SlideShare a Scribd company logo
1 of 8
Download to read offline
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 11|| November – 2016 ||
International Journal of Computational Engineering Research (IJCER)
www.ijceronline.com Open Access Journal Page 34
Passively Flapping Dynamics of a Flexible Foil Immersed in the
Wake of a Cylinder
Dibo Dong1
, Weishan Chen, Zhenxiu Hou, Zhenbo Han
1
State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin, Heilongjiang Province,
China.
I. INTRODUCTION
The interaction between a rigid structure and a flexible body is a common phenomenon, like fishes swimming
behind a ship or staying in the wake of a stationary structure. Fishes may take advantage of the interaction to
save energy and lift efficiency. Two rigid bodies arranged in tandem, the downstream one enjoys a drag
reduction [1]. Recently, the interaction between flexible bodies has been widely studied by simulations and
experiments [2, 3]. For two tandem flexible bodies, the downstream will suffer a drag increase, which is
opposite to the situation of two tandem rigid bodies. The interaction of coupled rigid and flexible bodies may be
much different. Interaction between a upstream flexible filament and a downstream rigid cylinder is investigated
in [4]. Reference [5] studied the effect of a thin wire placed in the wake of a rigid cylinder. In this paper, we
places a flexible foil at the downstream of a rigid cylinder to study the interaction between rigid and flexible
bodies in a viscous flow numerically. An immersed boundary-lattice Boltzmann method is adopted to carry out
the simulations.
II. COMPUTATIONAL MODEL
A schematic diagram of the cylinder-foil system is shown in Fig. 1. A thin foil with length L is placed in
downstream of a rigid circular cylinder with diameter d. The foil is considered as a two-dimensional thin beam
with a simply supported boundary condition at the leading-edge. Both the center of the cylinder and the leading-
edge of the foil are fixed at the center line of the fluid domain, the trailing-edge of the foil is free. The minimum
distance between the cylinder and the leading-edge of the foil is the cylinder-foil distance Ds. Here we introduce
a non-dimensionalize cylinder-foil distance ratio defined as D = Ds/d. The incoming flow is parallel to the X-
axis with a velocity of U∞.
The problem on a rigid body and a flexible foil immersed in a viscous flow is solved by the IB-LBM [6]. The
fluid is discretized by a regular Cartesian lattice, the foil is discretized by a group of Lagrangian coordinate
markers. The viscous fluid is govern by the incompressible Navier–Stokes and continuity equations:
21
p
t R e

       

f
v
v v v ,
(1)
0 v .
(2)
ABSTRACT
Passive dynamics of flexible body in the von Kármán vortex is complicated and has not yet been well
understood. In this work we numerically studied the passive flapping motion of an inverted flexible
foil pinned in the wake of a rigid circular cylinder by an robust fluid structure interaction
framework. The non-dimensional parameters are Reynolds number and distance between the
cylinder and pinned-point of the foil. Simulation results show that the flexible foil can extract energy
from the vortex street and be induced to vibrate periodically. It is revealed that the foil's motion
patterns can be divided into two categories: inverted flapping and forward flapping, which
depended on the cylinder-foil distance. Both the cylinder and foil experiences a drag reduction, the
foil can even obtain thrust in inverted flapping mode. Compared with a single one in the same
uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. This work
would help us to elucidate the energy-saving mechanism of fish swimming and inspire the promising
applications in marine engineering.
Keywords: flow control, elastic plate; passively flapping, fluid-structure interaction.
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 35
p is the pressure of the fluid, ρ is the fluid density, v =(v, u) is the fluid velocity as a function of time /t L U 
 .
Re is the Reynolds number defined as /R e U d 
 , μ is the fluid dynamic viscosity. The added momentum
force f represents the force exerted by the structure on the fluid. The dynamics of the foil is governed by the
equation:
2 4
2 4
0l
d d d d
T K
ds dsdt ds

 
    
 
X X X
F .
(3)
ρl is the linear density of the foil,  ,X YX represents the position of the foil markers. s represents the
Lagrangian coordinate along the foil. 2
/cT T U L 
 is the tension. Tc (s, t) is the tension within the foil which
determined by the markers
LDd
U∞
X
Y
Leading-edge
Trailing-edge
Fig. 1 Schematic diagram of the cylinder-foil system.
position X. K is the bending stiffness defined as 2 3
/ ( )K E I U L 
 , EI is the bending rigidity of the foil. F is the
hydrodynamic force exerts on the fluid by the foil which defined on the foil markers. The foil is considered to be
inextensible, which provided by:
1
d d
ds ds
 
X X
.
(4)
The boundary condition for the foil is:
2
0
2
, 0
d
ds
 
X
X X
(5)
for the leading-edge,
2
2
0, 0
d
T
ds
 
X
(6)
for the trailing-edge. The momentum force f = (fx, fy) can be calculated by:
 
     
1
,
( ), ( ) ( ) ( )
t d s
t
s t s d s 
 

 
 

 
      
  
 
f x
X y y X y x XU v
(7)
Γ is boundary of the foil markers, Ω denotes the domain of the fluid. x denotes the coordinate of the Cartesian
lattice of the fluid. U represents the velocity of the foil marker at X. v represents the fluid velocity field. δ is a
mollifier [7] to perform the convolution which defined as:
 
 
2
2
1
5 3 3(1 ) 1 0 .5 1 .5
6
1
( ) 1 3 1 0 .5
3
0 o h terw ise
d d d
d d d

      



    




.
(8)
Where d represents the distance between the Lagrangian coordinate s   and the lattice coordinate  x . As
shown in Fig. 2, by placing the tension points between each foil markers, equation (3) and (4) can be discretised
into a staggered fashion:
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 36
1 1
1 1
2
1 1
( )2
1
S S S S
n n n n
n n n
s s
l
n n
s s
D T D K D
t
D D

 
 
 
       
 


 
X X FX X X
X X
(9)
t is the increment of time. Ds denotes the standard second-order center finite difference for s. The lattice
Boltzmann equation (LBE) [8] is used to solve the fluid instead of the Navier–Stokes equations because of its
efficiency. The LBE with the BGK approach is:
Xi-1
Ti Ti+1
Xi Xi+1
Fig. 2 Discretisation grid of the plate in a staggered form. Blue circles represents tension points, between
tension points are coordinate markers.
        , , , ,
eq
i i i i i
t
f t t t f t f t f t t


         x e x x x F
(10)
Where τ is a relaxation time which related to the dynamic viscosity as  1 / 2 / 3   .  ,i
f tx denotes the
distribution function with respect to the fluid particles at position x and time t, ei is the discrete particles velocity
which is shown in Fig. 3. The subscript i is the directions of the fluid particles, in this model, ei is defined as:
 
