed axis OZ passing through the
fixed point with gyrostatic moment vector
  (1 , 2 , 3 ) about x, y and z axes respectively.
It is taken into consideration that at the initial
time, the body rotates about z axis with a high
angular velocity r0 , and that this axis makes an angle

 0  n / 2 ( n  0, 1, 2, ...)

with the

Z  axis.

Without loss of generality, we select the positive
branches of the z  axis and of the x  axis in a way to
avoid an obtuse angle with the direction of the
Z  axis. The equations of motion and their three first
integrals similar to Lagrange case take the forms
[32,33]

1

 
 

p1  A1 q1 r1  A1[ r0 q1 3  (c  0 ) 1 r1 2 ]   a 1 ( z0  1  k a A1  1  1 ),
1




q1  B1 p1 r1  B 1[ r0 p1 3  (c  0 ) 1 r1 1 ]   b 1 ( z0  1  a B1  1  1 ),

(1)




r1   2 [ (c C  0 ) 1 ( q1 1  p1 2 )  ( C1 p1 q1  k C1  1  1 ) ],

  r1  1   q1  1,
1


   p1  1  r1  1 ,
1


   ( q1  1  p1  1 ) ;
1





r12  1   2 S1 , r1  1  1   S2 ,  12   1 2   12  (  0 ) 2 ;

(2)

where
2
2
2
2




S1  a{( p10  p12 )  ( q10  q12 )  k [ (  10   12 )  (  10   1 2 )  (1   1 2 ) ]}  2 z0 (1   1 )






S 2  a [( p10  10  p1  1 )  ( q10  10  q1  1 )]  (c C  0 ) 1[ 1 (  10   1 )  2 (  10   1 )

(3)


 3 (1   1) ];


p  c  0 p1, q  c  0 q1, r  r0 r1, k  N c 2



   0 1,     0 1,     0 1, t   r0 ,
www.ijera.com

( .  d d ) ,

(4)


 0  0, 0   0  1;
656 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

A1   B1  (C  A) A ,

  c  0 r0 ,

A  B,

x0  y0  0,

a  b  A / C,

z 0  0,

N  3g R ,

www.ijera.com

c 2  M g l / C,
(5)

g   R2 ,

From the first two equations of (2), one can express the

variables r1 and  1 as

A, B and C are the principal moments of
inertia; x0 , y0 and z 0 are the coordinates of the
centre of mass in the moving coordinate system
(O x y z );  ,   and   are the direction cosines of
the downwards fixed

1


r1  1   2 [ S1  2 z 0 (1   1 )
2

 k (1   1 2 ) ]   ,

of the angular velocity vector of the body on the
principal axes of inertia; R is the distance from the
fixed point O to the centre of attraction O1 ;  is the

1

 1  1   S 2   2 [ S1  2 z 0 (1   1 )
2

 k (1   1 2 ) ]   ,

Z axis of the fixed frame in
space (O X Y Z ); p, q and r are the projections

coefficient of attraction of such centre; 1 , 2 and  3
are the components of the gyrostatic moment vector


 ; and p0 , q0 , r0 ,  0 ,  0 and  0 are the initial

Differentiate the first and the fourth equations
of (1) and use (6) to reduce the four remaining
equations to the following two second order
differential equations

values of the corresponding variables.

III.

(6)

Reduction of the Equations of Motion
to a Quasilinear Autonomous System


    2 p1  (c A  0 ) 1 A1 1   { A1 (C r0 ) 1 ( q1 1  p1 2 ) q1  A1 ( A ro ) 1 1 S1

p1
 ( A r0 ) 1 C1 p1 q1 2  z 0 a 1 (1  A1 )  1  k (  2  A1 )  1  ( A r0 ) 1


2
[ a 1 z 0  1  k A1  1 ] 3 }   2 { [   2 S1 p1  a 1 z 0 p1 ]  k A1 [ p1 (1   1 )
1




 q1 (1  C1 )  1  1  (1  A1 ) S 2  1 ]  r0 3 p1 A 1 A1[ S1  2 z 0 (1   0 )

(7)

1
2

 k (1   1 ) ]  ( A r0 ) 1 k A1  1 S 2 3 }   3 { z 0  1a 1 (1  A1 )[ S1
2
1


2


 2 z 0 (1   0 )  k (1   1 ) ]  ( A r0 ) 1 k A1  1[ S1  2 z 0 (1   1)
2
2

 k (1   1 ) ] 3  ( 2 k A1  a 1 z 0 ) S 2 p1 }   ,


  1  ( A r0 ) 1 1   [(1  A1 ) p1  ( A r0 ) 1 ( 1 S 2  3 p1 )  (C r0 ) 1 ( q1 1
1



 p1 2 )  1 ]   2 [  S1  1  (1  A1 ) p1 S 2  p1 q1  1   1 ( z 0 a 1  q12 )

(8)


 k A1 1 ]   3 ( a 1 z 0  2 k A1 )  1 S 2   ,
where   is a new frequency called Ismail and Amer's
frequency [23] and takes the form

2   2  2 A1 A1r013 ,

Here r0 is large, so

2
3
r0 , r0 ,  are neglected.

Solving the first and the fourth equations of system (1),

and using (6), we obtain q1 and  1 in the form

  A1.



q1  ( A 1 r1 ) 1 [ 1  ( A A 1 r0 r1 ) 1 3   ][ (c A  0 ) 1 r1 2  p1
 
 
  a 1 ( z 0  1  k a A1  1  1) ],

(9)

 1  r11 (    q1  1).
1
www.ijera.com

657 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
Let us introduce new variables p 2 and

p2  p1      1  2 ,

2

www.ijera.com

such that

 2   1    p2 ,

(10)

where
2
  (C r0 A1 A22 ) 1 y2 1 ,



1  (1  2 ) 1 [z0 a 1 (1  A1 )  k ( A1   2 )  ( Ar0 ) 1 ( a 1 z0  k A1 ) 3 ],

  (1  2 ) 1 [ 1  A1  ( A r0 ) 1 3 ],
In terms of the new variables p 2 and


yi  (c C  0 ) 1 i

 2 , the variables q1

and

 1

i  1, 2, 3 .

take the form


q1   X ( p2  C A 1 y 2 )   X [  2   ( A r0 ) 1 2 S11 ]   2 { X [ ( k A1
2
1 1

A1 S11 p2  X ( k A1 ) S 21 }   ,
2
2

 1    X ( A r0 ) 1 2   [  2 p2  X ( A r0 ) 1 2 S 21 ]   2 { X [( A r0 ) 1 2 S11
2


 a 1 z 0 )  S11 ] p2 


  2   S 21 p2 ] 
2

(11)

1
S11 }   ,
2
2

where


X  A1 1 [1  ( A A1 r0 )1 3 ], 2  1  a 1 z0  k A1,  2    X .

Making use of (11) and (10) into (3), we obtain the following expressions for
in 

Si  Si 1  2

2 i

 Si 2   ,

S 1 and S 2 in terms of power series

( i  1, 2 )

(12)

where
2
2
2
2
2
2
2
2
 
 
S11  a{( p20  p2 )  X 2 ( p20  p2 )  k [ (  20   2 )  (  20   2 )


 
 2 X ( A r0 ) 1 ( 20  ) 2 ]  2 C X 2 A1 y2 ( p20  p2 )},
2
S12  a [  ( p20  p2 )  1 ( p20  20  p2  2 ) ]  a X 2 [( A r0 ) 1 2 S11

 
 20  2
 ( p20  p2 )   2 ( p20   p2  )]  ( z 0  k ) S 21  k { a ( p20  20

(13)

 20  2
 p2  2 )  a 2 ( p20   p2  )  X ( A r0 ) 1 a 2 [ (    ) S 21
20
2
 
 ( p20  p2 ) 2 ]}  C X 2 A 1  2 y2 (    ),
20
2
  
 
S 21  a{( p20  20  p2  2 )  X [ ( p20  20  p2  2 )  X ( A r0 ) 1 2 ( p20  p2 )]}

 
 y1 (  20   2 )  y2 (1  a X C A1 )( 20   2 ),
2
2
2
2
2
2
 
S 22  a [  ( p20  p2 )   (  20   2 )  1 (  20   2 ) ]  a X {  2 ( p20  p2 )

 
 A 1 ( C y 2  2  X r01 2 S 21 )( p 20  p2 )  2 ( A r0 ) 1 ( S 11 X  2 )
2
2
 
 (    )   2 (    ) }  y1 ( p20  p2 )  y 2 ( p20  p2 )  y3 S 21 .
20
2
20
2

www.ijera.com

658 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com

From (12), (13) and (6), we get

1 2

 S11   3 [ S12  (k  z0 ) S 21 ]   ,
2
1

 1  1   S 21   2 ( S 22  S11 )   3 [ S12  (k  z0 ) S 21 ]   .
2
r1  1 

(14)

Substituting (10), (11), (12), (13) and (14) into (7) and (8), we obtain the following quasilinear
autonomous system of two degrees of freedom

    2 p2  C A1 A1 y1   F ( p2 , p2 ,  2 , ,  ),


p2
2

(15)



   2  ( A r0 ) 1 1    ( p2 , p2 ,  2 , ,  ),
2
2
where

F  F1   F2   2 F3   ,

  1    2   2  3   ,

2



F1  ( A r0 ) 1 1 1  ( A1 r0 ) 1 2 { C 1 [ ( p2  2 A1 y 2 p2 )  2 p2  2 ]
2


 C 1 A1 p2 ( A 1 y2  p2 ) }  ( A r0 ) 1 k C1  2  2 ,
2

1  ( A r0 ) 1 S 21 1  (C r0 ) 1 [ A 1 1 ( A 1 y 2  p2 )  2 p2 ]
2

F2  f 2   1 ( 1   2 ) p2 ,

 2   2   ( 1   2 )(   1 2 ),

F3  f 3  1  2   1 ( 1   2 ) (   1 2 ),

 3   3   f 2   2 1 ( 1   2 ) p2 ,


f 2  ( A1 r0 ) 1 2 {[ 2 y2 ( A C ) 1  p2 A1 C 1 ] 2   C 1 A1 (   1  2 )( A1 y2  p2 )}
2
2

 ( A r0 ) 1  2 p2   2 ( A r0 ) 1 A1 1 S12   2 S11 p2  a 1 p2 z0  A1 k p2 {1  
2
2


 2 ( A A1 r0 ) 1 2   2 [   ( A A1 r0 ) 1 2 ][  2 p2  ( A A1 r0 ) 1 2 S 21 ] }  k A1 X  2
2
2

 [   ( A A1 r0 ) 1 2 ]( A1 y2  p2 )  k A1 S 21 (1  A1 )  2  ( A r0 ) 1 A13 S11 p2
2
1

 1{C A1 A1 y1  r0 [ A11 S 21  C 1 [ 1 ( A1 y2  p2 )  2 p2 ] ]},
2

2



 2  r0 11{ A1 S 22  (C A1 ) 1[  2 p2 ( A1 y2  p2 )   2  ]}  (C r0 ) 1 2 [  2 p2 p2
2

 (   1  2 )]   2 S11  ( 1  A1 ) p2 S 21  ( 1  C1 ) A1 1 [   2 ( A A1 r0 ) 1
2
2
2




 ( A1 y2  p2 )]   2 {z0 a 1  k A1  X 2 [ p2  A1 y2 ( A1 y2  2 p2 )]}


 S 21 (a 1 z0  2  2 k A1  2 ),

www.ijera.com

659 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com


f 3  2 ( A1 r0 ) 1{ C 1 (  2  ) 2  [ 2 C 1 ( A 1 y 2  p2 )  C 1 A1 p2 ]
2
1


S11 ] p2  k A1  S 21 }   2  ( C 1 A1 )  2 p2 p2 }
2
2
2
2

  2 [ 2 p2 S12  S11 (   1  2 ) ]  (   1  2 ){ a 1 ( z 0 )  k A1[ 1  
2


 { [ ( k A1  a 1 z 0 ) 


 2 ( A A1 r0 ) 1 2   2 (   ( A A1 r0 ) 1 2 )( 2 p2  ( A A1 r0 ) 1 2 S 21 ) ] }
2
2
(16)


 k A1{  2 [   ( A A1 r0 ) 1 2 ][ ( A A1 r0 ) 1 2 S11  X  2 ]  X [  2 ( p2
2
2

 ( A A1 r0 ) 1 2 S 21 )  p2 (   ( A A1 r0 ) 1 2 ) ]( A 1 y 2  p2 ) }  k A1 (1  A1 )
2

 (  2 S 22   p2 )  ( r0 A) 1 A13 { S11 (   1  2 )  2 p2 [ S12  S 21 ( k  z 0 ) ] }
1


