SlideShare a Scribd company logo
1 of 10
Download to read offline
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 19|P a g e
Hankel Determinent for Certain Classes of Analytic Functions
Gurmeet Singh
KHALSA COLLEGE, PATIALA
ABSTRACT:
Let 1A denote the class of functions 



2
)(
n
n
n zazzf analytic in the unit disc :{zE  |z| <1}.
M denotes the class of functions in 1A which satisfy the conditions 0
)().(


z
zfzf
and for
10  , 0
)(
))((
)(
)(
)1(Re 










zf
zfz
zf
zfz
 . We are interested in determining the sharp upper bound
for the functional
2
342 aaa  for the class M .
MATHEMATICS SUBJECT CLASSIFICATION: 30C45.
KEYWORDS: Analytic functions, univalent functions, starlike functions, convex functions,  convex
functions, Bazilevic functions.
I. INTRODUCTION:
Let 1A be the class of functions




2
)(
n
n
n zazzf (1.1)
analytic in the unit disc :{zE  |z| <1 }.
S denotes the Class of functions




2
)(
n
n
n zazzf (1.2)
analytic and univalent in :{zE  |z| <1 }.
Let  p be the class of functions of the form
  ...1 3
3
2
21  zpzpzpz (1.3)
analytic in the unit disc :{zE  |z| < 1 } with Re   0zP . Carathéodory [1] introduced the class  p .
Noshiro [2] and Warschawiski [3] introduced the class of univalent functions
 fR { 1A : Ezzf  ,0)(Re } (1.4)
known as N-W class of functions.
R and its subclasses were studied by several authors including Goel and Mehrok [11, 12].
*
S { f 1A : Ez
zf
zfz


,0
)(
)(
Re } (1.5)
is the class of starlike univalent functions .
RESEARCH ARTICLE OPEN ACCESS
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 20|P a g e
K = { f 1A : Ez
zf
zfz



,0
)(
))((
Re } (1.6)
is the class of convex univalent functions.
Macanu [5] introduced the class of  - convex functions defined as
   
   
 
  
  































Ez
zf
zfz
zf
zfz
z
zfzf
Af
M
,10,01Re
,0:1


(1.7)
For any real , Miller, Macanu and Reade [7] have shown that all  - convex functions, are starlike in E; and
for all 1 , all  -convex functions are convex in E.
Hassoon, Al-Amiri and Reade [9] introduced the class of analytic functions
      
  


















 Ez
zf
zfz
zfAfH ,10,01Re:1  (1.8)
Bazilevic [4] introduced the following class of analytic univalent functions. For  real, 0 ,    pzP 
and   
Szg
       























tz
dttgttPiAfgPB
1
0
1
1 :,,, (1.9)
Taking 0 and   zzg  in (1.9), we get  zPB ,,0, as the class of functions
   
















 




1
0
1
1 :,,0,
z
dtzzPAfzPB (1.10)
The class  zPB ,,0, was studied by Singh [6] and El-Ashwah and Thomas [13].
   















Ez
z
zf
zfAfB ,10,0Re:
1
1 

 (1.11)
is also a subclass of Bazilevic functions.
II. Preliminary Lemmas.
Lemma 2.1[15]: Let    pzpzpzpz  ...1 3
3
2
21 , then
2np for all n (n=1,2,3...).
Lemma 2.2[9]: If    pzpzpzpz  ...1 3
3
2
21 , then
 xppp 2
1
2
12 42  and
      zxpxppxpppp
22
1
22
11
2
11
3
13 1424424 
for some x and z with 1,1  zx .
III. Main Results.
Theorem 3.1: Let Mf  , then
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 21|P a g e
 
      
;10,
21
1
7241522131
13
2322
3
2
342 




 


aaa (3.1)
And 0,12
342  aaa (3.2)
Results are sharp.
Proof: Since Mf  , it follows that
 zP
zf
zfz
zf
zfz






)(
))((
)(
)(
)1(  (3.3)
Equating the coefficients in (3.3), it is easily established that
 
 
 
  
 
 
   
 
    
























3
4
1
2
213
4
2
2
12
3
1
2
131216
1761
312112
51
313
1212
31
312
1









pppp
a
pp
a
p
a
(3.4)
System (3.4) yields
 
           
          22
12
24
1
2
2
2
1
2
31
32
2
342
312213131761218
21512112412141
ppp
pppp
C
aaa


 

 (3.5)
 
    42
1213148
1



C . (3.6)
Using lemma 2.2 in (3.5), we get
 
           
      
          22
1
22
1
24
1
2
2
1
2
1
2
1
2
22
1
22
11
2
11
3
11
32
2
342
41833131761218
41512112
1424421214
1
xppp
xppp
zxpxppxpppp
C
aaa








