SlideShare a Scribd company logo
1 of 17
Download to read offline
http://www.iaeme.com/IJMET/index.asp 110 editor@iaeme.com
International Journal of Mechanical Engineering and Technology (IJMET)
Volume 10, Issue 03, March 2019, pp. 110-126. Article ID: IJMET_10_03_011
Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=3
ISSN Print: 0976-6340 and ISSN Online: 0976-6359
© IAEME Publication Scopus Indexed
DETECTION OF DAMAGE IN STIFFENERS OF
AIRCRAFT WING STRUCTURE BASED ON
INDUCED SKIN STRAINS AND LATERAL
DEFLECTIONS
Dr. Hatem Hadi Obeid
Faculty of Engineering/ Department of Mechanical Engineering
University of Babylon
ABSTRACT
In this paper, the technique of structure health monitoring was applied to detect
damage occurrence in the stiffeners of wing structure. A wing structure of airfoil
shape according to digital NACA 0015 was considered for modelling the aerodynamic
wing shape. Finite element models of the wing structure were created included
undamaged and damage wing structures using high order eight nodes and six nodes
shell elements. The damaged wing models included damaged at the main spar at 20%,
40%,60% and 80% the distance than the root chord. A mathematical model was
developed using high order shell elements and programmed via MATLAB. The load
cases were predicted experimentally using wind tunnel test on a wood airfoil
prototype such that the pressure distributions through upper and lower wing skins
measured at different attack angles. The static solutions were achieved for each finite
element model under action of maximum pressure distribution at attack angle of 100
.
Strains distributions and lateral deflections through lower skin were estimated. The
results of strains through lower skin showed occurring of climax in strain values
initiated in the distribution at the location of the damage for all the cases of damaged
structures, which not appeared in the undamaged wing structure. The results of lateral
deformations through lower skin showed indicating variations in the shape of the
curves, such that the curve appeared to be gradually increased the region between the
chord and the damage. Semi to rapid increasing in the lateral deformation occurred in
region between the damage and the end tip of wing. The difference in the behavior of
the induced strains and lateral deformation between undamaged and damaged wing
structures is intended to a technique predicting of the occurrence of the damage in the
wing structure. The present of a climax in the strain distribution lead to presence of
damage near the climax value of strain. Also, the indicating of variations in the shape
of the lateral deformations of skins semi or rapid increasing lead to presence of
damage near the rejoin of that variation. It is concluded the possibility of using the
strain and deflection analysis for the wing structure to investigate occurring damage
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 111 editor@iaeme.com
in the structure due to variation in the strains and lateral deflections between different
damage locations.
Key Words: Wing structure, Structural health monitoring, finite element method,
structural analysis, airfoil pressure distributions, strain, stress, deflection, damage in
wing structure.
Cite this Article: Dr. Hatem Hadi Obeid, Detection of Damage in Stiffeners of
Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections,
International Journal of Mechanical Engineering and Technology, 10(3), 2019, pp.
110-126.
http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=3
1. INTRODUCTION
The Structural Health Monitoring of failures in aircraft and other flying equipment is very
important because its concerned with the safety of their users or the risks that may be
occurred due to falling on the ground. This analysis is applicable in wide range of engineering
fields spanning from mechanical, aerospace, military, building, to bridge and transportation
applications. Needs for prediction of failure in the aerospace structures are rapidly increasing
due to demands of enhance safety, reduce inspection time and cost but maintaining structural
function and uses. This field is also providing smart prognosis and diagnosis of failure
instantaneously. The deployment and development of structural health monitoring system is
required to ensuring the safe operation of any engineering structure or system. The execution
of the structural health monitoring is mainly considering the following processes: [1]
- Using sensors and instrumentation devices for sensing and tracing the interpretation of
an engineering system or structure under operational loads.
- Assessment the performance of the system or structure for any propagation of damages
or defects by the analysis of the measured values analytically or numerically.
- Indicating a notification or an alarm when the desired system parameters are exceeded.
The base on parameters or criteria that the structural health monitoring system executed
are varied depending on the nature of the system responses or performance. Although the
importance of structural health monitoring but their researches are relatively young if
compared to other engineering fields, thus most of the researches have been conducted at
universities or research and development centers of companies.
The applications of structural health monitoring in engineering fields included different
problems such detection of damage in steel structure, aerospace, concrete structures, precast
concrete, box girders in railroads, composite materials, dikes and pipelines of water and
wastewater. Also, evaluation bridge deflection; stress or strain analysis in petroleum pipes,
dam structures, or suspension bridge cables. In addition to more complicated problems such
as detection of impact effects in wind turbine blades and water leaks. The vibration of high-
rise reinforced structures such as towers can be evaluated and assessment.
In this paper the structural health monitoring is applied for detection failure at the
stiffeners of aircraft wing structure. The performance of an aircraft structure can be
characterized by various factors, essentially the response (i.e. strain mapping, shape
determination etc.) due to applied loading that can be evaluated by health monitoring
technique [2]. Finite element method is powerful to be used to modelling the wing structure
for estimation the effects in the structures due to the applied loading. The most wing structural
stiffness comes from the interior stiffeners. The stiffeners included main, auxiliary spars and
ribs. Having stiffeners (spars and ribs) attaing structure increases the load resistance of the
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 112 editor@iaeme.com
structure without further increasing in the weight. To further reduce the weight, a certain
arrangement of stiffener on structure is being necessary to increase the rigidity with less
material. The construction of both stiffeners and outer skin gives the overall wing structural
stiffness. The response of wing structure into the loading depending mainly on the overall
stiffness of wing. Then the present of damage in any location in the stiffeners will be affecting
on the response of the wing to the applied loading.
2. FINITE ELEMENT MODELLING
2.1. Geometric Parameters:
In this work, a wing structure of a guided aircraft laboratory prototype was modelled via finite
element method. Different finite element models were created each represent a case of
damage in spar. The purpose of these finite element models is performing static analysis
under action of static load and obtain strains induced in the skins and the lateral deformation
at the tip of wing. Then the health monitoring technique is applied to estimate relations
between damage of stiffeners and the static induced strains and deformations. The geometry
configurations and dimensions are illustrated in figure (1), such that the wing consisting of
upper and lower skins, spars and ribs. The wing stiffeners are constructed as eight spars and
ten ribs connected for giving the wing structure the required stiffness. The four digits
symmetrical NACA 0015 airfoil was used as an aerodynamic shape for the considered wing.
The (00) number of the NACA indicating that it has no camber. The (15) number of the
NACA indicates that the airfoil has a “thickness to chord length ratio” of 15% as shown in
figure (2). The equation describing the geometric shape of a NACA 0015 foil is [4,5]:
(1)
x: is the location along chord from ranged (0 to 100%).
y(x) is the half thickness at any location x .
t: is maximum thickness of the wing as a fraction of the chord.
The chords of the wing structure were assigned as 1m and 0.4m at the root and tip
respectively with length 1.75m.
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 113 editor@iaeme.com
2.2. Mesh Generation of wing structure:
In order to study the effect of damage that occurred in the spars, finite elements models were
created for each damage case. The damage was assumed to be as a cut in the connection of the
main spar which is located at the maximum thickness of wing, such that it assumed that the
damage occurred at five locations in the spar nearest to the maximum wing thickness. High
order SHELL 8-node quadrilateral element and 6-nodes triangular element ware selected for
the generation finite element model of the wing structures. Figure (3) is shown the high order
SHELL 8-Node element parameters and degrees of freedom. The upper and lower skins were
discretized into ten divisions, to be generate one hundred shell elements at each skin. The
spars and ribs were discretized into ten divisions in order to connected with both and skins
element at the contracted nodes to maintain continuous element connections as shown in
figure (4). The thickness of all of skins, spars and ribs were assigned to 0.4 mm. Aluminum
2024 alloy -T3 was used as the material of all parts their mechanical properties are shown in
table (1). [7]
3. DEFINITION OF THE ELEMENT COORDINATE SYSTEMS [8,9,10]
For the typical shell elements as shown in Figure (3), the external faces (surfaces) of the
element are curved, while the thickness is generated by straight lines. Many coordinate sets
employed in the formulation of degenerated shell element. These coordinate systems are
described in the following sections.
3.1. Global Coordinate System - (Xi)
It is the global Cartesian coordinate system, used to describe the wing geometry in the space.
The coordinates and deflections of nodes can be described using this coordinates system. In
addition to describe the assembled global stiffness matrix and assembled force vector. The
following notation is used:
iX
(I=1,3) and X1 =X , X2=Y , X3=Z , iU
(I=1,3) and U1=U, U2 =V, U3=W
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 114 editor@iaeme.com
iX (i=1,3) is a unit vector in the iX direction.
This system is used to define global stiffness matrix and applied force vector and in the
structure geometry, as well as nodal coordinate and displacements are referred to this system.
3.2. Nodal Coordinate System (V1f , V2f , V3f )
This system type can be established at each nodal point as shown in Figure (3) with origin
located at reference surface (shell mid-surface), V3f is a vector formulated from nodal
coordinate of shell surfaces at node f,
bot
f
top
ff3 XXV 
,
   T
botfff
T
topffff3 ZYXZYXV 
2
The unit vector f3V can normalize from the vectorV3f, thus:
 Tz
f3
y
f3
x
f3
f
f3
f3 VVV
h
V
V 
3
       2/12
f3
2
f2
2
f1f ΔXΔXΔXh  4
 1,2,3iXXΔX bot
if
top
ifif  5
The vector 3fV is the direction of “normal” at the node f, which is not necessarily
perpendicular to the mid-surface at f.
The vector V2f is normal to plane of vectors V1f and V3f: V2f = V1f  V3f .
The mathematical characteristic of vector V1f is perpendicular to V3f and parallel to the
global X – Z plane, thus:
x
3f
z
1f
y
1f
z
3f
x
1f V-V,0.0V,VV 
Or, if the vector is in the Y-direction
 0.0VV z
3f
x
3f 
x
3f
z
1f
y
1f
z
3f
x
1f V-V,0.0V,VV 
3.3. Curvilinear Coordinate System (   )
The description of this system is established by the definition of three coordinates, each one
has its characteristic as shown in Figure (3). The  coordinate is an intrinsic coordinate
through thickness direction.  coordinate is defined as a function of 3fV , the  -direction is
considered normal to the shell mid-surface. It is assumed that the curvilinear coordinate varies
between (-1 and +1), which represent the top and bottom surfaces of the element respectively.
The two other coordinates are ηξ, which are curvilinear coordinate in the middle plane of the
shell element and are also assumed to vary between (-1 and +1) which represent the faces of
the element.
3.4. Local Coordinate System (
''''
i Z,Y,XorX )
This system is a cartesian coordinate system defined at the sampling points wherein stresses
and strains are to be calculated. The direction
'
Z is taken perpendicular to the mid-surface (
constant ),
''
YandX tangent it as shown in Figure (3). The vectors
'
1V ,
'
2V ,
'
3V
define
'''
ZandY,X direction of mid-surface respectively, and it should be noted that,
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 115 editor@iaeme.com
