S11[ a 1 z 0  2 (1  A1 )  3 ( A r0 ) 1 k A1  2 ]  p2 S 21 ( 2 k A1  a 1 z 0 )
2



  1 2 r01 { p2 (C A1 ) 1 [ p2  2 ( A 1 y 2   2  ) ]  p2 C 1 ( A 1 y 2  p2 )},
2


1




 3  1 ( A1 C r0 ) 1 {  A11 ( A 1 y 2  p 2 )( 2   S 21 p 2 )   [ p 2 ( k A1  a 1 z 0  S11 )
2
2
2
1
1
1


 k A1  S 21 ]   2 p 2 [ S11 2 ( A r0 )   2  ] }  2 (C r0 ) [  A1 p 2 (  2   S 21 p 2 )
2
2
2

  2 p 2 (   1  2 ) ]  ( p 2 S11  2  2 S12 )  (1  A1 )[ p 2 S 22  (   1  2 ) S 21 ]


 X { p 2 [ S11 2 ( A r0 ) 1   2  ][   2 ( A A1 r0 ) 1 ]  ( A 1 y 2  p 2 ) [ p 2 ( 2 p 2
2
2
2


 2 S 21 ( A A1 r0 ) 1 )  (   1  2 )(  2 ( A A1 r0 ) 1 ) ] }   p 2 { a 1 z 0  X 2 [ p 2
2



 A 1 y 2 ( A 1 y 2  2 p 2 ) ] }  2 X 2  2 ( A 1 y 2  p 2 )[ S11 2 ( A r0 ) 1   2  ]  k  A1 p 2
2

 S 21 (a 1 z 0  2  2 k A1  2 ) .
The first integral of system (15) can be obtained from (2) in the form
2

 2  [   2 2 ( A A1 r0 ) 1 ]  2  {   2 p2  [   2 ( A A1 r0 ) 1 ][  2 p2
2
2
2
2


 2 S 21 ( A A1 r0 ) 1 ]  S 21}   2 {  2 p2   2 p2 [  2 p2  2 2 S 21 ( A A1 r0 ) 1 ]
2

 2 X [   2 ( A A1 r0 ) 1 ][ 2 S11 ( A r0 ) 1   2   S 21 p2 ]  S 21  2 ( S 22
2
2



(17)

1

S11 ) }  (  0 ) 2  1 .
2

Our aim is to find the periodic solutions of
system (15) under the condition A  B  C or

do not affect the generality of the solutions [23]. The
generating system of (15) is

A  B  C (  2 is positive). This means that, the
body is set in a fast initial spin r0 about the major axis

(19)

of the ellipsoid of inertia or about the minor axis of the
ellipsoid of inertia.

IV.

Formal Construction of the Periodic
Solutions

Since the system (15) is autonomous, the
following conditions
1

p 2 (0,0)  C A1 B y1 ,

p 2 (0,0)  0,

(
(
0)   2 p20 )  0,

p2

(
(
0
 )   20)  0,
2

which

admits periodic
T0  2 n in the form

solutions

with

(
(
p20 )  M 1 cos   M 2 sin   ,  20 )  M 3 cos ,

where

M i , i  ( 1, 2, 3 )

are

(20)
constants to be

determined. So, we suppose the required periodic
solutions of the initial autonomous system in the form

(18)

 2 (0,  )  0,
www.ijera.com

period

660 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com



p 2 ( ,  )  ( M 1  1 ) cos   ( M 2   2 ) sin      k Gk ( ),
k 1

(21)



 2 ( ,  )  ( M 3   3 ) cos    H k ( ),
k

k 1

with period T ( )  T0   ( ). The quantities

  2

functions of  and vanish when   0 . The initial
conditions of (21) can be expressed as

1 ,

 3 represent the deviations of the initial

values of p2 , p2 and  2 of system (15) from their
and

initial values of system (19); these deviations are

p2 (0,  )  M 1  1 ,


p2 (0,  )    ( M 2   2 ),  2 (0,  )  M 3   3 , (0,  )  0.
2

(22)

Let us define the functions Gk ( ) and H k ( ) ( k  1, 2, 3,  ) by the operator [23]

U u

 U  Gk , H k
u
u
u
1  2u 2
1 
2 
3 
  , 
2 1
 u  g ,h
M 1
M 2
M 3
2 M1
k
k







(23)

where


1
gk ( )   Fk( 0) (t1 ) sin  (  t1 ) d t1 ,
 0

(24)



hk ( )    (t1 ) sin  (  t1 ) d t1 (k  1, 2, 3) .
( 0)
k

0

Now, we try to find the expressions of the functions F1 , 1 , F2
be rewritten as
( 0)

(
p0 )  E cos (    ),

( 0)

( 0)

and  2 . The periodic solutions (20) can
(0)

(
 20)  M 3 cos ,

(25)

where
2
E  M 12  M 2 ,

  tan 1 M 2 M 1 .

Making use of (25) and (13), we obtain

1
(0
S11 )  aE 2 { cos2   X 2  2 sin 2   ( X 2  2  1 )[1  cos2 (    ) ]}
2
1

 2 k a M 33 ( A A1 r0 ) sin   2 a E   X 2 2 (c A  0 ) 1[ sin  sin(    ) ],
1
1
(0
S 21 )  M 3 E a{ cos  (   X  1) cos[ (    1)   ]  (  X  1) cos[(   1)   ]}
2
2
1
1
 a X { C A M 3 y 2 sin   E   2 ( A A1 r0 ) [ sin  sin (     ) ] }
 M 3 [ y1 (1  cos )  y 2 sin  ],

www.ijera.com

661 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com

(
S120)  a E { X [ cos  cos (     ) ]  1 M 3 [ cos  cos cos (     ) ] }  a X 2 E  
(
 { 2 S110) ( A r0 ) 1[ sin   sin(    ) ]   2 M 3 sin  sin(    ) }  k a { E M 3

[ cos  cos cos(    ) ]  [  2   E M 3 sin  sin(    )  2 X ( A r0 ) 1

(26)

(0

[ M 3 S 21 ) sin    2   E ( sin   sin(    ) ) ] ] }  X 2 M 3  2 2 ( c A  0 ) 1 sin 
(0

 ( z 0  k ) S 21 ) ,
(0
S 22 )  a { E 2 [ cos2   cos2 (     ) ]   M 3 (1  cos )  1 M 32 sin 2  }  a {  E 2
(0
2
 X  2   2 [ sin 2   sin 2 (    ) ]  E  [  2 y 2 C X A 1  2 S 21 ) ( A A1 r0 ) 1 ]
(0
 [ sin  sin(    ) ]  M 3 sin  [ X (  2 M 3 sin   ( A r0 ) 1 2 S11 ) )
2
 2  2 ( A A1 r0 ) 1 ] }  E { y1 [ cos  cos(    ) ]    y 2 [ sin
(0
 sin(    ) ] }  y3 S 21 ) .

Substitution of (25) and (26) into formulas (16), to get

F1( 0)  [ 2 ( A A1 C r0 ) 1   2 y 2 ][ M 1 sin    M 2 cos  ]   ,
(
10)  y 2 { 1  A1[ a X C  ( A1 C r0 ) 1 1 ] M 3 sin    ,
(0)
2

F

(27)

 L( )[ M 1 cos   M 2 sin   ]   ,

 (20)  M 3 N ( ) cos    ,
where


L(   )  [ a 1 z 0  1 (1    2 ) ]  A1 [ k  2 1 a  ( A r0 ) 1 ]  ( r013 A1 A1   2 )
1
1
2
 { a [(M 12    2 X 2 M 2 )  (1    2 X 2 )]  [ k M 32 C1 ´a (   2 X 2  1)
2
2
2
2
2
1

 ( M 1  M 2 ) ]  2 2 a  M 2 X ( c A  0 ) }   ,

(28)

2
2

N (   )  a ( M 12  X 2   2 M 2 )  X 2   2 (1  a )( M 12  M 2 )  [ z 0 b 1

 1 (1    2 )]  k A1  ( A1 X y 2 ) 2  r01 1  a A 1


 2 2 a   M 2 X 2 ( c A  0 ) 1  ( z 0 a 1  2 k A1 )[ M 3 ( a M 1
 y1 )  2 a   M 2 X ( A1 r0 ) 1 ]   .
Form (24), (27) and (28), the following results are obtained

g1 (T0 )  2  n M 1 ( A A1C r0 ) 1 2 y 2 ,

g1 (T0 )  2  n   M 2 ( A A1 C r0 ) 1 2 y 2 ,

g 2 (T0 )    n (   ) 1 M 2 L( ), g 2 (T0 )   n M 1 L(  ),

h1 (T0 )  0,
h1 (T0 )   n M 3 y 2 {1  A 1 [ a X C  ( A1 C r0 ) 1 1 ]},
h2 (T0 )  0,


h2 (T0 )   n M 3 N (  ).

Substituting (22) into (17) for
www.ijera.com

(29)

  0 , we obtain
662 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com

M 32  2 M 3  3   32  2  [  ( M 1  1 )(M 3   3 )  2  2   ( A A1 r0 ) 1

( M 2   2 ) ]    (  0 ) 2  1.
Supposing that


 0 is independent of  , we get M 3 and  3 as



M 3  (1   02 ) 2 (  0 )1
1

0  M 3  ,

3    ( M1  1 )   .

(30)

The independent conditions for the periodicity are [21]

  n  2 ( ) 1 { L1 (   )    2 N1 (   )[1  1 ( A r0 ) 1 ( M 3   3  1 ( A r0 ) 1 ) 1 ] }
  [ G2 (T0 )   ]  0,

 n  1{ L1 (   )  N1 (   )( C A1 A1 y1     1 )[ 1  1 ( A r0 ) 1 ( M 3   3

(31)


 1 ( B r0 ) 1 ) 1 ] }   [ G2 (T0 )   ]  0,



 [ M 3   3  1 ( A r0 ) 1 ]1 [ H 1 (T0 )   H 2 (T0 )   2 H 3 (T0 )   ]   ( ),
where L1 ( ) and N1 ( ) can be obtained from (28) by replacing M 1 , M 2 and M 3 by

 1 ,  2 and

M 3   3 respectively. Then, we have
2
2

L1(  )  2 N1(  )  (  1   2 ) W1(  )  z0 W2 (  )  k W3 (  )  W4 (  ),

(32)

where

1
a [ (  X ) 2  1][   2 (r0 A) 1 A13 ]  (1  a)(  2 X ) 2 ,
2
2
W2 (  )  a 1{1  a 1 2 [ 1  ( a  1  y1 )( M 3   3 )  2 a   2 ( A A1 r0 ) 1 ]},

W1 (   ) 

2
W3 ( )  A1  2 A1 [ 1  2 (a 1  y1 )( M 3   3 )  2 a   2 ( A A1 r0 ) 1 2 ],

W4 ( )  a  1 ( A r0 ) 1 (  2  2 A1 )  ( X y2 A1  ) 2   1 ( 1    4 )


1

a y1 { 1  X 2  2  4 2 X 2    2 (c A  0 ) 1  2 [ 12  ( X    2 ) 2 ]} .
4

From the condition that the z  axis has to be
directed along the major or the minor axis of the
ellipsoid of inertia of the body, it follows that
W1 ( )  0 for all   under consideration. So, let
us assume


z0 W2 ( )  k W3 ( )  W4 ( )  0.

 1 and  2 are obtained
in the form of a power series of integral powers of  .
Using (31), the expression of

These expansions begin with terms of order higher
than



2

expansions of the periodic solutions and the quantity
 ( ) can be expressed as
2
p1   [ 1 y 2 (C A1 A2 r0  2 ) 1  1 M 3 cos ]

 ,
q1  C X A1 y 2   [2ak ( A A1 r0 ) 2 2 3
 X  2 ]M 3 sin    ,

r1  1   2 k M 3 a 3 ( A A1 r0 ) 1 sin    ,

 1  M 3 cos   ,

. Consequently, the first terms in the

www.ijera.com

663 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com

 1   M 3 sin   2 ( A A1 r0 ) 1{1   M 3 [ y1 (1  cos )  y 2 sin  ]}   2 { X  2 M 3 sin 
 k M 3 b 3 ( A A1 r0 ) 1 sin  [2 2 ( A A1 r0 ) 1  X M 3 sin  ]}   ,
2
 1  1   M 3 [ y1 (1  cos )  y 2 sin   a C 2 y 2 ( A 2 A1 r0 ) 1 sin  ]

1
  2 M 3 {a  (1  cos )  a M 3 ( 1  X  2 )(1  cos2 )  a 2  2
2
2
1
2
 ( A A1 r0 ) sin   y3 [ y1 (1  cos )  y 2 sin   a C 2 y 2 ( A 2 A1 r0 ) 1 sin  ]
 k a 3 ( A A1 r0 ) 1 sin  }   .