0 1 1 0 0 1 1 1 0
0, 1, ... , 8
0 0 0 1 1 1 1 1 0
i i
   
  
   
e
(11)
 ,
eq
f tx is the equilibrium function which can be obtained by:
 
 
2
2
2 4 2
, 1
2 2
ieq i
i
s s s
f t
c c c
 
 
    
  
ee
x
vv v
(12)
cs is the sound velocity and ωi is the weighting coefficients. The discretised force Fi relates to the f is defined as
follows:
2 4
1
1
2
i i
i i i
s s
c c


   
     
   
e e
F e f
v v
(13)
the macroscopic quantities of density ρ and v can are obtained by:
i
i
f  
(14)
2
i i
i
t
f

  e fv
(15)
The dimensionless mass ratio of the foil is defined as: / ( )l
M L  , the dimensionless drag coefficient for the
foil and cylinder is: 2
2 /d d
C F U L 
 and 2
2 /d d
C F U d 
 . The dimensionless lift coefficient is defined
as 2
2 /l l
C F U L 
 and 2
2 /l l
C F U d 
 . Fd and Fl are the hydrodynamic force along the X-axis and Y-axis
respectively.
e2 f2
e0 f0
e5
f5
e7
f7 e4 f4
e6
f6
e8
f8
e3
f3
e1
f1
Fig. 3 The distribution function and the discrete particles velocity.
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 37
The flapping amplitude Af is defined as the displacement along the Y-axis of the trailing-edge, and A = AT / L is
the dimensionless flapping amplitude. The flapping frequency of the foil and the vortex shedding frequency of
the cylinder are represented by f.
The X-axis length for the fluid domain is 80d and the Y-axis length is 40d. The center of the cylinder is placed
20d away from the inlet of the fluid domain. The position of the foil is decided by the distance ratio D. The foil
is parallel to the X-axis at the beginning of the simulation. The foil markers and the Cartesian lattice is in
uniform distribution. Both the distance between two neighboring markers and the lattice spacing is set to 0.01.
The diameter d and the foil length L is set to d = L, so the size for the fluid domain is 2000 × 1500. Unless other
stated, the Reynolds number is Re = 100 , the mass ratio of the foil is M = 0.3 and the bending stiffness is K =
10-4
. In such parameters, the flexible foil can flap in a stable motion periodically as the simulation results
showed. All the results analyzed below are obtained by these stable periods.
III. RESULT AND DISCUSSION
Two categories of the foil's motion patterns are founded by changing the cylinder-foil distance: inverted
flapping and forward flapping, as shown in Fig. 4. When the cylinder-foil distance is small enough, the foil will
flap towards the opposite direction of the incoming flow. The free end of the foil will move upstream and go
across the pinned-point, then gets into a stable flapping motion with the free end pointing to the upstream
cylinder. There is a backflow zone behind the cylinder, as shown in Fig. 5, the flow speed of this area is contrary
to the streamwise [9], and the pressure is low. The foil in the backflow zone will experiences a force along the
negative direction of the X-axis, and finally the foil will turn around and flap towards the upstream direction.
With the increasing of the cylinder-foil distance, the foil's motion patterns will turn to the forward flapping
mode, which the trailing-edge points to the downstream. The crucial cylinder-foil distance of the mode shift is
decided by the length of the backflow zone. Fig. 4 plots the flapping pattern of the inverted flapping mode at D
= 2.1 and the forward flapping mode at D = 3.5. The flapping amplitude and the Y-velocity of the trailing-edge
in the inverted flapping mode is obviously smaller than that of the forward flapping mode. From Fig.5 (e) we
can see the flapping trajectory of the trailing-edge at D = 2.1 is not fully symmetrical about the centre line of the
fluid. We can find the reason in Fig. 6 which plots the stream lines for the two different flapping mode. For D =
2.1, the backflow zone deviates to one side of the cylinder, which has a attraction for the foil and lead to the
unsymmetrical of the flapping motion of the foil. The backflow zone at D = 2.1 is much bigger than that at D =
3.5, we can infer that the exists of the foil may has a influence on the shape of the backflow zone.
The average drag coefficient and the amplitude of lift coefficient and the flapping frequency of the foil are
shown in Fig. 7. All the figures are divided into two parts: part I and part II corresponding to the inverted
flapping mode and forward
(a) (b)
-1.6 -1.2 -0.8 -0.4 0.0 0.0 0.4 0.8 1.2 1.6
0.8
0.4
0.0
-0.8
-0.4
0.8
0.4
0.0
-0.8
-0.4
Y-coordinateofthe
trailing-edge(L)
X-coordinate of the
trailing-edge (L)
X-coordinate of the
trailing-edge (L)
(c) (d)
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 38
0.8
0.4
0.0
-0.8
-0.4
-0.8 -0.4 0.0 0.4 0.8
0.8
0.4
0.0
-0.8
-0.4
-0.8 -0.4 0.0 0.4 0.8
Y-velocityofthe
trailing-edge(V)
Y-coordinate of the
trailing-edge (L)
Y-coordinate of the
trailing-edge (L)
(e) (f)
Fig. 4 The flapping patterns of the foil, the flapping trajectory and the phase plot of the of the trailing-edge of
the foil at Re = 100, origin of coordinates for flapping trajectory and phase plot is set at the leading-edge and
trailing-edge respectively, with (a), (c), (e) D = 2.1 and (b), (d), (f) D = 3.5.
Fig. 5 The backflow zone
(a)
(b)
Fig. 6 Stream lines for (a) D = 2.1 and (b) D= 3.5
Dragcoefficient(Cd)
I III II
1.4
1.3
1.2
0.8
0.4
0.0
-0.4
1 4 8 12 16 1 4 8 12 16
(a) Cylinder-foil distance ratio (D) (b) Cylinder-foil distance ratio (D)
Liftcoefficient(Cl)
I II I II
1.2
0.8
0.4
0.0
1.2
0.8
0.4
0.0
1 4 8 12 16 1 4 8 12 16
(c) Cylinder-foil distance ratio (D) (d) Cylinder-foil distance ratio (D)
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 39
I II I IIFrequency(f) 0.20
0.15
0.10
0.4
0.3
0.2
0.1
1 4 8 12 16 1 4 8 12 16
(e) Cylinder-foil distance ratio (D) (f) Cylinder-foil distance ratio (D)
Fig. 7 The average drag coefficient Cd, the amplitude of lift coefficient Cl, the flapping frequency of the foil and
the vortex shedding frequency of the cylinder versus the cylinder-foil distance ratio with (a), (c), (e) for the
cylinder and (b), (d), (f) for the foil.
flapping mode respectively. The range D ≤ 2.2 corresponds to the inverted flapping mode (part I), drag on the
foil is negative, drag on the cylinder is much smaller than that of the single cylinder, both of foil and cylinder
experiences a significant drag reduction. The tendency of the amplitude of lift and vortex shedding frequency
for the cylinder is similar with that of drag. The range D ≥ 2.3 corresponds to the forward flapping mode (part
II). Average drag and the amplitude of lift of the cylinder is much larger than that of the inverted flapping mode.
The cylinder still experiences a drag reduction but the amplitude of lift exceeds the single cylinder. With the
increasing of the cylinder-foil distance, all this three parameters of the cylinder approach to that of the single
cylinder, at D ≥ 8.0, they are almost equal to those of the single cylinder. Drag and lift on the foil increases
sharply when the foil's motion patterns shift too. At the range 2.3 ≤ D ≤ 4.0, there is still a obvious drag
reduction on the foil, when D ≥ 5.0, the drag reduction vanishes. The amplitude of lift coefficient of the foil
goes a opposite tendency with that of the drag coefficient. At 2.3 ≤ D ≤ 8.0, the amplitude of lift is larger than
the single foil case. The vortex shedding frequency of the cylinder decreases because of the exists of the foil,
especially when the cylinder and foil are close to each other. The downstream foil can be treat as a barrier and a