ξ
z
ξ
y
ξ
x
ξ
, 























η
z
η
y
η
x
η
, 























ξ
z
ξ
y
ξ
x
ξV1
,























ξ
z
ξ
y
ξ
x
ηξV3
x






















η
Z
η
Y
η
X
6
[T] =  '
1V ,
'
2V ,
'
3V  7
'
1V ,
'
2V ,
'
3V
: unit vectors on
'''
ZandY,X .
3.5. Geometry of Elements [10]
To obtain the formulation of the coordinates of any point within the element, it is simpler to
divide the general formulation of coordinate in two parts. The first part is to establish the term
of formulation, which represents the intercept of the “normal” with the mid-surface. If there is
a node (f) at the “normal” at  =0 surface and this “normal” has a top and bottom nodes at 
=+1 and  =-1 surfaces respectively, the coordinates of node (f) can be obtained as follows:
    
2
1
bot
'
ftop
'
f
'
f
XXX 
, bot
f
f
f
top
f
f
f
f
f
f
Z
Y
X
Z
Y
X
2
1
Z
Y
X
































8
Since node (f) is in the mid-surface (at  =0 surface), the two dimensional interpolation
function  ,N f 
can be applied from Table (2) , to obtain relationship between the Cartesian
point and the curvilinear coordinate as follows:
  if
n
1f
fi X,NX 


9
The second part is to establish the second term of the general formulation, which defines
the position of the point along this “normal”. But to establish that, it is necessary to define
arbitrary point (p) on the “normal” at node (f), therefore the vector V3f which represents the
thickness of the shell hf, can be written ass:
botf
f
f
topf
f
f
f3f
Z
Y
X
Z
Y
X
Vh


















10
The distance between the arbitrary point (p) and the node f (at mid-surface) can be written as follows:
Unit Distance = 2
ζh f
11
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 116 editor@iaeme.com
Since the
i
f3f Vh 
means the coordinates of the arbitrary point, the equation (11) can be rewritten with
the application of the two-dimensional interpolation function  ηξ,Nf from Table () so that:
  i
f3
n
1f
fi
V
2
ζ
ηξ,NX 

12
The general formulation of the coordinate defines the geometry of the shell element which
represents the rotations between the coordinate (  ζηξ ) and coordinates (X, Y, Z). It is
obtained by the summation of the previous two parts (equation (8) & equation (12)) so that:
   botif
n
1f
ftopif
n
1f
fi X
2
ζ1
),(NX
2
ζ1
),(NX