(3.7)
Replacing 1p by  2,0p , (3.7) takes the form
 
       
     
       
   
 
         
      zxpp
xp
xpp
p
C
aaa
2232
2223
22
22
232
4
222
232
2
342
141218
7413111241
4
183316
15121121218
833131761218
15121121214
1

































(3.8)
Applying triangular inequality to (3.8), we obtain
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 22|P a g e
 
       
     
       
   
 
          
       














































232
2223
22
22
232
4
222
232
2
342
41218
7413116241
4
183316
15121121218
833131761218
15121121214
1
pp
xpp
xpp
p
C
aaa







(3.9)
 
  1,
1
 xF
C


. (3.10)
  0 F and therefore  F is increasing in [0,1] and  F attains its maximum value at
1 x .
Putting 1x in (3.9) , we have
 
       
     
       
   
 
         
















































2223
22
22
232
4
222
232
2
342
7413111241
4
183316
15121121218
833131761218
15121121214
1
pp
pp
p
C
aaa






 
          
          
       
          
   
  
























































4
2
23
42322
232
4
2322
322222
13148
73114
1311274114183316
15121121218
4
741117612181512124
1211218331683313
1







p
p
C
 
       
 
  







pG
C
pBpA
C



1
13148
1 424
(3.11)
where     21524714 23
 A , (3.12)
and     .148
4
 B (3.13)
      024 3
 pBpApG  (3.14)
which implies that p=0 or
 
 

A
B
p
2
2
 .
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 23|P a g e
p=0 does not give maximum value and is rejected.
 
 
 
 32
3
2
724152
16
2 






A
B
p , )0(  . (3.15)
gives the maximum value of  pG .
Putting the value of
2
p from (3.15) in (3.11) , we get
 
 
 
   






4
2
2
342 13148
4
1



 A
B
C
aaa , 0 (3.16)
Substituting the values from (3.6), (3.12) and (3.13) in (3.16) , the bound (3.1) follows.
Consider the case 0 . In this case,     0,0   BA and   48C .
Putting these values in (3.11) , we get 12
342  aaa .
Result (3.1) is sharp for
 
 32
3
1
724152
16




p , 12 p and 3p obtained from (3.5).
Result (3.2) is sharp for 1,0 21  pp and 23 p .
Remark 3.1: Taking 1 in (3.1) , we get
8
12
342  aaa , a result due to Janteng etal.[15].
Remark 3.2: Result (3.2) is also due to Janteng etal.[15].
Theorem 3.2: Let Hf  , then
  17
5
0,
1
1
9
4
2
2
342 

 

aaa ; (3.17)
and
 
    
1
17
5
,
19
4
,
4720121144
517
232
2
2
342 




 


aaa . (3.18)
Results are sharp.
Proof: Since Hf  , therefore by definition       
 
 zP
zf
zfz
zf 


 1 .
Identification of terms in the above equation yields
 
 
    
 
  



























2114
12
2114
3
214
13
2
3
1213
4
2
12
3
1
2
pppp
a
pp
a
p
a
(3.19)
From (3.19), we obtain
 
       
     22
12
4
1
2
2
131
2
2
342
2221811236
21544191
ppp
pppp
C
aaa


 

 , (3.20)
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 24|P a g e
Where  
  2
121288
1



C . (3.21)
By lemma 2.2, we get
 
         
          
   4
1
22
1
2
1
2
1
2
1
2
1
22
1
22
11
2
11
3
11
2
2
342
11236
4212184154
14244219
1
p
xppxppp
zxpxppxpppp
C
aaa







 (3.22)
1x and 1z . Changing 1p to  2,0p , (3.22) takes the form
 
     
      
    zxpp
pp
xppp
C
aaa
222
222
222432
2
342
14118
92121324
44131283121
1








 
     
       
    













22
2222
222432
4118
921211624
44131283121
1
pp
ppp
ppp
C



  
 

F
C
1
 , 1 x . (3.23)
  0 F and therefore  F is increasing in [0,1] and maximum  F =  1F .
Putting the value 1 in (3.23), we arrive at
 
     
       









 222
222432
2
342
92121324
441312831211
pp
ppp
C
aaa



 
      
        












 21128921421321318
92141312831211
222
42232
p
p
C
 
      
 
  







pG
C
pBpA
C



1
21128
1 24
(3.24)
Where     0972012 32
 A in [0, 1] (3.25)
And     51714  B . (3.26)
Case I:
17
5
0  so that   0B .
  0 pG and  pG attains its maximum value at 0p .
From (3.21) and (3.24) it follows that
 2
2
342
1
1
9
4

 aaa .
Result is sharp for 1,0 21  pp and 23 p .
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 25|P a g e
Case II: 1
17
5
 so that   0B .
      024 3
 pBpApG  which implies that
0p or
 