 ( )     n{ 1  1 A1 [ r0 ( M 3   3 )  3 ]1 }[ z0 a 1  1 (1    2 )

 ( y2 X A1 ) 2  k A1  a  1 ( A r0 ) 1  y1 M 3 ( z0 a 1  2 k A1 ) ]   .
The solutions obtained in [22], [34] and [35]
have singular points when   1, 2, 3, 1 2 , 1 3 ,  .
These singularities are solved separately in [34], [36],
[37] and [38]. In our problem when we used Ismail and
Amer's frequency   [23] instead of  , there are no
singular points at all. Moreover, the obtained solutions
are valid for all rational values of   and are
considered as a general case of [21], [22] and [23].

cos   ,

d p   q  

,
dt
1   2

Substituting (33) into (34), in which
expressions for the angles

 0  ( / 2)  r0 h   ,

,

and



tan  0 

V.

(33)

Geometric Interpretation of Motion

In this section, the motion of the rigid body is
investigated by introducing Euler’s angles  ,  and
 , which can be determined through the obtained
periodic solutions. Since the initial system is
autonomous, the periodic solutions are still periodic if
t is replaced by (t  t 0 ) , where t 0 is an arbitrary
interval of time. Euler’s angles, in terms of time
take the forms [27,28]

0
,

0

d
d
r
cos .
dt
dt

(34)

t has been replaced by t  t 0 , and using relations (4), the following
are obtained as

 0  tan 1 M 3 ,

  0   [ 1 (t  h)   1 (h)]   2 [ 2 (t  h)   2 (h)],
   0  c cosec 0 cos 0 {[ 1 (t  h)  1 (h) ]   [  2 (t  h)  2 (h) ]
  2 [  3 (t  h)  3 (h) ] },

   0  r0 t  c cot  0 cos 0 {[1 (t  h)  1 (h)]   [ 2 (t  h)   2 (h)]}
  2 {tan  0 [ 3 (t  h)   3 (h)]  c cot  0 cos 0 [ 4 (t  h)   4 (h)]},
where
2
1 (t )   y1 cosr0 t  [ 1  c a 2 ( A1 A2 r0 ) 1 ] y2 sin r0 t,

 2 (t )  ( y1 y3  a  ) cosr0 t  { y2 y3  a ( A1 A r0 ) 1 [ 2 ( A1 1  2 )  k 3 ] }sin r0 t

1
a tan 0 ( 1  X  2 ) cos2 r0 t ,
2
1(t )  C y2 ( A1 A r0 )1 [ 2 cos0 ( A1 A)1 t  cosr0 t ],


 2 (t )  [( A12 A2 r0 ) 1 2C y1 y2 

www.ijera.com

t,

1
1
X  2 tan 0 ]t  (r0 A1 ) 1  2 tan 0 sin 2 r0 t ,
2
4

664 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com

1
2

2
 3 (t )  [ 1 tan 0  k C X 2 y 2 a 3 ( A1 A2 r0 ) 1 tan 0   2 y 2 2 ( A1 A r0 ) 1 tan 0 ] t

1 1
2
r0 1 tan  0 sin 2 r0 t  C y 2  2 ( A1 A r0 ) 1 cosr0 t ,
4
1 (t )   1 (t ),
 2 (t )   2 (t ),
 4 (t )   3 (t ),
1
3 (t )  k a 3 ( A1 A r0 ) 1 cosr0 t.
8
VI.
It is evident that the Eulerian angles  , 


 depend on some arbitrary constants
 0 ,  0 ,  0 and r0 ( r0 is large). For   0, we

and



 0,   0 and   r0 . This permits
permanent rotation of the body with spin r0
(sufficiently large) about the z  axis.
have

Numerical Solutions Matching of
Analytical Solutions

This section is devoted to ascertain accuracy
of the obtained solutions.
(i) We introduce the analytical solutions
through computer program. So, let us consider the
following data that determine the motion of the body

A  B  22.49 kg.m 2  C  35.6 kg.m 2 ,

A  B  50.32 kg.m 2  C  33.4 kg.m 2

r0  1000 m, R  2000 m,   0.6, M  30 kg, z 0  5 m,  0  0.352,
1  2  3  ( 0, 10, 20 , 30, 40, 50) kg.m 2 .s 1 , T  12.566371.
Consider p2 a ,  2 a denoting the analytical solutions

p2 ,  2 . The graphical representations for these
solutions are given in figures (1)-(5) for the case
A  B  C and figures (6)-(10) for the case
A B C.
(ii) The quasilinear autonomous system (15) is
solved numerically using the fourth order Runge-Kutta
method through another program with the same
previous data and the initial values of the analytical
solutions. Consider p2 n ,  2 n to denote the numerical
solutions p2 ,  2 .
The
numerical
graphical
representations are given in figures (11)-(15) for the
case A  B  C and figures (16)-(20) for the case
A B C.

waves revealing when

that when  increases the amplitude of the wave
increases also and the number of the waves remain
unchanged, see figures (1), (2), (11) and (12) for the
case A  B  C but for the case A  B  C , we
can see from figures (6), (7), (16) and (17) that the
amplitude of the wave decreases. Also, the solutions
 2 a and  2 n remain unchanged for different values of

 because these solutions do not include the variables
1 , 2 , 3 , A, B and C .
p2a -axis

A=B<C

16E-05

  20 3
12E-05
8E-05

The comparison between the analytical and
the numerical solutions shows quite agreement
between them, see the corresponding figures (1)-(5),
(11)-(15) and (6)-(10), (16)-(20) for the cases
A  B  C and A  B  C respectively. This
agreement gives powerful ascertain for the analytical
technique. The corresponding phase plane diagrams for
some of these solutions describing the stability of the
solutions are given in figures (4), (5), (9), (10) for the
analytical solutions and (14), (15), (19), (20) for the
numerical solutions.

  increases. We conclude

 0

4E-05
0
- 4E-05

  10 3

-8E-05

-14E-05
0

40

80

120

160

Here, the concerned plots represent the
functional time dependence of the amplitude of the

www.ijera.com

200

t-axis

Fig. (1)

665 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
p2a -axis

A=B<C

4E-04

2a -axis

  50 3

www.ijera.com

  30 3 , 40 3 , 50 3

A=B<C

2

  40 3

3E-04

1

2E-04
0

1E-04

  30 3
-1

0

-1E-04
0

40

80

120

160

Fig. (2)

p2a -axis


-2

200

0

t-axis

40

80

120

160

 -axis
2a

A=B<C

A=B<C

200

0.012

200

t-axis

Fig. (3)

  10 3

  50 3

0.008

100
0.004

0

0

-0.004

-100
-0.008

-200

-0.012
1.4E-04

2.2E-04

-1

0

p2a -axis

Fig. (4)

p2a -axis

-2

3.8E-04

3E-04

1

2

2a -axis

Fig. (5)

A=B>C

p2a -axis

14E-05

A=B>C

1E-04

 0

  30 3

0

8E-05

-1E-04

4E-05
0

  40 3
-3E-04

- 4E-05
-8E-05
-5E-04

  50 3

-12E-05

  10 3

  20 3
-18E-05

-7E-04

0

40

80

120

Fig. (6)

www.ijera.com

160

200

t-axis

0

40

80

120

160

200

t-axis

Fig. (7)

666 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
2a -axis

p2a -axis


  30 3 , 40 3 , 50 3

A=B>C

2

www.ijera.com
A=B>C

0.014

  50 3

0.008

1

0.004
0

0

-0.004

-1

-0.008

-2
0

40

80

120

160

200

-0.014
-6.2E-04

-5.4E-04

 -axis
2a

-3.8E-04

- 4.6E-04

p2n -axis

A=B>C

200

-3.2E-04

p2a -axis

Fig. (9)

Fig. (8)

A=B<C

16E-05

  10 3

  20 3
12E-05

100

8E-05
4E-05

0

0
- 4E-05

  10 3

-100

-8E-05

 0
-14E-05

-200
-2

-1

0

1

p2n -axis

0

2

2a -axis

Fig. (10)

80

120

160

2n -axis

  50 3

200

t-axis

Fig. (11)

A=B<C

4E-04

40

  30 3 , 40 3 , 50 3

A=B<C

2

  40 3

3E-04

1

2E-04
0

1E-04

  30 3
-1

0

-1E-04

-2

0

40

80

120

160

Fig. (12)

p2n -axis


200

0

40

80

t-axis

 -axis
2n

A=B<C

0.012

  50 3

120

160

200

t-axis

Fig. (13)

A=B<C

200

  10 3

0.008
100

0.004

0

0

-0.004
-100

-0.008

-0.012
1.4E-04

-200

2.2E-04

3E-04

Fig. (14)

www.ijera.com

3.8E-04

p2n -axis

-2

-1

0

1

Fig. (15)

667 | P a g e

2

2n -axis
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
p2n -axis

www.ijera.com

p2n -axis

A=B>C

14E-05

A=B>C

1E-04

 0

  30 3
0

8E-05
4E-05
-2E-04

  40 3

0
-4E-05
- 4E-04

-8E-05

  50 3

-12E-05

  10 3

  20 3

-6E-04
-7E-04

-18E-05
0

40

80

120

160

80

120

160

200

t-axis

Fig. (17)

p2n -axis


  30 3 , 40 3 , 50 3

A=B>C

40

t-axis

Fig. (16)

2n -axis

0

200

A=B>C

0.014

2

  50 3

0.008
1

0.004
0

0

-0.004
-1

-0.008

-2
0

40

80

120

160

t-axis

Fig. (18)

 -axis
2n

-0.014
-6.2E-04

200

-5.4E-04

- 4.6E-04

Fig. (19)

-3.2E-04

-3.8E-04

p2n -axis

A=B>C

200

used to investigate the periodic solutions of the present
problem up to the first order approximation in terms of
the small parameter  . The periodic solutions (33) are
considered as a generalization of those obtained in [21]
(in the case of the uniform force field), [22] (in the
case of the Newtonian force field) and [23] (in the case
of presence 3 only). The solutions and the correction

  10 3

100

0

-100

-200
-2

-1

0

Fig. (20)

VII.

1

2

2n -axis

Conclusion

The problem of the three-dimensional motion of
a gyrostat in the Newtonian force field with a
gyrostatic moment about one of the principal axes of
the ellipsoid of inertia, is investigated by reducing the
six first-order non-linear differential equations of
motion and their first three integrals into a quasilinear
autonomous system with two degrees of freedom and
one first integral. Poincaré’s small parameter method is
www.ijera.com

of the period for the latter problems can be deduced
from the obtained solutions in this work as limiting
cases by reducing the Newtonian terms and the
gyrostatic moment. The introduction of an alternative
frequency   instead of  avoids the singularities
traditionally appearing in the solutions of other
treatments. The analytical solutions are analysed
geometrically using Euler’s angles to describe the
orientation of the body at any instant of time. These
solutions are performed by computer program to get
their graphical representations. The fourth order
Runge-Kutta method is applied through another
computer program to solve the autonomous system and
represent the obtained numerical solutions. The
comparison between both the analytical and the
numerical solutions is considered to show the
difference between them. These deviations are very
668 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
small, that is the numerical solutions are in full
agreement with the analytical ones. The great effect of
the gyrostatic moment  is shown obviously from the
graphical representations.