 
 13



































 z
f3
y
f3
x
f3
f
n
1f
f
mid
n
1f
f
V
V
V
2
hζ
),(N
Z
Y
X
),(N
Z
Y
X
iX
is the elemental Cartesian coordinate, ( XX1  , YX2  , ZX3 
), n: is the number of
nodes per element, hf is the element thickness at node f, i.e. the respective “normal” length,
Xif is the Cartesian coordinate of nodal point f, and ),(N f 
is the two dimensional
interpolation functions. (ζ =constant) at nodal point f.
3.6. Displacement Field [10]
Each node of the high order element has five degrees of freedom representing the
displacement along local coordinates. It is assumed that the strains in the directions to the
mid-surface is assumed to be negligible. The deflections through the element mid surface can
be defined by the three displacements (u,v,w), and two rotations of the nodal vector V3f about
orthogonal directions normal to it. One of the two orthogonal directions is represented by unit
vector f1V and the corresponding rotation ( f1α ). The other directions is f2V and the
corresponding rotation is ( f2α ), and it is the displacements ( f2f1 δ,δ ) of a point at unit distance
(h) from node f on the “normal” resulted from the two rotations ( f1α , f2 ) are calculated as
follows:
h
δ
α f1
f1 
or f1f1 αhδ  14
h
δ
α f2
f2 
or f2f2 αhδ 
where 2
h
h f 

, f1δ is the displacement in the direction of f1V , f2δ is the displacement
in the negative direction of f2V . Equation (13) can be written as follows:












f2
f1
f2
f1
α
α
h
δ
δ
15
The global displacement can be found from:
      

i
'
οff
n
1f
mid
i
οffi
uNuNu
16
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 117 editor@iaeme.com
iu : the nodal displacement through element thickness.
i
fu : nodal displacement through
Cartesian coordinate.
i
'
fu :nodal displacement through “normal” of the cross product of
rotations f1 and f2 .
Since;
'
f2
'
f1
i
οf δδu  17
where the corresponding displacement components (
'
f1 ,
'
f2 ) of
'
fu can be calculated as
follows:
i
f1f1
f'
f1 V
2
h



and
i
f1f1
f'
f1 V
2
h



18
Since the global displacement can be found as shown before in equation (16) as the
simulation of the mid-surface nodal displacement (
i
fu ) and the relative displacements are
caused by the rotations of the normal (
i'
fu ), then the element displacement field can be
expressed by:
)αVαV(
2
h.ζ
uu f2
i
f2f1
i
f1
fi
οfif

19
   


































  f2
f1
z
f2
z
f1
y
f2
y
f1
x
f2
x
f1
f
n
1f
f
f
f
fn
1f
f
α
α
VV
VV
VV
2
hζ
ηξ,N
w
v
u
ηξ,N
w
v
u
20
The contribution to the global displacement from a given node f in the general form and
for complete element is:
  f
Sζη,ξ,Nu
n
1f
fi 

21










































f2
f1
f
f
f
z
f2
f
f
z
f1
f
ff
y
f2
f
f
y
f1
f
ff
x
f2
f
f
x
f1
f
ff
α
α
w
v
u
V
2
hζ
NV
2
hζ
NN00
V
2
hζ
NV
2
hζ
N0N0
V
2
hζ
NV
2
hζ
N00N
w
v
u
22
Nf is the shape function matrix of the degenerated shell element.
Sf is transformation matrix of the displacement vector at node f of shell element
 T
f2f1fff ,,w,v,u  .
3.7. State of Stress [10]
The stress and strain components for the shell assumption of zero local stress through shell
mid-surface along
'
Z -direction ( 0'
z  ) and using Hooks law enables the stresses vector to
be reduced to following five stress components,
     ο
zy
zx
yx
y
x
εεD
η
η
η
ζ
ζ
ζ
''
''
''
'
'
















23
  is the initial strain vector.
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 118 editor@iaeme.com
  is the strain vector.
[D] is the elasticity matrix given by,
 














GK0000
0GK000
00G00
0001ν
000ν1
ν1
E
D
2
1
2
24
G: modulus rigidity, E: modulus of elasticity,  : Poisson’s ratio,
K1, K2 is the shear correction factors.
3.8. State of Strains [10]
The normal strain in the '
Z -direction (
'
z ) is neglected. Therefore, the general vector of green
strains it will be reduced to the following five components,
 































































'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
zy
zx
yx
y
x
y
w
z
v
x
w
z
u
x
v
y
u
y
v
x
u
ε
ε
ε
''
''
''
'
'



25
The local derivatives above of the displacement components
'''
wandv,u in the local
coordinates system (
'
1X ) can be obtained as:
   
z
w
z
v
z
u
y
w
y
v
y
u
x
w
x
v
x
u
z
w
z
v
z
u
y
w
y
v
y
u
x
w
x
v
x
u
T
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'





































































26
[] is the transformation matrix given by,



































'''
'''
'''
z
z
y
z
x
z
z
y
y
y
x
y
z
x
y
x
x
x
][
27
 






































































ζ
w
ζ
v
ζ
u
η
w
η
v
η
u
ξ
w
ξ
v
ξ
u
J
z
w
z
v
z
u
y
w
y
v
y
u
x
w
x
v
x
u
1
28



































ζ
z
ζ
y
ζ
x
η
z
η
y
η
x
ξ
z
ξ
y
ξ
x
[J]
[J] is Jacobian matrix 29
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 119 editor@iaeme.com
The transpose of the Jacobian matrix results from equation (12) can be expressed as
follow:
     














































n
1f
f,,f
z
f3
y
f3
x
f3
f
f
z
f3
y
f3
x
f3
f
f,,f
f
f
f
T
0NN
V
V
V
2
h
N00
V
V
V
2
h
0NN
Z
Y
X
]J[
30
n is the number of node per element,
hf is the element thickness at node f, and
   ,N
N;
,N
N f
,f
f
,f





 
31
are the derivatives of the global displacements referred to the curvilinear coordinates are
obtained from equation (18), such as 
u
. . .etc.











 n
1f
2f,f
x
f2
f
1f,f
x
f1
f
f,f NV
2
h
NV
2
h
uN
u




 
32
The strain matrix B can be formulated from equations (21), (29) and (31) as:
     B 33
where,
   T
21
α,α,w,v,uδ  34
[B]=



















)VgVd(-)VgV(da0c
)VeVg(-)VeV(gbc0
)VdVe(-)VdV(e0ab
Ve-Ve0b0
Vd-Vd00a
x2iz2ix1iz1iii
z2iy1iz1iy1iii
y1ix2iy1ix1iii
x2iy1ii
x2ix1i
i
iiii
iiii
iiii
ii
ii
35
η,NJζ,NJa i
*
12i
*
11i  η,NJζ,NJb i
*
22i
*
21i  η,NJζ,NJc i
*
32i
*
31i 
)NJz(a
2
hd i
*
31
,
i
i
i  )NJz(b
2
he i
*
23
,
i
i
i  )NJz(c
2
h i
*
23
,
i
i
i g
Consequently, it is used in the calculation of the stiffness matrix [K] using the mid-
coordinate rule. Hence [K] can be defined as follows:
  ηdξdζζη,ξ,J[D][B][B][K]
1
1
1
1
1
1
T
d  











36
Then K can be written as summing up the contribution of each layer at the gauss points,
  dηdξ
h
Δh2
ζη,ξ,J]][B[D][B[K]
1
1
1
1
nL
1j
j
jj
T
j  



 