wake splitter which inhibits the flow, from Fig. 6 we can see the stream lines around the foil are distorted. This
hinders the vortex shedding and also enlarges the size of the backflow zone. This will lead to a drag reduction of
the upstream cylinder. More closer the foil to the cylinder, more significant the influence is, which conforms to
the results shown in Fig. 7.
Flapping frequency of the foil is much smaller than that of the single foil, and always equal to the vortex
shedding frequency even the distance ratio increase to D = 15.0. The flapping amplitude of the trailing-edge of
the foil shown in Fig. 8 is much larger than the single foil case in the forward flapping mode. We can infer that
the vortexes shedding by the cylinder has a strong influence on the flapping motion of the downstream foil. As
shown in Fig. 7 and 8, When D ≥ 8.0, the influence of the foil on the cylinder is almost gone, but even at D =
15.0, the cylinder still changes the motion of the foil.
1 4 8 12 16
1.8
1.2
0.6
0.0
Amplitude(L)
I II
Fig. 8 The flapping amplitude of the trailing-edge of the foil versus the cylinder-foil distance ratio.
For a more detailed analysis, the time history of Y-position of trailing-edge, drag coefficient Cd of the foil and
lift coefficient Cl of the foil at D = 2.1 and D = 3.5 are shown in Fig. 9. At time point A and C, drag on the foil
reaches its maximum, the trailing-edge Y-position is near zero, at time point B, drag reaches its minimum, the
Y-position is near its peak. But the situation for time point D, E and F is just opposite. Maximum drag
corresponds to the peak of Y-displacement of the trailing-edge and minimum drag corresponds to the zero point
of Y-displacement. Lift at point D to F shows that the peak of lift happens when the Y-displacement of trailing-
edge is near zero. But due to the unsymmetrical of the flapping motion at D = 2.1, the lift at point A and C are
not exactly zero. The different corresponding relationship in the two motion patterns shows that the cylinder
influent the downstream foil in two different ways. Fig. 10 shows the vorticity contours at time point A, B, D
and E.
We can see from the vorticity contours at time point A and B, between foil and cylinder is small that the foil is
in the area the cylinder vortexes doesn't start to shed. The foil is in between of the positive and negative
vorticity, the vorticity around the foil is opposite with the vorticity generated by the cylinder because of the
inverted flapping of the foil. The contact of two kinds of opposite vortexes will decrease the vorticity around the
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 40
foil and inhibits the flapping motion. The vorticity contours at time point D and E shows that the downstream
foil encounters the vortexes shedding by the cylinder. The positive vorticity at one side of the foil merges with
the upstream positive vortex, and the negative vorticity at the other side of the foil decreases, this makes the
positive vorticity around the foil is much larger than the negative vorticity, and it’s the same situation when the
foil contours the upstream negative vortex, which lead to the increase of the flapping amplitude of the foil. This
interaction also induce the foil to vibrate with the same frequency the cylinder sheds the vortex.
1.0
0.5
0.0
-1.0
-0.5
300 305 310 315 320
1.0
0.5
0.0
-1.0
-0.5
300 305 310 315 320
Trailing-edgeY-position(L)
B
CA
D
E
F
(a) Time(L / U∞ ) (b) Time(L / U∞ )
0.3
0.1
-0.1
-0.5
-0.3
300 305 310 315 320
0.8
0.6
0.4
0.0
0.2
300 305 310 315 320
Dragcoefficient(Cd)
B
CA
FD
E
(c) Time(L / U∞ ) (d) Time(L / U∞ )
0.6
0.3
0.0
-0.6
-0.3
300 305 310 315 320
0.6
0.3
0.0
-0.6
-0.3
300 305 310 315 320
Liftcoefficient(Cl)
B
C
A D F
E
(e) Time(L / U∞ ) (f) Time(L / U∞ )
Fig. 9 Time history of Y-position of trailing-edge, drag coefficient Cd of the foil and lift coefficient Cl of the foil
with (a), (c), (e) at D = 2.1 and (b), (d), (f) at D = 3.5. Point A to E corresponding to the two peaks of Cd and
minimum value of Cd within a cycle.
Fig. 10 Vorticity contours at time point (a) A, (b) B ,(c) D and (d) E
Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder
www.ijceronline.com Open Access Journal Page 41
IV. CONCLUSION
The passive dynamics of flexible foil in the downstream of a rigid cylinder has been studied by the immersed
boundary-lattice Boltzmann method. Simulation results show that the cylinder has a strong influence on the
downstream foil. By varying the cylinder-foil distance, the foil's motion patterns can be divided into two
categories: inverted flapping mode and forward flapping mode. In the inverted flapping mode, the foil will
invert and flap towards the upstream cylinder because of the attraction of the backflow zone. In the forward
flapping mode, the amplitude of the foil is greater but the frequency is smaller compared with a single one in the
same uniform flow. Both the cylinder and foil experiences a drag reduction. Compared with a single one in the
same uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. The flexible foil can
extract energy from the vortex street and be induced to vibrate periodically. Exists of the foil also change the
dynamics of the cylinder. The foil can be treated as a barrier and a wake splitter which inhibits the vortex
shedding and enlarges the size of the backflow zone when the cylinder-foil distance is small. This also leads to a
drag reduction of the upstream cylinder. The interactions between the rigid cylinder and the flexible foil would
help us to understand the energy-saving mechanism of fish swimming behind a structure and inspire the
promising applications in marine engineering.
ACKNOWLEDGMENT
We would like to acknowledge sincerely the grant from National Natural Science Foundation of China (No.
50905040) and the Fundamental Research Funds for the Central Universities.
REFERENCES
[1] Y. Koda, and F. Lien, “Aerodynamic effects of the early three-dimensional instabilities in the flow over one and two circular
cylinders in tandem predicted by the lattice Boltzmann method,” Computers & Fluids, vol. 74, pp. 32-43, March 2013.
[2] E. Uddin, W. Huang, and H. Sung, “Interaction modes of multiple flexible flags in a uniform flow,” J. Fluid Mech, vol. 729, pp.
563-583, July 2013.
[3] W. Zhao, et al, “Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow,”
Journal of Sound and Vibration, vol. 331, no. 3, pp. 575-587, January 2012.
[4] F. Tian, H. Luo, L. Zhu, and X. Liu, “Interaction between a flexible filament and a downstream rigid body,” Physical Review E,
vol. 82, no. 2, pp. 026301, August 2010.
[5] I. Yildirim, C. Rindt, and A. Steenhoven, “Vortex dynamics in a wire-disturbed cylinder wake,” Physics of Fluids, vol. 22, no. 9,
pp. 094101, September 2010.
[6] J. Favier, A. Revell and A. Pinelli, “A Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving
and slender flexible objects,” Journal of Computational Physics, vol. 261, pp. 145–161, March 2014.
[7] A. Roma, C. Peskin, and M. Berger, “An adaptive version of the immersed boundary method,” Journal of Computational Physics,
vol. 153, no. 2, pp. 509–534, August 1999.
[8] O. Malaspinas, N. Fietier, and M. Deville, “Lattice Boltzmann method for the simulation of viscoelastic fluid flows,” Journal of
Non-Newtonian Fluid Mechanics, vol. 165, no. 23, pp. 1637-1653, December 2010.
[9] J. Eldredge, and D. Pisani, “Passive locomotion of a simple articulated fish-like system in the wake of an obstacle,” Journal of Fluid
Mechanics, vol. 607, pp. 279-288, July 2008.