 
  
 32
2
47201
5171
2 






A
B
p (3.27)
0p does not give the maximum value and is rejected.
Substituting the value of
2
p from (3.27) in (3.24), we conclude that
 
 
 
 





 



21128
4
1 2
2
342
A
B
C
aaa (3.28)
Putting the values from (3.21), (3.25) and (3.26) in (3.28), result (3.18) follows.
Equality sign in (3.18) holds for
  
  1,
47201
5171
2321 


 pp


and 3p obtained from (3.20).
Remark 3.3: Letting 0 in (3.17) , we get
9
42
342  aaa , a result proved by Janteng etal.[7] for the class R.
Remark 3.4: Letting 1 in (3.18), it follows that
8
12
342  aaa , result proved by Janteng etal.[8] for the class K
Theorem 3.3: Let Bf  , then
 2
2
342
2
4



aaa . (3.29)
The result is sharp.
Proof: Since Bf  , therefore it follows that
       10,
1









zP
z
zf
zf . (3.30)
Equating the coefficients in (3.30) , we get
 
 
 
 
 
 
  
  
  
























3
3
1213
4
2
2
12
3
1
2
16
121
21
1
3
12
1
2
1









pppp
a
pp
a
p
a
(3.31)
(3.31) gives
 
           
            22
12
4
1
2
21
2
31
32
2
342
211233231212
2121641231
ppp
pppp
C
aaa






(3.32)
Where  
    42
12312
1



C . (3.33)
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 26|P a g e
Using lemma 2.2 in (3.32), we obtain
 
           
       
            22
1
22
1
4
1
2
2
1
2
1
2
1
2
22
1
22
11
2
11
3
11
32
2
342
41333231212
413216
142442123
1
xppp
xppp
zxpxppxpppp
C
aaa








(3.34)
Changing 1p to  2,0p , (3.34) takes the form
 
        
      
        
   
 
       
      zxpp
xpp
xpp
p
C
aaa
2232
2223
22
22
232
4
32
232
2
342
14126
314413
4
316
13216126
33231212
13216123
1
































(3.35)
Coefficient of
4
p in (3.35) changes from negative to positive in [0, 1] and therefore
there must exist 0 in (0, 1) so that coefficient of
4
p is negative for 00   and positive for
10   .
Case I: 00   , from (3.35) it follows that
 
          
    
        
   
 
        
      














































232
223
22
22
232
4
2
3223
2
342
4126
3122413
4
31
132112
6
231212
1231321633
1
pp
xppp
xpp
p
C
aaa







 
  1,
1
 xF
C


. (3.36)
  0 F and therefore  F is increasing in [0,1] and
 F will attain its maximum value at 1 x .
Putting 1 x in (3.36), we get
 
          
          
        
         
 
  














































4
22
322
232
4
3232
2223
2
342
1348
4
1311312
13212122
12
13231212129
13211213633
1






pp
p
C
aaa
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 27|P a g e
 
       
 
  







pG
C
pBpA
C



1
13148
1 424
1
. (3.37)
Where
    
     





01412
0202161
3
23
1


B
A
. (3.38)
  0 pG ,  pG is decreasing in [0, 2] and maximum  pG =     4
131480  G .
From (3.37) and (3.33), it follows that
 2
2
342
2
4



aaa .
Case II: 10   , proceeding as in case I, from (3.35) , we get
 
         
        
     























42
4
3332
222
2
342
13148
13123
231212126
1




pB
p
C
aaa .
Where  B is given by (3.38))
 
       424
2 13148
1


 pBpA
C
. (3.39)
where     074133418 5432
2  A .
As discussed in case I,
 2
2
342
2
4



aaa .
Combining both the cases, proof of the theorem is complete.
Result (3.29) is sharp for 01 p , 12 p and 23 p .
Remark 3.5: Putting 0 in (3.29) , we have
12
342 aaa , a result established by Janteng etal.[15] for the class