37
[K] : stiffness matrix, [D] : elasticity matrix, [Bj]: strain-displacement matrix.
),,(J 
is the determinant of the Jacobian matrix for layer ( j ).
jh
is the thickness of the jth layer.
nL is the total number of layers.
In the same way, the internal force vector {
e
f } can be determined as follows:
dVJ}{]B[}f{
v
Te
 
38
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 120 editor@iaeme.com
dηdξ
h
Δh2
ζ)η,J(ξ(}{ζ][B}{f
nL
1j
1
1
1
1
j
j
T
j
e






  




39
}{ j
: is current stress vector,
}f{ e
: is the internal force vector.
It should be noted that, it is essential in nonlinear analysis to determine the internal force
vector (or equivalent nodal forces) at the end of each iteration. The transformation to the local
coordinates system ( ''
YX  ) using the following relation:
][S][D[S]][D s
T'
s  40




















lm
ml
mllmlm
lmlm
lmml
000
000
0022
00
00
[S] 22
22
22
41
3.7. Boundary conditions
The wing is clamped through the root chord such that all the degrees of freedom of the
regarded nodes are fixed to be zeros. While all other nodes are freely to be of three
translations and three rotations along the corresponding local coordinates.
3.8. EXPERIMENTAL PREDICTION OF PRESSURE DISTRIBUTION:
In order to predict the load that applied on the wing structure, a prototype for the airfoil was
manufactured using wood material according to the digital naca number 0015. Then the
prototype was amounted in the wind tunnel section as shown in figure (5). Its required to
measure the pressure distribution through the airfoil, thus twelve manometers were used for
this purpose. The wind tunnel is flowing air at 50 m/s over the airfoil. The airfoil was
mounted with different attack angles (0 to 10 degrees). Figures (6),(7) showed the pressure
distributions through upper and lower skins with different attack angles. The net pressure
distribution is equal to the difference between the pressures through upper and lower skins.
The pressure distribution was measured for each attack angle which is represent the effect of
aerodynamic lifting of the wing.
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 121 editor@iaeme.com
3.9. STATIC ANALYSIS [10]
Static analysis solution has been included the calculation of the effects of the applied load
under steady loading conditions on a structure. The pressure distributions through upper and
lower skins were applied as normal pressures on the elements. The static analysis is governing
by the following equilibrium equation:
     FqK  42
The above equilibrium equation is solved by jacobi iterative method to obtain the
displacement [q] vector.
4. RESULTS AND DISCUSION
Naman Jain [11,12] was created a Finite element code to solve shell structure under action of
static loads. In this work, a development was achieved for using Naman Jain code to generate
stiffened shell structure using quadrilateral eight nodes shell element and triangular six nodes
shell element. Jacobi iterative method was used to solve equation (42) to obtain the
deformations along global coordinates. Then the deformations transformed using equation
(41) to the local coordinates. The local deformations were transformed into global coordinates
x,y and z directions. The strains were estimated through local coordinates and substituted in
the stress strain relations to obtain elemental stresses through local coordinates. The first run
included the healthy structure that did not subjected into damage. Figure (8) showed the safe
strains induced in the lower skin along the intersection of the skins and main spar. Its noted
that the strains in the healthy wing were decreased gradually in the rejoins moved away than
the wing chord. The same behavior was noted in the strains induced in the upper and lower
skins. Figure (9) showed the safe lateral deformations induced in the lower skin along the
intersection of the skins and main spar. The lateral deformations of both the lower and upper
skins at the intersection of skins with main spar were approximately coincident. Also, the
lateral deformations were increased gradually in the rejoins moved away than the wing chord.
A similar behavior was noted in the study of Salu Kumar Das and Sandipan Roy [13]. The
second run included the static solution of the finite element model subjected to damage at the
main spar at the location apart 20% than the chord. The damage simulated as a cut in the
element connection of the spar and skins. The strain distributions are illustrated in figure
(10), where noted that a climax is initiated in the distribution at the location of the damage. In
addition to variation in the shape of the distribution of the strains in the rejoin between the
damage and the end tip of the wing. Figure (11) showed the distribution of the lateral
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 122 editor@iaeme.com
deformations of the lower skin at the intersection of the main spar with skins. The distribution
indicated that there are two shapes, the first shape in the rejoin between the chord and the
damage where the distribution was gradually increased. The second shape is between the
damage and the end tip of the wing, where the distribution appeared to be semi gradually
comparative with the first region. This is behavior due to the present of damage at the location
20% than the chord. In which the stiffness if reduced rapidly at that location. So, this behavior
can be used as a key to detect the damage location. The other runs were executed for the finite
element models that included the damages at the locations apart than the chord by 40%, 60%
and 80%. The behavior of the strain distribution indicates a decreasing towards the end tip of
the wing such that initiated a sudden climax at the location of the damage as shown in figures
(12, 14, and 16). The behavior of the lateral deformations indicated variations the shape of the
curve, such that the curve appeared to be gradually increased the region between the chord
and the damage. Semi to rapid increasing in the lateral deformation occurred in region
between the damage and the end tip of wing as shown in figures (13, 15, and 17).
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 123 editor@iaeme.com
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 124 editor@iaeme.com
Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and
Lateral Deflections
http://www.iaeme.com/IJMET/index.asp 125 editor@iaeme.com
CONFLICT OF INTERESTS
Declare that there is no “conflict of interests” regarding the publication of this paper.
ACKNOWLEDGMENTS
My thankful for the assistance from the staff of post graduate laboratory at Department of
Mechanical Engineering ,College of Engineering, Babylon University ,Iraq.
DATA AVAILABILITY
All data concerned with the fixation and performing the test of pressure distributions
through wing in wind tunnel are available in the author and can be obtained via mailing.
The codes of the finite element analysis can be obtained after publication of the research
and can be contacting with author for this purpose.
REFERENCES
[1] Structural Health Monitoring for Civil Structures: From the Lab to the Field, Piervincenzo
Rizzo, Yi Qing Ni, and Jinying Zhu Volume 2010, Article ID 165132.
Dr. Hatem Hadi Obeid
http://www.iaeme.com/IJMET/index.asp 126 editor@iaeme.com
[2] Experimental modal analysis and dynamic strain fiber Bragg gratings for structural health
monitoring of composite antenna sub-reflector, Aikaterini Panopoulou, S. Fransen's,
Vicente Gomez-Molinero, Vassilis Kostopoulos
[3] E.N. Jacobs, K.E. Ward, & R.M. Pinkerton. NACA Report No. 460, "The characteristics
of 78 related airfoil sections from tests in the variable-density wind tunnel". NACA, 1933.
[4] Fundamentals of aerodynamics", John D. Anderson,Jr, third ed, chap 4
[5] Moran, Jack (2003). An introduction to theoretical and computational aerodynamics.
Dover. p. 7. ISBN 0-486-42879-6.
[6] Payne, Greg (8 Jul 1994), NACA 6, 7, and 8 series, archived from the original on April
27, 2009
[7] An experimental investigation into the high velocity penetration resistance of CFRP and
CFRP/aluminium laminates, Ming-ming Xu, Guang-yan Huang, Yong-xiang Dong, Shun-
shan Feng, Composite Structures, Volume 188, 15 March 2018, Pages 450-460.
[8] The Finite Element Method Using MATLAB, Second Edition 2nd Edition, Young W.
Kwon, Hyochoong Bang,
[9] Programing the Finite Element Method with Matlab, Jack Chessa, 3rd October 2002
[10] William Weaver, Jr. and Paul R. Johnston,"Finite Element Programs for Structural
Analysis", Standford University, Printice-Hall Inc, N. J., 1984.
[11] MATLAB Code for Structural Analysis of 2-D Structures Subjected to Static and Self-
Weight Loading Conditions, Naman Jain, International Journal of Trend in Research and
Development, Volume 4, 2017.
[12] EFFECT OF HIGHER ORDER ELEMENT ON NUMERICAL INSTABILITY IN
TOPOLOGICAL OPTIMIZATION OF LINEAR STATIC LOADING STRUCTURE, N
AMAN JAIN, Journal of Theoretical and Applied Mechanics, Sofia, Vol.48 No.3 (2018)
pp. 78-94.
[13] Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass
fiber reinforced polymer, Salu Kumar Das , Sandipan Roy, 2nd International conference
on Advances in Mechanical Engineering (ICAME 2018), IOP Conf. Series: Materials
Science and Engineering 402 (2018) 012077.