References
[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Arkhangel'skii, Iu. A., On the algebraic
integrals in the problem of motion of a rigid
body in a Newtonian field of force, PMM 27,
1, 171-175, 1963.
Kharlamov, P. V., A solution for the motion
of a body with a fixed point, PMM 28, 1,
158-159, 1964.
Keis, I. A., On algebraic integrals in the
problem of motion of a heavy gyrostat fixed
at one point, PMM 28, 3, 516-520, 1964.
Ismail, A. I. and Amer, T. S., A Necessary
and Sufficient Condition for Solving a Rigid
Body Problem, Technische Mechanik 31, 1,
50 – 57, 2011.
Arkhangel'skii, Iu. A., On the motion of the
Hess gyroscope, PMM 34, 5, 973-976, 1970.
Arkhangel'skii, Iu. A., On the motion of
Kowalewski's gyroscope, PMM 28, 3, 521522, 1964.
Arkhangel'skii, Iu. A., On the motion of
Kowalewska's gyroscope in the Delone case,
PMM 36, 1, 138-141, 1972.
F.M. El-Sabaa, A new class of periodic
solutions in the Kovalevskaya case of a rigid
body in rotation about a fixed point, Celestial
Mechanics 37, 71-79, 1985.
F.M. El-Sabaa, Periodic solutions in the
Kovalevskaya case of a rigid body in rotation
about a fixed point, Astrophysics and Space
Science 193, 309-315, 1992.
F.M. El-Sabaa, The periodic solution of a
rigid body in a central Newtonian field,
Astrophysics and Space Science 162, 235-42,
1989.
F.M. El-Sabaa, About the periodic solutions
of a rigid body in a central Newtonian field,
Celestial
Mechanics
and
Dynamical
Astronomy 55, 323-330, 1993.
Starzhinskii, V. M., An exceptional case of
motion of the Kovalevskaia gyroscope, PMM
47, 1, 134-135, 1984.
Leshchenko, D. D. and Sallam S. N.,
Perturbed rotational motions of a rigid body
similar to regular precession, PMM 54, 2,
183-190, 1990.
Leshchenko, D. D., On the evolution of rigid
body
rotations,
International
Applied
Mechanics 35, 1, 93-99, 1999.
Malkin, I. G., Some problems in the theory of
nonlinear oscillations, United States Atomic
Energy Commission, Technical Information
Service, ABC. Tr-3766, 1959.
Cid, R. and Vigueras A., About the problem
of motion of n gyrostats: 1. The first

www.ijera.com

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]
[33]

www.ijera.com

integrals, Celestial Mechanics 36, 155-162,
1985.
Sansaturio, M. E. and Vigueras, A.,
Translatory-rotatory motion of a gyrostat in a
Newtonian force field, Celestial Mechanics
41, 297-311, 1988.
Cid, R. and Vigueras, A., The analytical
theory of the earth's rotation using a
symmetrical gyrostat as a model, Rev. Acad.
Ciencias. Zaragoza 45, 83-93,1990.
Molina, R. and Vigueras, A., Analytical
integration of a generalized Euler-Poinsot
problem: applications, IAV Symposium, No.
172, Paris, 1995.
Nayfeh, A. H., Perturbations methods,
WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2004.
Arkhangel’skii, Iu. A., On the motion about a
fixed point of a fast spinning heavy solid,
PMM 27, 5, 864-877, 1963.
El-Barki, F. A. and Ismail, A. I., Limiting
case for the motion of a rigid body about a
fixed point in the Newtonian force field,
ZAMM 75, 11, 821-829, 1995.
Ismail, A. I. and Amer, T. S., The fast
spinning motion of a rigid body in the
presence of a gyrostatic momentum  3 , Acta
Mechanica 154, 31-46, 2002.
Ismail, A. I. Amer, T. S. and Shaker, M. O.,
Perturbed motions of a rotating symmetric
gyrostat, Engng. Trans. 46, 3-4, 271-289,
1998.
Amer, T. S., New treatment of the perturbed
motions of a rotating symmetric gyrostat
about a fixed point, Thai J. Math. 7, 151-170,
2009.
Elfimov, V. S., Existence of periodic
solutions of equations of motion of a solid
body similar to the Lagrange gyroscope,
PMM 42, 2, 251-258, 1978.
Ismail, A. I.; Sperling, L., and Amer, T. S.,
On the existence of periodic solutions of a
gyrostat similar to Lagrange’s gyroscope,
Technishe Mechanik 20, 4, 295-304, 2000.
Rao, A. V., Dynamics of particles and rigid
bodies: A systematic approach, Cambridge
University Press, 2006.
Faires, J. D., and Burden, R., Numerical
methods, Inc. Thomson Learning, 2003.
Rotea, M., Suboptimal control of rigid body
motion with quadratic cost, Dyn. Control 8,
55–80, 1998.
El-Gohary, A., On the orientation of a rigid
body using point mass, Appl. Math. Comput.
151, 163–179, 2004.
Baruh, H., Analytical dynamics, WCB/
McGraw-Hill, 1999.
Amer, T. S., On the motion of a gyrostat
similar to Lagrange’s gyroscope under the

669 | P a g e
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

[34]

[35]

[36]

[37]

[38]

influence of a gyrostatic moment vector,
Nonlinear Dyn 54, 249-262, 2008.
Arkhangel’skii, Iu. A., On a motion of an
equilibrated gyroscope in the Newtonian force
field, PMM 27, 6, 1099-1101, 1963.
Ismail, A. I., On the application of KrylovBogoliubov-Mitropolski
technique
for
treating the motion about a fixed point of a
fast spinning heavy solid, ZFW 20, 205-208,
1996.
Ismail, A. I., Treating a singular case for a
motion a rigid body in a Newtonian field of
force, Arch. Mech. 49, 6, 1091-1101, 1997.
Ismail, A. I., The motion of fast spinning rigid
body about a fixed point with definite natural
frequency,
Aerospace
Science
and
Technology 3, 183-190, 1997.
Ismail, A. I., The motion of a fast spinning
disc which comes out from the limiting

case  0  0 , Comput. Methods Appl. Mech.
Engrg. 161, 67-76, 1998.

www.ijera.com

Fig. 5
The phase plane diagram of the analytical solution
when   10 3 kg.m .s
2

(1)

Mathematics Department, Faculty of Science, Tanta
University, Tanta 31527, Egypt.
(2)
Mathematics Department, Faculty of Science, AlAzhar University, Nasr City 11884, Cairo, Egypt.
(3)
Mathematics Department, Faculty of Science, Suez
Cana University, Egypt.
(4)
Mathematics Department, Faculty of Science,
Minufiya University, Shebin El-Koum, Egypt.

A  B  C.
Fig. 6
The graphical representation of the analytical solution
p 2 via t when

  (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case

A  B  C.
Fig. 7
The graphical representation of the analytical solution
p 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 8
The graphical representation of the analytical solution
 2 via t when
case A  B  C.
Fig. 9
The phase plane diagram of the analytical solution
when   50 3 kg.m .s
2

1

p2

for the case

A  B  C.
Fig. 10
The phase plane diagram of the analytical solution
when   10 3 kg.m .s
2

1

2

for the case

A  B  C.

Captions of Figures
Fig. 1
The graphical representation of the analytical solution
p 2 via t when

  (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case

A  B  C.
Fig. 2
The graphical representation of the analytical solution
p 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 3
The graphical representation of the analytical solution
 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 4
The phase plane diagram of the analytical solution
when   50 3 kg.m .s
2

www.ijera.com

for the case

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the

Permanent Addresses:

A  B  C.

1

2

1

for the case

p2

Fig. 11
The graphical representation of the numerical solution
p 2 via t when

  (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case

A  B  C.
Fig. 12
The graphical representation of the numerical solution
p 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 13
The graphical representation of the numerical solution
 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 14
The phase plane diagram of the numerical solution
when   50 3 kg.m .s
2

1

for the case

A  B  C.
670 | P a g e

p2
T. S. Amer et al. Int. Journal of Engineering Research and Application
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671
Fig. 15
The phase plane diagram of the numerical solution
when   10 3 kg.m .s
2

1

www.ijera.com

2

for the case

A  B  C.
Fig. 16
The graphical representation of the numerical solution
p 2 via t when

  (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case

A  B  C.
Fig. 17
The graphical representation of the numerical solution
p 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 18
The graphical representation of the numerical solution
 2 via t when

  (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the
case A  B  C.
Fig. 19
The phase plane diagram of the numerical solution
when   50 3 kg.m .s
2

1

p2

for the case

A  B  C.
Fig. 20
The phase plane diagram of the numerical solution
when   10 3 kg.m .s
2

1

2

for the case

A  B  C.

www.ijera.com

671 | P a g e

More Related Content

What's hot

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
The Equation Based on the Rotational and Orbital Motion of the Planets
The Equation Based on the Rotational and Orbital Motion of the PlanetsThe Equation Based on the Rotational and Orbital Motion of the Planets
The Equation Based on the Rotational and Orbital Motion of the PlanetsIJERA Editor
 
Bianchi type i wet dark universe in bimetric relativity
Bianchi type i  wet  dark  universe in bimetric relativityBianchi type i  wet  dark  universe in bimetric relativity
Bianchi type i wet dark universe in bimetric relativityAlexander Decker
 
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...IJECEIAES
 
Complete solution for particles of nonzero rest mass in gravitational fields
Complete solution for particles of nonzero rest mass in gravitational fieldsComplete solution for particles of nonzero rest mass in gravitational fields
Complete solution for particles of nonzero rest mass in gravitational fieldsAlexander Decker
 
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...Time Evolution of Density Parameters for Matter and Dark Energy and their Int...
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...IJASRD Journal
 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSijrap
 
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...IJERA Editor
 
Motions for systems and structures in space, described by a set denoted Avd. ...
Motions for systems and structures in space, described by a set denoted Avd. ...Motions for systems and structures in space, described by a set denoted Avd. ...
Motions for systems and structures in space, described by a set denoted Avd. ...Premier Publishers
 
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of Gravityw
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of GravitywFive Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of Gravityw
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of GravitywIJERA Editor
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7JOHN OBIDI
 
Application of stochastic modeling in geomagnetism
Application of stochastic modeling in geomagnetismApplication of stochastic modeling in geomagnetism
Application of stochastic modeling in geomagnetismeSAT Publishing House
 
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES ijrap
 

What's hot (15)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
The Equation Based on the Rotational and Orbital Motion of the Planets
The Equation Based on the Rotational and Orbital Motion of the PlanetsThe Equation Based on the Rotational and Orbital Motion of the Planets
The Equation Based on the Rotational and Orbital Motion of the Planets
 
Bianchi type i wet dark universe in bimetric relativity
Bianchi type i  wet  dark  universe in bimetric relativityBianchi type i  wet  dark  universe in bimetric relativity
Bianchi type i wet dark universe in bimetric relativity
 
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...
Asymptotic Stability of Quaternion-based Attitude Control System with Saturat...
 
Complete solution for particles of nonzero rest mass in gravitational fields
Complete solution for particles of nonzero rest mass in gravitational fieldsComplete solution for particles of nonzero rest mass in gravitational fields
Complete solution for particles of nonzero rest mass in gravitational fields
 
7 m. kotb
7 m. kotb7 m. kotb
7 m. kotb
 
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...Time Evolution of Density Parameters for Matter and Dark Energy and their Int...
Time Evolution of Density Parameters for Matter and Dark Energy and their Int...
 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
 
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel...
 
Motions for systems and structures in space, described by a set denoted Avd. ...
Motions for systems and structures in space, described by a set denoted Avd. ...Motions for systems and structures in space, described by a set denoted Avd. ...
Motions for systems and structures in space, described by a set denoted Avd. ...
 
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of Gravityw
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of GravitywFive Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of Gravityw
Five Dimensional Bianchi Type-V Space-Time in f (R,T) Theory of Gravityw
 
Weak elastic anisotropy
Weak elastic anisotropyWeak elastic anisotropy
Weak elastic anisotropy
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
 
Application of stochastic modeling in geomagnetism
Application of stochastic modeling in geomagnetismApplication of stochastic modeling in geomagnetism
Application of stochastic modeling in geomagnetism
 
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES
ABOUT NONLINEAR CLASSIC FIELD THEORY OF CONNECTED CHARGES
 

Viewers also liked (20)

Dy35710714
Dy35710714Dy35710714
Dy35710714
 
Id3514261429
Id3514261429Id3514261429
Id3514261429
 
Fg35918922
Fg35918922Fg35918922
Fg35918922
 
Ie3514301434
Ie3514301434Ie3514301434
Ie3514301434
 
Fm35978984
Fm35978984Fm35978984
Fm35978984
 
Fx3510401044
Fx3510401044Fx3510401044
Fx3510401044
 
Ed35736740
Ed35736740Ed35736740
Ed35736740
 
Eb35725731
Eb35725731Eb35725731
Eb35725731
 
Ds35676681
Ds35676681Ds35676681
Ds35676681
 
Eg35750753
Eg35750753Eg35750753
Eg35750753
 
Gn3511531161
Gn3511531161Gn3511531161
Gn3511531161
 
Ef35745749
Ef35745749Ef35745749
Ef35745749
 
Ec35732735
Ec35732735Ec35732735
Ec35732735
 
Dt35682686
Dt35682686Dt35682686
Dt35682686
 
Ee35741744
Ee35741744Ee35741744
Ee35741744
 
Du35687693
Du35687693Du35687693
Du35687693
 
Dw35701704
Dw35701704Dw35701704
Dw35701704
 
Dx35705709
Dx35705709Dx35705709
Dx35705709
 
Ho3513201325
Ho3513201325Ho3513201325
Ho3513201325
 
Ey35869874
Ey35869874Ey35869874
Ey35869874
 

Similar to The Spinning Motion of a Gyrostat

Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...IOSR Journals
 
A New Solution To The Lagrange S Case Of The Three Body Problem
A New Solution To The Lagrange S Case Of The Three Body ProblemA New Solution To The Lagrange S Case Of The Three Body Problem
A New Solution To The Lagrange S Case Of The Three Body ProblemSophia Diaz
 
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...IJRES Journal
 
On the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsMagedHelal1
 
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...sergiupopa17
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsSpringer
 
1 s2.0-s0997753817308902-main
1 s2.0-s0997753817308902-main1 s2.0-s0997753817308902-main
1 s2.0-s0997753817308902-mainFares Tounsi
 
2013 final ISRO internship Report
2013 final ISRO internship Report2013 final ISRO internship Report
2013 final ISRO internship ReportShripad Thakur
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...ijceronline
 
A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity PrimerIOSR Journals
 
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...Alexander Decker
 
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...Alexander Decker
 
A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM
 A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM
A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAMijiert bestjournal
 
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...IOSR Journals
 

Similar to The Spinning Motion of a Gyrostat (20)

Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
 
A New Solution To The Lagrange S Case Of The Three Body Problem
A New Solution To The Lagrange S Case Of The Three Body ProblemA New Solution To The Lagrange S Case Of The Three Body Problem
A New Solution To The Lagrange S Case Of The Three Body Problem
 
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...
A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using T...
 