S .
Remark 3.6: If we put 1 in (3.29), we get
9
42
342  aaa , a result established by Janteng etal.[14] for the class R.
References
[1] C. Carathéodory, Über Den Variabilitatsb Erecöch Der Fourieŕ Schen Konstanten Von Positivenen
harmonischen-Funktionan, Rendiconti Palerno, 32(1911), 193-217.
[2] K.Noshiro, On the theory of schlicht functions,J. Fac. Soc. Hokkaido univ.Ser.1,2(1934-1935), 129-155.
[3] S. Warchawski, On the higher derivative at the boundary in conformal mapping, Trasaction Amer.
Math.Soc.,38(1935), 310-340.
[4] I.E.Bazilevic, On the case of integrability in quadrature of the Lowner equation, Mat Sb. 37(1958), 471-
476.
[5] P.T.Mocanu , Une propritéde convexité generalise dans la théorie de la representation
conforme,Mathematica(CLUJ), 34 (1969), 127-133.
[6] R.Singh, On Bazilevic functions, Proceeding Amer. Math.Soc.,38(1973), 261-263.
[7] S.S.Miller ,P.T.Mocanu and M.O.Reade, All  -convex functions are univalent and starlike, Proceeding
Amer. Math.Soc.,37(1973), 553-554.
[8] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen,1975.
Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28
www.ijera.com 28|P a g e
[9] S.Hassoon,Al-Amiri and M.O.Reade, On A linear combination of some expressions in the theory of the
univalent functions, Monatshafte fur Math.,80(1975),257-264.
[10] R.J.Libera and E.J.Zlotkiewicz, Early coefficients of the inverse of a regular convex function,
Proceeding Amer. Math.Soc., 85(1982) , 225-230.
[11] R.M.Goel and B.S.Mehrok, A subclass of univalent functions, Houston J.Math.,8(1982),343-357.
[12] R. M. Goel, Beant Singh Mehrok, A subclass of univalent functions, J.Austral.Math.Soc. (Series
A),35(1983), 1-17.
[13] R.M.El-Ashwah and D.K.Thomas, Growth results for a subclass of Bazilevic functions, Inter J.Math.ana
Math Sci, 8(1985), 785-792.
[14] A.Janteng , S.A.Halim and M.Darus, Coefficient inequality for a function whoose derivative has a
positive real part, J.Ineq. in pure and appl. Math., 7(2006), 1-4.
[15] Aini Janteng, Hankel determinant for starlike and convex functions, Int. J.Math.Anal., 1(2007) , 619-
625.

More Related Content

What's hot

Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
 
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...IOSR Journals
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash mathsyash bhathawala
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...IRJET Journal
 
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformRadix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformIJERA Editor
 
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONS
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONSZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONS
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONSIAEME Publication
 
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...IRJET Journal
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1foxtrot jp R
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlineareSAT Publishing House
 
Feedback Linearization Controller Of The Delta WingRock Phenomena
Feedback Linearization Controller Of The Delta WingRock PhenomenaFeedback Linearization Controller Of The Delta WingRock Phenomena
Feedback Linearization Controller Of The Delta WingRock PhenomenaIJERA Editor
 
Fourth order improved finite difference approach to pure bending analysis o...
Fourth   order improved finite difference approach to pure bending analysis o...Fourth   order improved finite difference approach to pure bending analysis o...
Fourth order improved finite difference approach to pure bending analysis o...eSAT Journals
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationAlexander Litvinenko
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 

What's hot (18)

Sw2gr1 sqrd
Sw2gr1   sqrdSw2gr1   sqrd
Sw2gr1 sqrd
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
 
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformRadix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
 
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONS
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONSZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONS
ZAGREB INDICES AND ZAGREB COINDICES OF SOME GRAPH OPERATIONS
 
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
I034051056
I034051056I034051056
I034051056
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
Feedback Linearization Controller Of The Delta WingRock Phenomena
Feedback Linearization Controller Of The Delta WingRock PhenomenaFeedback Linearization Controller Of The Delta WingRock Phenomena
Feedback Linearization Controller Of The Delta WingRock Phenomena
 
Fourth order improved finite difference approach to pure bending analysis o...
Fourth   order improved finite difference approach to pure bending analysis o...Fourth   order improved finite difference approach to pure bending analysis o...
Fourth order improved finite difference approach to pure bending analysis o...
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 

Viewers also liked

Mg54 imagina + (negocios digialtes)
Mg54 imagina + (negocios digialtes)Mg54 imagina + (negocios digialtes)
Mg54 imagina + (negocios digialtes)Santiago Trevisán
 
Curriculo lattes, entrevista e dinâmica de grupo
Curriculo lattes, entrevista e dinâmica de grupoCurriculo lattes, entrevista e dinâmica de grupo
Curriculo lattes, entrevista e dinâmica de grupoUNIME
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
La tecnología de código de barras
La tecnología de código de barrasLa tecnología de código de barras
La tecnología de código de barrasDelsi Rojas
 
IATEFL MaWSIG Conference 2016 Programme
IATEFL MaWSIG Conference 2016 ProgrammeIATEFL MaWSIG Conference 2016 Programme
IATEFL MaWSIG Conference 2016 ProgrammeKirsten Holt
 
白川郷(Shirakawa go)) by Paco Barberá
白川郷(Shirakawa go)) by Paco Barberá 白川郷(Shirakawa go)) by Paco Barberá
白川郷(Shirakawa go)) by Paco Barberá B & M Co., Ltd.
 