More Related Content

Similar to DETECTION OF DAMAGE IN STIFFENERS OF AIRCRAFT WING STRUCTURE BASED ON INDUCED SKIN STRAINS AND LATERAL DEFLECTIONS

IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...
IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...
IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...IRJET Journal
 
Study of Aircraft Wing with Emphasis on Vibration Characteristics
Study of Aircraft Wing with Emphasis on Vibration CharacteristicsStudy of Aircraft Wing with Emphasis on Vibration Characteristics
Study of Aircraft Wing with Emphasis on Vibration CharacteristicsIJERA Editor
 
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...IRJET Journal
 
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...IRJET Journal
 
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...IRJET Journal
 
FE Based Crash Simulation of Belly Landing of a Light Transport Aircraft
FE Based Crash Simulation of Belly Landing of a Light Transport AircraftFE Based Crash Simulation of Belly Landing of a Light Transport Aircraft
FE Based Crash Simulation of Belly Landing of a Light Transport AircraftRSIS International
 
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...IAEME Publication
 
C030101011016
C030101011016C030101011016
C030101011016theijes
 
Structural Analysis and Optimization for Spar Beam of an Aircraft
Structural Analysis and Optimization for Spar Beam of an AircraftStructural Analysis and Optimization for Spar Beam of an Aircraft
Structural Analysis and Optimization for Spar Beam of an AircraftIRJET Journal
 
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...SIMULIA
 
CFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewCFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewIRJET Journal
 
Landing gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftLanding gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftRohit Katarya
 
Static and Dynamic Analysis of Floor Beam (Cross beam) of Aircraft
Static and Dynamic Analysis of Floor Beam (Cross beam) of AircraftStatic and Dynamic Analysis of Floor Beam (Cross beam) of Aircraft
Static and Dynamic Analysis of Floor Beam (Cross beam) of AircraftIRJET Journal
 
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...Designage Solutions
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...eSAT Publishing House
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...eSAT Journals
 
Structural Analysis of a wing box
Structural Analysis of a wing boxStructural Analysis of a wing box
Structural Analysis of a wing boxIJERA Editor
 
structures technology for future aerospace systems
 structures technology for future aerospace systems structures technology for future aerospace systems
structures technology for future aerospace systemszengfm2000
 

Similar to DETECTION OF DAMAGE IN STIFFENERS OF AIRCRAFT WING STRUCTURE BASED ON INDUCED SKIN STRAINS AND LATERAL DEFLECTIONS (20)

IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...
IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...
IRJET- Particle Swarm Intelligence based Dynamics Economic Dispatch with Dail...
 
Study of Aircraft Wing with Emphasis on Vibration Characteristics
Study of Aircraft Wing with Emphasis on Vibration CharacteristicsStudy of Aircraft Wing with Emphasis on Vibration Characteristics
Study of Aircraft Wing with Emphasis on Vibration Characteristics
 
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
 
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...
A Study on Damage Tolerance Evaluation of the Vertical Tail with the Z stiffe...
 
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...
Bend twist coupling effect on the Performance of the Wing of an Unmanned Aeri...
 
FE Based Crash Simulation of Belly Landing of a Light Transport Aircraft
FE Based Crash Simulation of Belly Landing of a Light Transport AircraftFE Based Crash Simulation of Belly Landing of a Light Transport Aircraft
FE Based Crash Simulation of Belly Landing of a Light Transport Aircraft
 
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
 
C030101011016
C030101011016C030101011016
C030101011016
 
Structural Analysis and Optimization for Spar Beam of an Aircraft
Structural Analysis and Optimization for Spar Beam of an AircraftStructural Analysis and Optimization for Spar Beam of an Aircraft
Structural Analysis and Optimization for Spar Beam of an Aircraft
 
30120130406017
3012013040601730120130406017
30120130406017
 
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...
Coupled Euler Lagrangian Approach Using Abaqus /Explicit in the Bird Strike A...
 
CFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewCFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A Review
 
Ageing of aircraft
Ageing of aircraftAgeing of aircraft
Ageing of aircraft
 
Landing gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraftLanding gear Failure analysis of an aircraft
Landing gear Failure analysis of an aircraft
 
Static and Dynamic Analysis of Floor Beam (Cross beam) of Aircraft
Static and Dynamic Analysis of Floor Beam (Cross beam) of AircraftStatic and Dynamic Analysis of Floor Beam (Cross beam) of Aircraft
Static and Dynamic Analysis of Floor Beam (Cross beam) of Aircraft
 
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
 
Structural Analysis of a wing box
Structural Analysis of a wing boxStructural Analysis of a wing box
Structural Analysis of a wing box
 
structures technology for future aerospace systems
 structures technology for future aerospace systems structures technology for future aerospace systems
structures technology for future aerospace systems
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 

Recently uploaded (20)