On the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integrals
 
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systems
 
1 s2.0-s0997753817308902-main
1 s2.0-s0997753817308902-main1 s2.0-s0997753817308902-main
1 s2.0-s0997753817308902-main
 
C1303051422
C1303051422C1303051422
C1303051422
 
Angdist
AngdistAngdist
Angdist
 
Angdist
AngdistAngdist
Angdist
 
2013 final ISRO internship Report
2013 final ISRO internship Report2013 final ISRO internship Report
2013 final ISRO internship Report
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...
 
A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity Primer
 
Ijetr042201
Ijetr042201Ijetr042201
Ijetr042201
 
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...
11.modeling of flexural waves in a homogeneous isotropic rotating cylindrical...
 
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...
3.[15 25]modeling of flexural waves in a homogeneous isotropic rotating cylin...
 
A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM
 A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM
A REVIEW OF NONLINEAR FLEXURAL-TORSIONAL VIBRATION OF A CANTILEVER BEAM
 
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
 
kuramoto
kuramotokuramoto
kuramoto
 
Wang1998
Wang1998Wang1998
Wang1998
 

Recently uploaded

Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsAndrey Dotsenko
 

Recently uploaded (20)

Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 

The Spinning Motion of a Gyrostat

  • 1. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 RESEARCH ARTICLE www.ijera.com OPEN ACCESS The Spinning Motion of a Gyrostat under the Influence of Newtonian Force Field and a Gyrostatic Moment Vector T. S. Amer1, Y. M. Abo Essa2, I. A. Ibrahim3 and W. S. Amer4 1,2,3 Mathematics Department, Faculty of Education and Science (AL-Khurmah Branch), Taif University, Kingdom of Saudi Arabia (4) Mathematics Department, Faculty of Science, Minufiya University, Shebin El-Koum, Egypt. In this paper, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field is considered. This body is acted upon by a gyrostatic moment vector  . We consider the motion of the body in a case analogous to Lagrange's case. The analytical periodic solutions of the equations of motion are obtained using the Poincaré’s small parameter method. A geometric interpretation of motion is given by using Euler’s angles to describe the orientation of the body at any instant of time. The graphical representations of these solutions are presented when the different parameters of the body are acted. The fourth order Runge-Kutta method is applied to investigate the numerical solutions of the autonomous system. A comparison between the analytical and the numerical solutions shows a good agreement between them and the deviations are very small. MSC (2000): 70E15, 70D05, 73V20 Keywords: Euler's Equations, Gyrostat, Newtonian force field, Perturbation methods I. Introduction The rotational motion of a gyrostat about a fixed point in a uniform force field or in a Newtonian one is one of the important problems in the theoretical classical mechanics. This problem had shed the interest of many outstanding researchers e. g. [1-14]. In fact this problems require complicated mathematical techniques. It is known that this motion is governed by six non-linear differential equations with three first integrals [15]. Many attempts were made by outstanding scientists to find the solution of these equations but they have not found it in its full generality, except for three special cases (Euler-Poinsot, Lagrange-Poisson and Kovalevskaya). These cases have certain restrictions on the location of the body’s centre of mass and on the values of the principal moments of inertia [1-3]. Arkhangel’skii, Iu. A. [1] showed that this fourth algebraic integral exists only in two special cases analogous to those of Euler and Lagrange and that, other cases with single-valued integrals are not additional cases but it can be reduced to previous cases. The necessary and sufficient condition for some functions to be a first integral for the Euler- Poisson equations when the motion of a rigid body is acted upon by a central Newtonian force field is investigated in [4]. The Hess’s case for the motion of a rigid body was studied in [5] having the assumption of giving initial high value for the angular velocity about some axis, is imparted to the body. The motion of Kovalevskaya gyroscope was studied in [6-11]. In [8], the existance of periodic solutions for the equation of motion of a rigid body in a Kovalevskaya top are obtained and it has been www.ijera.com extended in [9]. The periodic solutions nearby equilibrium points for the same problem are investigated in [10] using the Liapunov theorem of holomorphic integral when the body moves under the influence of a central Newtonian field. The author generalized this problem in [11] when the body acted by potential and groscopic forces. An exceptional case of motion of this gyroscope was treated in [12]. In [16], the authors have obtained the ten classical integrals for the generalized problem of the roto-translatory motion of n gyrostats n  2 . This problem was studied in [17], when a system was made of two gyrostats attracting one another according to Newton’s law. The problem of the earth’s rotation, using a symmetrical gyrostat as a model was considered in [18]. The authors considered the first two components of the gyrostatic moment are null and the third component is chosen as a constant. This study was extended and was generalized in [19]. The small parameter method of Poincaré [20] was used to find the first terms of the series expansion of the periodic solutions of the equations of motion of a rotating heavy rigid body about a fixed point when the body spins rapidly about the dynamically symmetric axis [21,22 ] and acted by the gravitaional and Newtonian force field respectively. This problem was generalized in [23] when the body moves under the unfluence of Newtonian force field and the third component of gyrostatic moment vector. The problem of a perturbed rotational motion of a heavy solid close to regular precession with constant restoring moment was treated in [13] and [14]. It is assumed that the angular velocity of the body 655 | P a g e
  • 2. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 is sufficiently high, its direction is close to the axis of dynamic symmetry of the body, and the perturbing moments are small in comparison with the gravity moments. Averaged systems of the equations of motion are obtained in the first and second approximations in terms of the small parameter. The perturbed problem of the rotatory motion of a symmetric gyrostat about a fixed point with the third non-zero component of a gyrostatic moment vector (about the axis of symmetry) and under the action of some moments was considered in [24]. This problem is generalized in [25]. The problem of existence of periodic motions of a solid was studied in [26]. The author used the Poincaré’s method of small parameter to obtain the periodic solutions of the equations of motion. It was assumed that the center of mass of the solid differs little from a dynamically symmetric axis. This problem was generalized in [27], when the body rotates under the action of a central Newtonian force field and the third component of the gyrostatic moment vector. In this work, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field analogous to Lagrange's case is studied when the body is acted upon by a gyrostatic moment vector about the moving axes. The equations of motion and their first integrals are obtained and have been reduced to a quasilinear autonomous system of two degrees of freedom with one first integral. Poincaré’s small parameter method [20] is applied to investigate the analytical periodic solutions of the equations of motion of the body with one point fixed, rapidly spinning about one of the principal axes of the ellipsoid of inertia. A geometric interpretation of motion is given by using Euler’s angles [28] to describe the orientation of the body at any instant of time. The numerical solutions of the autonomous system are obtained using the fourth order RungeKutta method [29]. The phase plane diagrams describe www.ijera.com the stability are presented. A comparison between the analytical and the numerical solutions shows a good agreement between them and the deviations are very small. The model of a gyrostat has a wide range of applications in various fields such as satellite, robot manipulators, and spacecraft. Moreover, the study of the rotational motion of a gyrostat has been motivated by industrial applications in many fields. This is because the gyrostat provides a convenient model for the satellite-gyrostat, spacecraft and like; see [30,31] II. Equations of Motion and Change of Variables Consider a rigid body (gyrostat) of mass M , with one fixed point O ; its ellipsoid of inertia is arbitrary and acted upon by a central Newtonian force field arising from an attracting centre O1 being located on a downward fixed axis OZ passing through the fixed point with gyrostatic moment vector   (1 , 2 , 3 ) about x, y and z axes respectively. It is taken into consideration that at the initial time, the body rotates about z axis with a high angular velocity r0 , and that this axis makes an angle  0  n / 2 ( n  0, 1, 2, ...) with the Z  axis. Without loss of generality, we select the positive branches of the z  axis and of the x  axis in a way to avoid an obtuse angle with the direction of the Z  axis. The equations of motion and their three first integrals similar to Lagrange case take the forms [32,33] 1       p1  A1 q1 r1  A1[ r0 q1 3  (c  0 ) 1 r1 2 ]   a 1 ( z0  1  k a A1  1  1 ), 1     q1  B1 p1 r1  B 1[ r0 p1 3  (c  0 ) 1 r1 1 ]   b 1 ( z0  1  a B1  1  1 ), (1)    r1   2 [ (c C  0 ) 1 ( q1 1  p1 2 )  ( C1 p1 q1  k C1  1  1 ) ],   r1  1   q1  1, 1     p1  1  r1  1 , 1     ( q1  1  p1  1 ) ; 1     r12  1   2 S1 , r1  1  1   S2 ,  12   1 2   12  (  0 ) 2 ; (2) where 2 2 2 2     S1  a{( p10  p12 )  ( q10  q12 )  k [ (  10   12 )  (  10   1 2 )  (1   1 2 ) ]}  2 z0 (1   1 )      S 2  a [( p10  10  p1  1 )  ( q10  10  q1  1 )]  (c C  0 ) 1[ 1 (  10   1 )  2 (  10   1 ) (3)   3 (1   1) ];   p  c  0 p1, q  c  0 q1, r  r0 r1, k  N c 2       0 1,     0 1,     0 1, t   r0 , www.ijera.com ( .  d d ) , (4)   0  0, 0   0  1; 656 | P a g e