412773_Svetlana Bikulich_Evaluation form
412773_Svetlana Bikulich_Evaluation form412773_Svetlana Bikulich_Evaluation form
412773_Svetlana Bikulich_Evaluation formSvetlana Bikulich
 
Viktor Pelc CV Mechanic
Viktor Pelc CV MechanicViktor Pelc CV Mechanic
Viktor Pelc CV MechanicViktor Pelc
 
Segovirra
SegovirraSegovirra
Segovirrampe21
 
Everlast Senga`s Resume
Everlast Senga`s  ResumeEverlast Senga`s  Resume
Everlast Senga`s ResumeEverlast Senga
 

Viewers also liked (13)

Mg54 imagina + (negocios digialtes)
Mg54 imagina + (negocios digialtes)Mg54 imagina + (negocios digialtes)
Mg54 imagina + (negocios digialtes)
 
Curriculo lattes, entrevista e dinâmica de grupo
Curriculo lattes, entrevista e dinâmica de grupoCurriculo lattes, entrevista e dinâmica de grupo
Curriculo lattes, entrevista e dinâmica de grupo
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
La tecnología de código de barras
La tecnología de código de barrasLa tecnología de código de barras
La tecnología de código de barras
 
Sustraccion
SustraccionSustraccion
Sustraccion
 
IATEFL MaWSIG Conference 2016 Programme
IATEFL MaWSIG Conference 2016 ProgrammeIATEFL MaWSIG Conference 2016 Programme
IATEFL MaWSIG Conference 2016 Programme
 
白川郷(Shirakawa go)) by Paco Barberá
白川郷(Shirakawa go)) by Paco Barberá 白川郷(Shirakawa go)) by Paco Barberá
白川郷(Shirakawa go)) by Paco Barberá
 
Max Joarder
Max JoarderMax Joarder
Max Joarder
 
412773_Svetlana Bikulich_Evaluation form
412773_Svetlana Bikulich_Evaluation form412773_Svetlana Bikulich_Evaluation form
412773_Svetlana Bikulich_Evaluation form
 
Viktor Pelc CV Mechanic
Viktor Pelc CV MechanicViktor Pelc CV Mechanic
Viktor Pelc CV Mechanic
 
Segovirra
SegovirraSegovirra
Segovirra
 
Everlast Senga`s Resume
Everlast Senga`s  ResumeEverlast Senga`s  Resume
Everlast Senga`s Resume
 
Potenciacion
PotenciacionPotenciacion
Potenciacion
 

Similar to Hankel Determinent for Certain Classes of Analytic Functions

Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...
Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...
Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...IRJET Journal
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2IRJET Journal
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Alexander Decker
 
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformRadix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformIJERA Editor
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
Observations On X2 + Y2 = 2Z2 - 62W2
Observations On  X2 + Y2 = 2Z2 - 62W2Observations On  X2 + Y2 = 2Z2 - 62W2
Observations On X2 + Y2 = 2Z2 - 62W2IRJET Journal
 
On Pairs of Pythagorean Triangles –I
On Pairs of Pythagorean Triangles –IOn Pairs of Pythagorean Triangles –I
On Pairs of Pythagorean Triangles –Iiosrjce
 
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...Editor IJCATR
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...INFOGAIN PUBLICATION
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2eSAT Journals
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2eSAT Journals
 
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM MotorTNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM MotorIJERA Editor
 
A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon IJERA Editor
 
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...IJERA Editor
 

Similar to Hankel Determinent for Certain Classes of Analytic Functions (20)

Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...
Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...
Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime n...
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
 
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformRadix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
Cy33602608
Cy33602608Cy33602608
Cy33602608
 
Cy33602608
Cy33602608Cy33602608
Cy33602608
 
Observations On X2 + Y2 = 2Z2 - 62W2
Observations On  X2 + Y2 = 2Z2 - 62W2Observations On  X2 + Y2 = 2Z2 - 62W2
Observations On X2 + Y2 = 2Z2 - 62W2
 
Kl3418811903
Kl3418811903Kl3418811903
Kl3418811903
 
On Pairs of Pythagorean Triangles –I
On Pairs of Pythagorean Triangles –IOn Pairs of Pythagorean Triangles –I
On Pairs of Pythagorean Triangles –I
 
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...
On the Adjacency Matrix and Neighborhood Associated with Zero-divisor Graph f...
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2Lattice points on the homogeneous cone 5(x2+y2)  9xy=23z2
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
 
D044042432
D044042432D044042432
D044042432
 
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM MotorTNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor
TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor
 
A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon
 
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...
Radix-2 Algorithms for realization of Type-II Discrete Sine Transform and Typ...
 