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 

DETECTION OF DAMAGE IN STIFFENERS OF AIRCRAFT WING STRUCTURE BASED ON INDUCED SKIN STRAINS AND LATERAL DEFLECTIONS

  • 1. http://www.iaeme.com/IJMET/index.asp 110 editor@iaeme.com International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 110-126. Article ID: IJMET_10_03_011 Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=3 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication Scopus Indexed DETECTION OF DAMAGE IN STIFFENERS OF AIRCRAFT WING STRUCTURE BASED ON INDUCED SKIN STRAINS AND LATERAL DEFLECTIONS Dr. Hatem Hadi Obeid Faculty of Engineering/ Department of Mechanical Engineering University of Babylon ABSTRACT In this paper, the technique of structure health monitoring was applied to detect damage occurrence in the stiffeners of wing structure. A wing structure of airfoil shape according to digital NACA 0015 was considered for modelling the aerodynamic wing shape. Finite element models of the wing structure were created included undamaged and damage wing structures using high order eight nodes and six nodes shell elements. The damaged wing models included damaged at the main spar at 20%, 40%,60% and 80% the distance than the root chord. A mathematical model was developed using high order shell elements and programmed via MATLAB. The load cases were predicted experimentally using wind tunnel test on a wood airfoil prototype such that the pressure distributions through upper and lower wing skins measured at different attack angles. The static solutions were achieved for each finite element model under action of maximum pressure distribution at attack angle of 100 . Strains distributions and lateral deflections through lower skin were estimated. The results of strains through lower skin showed occurring of climax in strain values initiated in the distribution at the location of the damage for all the cases of damaged structures, which not appeared in the undamaged wing structure. The results of lateral deformations through lower skin showed indicating variations in the shape of the curves, such that the curve appeared to be gradually increased the region between the chord and the damage. Semi to rapid increasing in the lateral deformation occurred in region between the damage and the end tip of wing. The difference in the behavior of the induced strains and lateral deformation between undamaged and damaged wing structures is intended to a technique predicting of the occurrence of the damage in the wing structure. The present of a climax in the strain distribution lead to presence of damage near the climax value of strain. Also, the indicating of variations in the shape of the lateral deformations of skins semi or rapid increasing lead to presence of damage near the rejoin of that variation. It is concluded the possibility of using the strain and deflection analysis for the wing structure to investigate occurring damage
  • 2. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 111 editor@iaeme.com in the structure due to variation in the strains and lateral deflections between different damage locations. Key Words: Wing structure, Structural health monitoring, finite element method, structural analysis, airfoil pressure distributions, strain, stress, deflection, damage in wing structure. Cite this Article: Dr. Hatem Hadi Obeid, Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections, International Journal of Mechanical Engineering and Technology, 10(3), 2019, pp. 110-126. http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=3 1. INTRODUCTION The Structural Health Monitoring of failures in aircraft and other flying equipment is very important because its concerned with the safety of their users or the risks that may be occurred due to falling on the ground. This analysis is applicable in wide range of engineering fields spanning from mechanical, aerospace, military, building, to bridge and transportation applications. Needs for prediction of failure in the aerospace structures are rapidly increasing due to demands of enhance safety, reduce inspection time and cost but maintaining structural function and uses. This field is also providing smart prognosis and diagnosis of failure instantaneously. The deployment and development of structural health monitoring system is required to ensuring the safe operation of any engineering structure or system. The execution of the structural health monitoring is mainly considering the following processes: [1] - Using sensors and instrumentation devices for sensing and tracing the interpretation of an engineering system or structure under operational loads. - Assessment the performance of the system or structure for any propagation of damages or defects by the analysis of the measured values analytically or numerically. - Indicating a notification or an alarm when the desired system parameters are exceeded. The base on parameters or criteria that the structural health monitoring system executed are varied depending on the nature of the system responses or performance. Although the importance of structural health monitoring but their researches are relatively young if compared to other engineering fields, thus most of the researches have been conducted at universities or research and development centers of companies. The applications of structural health monitoring in engineering fields included different problems such detection of damage in steel structure, aerospace, concrete structures, precast concrete, box girders in railroads, composite materials, dikes and pipelines of water and wastewater. Also, evaluation bridge deflection; stress or strain analysis in petroleum pipes, dam structures, or suspension bridge cables. In addition to more complicated problems such as detection of impact effects in wind turbine blades and water leaks. The vibration of high- rise reinforced structures such as towers can be evaluated and assessment. In this paper the structural health monitoring is applied for detection failure at the stiffeners of aircraft wing structure. The performance of an aircraft structure can be characterized by various factors, essentially the response (i.e. strain mapping, shape determination etc.) due to applied loading that can be evaluated by health monitoring technique [2]. Finite element method is powerful to be used to modelling the wing structure for estimation the effects in the structures due to the applied loading. The most wing structural stiffness comes from the interior stiffeners. The stiffeners included main, auxiliary spars and ribs. Having stiffeners (spars and ribs) attaing structure increases the load resistance of the
  • 3. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 112 editor@iaeme.com structure without further increasing in the weight. To further reduce the weight, a certain arrangement of stiffener on structure is being necessary to increase the rigidity with less material. The construction of both stiffeners and outer skin gives the overall wing structural stiffness. The response of wing structure into the loading depending mainly on the overall stiffness of wing. Then the present of damage in any location in the stiffeners will be affecting on the response of the wing to the applied loading. 2. FINITE ELEMENT MODELLING 2.1. Geometric Parameters: In this work, a wing structure of a guided aircraft laboratory prototype was modelled via finite element method. Different finite element models were created each represent a case of damage in spar. The purpose of these finite element models is performing static analysis under action of static load and obtain strains induced in the skins and the lateral deformation at the tip of wing. Then the health monitoring technique is applied to estimate relations between damage of stiffeners and the static induced strains and deformations. The geometry configurations and dimensions are illustrated in figure (1), such that the wing consisting of upper and lower skins, spars and ribs. The wing stiffeners are constructed as eight spars and ten ribs connected for giving the wing structure the required stiffness. The four digits symmetrical NACA 0015 airfoil was used as an aerodynamic shape for the considered wing. The (00) number of the NACA indicating that it has no camber. The (15) number of the NACA indicates that the airfoil has a “thickness to chord length ratio” of 15% as shown in figure (2). The equation describing the geometric shape of a NACA 0015 foil is [4,5]: (1) x: is the location along chord from ranged (0 to 100%). y(x) is the half thickness at any location x . t: is maximum thickness of the wing as a fraction of the chord. The chords of the wing structure were assigned as 1m and 0.4m at the root and tip respectively with length 1.75m.