  • 3. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 A1   B1  (C  A) A ,    c  0 r0 , A  B, x0  y0  0, a  b  A / C, z 0  0, N  3g R , www.ijera.com c 2  M g l / C, (5) g   R2 , From the first two equations of (2), one can express the  variables r1 and  1 as A, B and C are the principal moments of inertia; x0 , y0 and z 0 are the coordinates of the centre of mass in the moving coordinate system (O x y z );  ,   and   are the direction cosines of the downwards fixed 1   r1  1   2 [ S1  2 z 0 (1   1 ) 2   k (1   1 2 ) ]   , of the angular velocity vector of the body on the principal axes of inertia; R is the distance from the fixed point O to the centre of attraction O1 ;  is the 1   1  1   S 2   2 [ S1  2 z 0 (1   1 ) 2   k (1   1 2 ) ]   , Z axis of the fixed frame in space (O X Y Z ); p, q and r are the projections coefficient of attraction of such centre; 1 , 2 and  3 are the components of the gyrostatic moment vector    ; and p0 , q0 , r0 ,  0 ,  0 and  0 are the initial Differentiate the first and the fourth equations of (1) and use (6) to reduce the four remaining equations to the following two second order differential equations values of the corresponding variables. III. (6) Reduction of the Equations of Motion to a Quasilinear Autonomous System      2 p1  (c A  0 ) 1 A1 1   { A1 (C r0 ) 1 ( q1 1  p1 2 ) q1  A1 ( A ro ) 1 1 S1  p1  ( A r0 ) 1 C1 p1 q1 2  z 0 a 1 (1  A1 )  1  k (  2  A1 )  1  ( A r0 ) 1   2 [ a 1 z 0  1  k A1  1 ] 3 }   2 { [   2 S1 p1  a 1 z 0 p1 ]  k A1 [ p1 (1   1 ) 1     q1 (1  C1 )  1  1  (1  A1 ) S 2  1 ]  r0 3 p1 A 1 A1[ S1  2 z 0 (1   0 ) (7) 1 2   k (1   1 ) ]  ( A r0 ) 1 k A1  1 S 2 3 }   3 { z 0  1a 1 (1  A1 )[ S1 2 1   2    2 z 0 (1   0 )  k (1   1 ) ]  ( A r0 ) 1 k A1  1[ S1  2 z 0 (1   1) 2 2   k (1   1 ) ] 3  ( 2 k A1  a 1 z 0 ) S 2 p1 }   ,    1  ( A r0 ) 1 1   [(1  A1 ) p1  ( A r0 ) 1 ( 1 S 2  3 p1 )  (C r0 ) 1 ( q1 1 1     p1 2 )  1 ]   2 [  S1  1  (1  A1 ) p1 S 2  p1 q1  1   1 ( z 0 a 1  q12 ) (8)   k A1 1 ]   3 ( a 1 z 0  2 k A1 )  1 S 2   , where   is a new frequency called Ismail and Amer's frequency [23] and takes the form 2   2  2 A1 A1r013 , Here r0 is large, so 2 3 r0 , r0 ,  are neglected. Solving the first and the fourth equations of system (1),  and using (6), we obtain q1 and  1 in the form   A1.   q1  ( A 1 r1 ) 1 [ 1  ( A A 1 r0 r1 ) 1 3   ][ (c A  0 ) 1 r1 2  p1       a 1 ( z 0  1  k a A1  1  1) ], (9)  1  r11 (    q1  1). 1 www.ijera.com 657 | P a g e
  • 4. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 Let us introduce new variables p 2 and p2  p1      1  2 , 2 www.ijera.com such that  2   1    p2 , (10) where 2   (C r0 A1 A22 ) 1 y2 1 ,   1  (1  2 ) 1 [z0 a 1 (1  A1 )  k ( A1   2 )  ( Ar0 ) 1 ( a 1 z0  k A1 ) 3 ],   (1  2 ) 1 [ 1  A1  ( A r0 ) 1 3 ], In terms of the new variables p 2 and  yi  (c C  0 ) 1 i  2 , the variables q1 and  1 i  1, 2, 3 . take the form  q1   X ( p2  C A 1 y 2 )   X [  2   ( A r0 ) 1 2 S11 ]   2 { X [ ( k A1 2 1 1  A1 S11 p2  X ( k A1 ) S 21 }   , 2 2   1    X ( A r0 ) 1 2   [  2 p2  X ( A r0 ) 1 2 S 21 ]   2 { X [( A r0 ) 1 2 S11 2    a 1 z 0 )  S11 ] p2     2   S 21 p2 ]  2 (11) 1 S11 }   , 2 2 where   X  A1 1 [1  ( A A1 r0 )1 3 ], 2  1  a 1 z0  k A1,  2    X . Making use of (11) and (10) into (3), we obtain the following expressions for in  Si  Si 1  2 2 i  Si 2   , S 1 and S 2 in terms of power series ( i  1, 2 ) (12) where 2 2 2 2 2 2 2 2     S11  a{( p20  p2 )  X 2 ( p20  p2 )  k [ (  20   2 )  (  20   2 )     2 X ( A r0 ) 1 ( 20  ) 2 ]  2 C X 2 A1 y2 ( p20  p2 )}, 2 S12  a [  ( p20  p2 )  1 ( p20  20  p2  2 ) ]  a X 2 [( A r0 ) 1 2 S11     20  2  ( p20  p2 )   2 ( p20   p2  )]  ( z 0  k ) S 21  k { a ( p20  20 (13)  20  2  p2  2 )  a 2 ( p20   p2  )  X ( A r0 ) 1 a 2 [ (    ) S 21 20 2    ( p20  p2 ) 2 ]}  C X 2 A 1  2 y2 (    ), 20 2      S 21  a{( p20  20  p2  2 )  X [ ( p20  20  p2  2 )  X ( A r0 ) 1 2 ( p20  p2 )]}    y1 (  20   2 )  y2 (1  a X C A1 )( 20   2 ), 2 2 2 2 2 2   S 22  a [  ( p20  p2 )   (  20   2 )  1 (  20   2 ) ]  a X {  2 ( p20  p2 )    A 1 ( C y 2  2  X r01 2 S 21 )( p 20  p2 )  2 ( A r0 ) 1 ( S 11 X  2 ) 2 2    (    )   2 (    ) }  y1 ( p20  p2 )  y 2 ( p20  p2 )  y3 S 21 . 20 2 20 2 www.ijera.com 658 | P a g e
  • 5. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com From (12), (13) and (6), we get 1 2   S11   3 [ S12  (k  z0 ) S 21 ]   , 2 1   1  1   S 21   2 ( S 22  S11 )   3 [ S12  (k  z0 ) S 21 ]   . 2 r1  1  (14) Substituting (10), (11), (12), (13) and (14) into (7) and (8), we obtain the following quasilinear autonomous system of two degrees of freedom     2 p2  C A1 A1 y1   F ( p2 , p2 ,  2 , ,  ),   p2 2 (15)      2  ( A r0 ) 1 1    ( p2 , p2 ,  2 , ,  ), 2 2 where F  F1   F2   2 F3   ,   1    2   2  3   , 2    F1  ( A r0 ) 1 1 1  ( A1 r0 ) 1 2 { C 1 [ ( p2  2 A1 y 2 p2 )  2 p2  2 ] 2   C 1 A1 p2 ( A 1 y2  p2 ) }  ( A r0 ) 1 k C1  2  2 , 2  1  ( A r0 ) 1 S 21 1  (C r0 ) 1 [ A 1 1 ( A 1 y 2  p2 )  2 p2 ] 2 F2  f 2   1 ( 1   2 ) p2 ,  2   2   ( 1   2 )(   1 2 ), F3  f 3  1  2   1 ( 1   2 ) (   1 2 ),  3   3   f 2   2 1 ( 1   2 ) p2 ,  f 2  ( A1 r0 ) 1 2 {[ 2 y2 ( A C ) 1  p2 A1 C 1 ] 2   C 1 A1 (   1  2 )( A1 y2  p2 )} 2 2   ( A r0 ) 1  2 p2   2 ( A r0 ) 1 A1 1 S12   2 S11 p2  a 1 p2 z0  A1 k p2 {1   2 2   2 ( A A1 r0 ) 1 2   2 [   ( A A1 r0 ) 1 2 ][  2 p2  ( A A1 r0 ) 1 2 S 21 ] }  k A1 X  2 2 2   [   ( A A1 r0 ) 1 2 ]( A1 y2  p2 )  k A1 S 21 (1  A1 )  2  ( A r0 ) 1 A13 S11 p2 2 1   1{C A1 A1 y1  r0 [ A11 S 21  C 1 [ 1 ( A1 y2  p2 )  2 p2 ] ]}, 2 2     2  r0 11{ A1 S 22  (C A1 ) 1[  2 p2 ( A1 y2  p2 )   2  ]}  (C r0 ) 1 2 [  2 p2 p2 2   (   1  2 )]   2 S11  ( 1  A1 ) p2 S 21  ( 1  C1 ) A1 1 [   2 ( A A1 r0 ) 1 2 2 2      ( A1 y2  p2 )]   2 {z0 a 1  k A1  X 2 [ p2  A1 y2 ( A1 y2  2 p2 )]}   S 21 (a 1 z0  2  2 k A1  2 ), www.ijera.com 659 | P a g e
  • 6. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com  f 3  2 ( A1 r0 ) 1{ C 1 (  2  ) 2  [ 2 C 1 ( A 1 y 2  p2 )  C 1 A1 p2 ] 2 1   S11 ] p2  k A1  S 21 }   2  ( C 1 A1 )  2 p2 p2 } 2 2 2 2    2 [ 2 p2 S12  S11 (   1  2 ) ]  (   1  2 ){ a 1 ( z 0 )  k A1[ 1   2   { [ ( k A1  a 1 z 0 )    2 ( A A1 r0 ) 1 2   2 (   ( A A1 r0 ) 1 2 )( 2 p2  ( A A1 r0 ) 1 2 S 21 ) ] } 2 2 (16)   k A1{  2 [   ( A A1 r0 ) 1 2 ][ ( A A1 r0 ) 1 2 S11  X  2 ]  X [  2 ( p2 2 2   ( A A1 r0 ) 1 2 S 21 )  p2 (   ( A A1 r0 ) 1 2 ) ]( A 1 y 2  p2 ) }  k A1 (1  A1 ) 2   (  2 S 22   p2 )  ( r0 A) 1 A13 { S11 (   1  2 )  2 p2 [ S12  S 21 ( k  z 0 ) ] } 1   S11[ a 1 z 0  2 (1  A1 )  3 ( A r0 ) 1 k A1  2 ]  p2 S 21 ( 2 k A1  a 1 z 0 ) 2      1 2 r01 { p2 (C A1 ) 1 [ p2  2 ( A 1 y 2   2  ) ]  p2 C 1 ( A 1 y 2  p2 )}, 2  1      3  1 ( A1 C r0 ) 1 {  A11 ( A 1 y 2  p 2 )( 2   S 21 p 2 )   [ p 2 ( k A1  a 1 z 0  S11 ) 2 2 2 1 1 1    k A1  S 21 ]   2 p 2 [ S11 2 ( A r0 )   2  ] }  2 (C r0 ) [  A1 p 2 (  2   S 21 p 2 ) 2 2 2    2 p 2 (   1  2 ) ]  ( p 2 S11  2  2 S12 )  (1  A1 )[ p 2 S 22  (   1  2 ) S 21 ]    X { p 2 [ S11 2 ( A r0 ) 1   2  ][   2 ( A A1 r0 ) 1 ]  ( A 1 y 2  p 2 ) [ p 2 ( 2 p 2 2 2 2    2 S 21 ( A A1 r0 ) 1 )  (   1  2 )(  2 ( A A1 r0 ) 1 ) ] }   p 2 { a 1 z 0  X 2 [ p 2 2    A 1 y 2 ( A 1 y 2  2 p 2 ) ] }  2 X 2  2 ( A 1 y 2  p 2 )[ S11 2 ( A r0 ) 1   2  ]  k  A1 p 2 2   S 21 (a 1 z 0  2  2 k A1  2 ) . The first integral of system (15) can be obtained from (2) in the form 2   2  [   2 2 ( A A1 r0 ) 1 ]  2  {   2 p2  [   2 ( A A1 r0 ) 1 ][  2 p2 2 2 2 2    2 S 21 ( A A1 r0 ) 1 ]  S 21}   2 {  2 p2   2 p2 [  2 p2  2 2 S 21 ( A A1 r0 ) 1 ] 2   2 X [   2 ( A A1 r0 ) 1 ][ 2 S11 ( A r0 ) 1   2   S 21 p2 ]  S 21  2 ( S 22 2 2  (17) 1  S11 ) }  (  0 ) 2  1 . 2 Our aim is to find the periodic solutions of system (15) under the condition A  B  C or do not affect the generality of the solutions [23]. The generating system of (15) is A  B  C (  2 is positive). This means that, the body is set in a fast initial spin r0 about the major axis (19) of the ellipsoid of inertia or about the minor axis of the ellipsoid of inertia. IV. Formal Construction of the Periodic Solutions Since the system (15) is autonomous, the following conditions 1 p 2 (0,0)  C A1 B y1 ,  p 2 (0,0)  0, ( ( 0)   2 p20 )  0,  p2 ( ( 0  )   20)  0, 2 which admits periodic T0  2 n in the form solutions with ( ( p20 )  M 1 cos   M 2 sin   ,  20 )  M 3 cos , where M i , i  ( 1, 2, 3 ) are (20) constants to be determined. So, we suppose the required periodic solutions of the initial autonomous system in the form (18)  2 (0,  )  0, www.ijera.com period 660 | P a g e
  • 7. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com  p 2 ( ,  )  ( M 1  1 ) cos   ( M 2   2 ) sin      k Gk ( ), k 1 (21)   2 ( ,  )  ( M 3   3 ) cos    H k ( ), k k 1 with period T ( )  T0   ( ). The quantities   2 functions of  and vanish when   0 . The initial conditions of (21) can be expressed as 1 ,  3 represent the deviations of the initial  values of p2 , p2 and  2 of system (15) from their and initial values of system (19); these deviations are p2 (0,  )  M 1  1 ,  p2 (0,  )    ( M 2   2 ),  2 (0,  )  M 3   3 , (0,  )  0. 2 (22) Let us define the functions Gk ( ) and H k ( ) ( k  1, 2, 3,  ) by the operator [23] U u  U  Gk , H k u u u 1  2u 2 1  2  3    ,  2 1  u  g ,h M 1 M 2 M 3 2 M1 k k      (23) where  1 gk ( )   Fk( 0) (t1 ) sin  (  t1 ) d t1 ,  0 (24)  hk ( )    (t1 ) sin  (  t1 ) d t1 (k  1, 2, 3) . ( 0) k 0 Now, we try to find the expressions of the functions F1 , 1 , F2 be rewritten as ( 0) ( p0 )  E cos (    ), ( 0) ( 0) and  2 . The periodic solutions (20) can (0) (  20)  M 3 cos , (25) where 2 E  M 12  M 2 ,   tan 1 M 2 M 1 . Making use of (25) and (13), we obtain 1 (0 S11 )  aE 2 { cos2   X 2  2 sin 2   ( X 2  2  1 )[1  cos2 (    ) ]} 2 1   2 k a M 33 ( A A1 r0 ) sin   2 a E   X 2 2 (c A  0 ) 1[ sin  sin(    ) ], 1 1 (0 S 21 )  M 3 E a{ cos  (   X  1) cos[ (    1)   ]  (  X  1) cos[(   1)   ]} 2 2 1 1  a X { C A M 3 y 2 sin   E   2 ( A A1 r0 ) [ sin  sin (     ) ] }  M 3 [ y1 (1  cos )  y 2 sin  ], www.ijera.com 661 | P a g e