More Related Content

What's hot

Laminar boundary layer
Laminar boundary layerLaminar boundary layer
Laminar boundary layerFarzad Hossain
 
Viscosity of water
Viscosity of waterViscosity of water
Viscosity of waterMidoOoz
 
Viscoelastic Flow in Porous Media
Viscoelastic Flow in Porous MediaViscoelastic Flow in Porous Media
Viscoelastic Flow in Porous MediaTaha Sochi
 
Boundary layer concepts
Boundary layer conceptsBoundary layer concepts
Boundary layer conceptsSabir Ahmed
 
Viscosity of water by capillary flow
Viscosity of water by capillary flowViscosity of water by capillary flow
Viscosity of water by capillary flowMidoOoz
 
Viscosity & flow
Viscosity & flowViscosity & flow
Viscosity & flowMidoOoz
 
HT_Chapter_6.pdf
HT_Chapter_6.pdfHT_Chapter_6.pdf
HT_Chapter_6.pdfSupaEarn
 
Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equationsOm Prakash Singh
 
Flow through circular tube
Flow through circular tubeFlow through circular tube
Flow through circular tubeMausam Patel
 
Terbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsTerbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsPavan Narkhede
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4sistec
 
What are Submerged Bodies
What are Submerged BodiesWhat are Submerged Bodies
What are Submerged BodiesJimmi Anderson
 
Tarbulent flow
Tarbulent flowTarbulent flow
Tarbulent flowMeet612
 
Boundary layer equation
Boundary layer equationBoundary layer equation
Boundary layer equationJustin Myint
 

What's hot (20)

Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Laminar boundary layer
Laminar boundary layerLaminar boundary layer
Laminar boundary layer
 
Viscosity of water
Viscosity of waterViscosity of water
Viscosity of water
 
Viscoelastic Flow in Porous Media
Viscoelastic Flow in Porous MediaViscoelastic Flow in Porous Media
Viscoelastic Flow in Porous Media
 
CE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVKCE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVK
 
Boundary layer concepts
Boundary layer conceptsBoundary layer concepts
Boundary layer concepts
 
Viscosity of water by capillary flow
Viscosity of water by capillary flowViscosity of water by capillary flow
Viscosity of water by capillary flow
 
Drag force & Lift
Drag force & LiftDrag force & Lift
Drag force & Lift
 
Viscosity & flow
Viscosity & flowViscosity & flow
Viscosity & flow
 
HT_Chapter_6.pdf
HT_Chapter_6.pdfHT_Chapter_6.pdf
HT_Chapter_6.pdf
 
Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equations
 
Flow through circular tube
Flow through circular tubeFlow through circular tube
Flow through circular tube
 
Terbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsTerbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanics
 
Turbulent flow
Turbulent flowTurbulent flow
Turbulent flow
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4
 
Fm final ppt
Fm final pptFm final ppt
Fm final ppt
 
What are Submerged Bodies
What are Submerged BodiesWhat are Submerged Bodies
What are Submerged Bodies
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Tarbulent flow
Tarbulent flowTarbulent flow
Tarbulent flow
 
Boundary layer equation
Boundary layer equationBoundary layer equation
Boundary layer equation
 

Viewers also liked

Covert Security Features_2014_web
Covert Security Features_2014_webCovert Security Features_2014_web
Covert Security Features_2014_webroger pallavicini
 
20161213 Taste Primus
20161213 Taste Primus20161213 Taste Primus
20161213 Taste PrimusRyan Hong
 
Analysis and Design of Information Systems Financial Reports with Object Orie...
Analysis and Design of Information Systems Financial Reports with Object Orie...Analysis and Design of Information Systems Financial Reports with Object Orie...
Analysis and Design of Information Systems Financial Reports with Object Orie...ijceronline
 
Fight for Better Legislation - Chris Hartgerink - OpenCon 2016
Fight for Better Legislation -  Chris Hartgerink - OpenCon 2016Fight for Better Legislation -  Chris Hartgerink - OpenCon 2016
Fight for Better Legislation - Chris Hartgerink - OpenCon 2016Right to Research
 
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565https://www.facebook.com/garmentspace
 
Amaizing Pascal traingle
Amaizing  Pascal traingleAmaizing  Pascal traingle
Amaizing Pascal trainglemizanur93
 
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTREjatin batra
 
Semiotica en la arquitectura
Semiotica en la arquitecturaSemiotica en la arquitectura
Semiotica en la arquitecturaNohemi Rivas
 
Theoretical Behaviourof Soil Stability Using Geo Grids.
Theoretical Behaviourof Soil Stability Using Geo Grids.Theoretical Behaviourof Soil Stability Using Geo Grids.
Theoretical Behaviourof Soil Stability Using Geo Grids.ijceronline
 
Calculo capitulo 2:
Calculo capitulo 2: Calculo capitulo 2:
Calculo capitulo 2: oto___
 
Cómo crear un correo electrónico en hotmail
Cómo crear un correo electrónico en hotmailCómo crear un correo electrónico en hotmail
Cómo crear un correo electrónico en hotmailceli74
 
Vixen risk-assessment
Vixen risk-assessmentVixen risk-assessment
Vixen risk-assessmentKrisyty Ng
 