  • 4. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 113 editor@iaeme.com 2.2. Mesh Generation of wing structure: In order to study the effect of damage that occurred in the spars, finite elements models were created for each damage case. The damage was assumed to be as a cut in the connection of the main spar which is located at the maximum thickness of wing, such that it assumed that the damage occurred at five locations in the spar nearest to the maximum wing thickness. High order SHELL 8-node quadrilateral element and 6-nodes triangular element ware selected for the generation finite element model of the wing structures. Figure (3) is shown the high order SHELL 8-Node element parameters and degrees of freedom. The upper and lower skins were discretized into ten divisions, to be generate one hundred shell elements at each skin. The spars and ribs were discretized into ten divisions in order to connected with both and skins element at the contracted nodes to maintain continuous element connections as shown in figure (4). The thickness of all of skins, spars and ribs were assigned to 0.4 mm. Aluminum 2024 alloy -T3 was used as the material of all parts their mechanical properties are shown in table (1). [7] 3. DEFINITION OF THE ELEMENT COORDINATE SYSTEMS [8,9,10] For the typical shell elements as shown in Figure (3), the external faces (surfaces) of the element are curved, while the thickness is generated by straight lines. Many coordinate sets employed in the formulation of degenerated shell element. These coordinate systems are described in the following sections. 3.1. Global Coordinate System - (Xi) It is the global Cartesian coordinate system, used to describe the wing geometry in the space. The coordinates and deflections of nodes can be described using this coordinates system. In addition to describe the assembled global stiffness matrix and assembled force vector. The following notation is used: iX (I=1,3) and X1 =X , X2=Y , X3=Z , iU (I=1,3) and U1=U, U2 =V, U3=W
  • 5. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 114 editor@iaeme.com iX (i=1,3) is a unit vector in the iX direction. This system is used to define global stiffness matrix and applied force vector and in the structure geometry, as well as nodal coordinate and displacements are referred to this system. 3.2. Nodal Coordinate System (V1f , V2f , V3f ) This system type can be established at each nodal point as shown in Figure (3) with origin located at reference surface (shell mid-surface), V3f is a vector formulated from nodal coordinate of shell surfaces at node f, bot f top ff3 XXV  ,    T botfff T topffff3 ZYXZYXV  2 The unit vector f3V can normalize from the vectorV3f, thus:  Tz f3 y f3 x f3 f f3 f3 VVV h V V  3        2/12 f3 2 f2 2 f1f ΔXΔXΔXh  4  1,2,3iXXΔX bot if top ifif  5 The vector 3fV is the direction of “normal” at the node f, which is not necessarily perpendicular to the mid-surface at f. The vector V2f is normal to plane of vectors V1f and V3f: V2f = V1f  V3f . The mathematical characteristic of vector V1f is perpendicular to V3f and parallel to the global X – Z plane, thus: x 3f z 1f y 1f z 3f x 1f V-V,0.0V,VV  Or, if the vector is in the Y-direction  0.0VV z 3f x 3f  x 3f z 1f y 1f z 3f x 1f V-V,0.0V,VV  3.3. Curvilinear Coordinate System (   ) The description of this system is established by the definition of three coordinates, each one has its characteristic as shown in Figure (3). The  coordinate is an intrinsic coordinate through thickness direction.  coordinate is defined as a function of 3fV , the  -direction is considered normal to the shell mid-surface. It is assumed that the curvilinear coordinate varies between (-1 and +1), which represent the top and bottom surfaces of the element respectively. The two other coordinates are ηξ, which are curvilinear coordinate in the middle plane of the shell element and are also assumed to vary between (-1 and +1) which represent the faces of the element. 3.4. Local Coordinate System ( '''' i Z,Y,XorX ) This system is a cartesian coordinate system defined at the sampling points wherein stresses and strains are to be calculated. The direction ' Z is taken perpendicular to the mid-surface ( constant ), '' YandX tangent it as shown in Figure (3). The vectors ' 1V , ' 2V , ' 3V define ''' ZandY,X direction of mid-surface respectively, and it should be noted that,
  • 6. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 115 editor@iaeme.com                         ξ z ξ y ξ x ξ ,                         η z η y η x η ,                         ξ z ξ y ξ x ξV1 ,                        ξ z ξ y ξ x ηξV3 x                       η Z η Y η X 6 [T] =  ' 1V , ' 2V , ' 3V  7 ' 1V , ' 2V , ' 3V : unit vectors on ''' ZandY,X . 3.5. Geometry of Elements [10] To obtain the formulation of the coordinates of any point within the element, it is simpler to divide the general formulation of coordinate in two parts. The first part is to establish the term of formulation, which represents the intercept of the “normal” with the mid-surface. If there is a node (f) at the “normal” at  =0 surface and this “normal” has a top and bottom nodes at  =+1 and  =-1 surfaces respectively, the coordinates of node (f) can be obtained as follows:      2 1 bot ' ftop ' f ' f XXX  , bot f f f top f f f f f f Z Y X Z Y X 2 1 Z Y X                                 8 Since node (f) is in the mid-surface (at  =0 surface), the two dimensional interpolation function  ,N f  can be applied from Table (2) , to obtain relationship between the Cartesian point and the curvilinear coordinate as follows:   if n 1f fi X,NX    9 The second part is to establish the second term of the general formulation, which defines the position of the point along this “normal”. But to establish that, it is necessary to define arbitrary point (p) on the “normal” at node (f), therefore the vector V3f which represents the thickness of the shell hf, can be written ass: botf f f topf f f f3f Z Y X Z Y X Vh                   10 The distance between the arbitrary point (p) and the node f (at mid-surface) can be written as follows: Unit Distance = 2 ζh f 11
  • 7. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 116 editor@iaeme.com Since the i f3f Vh  means the coordinates of the arbitrary point, the equation (11) can be rewritten with the application of the two-dimensional interpolation function  ηξ,Nf from Table () so that:   i f3 n 1f fi V 2 ζ ηξ,NX   12 The general formulation of the coordinate defines the geometry of the shell element which represents the rotations between the coordinate (  ζηξ ) and coordinates (X, Y, Z). It is obtained by the summation of the previous two parts (equation (8) & equation (12)) so that:    botif n 1f ftopif n 1f fi X 2 ζ1 ),(NX 2 ζ1 ),(NX       13                                     z f3 y f3 x f3 f n 1f f mid n 1f f V V V 2 hζ ),(N Z Y X ),(N Z Y X iX is the elemental Cartesian coordinate, ( XX1  , YX2  , ZX3  ), n: is the number of nodes per element, hf is the element thickness at node f, i.e. the respective “normal” length, Xif is the Cartesian coordinate of nodal point f, and ),(N f  is the two dimensional interpolation functions. (ζ =constant) at nodal point f. 3.6. Displacement Field [10] Each node of the high order element has five degrees of freedom representing the displacement along local coordinates. It is assumed that the strains in the directions to the mid-surface is assumed to be negligible. The deflections through the element mid surface can be defined by the three displacements (u,v,w), and two rotations of the nodal vector V3f about orthogonal directions normal to it. One of the two orthogonal directions is represented by unit vector f1V and the corresponding rotation ( f1α ). The other directions is f2V and the corresponding rotation is ( f2α ), and it is the displacements ( f2f1 δ,δ ) of a point at unit distance (h) from node f on the “normal” resulted from the two rotations ( f1α , f2 ) are calculated as follows: h δ α f1 f1  or f1f1 αhδ  14 h δ α f2 f2  or f2f2 αhδ  where 2 h h f   , f1δ is the displacement in the direction of f1V , f2δ is the displacement in the negative direction of f2V . Equation (13) can be written as follows:             f2 f1 f2 f1 α α h δ δ 15 The global displacement can be found from:         i ' οff n 1f mid i οffi uNuNu 16