  • 8. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com ( S120)  a E { X [ cos  cos (     ) ]  1 M 3 [ cos  cos cos (     ) ] }  a X 2 E   (  { 2 S110) ( A r0 ) 1[ sin   sin(    ) ]   2 M 3 sin  sin(    ) }  k a { E M 3 [ cos  cos cos(    ) ]  [  2   E M 3 sin  sin(    )  2 X ( A r0 ) 1 (26) (0  [ M 3 S 21 ) sin    2   E ( sin   sin(    ) ) ] ] }  X 2 M 3  2 2 ( c A  0 ) 1 sin  (0   ( z 0  k ) S 21 ) , (0 S 22 )  a { E 2 [ cos2   cos2 (     ) ]   M 3 (1  cos )  1 M 32 sin 2  }  a {  E 2 (0 2  X  2   2 [ sin 2   sin 2 (    ) ]  E  [  2 y 2 C X A 1  2 S 21 ) ( A A1 r0 ) 1 ] (0  [ sin  sin(    ) ]  M 3 sin  [ X (  2 M 3 sin   ( A r0 ) 1 2 S11 ) ) 2  2  2 ( A A1 r0 ) 1 ] }  E { y1 [ cos  cos(    ) ]    y 2 [ sin (0  sin(    ) ] }  y3 S 21 ) . Substitution of (25) and (26) into formulas (16), to get F1( 0)  [ 2 ( A A1 C r0 ) 1   2 y 2 ][ M 1 sin    M 2 cos  ]   , ( 10)  y 2 { 1  A1[ a X C  ( A1 C r0 ) 1 1 ] M 3 sin    , (0) 2 F (27)  L( )[ M 1 cos   M 2 sin   ]   ,  (20)  M 3 N ( ) cos    , where  L(   )  [ a 1 z 0  1 (1    2 ) ]  A1 [ k  2 1 a  ( A r0 ) 1 ]  ( r013 A1 A1   2 ) 1 1 2  { a [(M 12    2 X 2 M 2 )  (1    2 X 2 )]  [ k M 32 C1 ´a (   2 X 2  1) 2 2 2 2 2 1   ( M 1  M 2 ) ]  2 2 a  M 2 X ( c A  0 ) }   , (28) 2 2  N (   )  a ( M 12  X 2   2 M 2 )  X 2   2 (1  a )( M 12  M 2 )  [ z 0 b 1  1 (1    2 )]  k A1  ( A1 X y 2 ) 2  r01 1  a A 1    2 2 a   M 2 X 2 ( c A  0 ) 1  ( z 0 a 1  2 k A1 )[ M 3 ( a M 1  y1 )  2 a   M 2 X ( A1 r0 ) 1 ]   . Form (24), (27) and (28), the following results are obtained g1 (T0 )  2  n M 1 ( A A1C r0 ) 1 2 y 2 ,  g1 (T0 )  2  n   M 2 ( A A1 C r0 ) 1 2 y 2 ,  g 2 (T0 )    n (   ) 1 M 2 L( ), g 2 (T0 )   n M 1 L(  ),  h1 (T0 )  0, h1 (T0 )   n M 3 y 2 {1  A 1 [ a X C  ( A1 C r0 ) 1 1 ]}, h2 (T0 )  0,  h2 (T0 )   n M 3 N (  ). Substituting (22) into (17) for www.ijera.com (29)   0 , we obtain 662 | P a g e
  • 9. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com M 32  2 M 3  3   32  2  [  ( M 1  1 )(M 3   3 )  2  2   ( A A1 r0 ) 1  ( M 2   2 ) ]    (  0 ) 2  1. Supposing that   0 is independent of  , we get M 3 and  3 as   M 3  (1   02 ) 2 (  0 )1 1 0  M 3  , 3    ( M1  1 )   . (30) The independent conditions for the periodicity are [21]   n  2 ( ) 1 { L1 (   )    2 N1 (   )[1  1 ( A r0 ) 1 ( M 3   3  1 ( A r0 ) 1 ) 1 ] }   [ G2 (T0 )   ]  0,  n  1{ L1 (   )  N1 (   )( C A1 A1 y1     1 )[ 1  1 ( A r0 ) 1 ( M 3   3 (31)   1 ( B r0 ) 1 ) 1 ] }   [ G2 (T0 )   ]  0,     [ M 3   3  1 ( A r0 ) 1 ]1 [ H 1 (T0 )   H 2 (T0 )   2 H 3 (T0 )   ]   ( ), where L1 ( ) and N1 ( ) can be obtained from (28) by replacing M 1 , M 2 and M 3 by  1 ,  2 and M 3   3 respectively. Then, we have 2 2  L1(  )  2 N1(  )  (  1   2 ) W1(  )  z0 W2 (  )  k W3 (  )  W4 (  ), (32) where 1 a [ (  X ) 2  1][   2 (r0 A) 1 A13 ]  (1  a)(  2 X ) 2 , 2 2 W2 (  )  a 1{1  a 1 2 [ 1  ( a  1  y1 )( M 3   3 )  2 a   2 ( A A1 r0 ) 1 ]}, W1 (   )  2 W3 ( )  A1  2 A1 [ 1  2 (a 1  y1 )( M 3   3 )  2 a   2 ( A A1 r0 ) 1 2 ], W4 ( )  a  1 ( A r0 ) 1 (  2  2 A1 )  ( X y2 A1  ) 2   1 ( 1    4 )  1  a y1 { 1  X 2  2  4 2 X 2    2 (c A  0 ) 1  2 [ 12  ( X    2 ) 2 ]} . 4 From the condition that the z  axis has to be directed along the major or the minor axis of the ellipsoid of inertia of the body, it follows that W1 ( )  0 for all   under consideration. So, let us assume  z0 W2 ( )  k W3 ( )  W4 ( )  0.  1 and  2 are obtained in the form of a power series of integral powers of  . Using (31), the expression of These expansions begin with terms of order higher than  2 expansions of the periodic solutions and the quantity  ( ) can be expressed as 2 p1   [ 1 y 2 (C A1 A2 r0  2 ) 1  1 M 3 cos ]  , q1  C X A1 y 2   [2ak ( A A1 r0 ) 2 2 3  X  2 ]M 3 sin    , r1  1   2 k M 3 a 3 ( A A1 r0 ) 1 sin    ,  1  M 3 cos   , . Consequently, the first terms in the www.ijera.com 663 | P a g e
  • 10. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com  1   M 3 sin   2 ( A A1 r0 ) 1{1   M 3 [ y1 (1  cos )  y 2 sin  ]}   2 { X  2 M 3 sin   k M 3 b 3 ( A A1 r0 ) 1 sin  [2 2 ( A A1 r0 ) 1  X M 3 sin  ]}   , 2  1  1   M 3 [ y1 (1  cos )  y 2 sin   a C 2 y 2 ( A 2 A1 r0 ) 1 sin  ] 1   2 M 3 {a  (1  cos )  a M 3 ( 1  X  2 )(1  cos2 )  a 2  2 2 2 1 2  ( A A1 r0 ) sin   y3 [ y1 (1  cos )  y 2 sin   a C 2 y 2 ( A 2 A1 r0 ) 1 sin  ]  k a 3 ( A A1 r0 ) 1 sin  }   .   ( )     n{ 1  1 A1 [ r0 ( M 3   3 )  3 ]1 }[ z0 a 1  1 (1    2 )   ( y2 X A1 ) 2  k A1  a  1 ( A r0 ) 1  y1 M 3 ( z0 a 1  2 k A1 ) ]   . The solutions obtained in [22], [34] and [35] have singular points when   1, 2, 3, 1 2 , 1 3 ,  . These singularities are solved separately in [34], [36], [37] and [38]. In our problem when we used Ismail and Amer's frequency   [23] instead of  , there are no singular points at all. Moreover, the obtained solutions are valid for all rational values of   and are considered as a general case of [21], [22] and [23]. cos   , d p   q    , dt 1   2 Substituting (33) into (34), in which expressions for the angles  0  ( / 2)  r0 h   , , and  tan  0  V. (33) Geometric Interpretation of Motion In this section, the motion of the rigid body is investigated by introducing Euler’s angles  ,  and  , which can be determined through the obtained periodic solutions. Since the initial system is autonomous, the periodic solutions are still periodic if t is replaced by (t  t 0 ) , where t 0 is an arbitrary interval of time. Euler’s angles, in terms of time take the forms [27,28] 0 ,  0 d d r cos . dt dt (34) t has been replaced by t  t 0 , and using relations (4), the following are obtained as  0  tan 1 M 3 ,   0   [ 1 (t  h)   1 (h)]   2 [ 2 (t  h)   2 (h)],    0  c cosec 0 cos 0 {[ 1 (t  h)  1 (h) ]   [  2 (t  h)  2 (h) ]   2 [  3 (t  h)  3 (h) ] },    0  r0 t  c cot  0 cos 0 {[1 (t  h)  1 (h)]   [ 2 (t  h)   2 (h)]}   2 {tan  0 [ 3 (t  h)   3 (h)]  c cot  0 cos 0 [ 4 (t  h)   4 (h)]}, where 2 1 (t )   y1 cosr0 t  [ 1  c a 2 ( A1 A2 r0 ) 1 ] y2 sin r0 t,   2 (t )  ( y1 y3  a  ) cosr0 t  { y2 y3  a ( A1 A r0 ) 1 [ 2 ( A1 1  2 )  k 3 ] }sin r0 t 1 a tan 0 ( 1  X  2 ) cos2 r0 t , 2 1(t )  C y2 ( A1 A r0 )1 [ 2 cos0 ( A1 A)1 t  cosr0 t ],   2 (t )  [( A12 A2 r0 ) 1 2C y1 y2  www.ijera.com t, 1 1 X  2 tan 0 ]t  (r0 A1 ) 1  2 tan 0 sin 2 r0 t , 2 4 664 | P a g e
  • 11. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com 1 2 2  3 (t )  [ 1 tan 0  k C X 2 y 2 a 3 ( A1 A2 r0 ) 1 tan 0   2 y 2 2 ( A1 A r0 ) 1 tan 0 ] t 1 1 2 r0 1 tan  0 sin 2 r0 t  C y 2  2 ( A1 A r0 ) 1 cosr0 t , 4 1 (t )   1 (t ),  2 (t )   2 (t ),  4 (t )   3 (t ), 1 3 (t )  k a 3 ( A1 A r0 ) 1 cosr0 t. 8 VI. It is evident that the Eulerian angles  ,    depend on some arbitrary constants  0 ,  0 ,  0 and r0 ( r0 is large). For   0, we and    0,   0 and   r0 . This permits permanent rotation of the body with spin r0 (sufficiently large) about the z  axis. have Numerical Solutions Matching of Analytical Solutions This section is devoted to ascertain accuracy of the obtained solutions. (i) We introduce the analytical solutions through computer program. So, let us consider the following data that determine the motion of the body A  B  22.49 kg.m 2  C  35.6 kg.m 2 , A  B  50.32 kg.m 2  C  33.4 kg.m 2  r0  1000 m, R  2000 m,   0.6, M  30 kg, z 0  5 m,  0  0.352, 1  2  3  ( 0, 10, 20 , 30, 40, 50) kg.m 2 .s 1 , T  12.566371. Consider p2 a ,  2 a denoting the analytical solutions p2 ,  2 . The graphical representations for these solutions are given in figures (1)-(5) for the case A  B  C and figures (6)-(10) for the case A B C. (ii) The quasilinear autonomous system (15) is solved numerically using the fourth order Runge-Kutta method through another program with the same previous data and the initial values of the analytical solutions. Consider p2 n ,  2 n to denote the numerical solutions p2 ,  2 . The numerical graphical representations are given in figures (11)-(15) for the case A  B  C and figures (16)-(20) for the case A B C. waves revealing when that when  increases the amplitude of the wave increases also and the number of the waves remain unchanged, see figures (1), (2), (11) and (12) for the case A  B  C but for the case A  B  C , we can see from figures (6), (7), (16) and (17) that the amplitude of the wave decreases. Also, the solutions  2 a and  2 n remain unchanged for different values of  because these solutions do not include the variables 1 , 2 , 3 , A, B and C . p2a -axis A=B<C 16E-05   20 3 12E-05 8E-05 The comparison between the analytical and the numerical solutions shows quite agreement between them, see the corresponding figures (1)-(5), (11)-(15) and (6)-(10), (16)-(20) for the cases A  B  C and A  B  C respectively. This agreement gives powerful ascertain for the analytical technique. The corresponding phase plane diagrams for some of these solutions describing the stability of the solutions are given in figures (4), (5), (9), (10) for the analytical solutions and (14), (15), (19), (20) for the numerical solutions.   increases. We conclude  0 4E-05 0 - 4E-05   10 3 -8E-05 -14E-05 0 40 80 120 160 Here, the concerned plots represent the functional time dependence of the amplitude of the www.ijera.com 200 t-axis Fig. (1) 665 | P a g e
  • 12. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 p2a -axis A=B<C 4E-04 2a -axis   50 3 www.ijera.com   30 3 , 40 3 , 50 3 A=B<C 2   40 3 3E-04 1 2E-04 0 1E-04   30 3 -1 0 -1E-04 0 40 80 120 160 Fig. (2) p2a -axis  -2 200 0 t-axis 40 80 120 160  -axis 2a A=B<C A=B<C 200 0.012 200 t-axis Fig. (3)   10 3   50 3 0.008 100 0.004 0 0 -0.004 -100 -0.008 -200 -0.012 1.4E-04 2.2E-04 -1 0 p2a -axis Fig. (4) p2a -axis -2 3.8E-04 3E-04 1 2 2a -axis Fig. (5) A=B>C p2a -axis 14E-05 A=B>C 1E-04  0   30 3 0 8E-05 -1E-04 4E-05 0   40 3 -3E-04 - 4E-05 -8E-05 -5E-04   50 3 -12E-05   10 3   20 3 -18E-05 -7E-04 0 40 80 120 Fig. (6) www.ijera.com 160 200 t-axis 0 40 80 120 160 200 t-axis Fig. (7) 666 | P a g e
  • 13. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 2a -axis p2a -axis    30 3 , 40 3 , 50 3 A=B>C 2 www.ijera.com A=B>C 0.014   50 3 0.008 1 0.004 0 0 -0.004 -1 -0.008 -2 0 40 80 120 160 200 -0.014 -6.2E-04 -5.4E-04  -axis 2a -3.8E-04 - 4.6E-04 p2n -axis A=B>C 200 -3.2E-04 p2a -axis Fig. (9) Fig. (8) A=B<C 16E-05   10 3   20 3 12E-05 100 8E-05 4E-05 0 0 - 4E-05   10 3 -100 -8E-05  0 -14E-05 -200 -2 -1 0 1 p2n -axis 0 2 2a -axis Fig. (10) 80 120 160 2n -axis   50 3 200 t-axis Fig. (11) A=B<C 4E-04 40   30 3 , 40 3 , 50 3 A=B<C 2   40 3 3E-04 1 2E-04 0 1E-04   30 3 -1 0 -1E-04 -2 0 40 80 120 160 Fig. (12) p2n -axis  200 0 40 80 t-axis  -axis 2n A=B<C 0.012   50 3 120 160 200 t-axis Fig. (13) A=B<C 200   10 3 0.008 100 0.004 0 0 -0.004 -100 -0.008 -0.012 1.4E-04 -200 2.2E-04 3E-04 Fig. (14) www.ijera.com 3.8E-04 p2n -axis -2 -1 0 1 Fig. (15) 667 | P a g e 2 2n -axis