Recently uploaded

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 

Hankel Determinent for Certain Classes of Analytic Functions

  • 1. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 19|P a g e Hankel Determinent for Certain Classes of Analytic Functions Gurmeet Singh KHALSA COLLEGE, PATIALA ABSTRACT: Let 1A denote the class of functions     2 )( n n n zazzf analytic in the unit disc :{zE  |z| <1}. M denotes the class of functions in 1A which satisfy the conditions 0 )().(   z zfzf and for 10  , 0 )( ))(( )( )( )1(Re            zf zfz zf zfz  . We are interested in determining the sharp upper bound for the functional 2 342 aaa  for the class M . MATHEMATICS SUBJECT CLASSIFICATION: 30C45. KEYWORDS: Analytic functions, univalent functions, starlike functions, convex functions,  convex functions, Bazilevic functions. I. INTRODUCTION: Let 1A be the class of functions     2 )( n n n zazzf (1.1) analytic in the unit disc :{zE  |z| <1 }. S denotes the Class of functions     2 )( n n n zazzf (1.2) analytic and univalent in :{zE  |z| <1 }. Let  p be the class of functions of the form   ...1 3 3 2 21  zpzpzpz (1.3) analytic in the unit disc :{zE  |z| < 1 } with Re   0zP . Carathéodory [1] introduced the class  p . Noshiro [2] and Warschawiski [3] introduced the class of univalent functions  fR { 1A : Ezzf  ,0)(Re } (1.4) known as N-W class of functions. R and its subclasses were studied by several authors including Goel and Mehrok [11, 12]. * S { f 1A : Ez zf zfz   ,0 )( )( Re } (1.5) is the class of starlike univalent functions . RESEARCH ARTICLE OPEN ACCESS
  • 2. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 20|P a g e K = { f 1A : Ez zf zfz    ,0 )( ))(( Re } (1.6) is the class of convex univalent functions. Macanu [5] introduced the class of  - convex functions defined as                                                Ez zf zfz zf zfz z zfzf Af M ,10,01Re ,0:1   (1.7) For any real , Miller, Macanu and Reade [7] have shown that all  - convex functions, are starlike in E; and for all 1 , all  -convex functions are convex in E. Hassoon, Al-Amiri and Reade [9] introduced the class of analytic functions                              Ez zf zfz zfAfH ,10,01Re:1  (1.8) Bazilevic [4] introduced the following class of analytic univalent functions. For  real, 0 ,    pzP  and    Szg                                tz dttgttPiAfgPB 1 0 1 1 :,,, (1.9) Taking 0 and   zzg  in (1.9), we get  zPB ,,0, as the class of functions                           1 0 1 1 :,,0, z dtzzPAfzPB (1.10) The class  zPB ,,0, was studied by Singh [6] and El-Ashwah and Thomas [13].                    Ez z zf zfAfB ,10,0Re: 1 1    (1.11) is also a subclass of Bazilevic functions. II. Preliminary Lemmas. Lemma 2.1[15]: Let    pzpzpzpz  ...1 3 3 2 21 , then 2np for all n (n=1,2,3...). Lemma 2.2[9]: If    pzpzpzpz  ...1 3 3 2 21 , then  xppp 2 1 2 12 42  and       zxpxppxpppp 22 1 22 11 2 11 3 13 1424424  for some x and z with 1,1  zx . III. Main Results. Theorem 3.1: Let Mf  , then
  • 3. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 21|P a g e          ;10, 21 1 7241522131 13 2322 3 2 342          aaa (3.1) And 0,12 342  aaa (3.2) Results are sharp. Proof: Since Mf  , it follows that  zP zf zfz zf zfz       )( ))(( )( )( )1(  (3.3) Equating the coefficients in (3.3), it is easily established that                                                 3 4 1 2 213 4 2 2 12 3 1 2 131216 1761 312112 51 313 1212 31 312 1          pppp a pp a p a (3.4) System (3.4) yields                         22 12 24 1 2 2 2 1 2 31 32 2 342 312213131761218 21512112412141 ppp pppp C aaa       (3.5)       42 1213148 1    C . (3.6) Using lemma 2.2 in (3.5), we get                                22 1 22 1 24 1 2 2 1 2 1 2 1 2 22 1 22 11 2 11 3 11 32 2 342 41833131761218 41512112 1424421214 1 xppp xppp zxpxppxpppp C aaa         (3.7) Replacing 1p by  2,0p , (3.7) takes the form                                               zxpp xp xpp p C aaa 2232 2223 22 22 232 4 222 232 2 342 141218 7413111241 4 183316 15121121218 833131761218 15121121214 1                                  (3.8) Applying triangular inequality to (3.8), we obtain