Oportunidades de inversion y asociaciones publico privadas en uruguay cnd
Oportunidades de inversion y asociaciones publico privadas en uruguay   cndOportunidades de inversion y asociaciones publico privadas en uruguay   cnd
Oportunidades de inversion y asociaciones publico privadas en uruguay cndpuntanews
 

Viewers also liked (20)

Computacion
ComputacionComputacion
Computacion
 
Covert Security Features_2014_web
Covert Security Features_2014_webCovert Security Features_2014_web
Covert Security Features_2014_web
 
Luminotécnica
LuminotécnicaLuminotécnica
Luminotécnica
 
20161213 Taste Primus
20161213 Taste Primus20161213 Taste Primus
20161213 Taste Primus
 
Seminario 5
Seminario 5Seminario 5
Seminario 5
 
Analysis and Design of Information Systems Financial Reports with Object Orie...
Analysis and Design of Information Systems Financial Reports with Object Orie...Analysis and Design of Information Systems Financial Reports with Object Orie...
Analysis and Design of Information Systems Financial Reports with Object Orie...
 
Fight for Better Legislation - Chris Hartgerink - OpenCon 2016
Fight for Better Legislation -  Chris Hartgerink - OpenCon 2016Fight for Better Legislation -  Chris Hartgerink - OpenCon 2016
Fight for Better Legislation - Chris Hartgerink - OpenCon 2016
 
Presentación1
Presentación1Presentación1
Presentación1
 
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565
Nâng cao hiệu quả quản lý vốn tại công ty cổ phần xây dựng 565
 
Amaizing Pascal traingle
Amaizing  Pascal traingleAmaizing  Pascal traingle
Amaizing Pascal traingle
 
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE
6 Week PHP Training In Ambala ! BATRA COMPUTER CENTRE
 
Semiotica en la arquitectura
Semiotica en la arquitecturaSemiotica en la arquitectura
Semiotica en la arquitectura
 
Theoretical Behaviourof Soil Stability Using Geo Grids.
Theoretical Behaviourof Soil Stability Using Geo Grids.Theoretical Behaviourof Soil Stability Using Geo Grids.
Theoretical Behaviourof Soil Stability Using Geo Grids.
 
Calculo capitulo 2:
Calculo capitulo 2: Calculo capitulo 2:
Calculo capitulo 2:
 
Cómo crear un correo electrónico en hotmail
Cómo crear un correo electrónico en hotmailCómo crear un correo electrónico en hotmail
Cómo crear un correo electrónico en hotmail
 
Vixen risk-assessment
Vixen risk-assessmentVixen risk-assessment
Vixen risk-assessment
 
Oportunidades de inversion y asociaciones publico privadas en uruguay cnd
Oportunidades de inversion y asociaciones publico privadas en uruguay   cndOportunidades de inversion y asociaciones publico privadas en uruguay   cnd
Oportunidades de inversion y asociaciones publico privadas en uruguay cnd
 
Temas del periodo
Temas del periodoTemas del periodo
Temas del periodo
 
Actividad 3
Actividad 3Actividad 3
Actividad 3
 
CoachUp_Deck
CoachUp_Deck CoachUp_Deck
CoachUp_Deck
 

Similar to Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder

Flow Control of Elastic Plates in Triangular Arrangement
Flow Control of Elastic Plates in Triangular ArrangementFlow Control of Elastic Plates in Triangular Arrangement
Flow Control of Elastic Plates in Triangular Arrangementijceronline
 
Stochastic hydroelastic analysis_of_pontoon-type_very_large_flo
Stochastic hydroelastic analysis_of_pontoon-type_very_large_floStochastic hydroelastic analysis_of_pontoon-type_very_large_flo
Stochastic hydroelastic analysis_of_pontoon-type_very_large_flomehdiman2008
 
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015Nanyang Technological University
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryanish antony
 
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDER
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDERCFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDER
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDERIRJET Journal
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperSRINIVASULU N V
 
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...IJERA Editor
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsHugo Méndez
 
Chapter 1
Chapter 1Chapter 1
Chapter 1nimcan1
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Thermodynamics of vesicle growth and morphology
Thermodynamics of vesicle growth and morphologyThermodynamics of vesicle growth and morphology
Thermodynamics of vesicle growth and morphologyrichardgmorris
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesIJERA Editor
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesIJERA Editor
 

Similar to Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder (20)

Flow Control of Elastic Plates in Triangular Arrangement
Flow Control of Elastic Plates in Triangular ArrangementFlow Control of Elastic Plates in Triangular Arrangement
Flow Control of Elastic Plates in Triangular Arrangement
 
Stochastic hydroelastic analysis_of_pontoon-type_very_large_flo
Stochastic hydroelastic analysis_of_pontoon-type_very_large_floStochastic hydroelastic analysis_of_pontoon-type_very_large_flo
Stochastic hydroelastic analysis_of_pontoon-type_very_large_flo
 
CE6451-MLM-Fluid Mechanics
CE6451-MLM-Fluid MechanicsCE6451-MLM-Fluid Mechanics
CE6451-MLM-Fluid Mechanics
 
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015
Floaters on Faraday waves for Final Motimo Meeting - Toulouse Sep. 22-23, 2015
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machinery
 
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDER
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDERCFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDER
CFD BASED ANALYSIS OF VORTEX SHEDDING IN NEAR WAKE OF HEXAGONAL CYLINDER
 
G04444146
G04444146G04444146
G04444146
 
Chapter9.pdf
Chapter9.pdfChapter9.pdf
Chapter9.pdf
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paper
 
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...
Analysis of the Interaction between A Fluid and A Circular Pile Using the Fra...
 
Ijems 6(4) 188 197
Ijems 6(4) 188 197Ijems 6(4) 188 197
Ijems 6(4) 188 197
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Sediment transport
Sediment transportSediment transport
Sediment transport
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Thermodynamics of vesicle growth and morphology
Thermodynamics of vesicle growth and morphologyThermodynamics of vesicle growth and morphology
Thermodynamics of vesicle growth and morphology
 
Qb103353
Qb103353Qb103353
Qb103353
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellites
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellites
 
Wellbore hydraulics
Wellbore hydraulicsWellbore hydraulics
Wellbore hydraulics
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 

Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder

  • 1. ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 11|| November – 2016 || International Journal of Computational Engineering Research (IJCER) www.ijceronline.com Open Access Journal Page 34 Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder Dibo Dong1 , Weishan Chen, Zhenxiu Hou, Zhenbo Han 1 State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin, Heilongjiang Province, China. I. INTRODUCTION The interaction between a rigid structure and a flexible body is a common phenomenon, like fishes swimming behind a ship or staying in the wake of a stationary structure. Fishes may take advantage of the interaction to save energy and lift efficiency. Two rigid bodies arranged in tandem, the downstream one enjoys a drag reduction [1]. Recently, the interaction between flexible bodies has been widely studied by simulations and experiments [2, 3]. For two tandem flexible bodies, the downstream will suffer a drag increase, which is opposite to the situation of two tandem rigid bodies. The interaction of coupled rigid and flexible bodies may be much different. Interaction between a upstream flexible filament and a downstream rigid cylinder is investigated in [4]. Reference [5] studied the effect of a thin wire placed in the wake of a rigid cylinder. In this paper, we places a flexible foil at the downstream of a rigid cylinder to study the interaction between rigid and flexible bodies in a viscous flow numerically. An immersed boundary-lattice Boltzmann method is adopted to carry out the simulations. II. COMPUTATIONAL MODEL A schematic diagram of the cylinder-foil system is shown in Fig. 1. A thin foil with length L is placed in downstream of a rigid circular cylinder with diameter d. The foil is considered as a two-dimensional thin beam with a simply supported boundary condition at the leading-edge. Both the center of the cylinder and the leading- edge of the foil are fixed at the center line of the fluid domain, the trailing-edge of the foil is free. The minimum distance between the cylinder and the leading-edge of the foil is the cylinder-foil distance Ds. Here we introduce a non-dimensionalize cylinder-foil distance ratio defined as D = Ds/d. The incoming flow is parallel to the X- axis with a velocity of U∞. The problem on a rigid body and a flexible foil immersed in a viscous flow is solved by the IB-LBM [6]. The fluid is discretized by a regular Cartesian lattice, the foil is discretized by a group of Lagrangian coordinate markers. The viscous fluid is govern by the incompressible Navier–Stokes and continuity equations: 21 p t R e           f v v v v , (1) 0 v . (2) ABSTRACT Passive dynamics of flexible body in the von Kármán vortex is complicated and has not yet been well understood. In this work we numerically studied the passive flapping motion of an inverted flexible foil pinned in the wake of a rigid circular cylinder by an robust fluid structure interaction framework. The non-dimensional parameters are Reynolds number and distance between the cylinder and pinned-point of the foil. Simulation results show that the flexible foil can extract energy from the vortex street and be induced to vibrate periodically. It is revealed that the foil's motion patterns can be divided into two categories: inverted flapping and forward flapping, which depended on the cylinder-foil distance. Both the cylinder and foil experiences a drag reduction, the foil can even obtain thrust in inverted flapping mode. Compared with a single one in the same uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. This work would help us to elucidate the energy-saving mechanism of fish swimming and inspire the promising applications in marine engineering. Keywords: flow control, elastic plate; passively flapping, fluid-structure interaction.
  • 2. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 35 p is the pressure of the fluid, ρ is the fluid density, v =(v, u) is the fluid velocity as a function of time /t L U   . Re is the Reynolds number defined as /R e U d   , μ is the fluid dynamic viscosity. The added momentum force f represents the force exerted by the structure on the fluid. The dynamics of the foil is governed by the equation: 2 4 2 4 0l d d d d T K ds dsdt ds           X X X F . (3) ρl is the linear density of the foil,  ,X YX represents the position of the foil markers. s represents the Lagrangian coordinate along the foil. 2 /cT T U L   is the tension. Tc (s, t) is the tension within the foil which determined by the markers LDd U∞ X Y Leading-edge Trailing-edge Fig. 1 Schematic diagram of the cylinder-foil system. position X. K is the bending stiffness defined as 2 3 / ( )K E I U L   , EI is the bending rigidity of the foil. F is the hydrodynamic force exerts on the fluid by the foil which defined on the foil markers. The foil is considered to be inextensible, which provided by: 1 d d ds ds   X X . (4) The boundary condition for the foil is: 2 0 2 , 0 d ds   X X X (5) for the leading-edge, 2 2 0, 0 d T ds   X (6) for the trailing-edge. The momentum force f = (fx, fy) can be calculated by:         1 , ( ), ( ) ( ) ( ) t d s t s t s d s                        f x X y y X y x XU v (7) Γ is boundary of the foil markers, Ω denotes the domain of the fluid. x denotes the coordinate of the Cartesian lattice of the fluid. U represents the velocity of the foil marker at X. v represents the fluid velocity field. δ is a mollifier [7] to perform the convolution which defined as:     2 2 1 5 3 3(1 ) 1 0 .5 1 .5 6 1 ( ) 1 3 1 0 .5 3 0 o h terw ise d d d d d d                     . (8) Where d represents the distance between the Lagrangian coordinate s   and the lattice coordinate  x . As shown in Fig. 2, by placing the tension points between each foil markers, equation (3) and (4) can be discretised into a staggered fashion:
  • 3. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 36 1 1 1 1 2 1 1 ( )2 1 S S S S n n n n n n n s s l n n s s D T D K D t D D                      X X FX X X X X (9) t is the increment of time. Ds denotes the standard second-order center finite difference for s. The lattice Boltzmann equation (LBE) [8] is used to solve the fluid instead of the Navier–Stokes equations because of its efficiency. The LBE with the BGK approach is: Xi-1 Ti Ti+1 Xi Xi+1 Fig. 2 Discretisation grid of the plate in a staggered form. Blue circles represents tension points, between tension points are coordinate markers.         , , , , eq i i i i i t f t t t f t f t f t t            x e x x x F (10) Where τ is a relaxation time which related to the dynamic viscosity as  1 / 2 / 3   .  ,i f tx denotes the distribution function with respect to the fluid particles at position x and time t, ei is the discrete particles velocity which is shown in Fig. 3. The subscript i is the directions of the fluid particles, in this model, ei is defined as:   0 1 1 0 0 1 1 1 0 0, 1, ... , 8 0 0 0 1 1 1 1 1 0 i i            e (11)  , eq f tx is the equilibrium function which can be obtained by:     2 2 2 4 2 , 1 2 2 ieq i i s s s f t c c c             ee x vv v (12) cs is the sound velocity and ωi is the weighting coefficients. The discretised force Fi relates to the f is defined as follows: 2 4 1 1 2 i i i i i s s c c                 e e F e f v v (13) the macroscopic quantities of density ρ and v can are obtained by: i i f   (14) 2 i i i t f    e fv (15) The dimensionless mass ratio of the foil is defined as: / ( )l M L  , the dimensionless drag coefficient for the foil and cylinder is: 2 2 /d d C F U L   and 2 2 /d d C F U d   . The dimensionless lift coefficient is defined as 2 2 /l l C F U L   and 2 2 /l l C F U d   . Fd and Fl are the hydrodynamic force along the X-axis and Y-axis respectively. e2 f2 e0 f0 e5 f5 e7 f7 e4 f4 e6 f6 e8 f8 e3 f3 e1 f1 Fig. 3 The distribution function and the discrete particles velocity.