  • 14. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 p2n -axis www.ijera.com p2n -axis A=B>C 14E-05 A=B>C 1E-04  0   30 3 0 8E-05 4E-05 -2E-04   40 3 0 -4E-05 - 4E-04 -8E-05   50 3 -12E-05   10 3   20 3 -6E-04 -7E-04 -18E-05 0 40 80 120 160 80 120 160 200 t-axis Fig. (17) p2n -axis    30 3 , 40 3 , 50 3 A=B>C 40 t-axis Fig. (16) 2n -axis 0 200 A=B>C 0.014 2   50 3 0.008 1 0.004 0 0 -0.004 -1 -0.008 -2 0 40 80 120 160 t-axis Fig. (18)  -axis 2n -0.014 -6.2E-04 200 -5.4E-04 - 4.6E-04 Fig. (19) -3.2E-04 -3.8E-04 p2n -axis A=B>C 200 used to investigate the periodic solutions of the present problem up to the first order approximation in terms of the small parameter  . The periodic solutions (33) are considered as a generalization of those obtained in [21] (in the case of the uniform force field), [22] (in the case of the Newtonian force field) and [23] (in the case of presence 3 only). The solutions and the correction   10 3 100 0 -100 -200 -2 -1 0 Fig. (20) VII. 1 2 2n -axis Conclusion The problem of the three-dimensional motion of a gyrostat in the Newtonian force field with a gyrostatic moment about one of the principal axes of the ellipsoid of inertia, is investigated by reducing the six first-order non-linear differential equations of motion and their first three integrals into a quasilinear autonomous system with two degrees of freedom and one first integral. Poincaré’s small parameter method is www.ijera.com of the period for the latter problems can be deduced from the obtained solutions in this work as limiting cases by reducing the Newtonian terms and the gyrostatic moment. The introduction of an alternative frequency   instead of  avoids the singularities traditionally appearing in the solutions of other treatments. The analytical solutions are analysed geometrically using Euler’s angles to describe the orientation of the body at any instant of time. These solutions are performed by computer program to get their graphical representations. The fourth order Runge-Kutta method is applied through another computer program to solve the autonomous system and represent the obtained numerical solutions. The comparison between both the analytical and the numerical solutions is considered to show the difference between them. These deviations are very 668 | P a g e
  • 15. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 small, that is the numerical solutions are in full agreement with the analytical ones. The great effect of the gyrostatic moment  is shown obviously from the graphical representations. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] Arkhangel'skii, Iu. A., On the algebraic integrals in the problem of motion of a rigid body in a Newtonian field of force, PMM 27, 1, 171-175, 1963. Kharlamov, P. V., A solution for the motion of a body with a fixed point, PMM 28, 1, 158-159, 1964. Keis, I. A., On algebraic integrals in the problem of motion of a heavy gyrostat fixed at one point, PMM 28, 3, 516-520, 1964. Ismail, A. I. and Amer, T. S., A Necessary and Sufficient Condition for Solving a Rigid Body Problem, Technische Mechanik 31, 1, 50 – 57, 2011. Arkhangel'skii, Iu. A., On the motion of the Hess gyroscope, PMM 34, 5, 973-976, 1970. Arkhangel'skii, Iu. A., On the motion of Kowalewski's gyroscope, PMM 28, 3, 521522, 1964. Arkhangel'skii, Iu. A., On the motion of Kowalewska's gyroscope in the Delone case, PMM 36, 1, 138-141, 1972. F.M. El-Sabaa, A new class of periodic solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point, Celestial Mechanics 37, 71-79, 1985. F.M. El-Sabaa, Periodic solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point, Astrophysics and Space Science 193, 309-315, 1992. F.M. El-Sabaa, The periodic solution of a rigid body in a central Newtonian field, Astrophysics and Space Science 162, 235-42, 1989. F.M. El-Sabaa, About the periodic solutions of a rigid body in a central Newtonian field, Celestial Mechanics and Dynamical Astronomy 55, 323-330, 1993. Starzhinskii, V. M., An exceptional case of motion of the Kovalevskaia gyroscope, PMM 47, 1, 134-135, 1984. Leshchenko, D. D. and Sallam S. N., Perturbed rotational motions of a rigid body similar to regular precession, PMM 54, 2, 183-190, 1990. Leshchenko, D. D., On the evolution of rigid body rotations, International Applied Mechanics 35, 1, 93-99, 1999. Malkin, I. G., Some problems in the theory of nonlinear oscillations, United States Atomic Energy Commission, Technical Information Service, ABC. Tr-3766, 1959. Cid, R. and Vigueras A., About the problem of motion of n gyrostats: 1. The first www.ijera.com [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] www.ijera.com integrals, Celestial Mechanics 36, 155-162, 1985. Sansaturio, M. E. and Vigueras, A., Translatory-rotatory motion of a gyrostat in a Newtonian force field, Celestial Mechanics 41, 297-311, 1988. Cid, R. and Vigueras, A., The analytical theory of the earth's rotation using a symmetrical gyrostat as a model, Rev. Acad. Ciencias. Zaragoza 45, 83-93,1990. Molina, R. and Vigueras, A., Analytical integration of a generalized Euler-Poinsot problem: applications, IAV Symposium, No. 172, Paris, 1995. Nayfeh, A. H., Perturbations methods, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. Arkhangel’skii, Iu. A., On the motion about a fixed point of a fast spinning heavy solid, PMM 27, 5, 864-877, 1963. El-Barki, F. A. and Ismail, A. I., Limiting case for the motion of a rigid body about a fixed point in the Newtonian force field, ZAMM 75, 11, 821-829, 1995. Ismail, A. I. and Amer, T. S., The fast spinning motion of a rigid body in the presence of a gyrostatic momentum  3 , Acta Mechanica 154, 31-46, 2002. Ismail, A. I. Amer, T. S. and Shaker, M. O., Perturbed motions of a rotating symmetric gyrostat, Engng. Trans. 46, 3-4, 271-289, 1998. Amer, T. S., New treatment of the perturbed motions of a rotating symmetric gyrostat about a fixed point, Thai J. Math. 7, 151-170, 2009. Elfimov, V. S., Existence of periodic solutions of equations of motion of a solid body similar to the Lagrange gyroscope, PMM 42, 2, 251-258, 1978. Ismail, A. I.; Sperling, L., and Amer, T. S., On the existence of periodic solutions of a gyrostat similar to Lagrange’s gyroscope, Technishe Mechanik 20, 4, 295-304, 2000. Rao, A. V., Dynamics of particles and rigid bodies: A systematic approach, Cambridge University Press, 2006. Faires, J. D., and Burden, R., Numerical methods, Inc. Thomson Learning, 2003. Rotea, M., Suboptimal control of rigid body motion with quadratic cost, Dyn. Control 8, 55–80, 1998. El-Gohary, A., On the orientation of a rigid body using point mass, Appl. Math. Comput. 151, 163–179, 2004. Baruh, H., Analytical dynamics, WCB/ McGraw-Hill, 1999. Amer, T. S., On the motion of a gyrostat similar to Lagrange’s gyroscope under the 669 | P a g e
  • 16. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 [34] [35] [36] [37] [38] influence of a gyrostatic moment vector, Nonlinear Dyn 54, 249-262, 2008. Arkhangel’skii, Iu. A., On a motion of an equilibrated gyroscope in the Newtonian force field, PMM 27, 6, 1099-1101, 1963. Ismail, A. I., On the application of KrylovBogoliubov-Mitropolski technique for treating the motion about a fixed point of a fast spinning heavy solid, ZFW 20, 205-208, 1996. Ismail, A. I., Treating a singular case for a motion a rigid body in a Newtonian field of force, Arch. Mech. 49, 6, 1091-1101, 1997. Ismail, A. I., The motion of fast spinning rigid body about a fixed point with definite natural frequency, Aerospace Science and Technology 3, 183-190, 1997. Ismail, A. I., The motion of a fast spinning disc which comes out from the limiting  case  0  0 , Comput. Methods Appl. Mech. Engrg. 161, 67-76, 1998. www.ijera.com Fig. 5 The phase plane diagram of the analytical solution when   10 3 kg.m .s 2 (1) Mathematics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt. (2) Mathematics Department, Faculty of Science, AlAzhar University, Nasr City 11884, Cairo, Egypt. (3) Mathematics Department, Faculty of Science, Suez Cana University, Egypt. (4) Mathematics Department, Faculty of Science, Minufiya University, Shebin El-Koum, Egypt. A  B  C. Fig. 6 The graphical representation of the analytical solution p 2 via t when   (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 7 The graphical representation of the analytical solution p 2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 8 The graphical representation of the analytical solution  2 via t when case A  B  C. Fig. 9 The phase plane diagram of the analytical solution when   50 3 kg.m .s 2 1 p2 for the case A  B  C. Fig. 10 The phase plane diagram of the analytical solution when   10 3 kg.m .s 2 1 2 for the case A  B  C. Captions of Figures Fig. 1 The graphical representation of the analytical solution p 2 via t when   (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 2 The graphical representation of the analytical solution p 2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 3 The graphical representation of the analytical solution  2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 4 The phase plane diagram of the analytical solution when   50 3 kg.m .s 2 www.ijera.com for the case   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the Permanent Addresses: A  B  C. 1 2 1 for the case p2 Fig. 11 The graphical representation of the numerical solution p 2 via t when   (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 12 The graphical representation of the numerical solution p 2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 13 The graphical representation of the numerical solution  2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 14 The phase plane diagram of the numerical solution when   50 3 kg.m .s 2 1 for the case A  B  C. 670 | P a g e p2
  • 17. T. S. Amer et al. Int. Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 Fig. 15 The phase plane diagram of the numerical solution when   10 3 kg.m .s 2 1 www.ijera.com 2 for the case A  B  C. Fig. 16 The graphical representation of the numerical solution p 2 via t when   (0, 10 3 , and 20 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 17 The graphical representation of the numerical solution p 2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 18 The graphical representation of the numerical solution  2 via t when   (30 3 , 40 3 , and 50 3 ) kg.m 2 .s 1 for the case A  B  C. Fig. 19 The phase plane diagram of the numerical solution when   50 3 kg.m .s 2 1 p2 for the case A  B  C. Fig. 20 The phase plane diagram of the numerical solution when   10 3 kg.m .s 2 1 2 for the case A  B  C. www.ijera.com 671 | P a g e