  • 4. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 22|P a g e                                                                                                232 2223 22 22 232 4 222 232 2 342 41218 7413116241 4 183316 15121121218 833131761218 15121121214 1 pp xpp xpp p C aaa        (3.9)     1, 1  xF C   . (3.10)   0 F and therefore  F is increasing in [0,1] and  F attains its maximum value at 1 x . Putting 1x in (3.9) , we have                                                                                         2223 22 22 232 4 222 232 2 342 7413111241 4 183316 15121121218 833131761218 15121121214 1 pp pp p C aaa                                                                                                                 4 2 23 42322 232 4 2322 322222 13148 73114 1311274114183316 15121121218 4 741117612181512124 1211218331683313 1        p p C                       pG C pBpA C    1 13148 1 424 (3.11) where     21524714 23  A , (3.12) and     .148 4  B (3.13)       024 3  pBpApG  (3.14) which implies that p=0 or      A B p 2 2  .
  • 5. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 23|P a g e p=0 does not give maximum value and is rejected.        32 3 2 724152 16 2        A B p , )0(  . (3.15) gives the maximum value of  pG . Putting the value of 2 p from (3.15) in (3.11) , we get                 4 2 2 342 13148 4 1     A B C aaa , 0 (3.16) Substituting the values from (3.6), (3.12) and (3.13) in (3.16) , the bound (3.1) follows. Consider the case 0 . In this case,     0,0   BA and   48C . Putting these values in (3.11) , we get 12 342  aaa . Result (3.1) is sharp for    32 3 1 724152 16     p , 12 p and 3p obtained from (3.5). Result (3.2) is sharp for 1,0 21  pp and 23 p . Remark 3.1: Taking 1 in (3.1) , we get 8 12 342  aaa , a result due to Janteng etal.[15]. Remark 3.2: Result (3.2) is also due to Janteng etal.[15]. Theorem 3.2: Let Hf  , then   17 5 0, 1 1 9 4 2 2 342      aaa ; (3.17) and        1 17 5 , 19 4 , 4720121144 517 232 2 2 342          aaa . (3.18) Results are sharp. Proof: Since Hf  , therefore by definition           zP zf zfz zf     1 . Identification of terms in the above equation yields                                          2114 12 2114 3 214 13 2 3 1213 4 2 12 3 1 2 pppp a pp a p a (3.19) From (3.19), we obtain                22 12 4 1 2 2 131 2 2 342 2221811236 21544191 ppp pppp C aaa       , (3.20)
  • 6. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 24|P a g e Where     2 121288 1    C . (3.21) By lemma 2.2, we get                           4 1 22 1 2 1 2 1 2 1 2 1 22 1 22 11 2 11 3 11 2 2 342 11236 4212184154 14244219 1 p xppxppp zxpxppxpppp C aaa         (3.22) 1x and 1z . Changing 1p to  2,0p , (3.22) takes the form                    zxpp pp xppp C aaa 222 222 222432 2 342 14118 92121324 44131283121 1                                           22 2222 222432 4118 921211624 44131283121 1 pp ppp ppp C          F C 1  , 1 x . (3.23)   0 F and therefore  F is increasing in [0,1] and maximum  F =  1F . Putting the value 1 in (3.23), we arrive at                           222 222432 2 342 92121324 441312831211 pp ppp C aaa                                   21128921421321318 92141312831211 222 42232 p p C                      pG C pBpA C    1 21128 1 24 (3.24) Where     0972012 32  A in [0, 1] (3.25) And     51714  B . (3.26) Case I: 17 5 0  so that   0B .   0 pG and  pG attains its maximum value at 0p . From (3.21) and (3.24) it follows that  2 2 342 1 1 9 4   aaa . Result is sharp for 1,0 21  pp and 23 p .
  • 7. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 25|P a g e Case II: 1 17 5  so that   0B .       024 3  pBpApG  which implies that 0p or         32 2 47201 5171 2        A B p (3.27) 0p does not give the maximum value and is rejected. Substituting the value of 2 p from (3.27) in (3.24), we conclude that                   21128 4 1 2 2 342 A B C aaa (3.28) Putting the values from (3.21), (3.25) and (3.26) in (3.28), result (3.18) follows. Equality sign in (3.18) holds for      1, 47201 5171 2321     pp   and 3p obtained from (3.20). Remark 3.3: Letting 0 in (3.17) , we get 9 42 342  aaa , a result proved by Janteng etal.[7] for the class R. Remark 3.4: Letting 1 in (3.18), it follows that 8 12 342  aaa , result proved by Janteng etal.[8] for the class K Theorem 3.3: Let Bf  , then  2 2 342 2 4    aaa . (3.29) The result is sharp. Proof: Since Bf  , therefore it follows that        10, 1          zP z zf zf . (3.30) Equating the coefficients in (3.30) , we get                                              3 3 1213 4 2 2 12 3 1 2 16 121 21 1 3 12 1 2 1          pppp a pp a p a (3.31) (3.31) gives                           22 12 4 1 2 21 2 31 32 2 342 211233231212 2121641231 ppp pppp C aaa       (3.32) Where       42 12312 1    C . (3.33)