  • 4. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 37 The flapping amplitude Af is defined as the displacement along the Y-axis of the trailing-edge, and A = AT / L is the dimensionless flapping amplitude. The flapping frequency of the foil and the vortex shedding frequency of the cylinder are represented by f. The X-axis length for the fluid domain is 80d and the Y-axis length is 40d. The center of the cylinder is placed 20d away from the inlet of the fluid domain. The position of the foil is decided by the distance ratio D. The foil is parallel to the X-axis at the beginning of the simulation. The foil markers and the Cartesian lattice is in uniform distribution. Both the distance between two neighboring markers and the lattice spacing is set to 0.01. The diameter d and the foil length L is set to d = L, so the size for the fluid domain is 2000 × 1500. Unless other stated, the Reynolds number is Re = 100 , the mass ratio of the foil is M = 0.3 and the bending stiffness is K = 10-4 . In such parameters, the flexible foil can flap in a stable motion periodically as the simulation results showed. All the results analyzed below are obtained by these stable periods. III. RESULT AND DISCUSSION Two categories of the foil's motion patterns are founded by changing the cylinder-foil distance: inverted flapping and forward flapping, as shown in Fig. 4. When the cylinder-foil distance is small enough, the foil will flap towards the opposite direction of the incoming flow. The free end of the foil will move upstream and go across the pinned-point, then gets into a stable flapping motion with the free end pointing to the upstream cylinder. There is a backflow zone behind the cylinder, as shown in Fig. 5, the flow speed of this area is contrary to the streamwise [9], and the pressure is low. The foil in the backflow zone will experiences a force along the negative direction of the X-axis, and finally the foil will turn around and flap towards the upstream direction. With the increasing of the cylinder-foil distance, the foil's motion patterns will turn to the forward flapping mode, which the trailing-edge points to the downstream. The crucial cylinder-foil distance of the mode shift is decided by the length of the backflow zone. Fig. 4 plots the flapping pattern of the inverted flapping mode at D = 2.1 and the forward flapping mode at D = 3.5. The flapping amplitude and the Y-velocity of the trailing-edge in the inverted flapping mode is obviously smaller than that of the forward flapping mode. From Fig.5 (e) we can see the flapping trajectory of the trailing-edge at D = 2.1 is not fully symmetrical about the centre line of the fluid. We can find the reason in Fig. 6 which plots the stream lines for the two different flapping mode. For D = 2.1, the backflow zone deviates to one side of the cylinder, which has a attraction for the foil and lead to the unsymmetrical of the flapping motion of the foil. The backflow zone at D = 2.1 is much bigger than that at D = 3.5, we can infer that the exists of the foil may has a influence on the shape of the backflow zone. The average drag coefficient and the amplitude of lift coefficient and the flapping frequency of the foil are shown in Fig. 7. All the figures are divided into two parts: part I and part II corresponding to the inverted flapping mode and forward (a) (b) -1.6 -1.2 -0.8 -0.4 0.0 0.0 0.4 0.8 1.2 1.6 0.8 0.4 0.0 -0.8 -0.4 0.8 0.4 0.0 -0.8 -0.4 Y-coordinateofthe trailing-edge(L) X-coordinate of the trailing-edge (L) X-coordinate of the trailing-edge (L) (c) (d)
  • 5. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 38 0.8 0.4 0.0 -0.8 -0.4 -0.8 -0.4 0.0 0.4 0.8 0.8 0.4 0.0 -0.8 -0.4 -0.8 -0.4 0.0 0.4 0.8 Y-velocityofthe trailing-edge(V) Y-coordinate of the trailing-edge (L) Y-coordinate of the trailing-edge (L) (e) (f) Fig. 4 The flapping patterns of the foil, the flapping trajectory and the phase plot of the of the trailing-edge of the foil at Re = 100, origin of coordinates for flapping trajectory and phase plot is set at the leading-edge and trailing-edge respectively, with (a), (c), (e) D = 2.1 and (b), (d), (f) D = 3.5. Fig. 5 The backflow zone (a) (b) Fig. 6 Stream lines for (a) D = 2.1 and (b) D= 3.5 Dragcoefficient(Cd) I III II 1.4 1.3 1.2 0.8 0.4 0.0 -0.4 1 4 8 12 16 1 4 8 12 16 (a) Cylinder-foil distance ratio (D) (b) Cylinder-foil distance ratio (D) Liftcoefficient(Cl) I II I II 1.2 0.8 0.4 0.0 1.2 0.8 0.4 0.0 1 4 8 12 16 1 4 8 12 16 (c) Cylinder-foil distance ratio (D) (d) Cylinder-foil distance ratio (D)
  • 6. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 39 I II I IIFrequency(f) 0.20 0.15 0.10 0.4 0.3 0.2 0.1 1 4 8 12 16 1 4 8 12 16 (e) Cylinder-foil distance ratio (D) (f) Cylinder-foil distance ratio (D) Fig. 7 The average drag coefficient Cd, the amplitude of lift coefficient Cl, the flapping frequency of the foil and the vortex shedding frequency of the cylinder versus the cylinder-foil distance ratio with (a), (c), (e) for the cylinder and (b), (d), (f) for the foil. flapping mode respectively. The range D ≤ 2.2 corresponds to the inverted flapping mode (part I), drag on the foil is negative, drag on the cylinder is much smaller than that of the single cylinder, both of foil and cylinder experiences a significant drag reduction. The tendency of the amplitude of lift and vortex shedding frequency for the cylinder is similar with that of drag. The range D ≥ 2.3 corresponds to the forward flapping mode (part II). Average drag and the amplitude of lift of the cylinder is much larger than that of the inverted flapping mode. The cylinder still experiences a drag reduction but the amplitude of lift exceeds the single cylinder. With the increasing of the cylinder-foil distance, all this three parameters of the cylinder approach to that of the single cylinder, at D ≥ 8.0, they are almost equal to those of the single cylinder. Drag and lift on the foil increases sharply when the foil's motion patterns shift too. At the range 2.3 ≤ D ≤ 4.0, there is still a obvious drag reduction on the foil, when D ≥ 5.0, the drag reduction vanishes. The amplitude of lift coefficient of the foil goes a opposite tendency with that of the drag coefficient. At 2.3 ≤ D ≤ 8.0, the amplitude of lift is larger than the single foil case. The vortex shedding frequency of the cylinder decreases because of the exists of the foil, especially when the cylinder and foil are close to each other. The downstream foil can be treat as a barrier and a wake splitter which inhibits the flow, from Fig. 6 we can see the stream lines around the foil are distorted. This hinders the vortex shedding and also enlarges the size of the backflow zone. This will lead to a drag