  • 8. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 26|P a g e Using lemma 2.2 in (3.32), we obtain                                   22 1 22 1 4 1 2 2 1 2 1 2 1 2 22 1 22 11 2 11 3 11 32 2 342 41333231212 413216 142442123 1 xppp xppp zxpxppxpppp C aaa         (3.34) Changing 1p to  2,0p , (3.34) takes the form                                                zxpp xpp xpp p C aaa 2232 2223 22 22 232 4 32 232 2 342 14126 314413 4 316 13216126 33231212 13216123 1                                 (3.35) Coefficient of 4 p in (3.35) changes from negative to positive in [0, 1] and therefore there must exist 0 in (0, 1) so that coefficient of 4 p is negative for 00   and positive for 10   . Case I: 00   , from (3.35) it follows that                                                                                                232 223 22 22 232 4 2 3223 2 342 4126 3122413 4 31 132112 6 231212 1231321633 1 pp xppp xpp p C aaa            1, 1  xF C   . (3.36)   0 F and therefore  F is increasing in [0,1] and  F will attain its maximum value at 1 x . Putting 1 x in (3.36), we get                                                                                               4 22 322 232 4 3232 2223 2 342 1348 4 1311312 13212122 12 13231212129 13211213633 1       pp p C aaa
  • 9. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 27|P a g e                       pG C pBpA C    1 13148 1 424 1 . (3.37) Where                 01412 0202161 3 23 1   B A . (3.38)   0 pG ,  pG is decreasing in [0, 2] and maximum  pG =     4 131480  G . From (3.37) and (3.33), it follows that  2 2 342 2 4    aaa . Case II: 10   , proceeding as in case I, from (3.35) , we get                                                   42 4 3332 222 2 342 13148 13123 231212126 1     pB p C aaa . Where  B is given by (3.38))          424 2 13148 1    pBpA C . (3.39) where     074133418 5432 2  A . As discussed in case I,  2 2 342 2 4    aaa . Combining both the cases, proof of the theorem is complete. Result (3.29) is sharp for 01 p , 12 p and 23 p . Remark 3.5: Putting 0 in (3.29) , we have 12 342 aaa , a result established by Janteng etal.[15] for the class  S . Remark 3.6: If we put 1 in (3.29), we get 9 42 342  aaa , a result established by Janteng etal.[14] for the class R. References [1] C. Carathéodory, Über Den Variabilitatsb Erecöch Der Fourieŕ Schen Konstanten Von Positivenen harmonischen-Funktionan, Rendiconti Palerno, 32(1911), 193-217. [2] K.Noshiro, On the theory of schlicht functions,J. Fac. Soc. Hokkaido univ.Ser.1,2(1934-1935), 129-155. [3] S. Warchawski, On the higher derivative at the boundary in conformal mapping, Trasaction Amer. Math.Soc.,38(1935), 310-340. [4] I.E.Bazilevic, On the case of integrability in quadrature of the Lowner equation, Mat Sb. 37(1958), 471- 476. [5] P.T.Mocanu , Une propritéde convexité generalise dans la théorie de la representation conforme,Mathematica(CLUJ), 34 (1969), 127-133. [6] R.Singh, On Bazilevic functions, Proceeding Amer. Math.Soc.,38(1973), 261-263. [7] S.S.Miller ,P.T.Mocanu and M.O.Reade, All  -convex functions are univalent and starlike, Proceeding Amer. Math.Soc.,37(1973), 553-554. [8] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen,1975.
  • 10. Gurmeet Singh Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.19-28 www.ijera.com 28|P a g e [9] S.Hassoon,Al-Amiri and M.O.Reade, On A linear combination of some expressions in the theory of the univalent functions, Monatshafte fur Math.,80(1975),257-264. [10] R.J.Libera and E.J.Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proceeding Amer. Math.Soc., 85(1982) , 225-230. [11] R.M.Goel and B.S.Mehrok, A subclass of univalent functions, Houston J.Math.,8(1982),343-357. [12] R. M. Goel, Beant Singh Mehrok, A subclass of univalent functions, J.Austral.Math.Soc. (Series A),35(1983), 1-17. [13] R.M.El-Ashwah and D.K.Thomas, Growth results for a subclass of Bazilevic functions, Inter J.Math.ana Math Sci, 8(1985), 785-792. [14] A.Janteng , S.A.Halim and M.Darus, Coefficient inequality for a function whoose derivative has a positive real part, J.Ineq. in pure and appl. Math., 7(2006), 1-4. [15] Aini Janteng, Hankel determinant for starlike and convex functions, Int. J.Math.Anal., 1(2007) , 619- 625.