reduction of the upstream cylinder. More closer the foil to the cylinder, more significant the influence is, which conforms to the results shown in Fig. 7. Flapping frequency of the foil is much smaller than that of the single foil, and always equal to the vortex shedding frequency even the distance ratio increase to D = 15.0. The flapping amplitude of the trailing-edge of the foil shown in Fig. 8 is much larger than the single foil case in the forward flapping mode. We can infer that the vortexes shedding by the cylinder has a strong influence on the flapping motion of the downstream foil. As shown in Fig. 7 and 8, When D ≥ 8.0, the influence of the foil on the cylinder is almost gone, but even at D = 15.0, the cylinder still changes the motion of the foil. 1 4 8 12 16 1.8 1.2 0.6 0.0 Amplitude(L) I II Fig. 8 The flapping amplitude of the trailing-edge of the foil versus the cylinder-foil distance ratio. For a more detailed analysis, the time history of Y-position of trailing-edge, drag coefficient Cd of the foil and lift coefficient Cl of the foil at D = 2.1 and D = 3.5 are shown in Fig. 9. At time point A and C, drag on the foil reaches its maximum, the trailing-edge Y-position is near zero, at time point B, drag reaches its minimum, the Y-position is near its peak. But the situation for time point D, E and F is just opposite. Maximum drag corresponds to the peak of Y-displacement of the trailing-edge and minimum drag corresponds to the zero point of Y-displacement. Lift at point D to F shows that the peak of lift happens when the Y-displacement of trailing- edge is near zero. But due to the unsymmetrical of the flapping motion at D = 2.1, the lift at point A and C are not exactly zero. The different corresponding relationship in the two motion patterns shows that the cylinder influent the downstream foil in two different ways. Fig. 10 shows the vorticity contours at time point A, B, D and E. We can see from the vorticity contours at time point A and B, between foil and cylinder is small that the foil is in the area the cylinder vortexes doesn't start to shed. The foil is in between of the positive and negative vorticity, the vorticity around the foil is opposite with the vorticity generated by the cylinder because of the inverted flapping of the foil. The contact of two kinds of opposite vortexes will decrease the vorticity around the
  • 7. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 40 foil and inhibits the flapping motion. The vorticity contours at time point D and E shows that the downstream foil encounters the vortexes shedding by the cylinder. The positive vorticity at one side of the foil merges with the upstream positive vortex, and the negative vorticity at the other side of the foil decreases, this makes the positive vorticity around the foil is much larger than the negative vorticity, and it’s the same situation when the foil contours the upstream negative vortex, which lead to the increase of the flapping amplitude of the foil. This interaction also induce the foil to vibrate with the same frequency the cylinder sheds the vortex. 1.0 0.5 0.0 -1.0 -0.5 300 305 310 315 320 1.0 0.5 0.0 -1.0 -0.5 300 305 310 315 320 Trailing-edgeY-position(L) B CA D E F (a) Time(L / U∞ ) (b) Time(L / U∞ ) 0.3 0.1 -0.1 -0.5 -0.3 300 305 310 315 320 0.8 0.6 0.4 0.0 0.2 300 305 310 315 320 Dragcoefficient(Cd) B CA FD E (c) Time(L / U∞ ) (d) Time(L / U∞ ) 0.6 0.3 0.0 -0.6 -0.3 300 305 310 315 320 0.6 0.3 0.0 -0.6 -0.3 300 305 310 315 320 Liftcoefficient(Cl) B C A D F E (e) Time(L / U∞ ) (f) Time(L / U∞ ) Fig. 9 Time history of Y-position of trailing-edge, drag coefficient Cd of the foil and lift coefficient Cl of the foil with (a), (c), (e) at D = 2.1 and (b), (d), (f) at D = 3.5. Point A to E corresponding to the two peaks of Cd and minimum value of Cd within a cycle. Fig. 10 Vorticity contours at time point (a) A, (b) B ,(c) D and (d) E
  • 8. Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder www.ijceronline.com Open Access Journal Page 41 IV. CONCLUSION The passive dynamics of flexible foil in the downstream of a rigid cylinder has been studied by the immersed boundary-lattice Boltzmann method. Simulation results show that the cylinder has a strong influence on the downstream foil. By varying the cylinder-foil distance, the foil's motion patterns can be divided into two categories: inverted flapping mode and forward flapping mode. In the inverted flapping mode, the foil will invert and flap towards the upstream cylinder because of the attraction of the backflow zone. In the forward flapping mode, the amplitude of the foil is greater but the frequency is smaller compared with a single one in the same uniform flow. Both the cylinder and foil experiences a drag reduction. Compared with a single one in the same uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. The flexible foil can extract energy from the vortex street and be induced to vibrate periodically. Exists of the foil also change the dynamics of the cylinder. The foil can be treated as a barrier and a wake splitter which inhibits the vortex shedding and enlarges the size of the backflow zone when the cylinder-foil distance is small. This also leads to a drag reduction of the upstream cylinder. The interactions between the rigid cylinder and the flexible foil would help us to understand the energy-saving mechanism of fish swimming behind a structure and inspire the promising applications in marine engineering. ACKNOWLEDGMENT We would like to acknowledge sincerely the grant from National Natural Science Foundation of China (No. 50905040) and the Fundamental Research Funds for the Central Universities. REFERENCES [1] Y. Koda, and F. Lien, “Aerodynamic effects of the early three-dimensional instabilities in the flow over one and two circular cylinders in tandem predicted by the lattice Boltzmann method,” Computers & Fluids, vol. 74, pp. 32-43, March 2013. [2] E. Uddin, W. Huang, and H. Sung, “Interaction modes of multiple flexible flags in a uniform flow,” J. Fluid Mech, vol. 729, pp. 563-583, July 2013. [3] W. Zhao, et al, “Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow,” Journal of Sound and Vibration, vol. 331, no. 3, pp. 575-587, January 2012. [4] F. Tian, H. Luo, L. Zhu, and X. Liu, “Interaction between a flexible filament and a downstream rigid body,” Physical Review E, vol. 82, no. 2, pp. 026301, August 2010. [5] I. Yildirim, C. Rindt, and A. Steenhoven, “Vortex dynamics in a wire-disturbed cylinder wake,” Physics of Fluids, vol. 22, no. 9, pp. 094101, September 2010. [6] J. Favier, A. Revell and A. Pinelli, “A Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects,” Journal of Computational Physics, vol. 261, pp. 145–161, March 2014. [7] A. Roma, C. Peskin, and M. Berger, “An adaptive version of the immersed boundary method,” Journal of Computational Physics, vol. 153, no. 2, pp. 509–534, August 1999. [8] O. Malaspinas, N. Fietier, and M. Deville, “Lattice Boltzmann method for the simulation of viscoelastic fluid flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 165, no. 23, pp. 1637-1653, December 2010. [9] J. Eldredge, and D. Pisani, “Passive locomotion of a simple articulated fish-like system in the wake of an obstacle,” Journal of Fluid Mechanics, vol. 607, pp. 279-288, July 2008.