  • 8. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 117 editor@iaeme.com iu : the nodal displacement through element thickness. i fu : nodal displacement through Cartesian coordinate. i ' fu :nodal displacement through “normal” of the cross product of rotations f1 and f2 . Since; ' f2 ' f1 i οf δδu  17 where the corresponding displacement components ( ' f1 , ' f2 ) of ' fu can be calculated as follows: i f1f1 f' f1 V 2 h    and i f1f1 f' f1 V 2 h    18 Since the global displacement can be found as shown before in equation (16) as the simulation of the mid-surface nodal displacement ( i fu ) and the relative displacements are caused by the rotations of the normal ( i' fu ), then the element displacement field can be expressed by: )αVαV( 2 h.ζ uu f2 i f2f1 i f1 fi οfif  19                                         f2 f1 z f2 z f1 y f2 y f1 x f2 x f1 f n 1f f f f fn 1f f α α VV VV VV 2 hζ ηξ,N w v u ηξ,N w v u 20 The contribution to the global displacement from a given node f in the general form and for complete element is:   f Sζη,ξ,Nu n 1f fi   21                                           f2 f1 f f f z f2 f f z f1 f ff y f2 f f y f1 f ff x f2 f f x f1 f ff α α w v u V 2 hζ NV 2 hζ NN00 V 2 hζ NV 2 hζ N0N0 V 2 hζ NV 2 hζ N00N w v u 22 Nf is the shape function matrix of the degenerated shell element. Sf is transformation matrix of the displacement vector at node f of shell element  T f2f1fff ,,w,v,u  . 3.7. State of Stress [10] The stress and strain components for the shell assumption of zero local stress through shell mid-surface along ' Z -direction ( 0' z  ) and using Hooks law enables the stresses vector to be reduced to following five stress components,      ο zy zx yx y x εεD η η η ζ ζ ζ '' '' '' ' '                 23   is the initial strain vector.
  • 9. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 118 editor@iaeme.com   is the strain vector. [D] is the elasticity matrix given by,                 GK0000 0GK000 00G00 0001ν 000ν1 ν1 E D 2 1 2 24 G: modulus rigidity, E: modulus of elasticity,  : Poisson’s ratio, K1, K2 is the shear correction factors. 3.8. State of Strains [10] The normal strain in the ' Z -direction ( ' z ) is neglected. Therefore, the general vector of green strains it will be reduced to the following five components,                                                                  ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' zy zx yx y x y w z v x w z u x v y u y v x u ε ε ε '' '' '' ' '    25 The local derivatives above of the displacement components ''' wandv,u in the local coordinates system ( ' 1X ) can be obtained as:     z w z v z u y w y v y u x w x v x u z w z v z u y w y v y u x w x v x u T ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '                                                                      26 [] is the transformation matrix given by,                                    ''' ''' ''' z z y z x z z y y y x y z x y x x x ][ 27                                                                         ζ w ζ v ζ u η w η v η u ξ w ξ v ξ u J z w z v z u y w y v y u x w x v x u 1 28                                    ζ z ζ y ζ x η z η y η x ξ z ξ y ξ x [J] [J] is Jacobian matrix 29
  • 10. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 119 editor@iaeme.com The transpose of the Jacobian matrix results from equation (12) can be expressed as follow:                                                     n 1f f,,f z f3 y f3 x f3 f f z f3 y f3 x f3 f f,,f f f f T 0NN V V V 2 h N00 V V V 2 h 0NN Z Y X ]J[ 30 n is the number of node per element, hf is the element thickness at node f, and    ,N N; ,N N f ,f f ,f        31 are the derivatives of the global displacements referred to the curvilinear coordinates are obtained from equation (18), such as  u . . .etc.             n 1f 2f,f x f2 f 1f,f x f1 f f,f NV 2 h NV 2 h uN u       32 The strain matrix B can be formulated from equations (21), (29) and (31) as:      B 33 where,    T 21 α,α,w,v,uδ  34 [B]=                    )VgVd(-)VgV(da0c )VeVg(-)VeV(gbc0 )VdVe(-)VdV(e0ab Ve-Ve0b0 Vd-Vd00a x2iz2ix1iz1iii z2iy1iz1iy1iii y1ix2iy1ix1iii x2iy1ii x2ix1i i iiii iiii iiii ii ii 35 η,NJζ,NJa i * 12i * 11i  η,NJζ,NJb i * 22i * 21i  η,NJζ,NJc i * 32i * 31i  )NJz(a 2 hd i * 31 , i i i  )NJz(b 2 he i * 23 , i i i  )NJz(c 2 h i * 23 , i i i g Consequently, it is used in the calculation of the stiffness matrix [K] using the mid- coordinate rule. Hence [K] can be defined as follows:   ηdξdζζη,ξ,J[D][B][B][K] 1 1 1 1 1 1 T d              36 Then K can be written as summing up the contribution of each layer at the gauss points,   dηdξ h Δh2 ζη,ξ,J]][B[D][B[K] 1 1 1 1 nL 1j j jj T j               37 [K] : stiffness matrix, [D] : elasticity matrix, [Bj]: strain-displacement matrix. ),,(J  is the determinant of the Jacobian matrix for layer ( j ). jh is the thickness of the jth layer. nL is the total number of layers. In the same way, the internal force vector { e f } can be determined as follows: dVJ}{]B[}f{ v Te   38
  • 11. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 120 editor@iaeme.com dηdξ h Δh2 ζ)η,J(ξ(}{ζ][B}{f nL 1j 1 1 1 1 j j T j e              39 }{ j : is current stress vector, }f{ e : is the internal force vector. It should be noted that, it is essential in nonlinear analysis to determine the internal force vector (or equivalent nodal forces) at the end of each iteration. The transformation to the local coordinates system ( '' YX  ) using the following relation: ][S][D[S]][D s T' s  40                     lm ml mllmlm lmlm lmml 000 000 0022 00 00 [S] 22 22 22 41 3.7. Boundary conditions The wing is clamped through the root chord such that all the degrees of freedom of the regarded nodes are fixed to be zeros. While all other nodes are freely to be of three translations and three rotations along the corresponding local coordinates. 3.8. EXPERIMENTAL PREDICTION OF PRESSURE DISTRIBUTION: In order to predict the load that applied on the wing structure, a prototype for the airfoil was manufactured using wood material according to the digital naca number 0015. Then the prototype was amounted in the wind tunnel section as shown in figure (5). Its required to measure the pressure distribution through the airfoil, thus twelve manometers were used for this purpose. The wind tunnel is flowing air at 50 m/s over the airfoil. The airfoil was mounted with different attack angles (0 to 10 degrees). Figures (6),(7) showed the pressure distributions through upper and lower skins with different attack angles. The net pressure distribution is equal to the difference between the pressures through upper and lower skins. The pressure distribution was measured for each attack angle which is represent the effect of aerodynamic lifting of the wing.
  • 12. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 121 editor@iaeme.com 3.9. STATIC ANALYSIS [10] Static analysis solution has been included the calculation of the effects of the applied load under steady loading conditions on a structure. The pressure distributions through upper and lower skins were applied as normal pressures on the elements. The static analysis is governing by the following equilibrium equation:      FqK  42 The above equilibrium equation is solved by jacobi iterative method to obtain the displacement [q] vector. 4. RESULTS AND DISCUSION Naman Jain [11,12] was created a Finite element code to solve shell structure under action of static loads. In this work, a development was achieved for using Naman Jain code to generate stiffened shell structure using quadrilateral eight nodes shell element and triangular six nodes shell element. Jacobi iterative method was used to solve equation (42) to obtain the deformations along global coordinates. Then the deformations transformed using equation (41) to the local coordinates. The local deformations were transformed into global coordinates x,y and z directions. The strains were estimated through local coordinates and substituted in the stress strain relations to obtain elemental stresses through local coordinates. The first run included the healthy structure that did not subjected into damage. Figure (8) showed the safe strains induced in the lower skin along the intersection of the skins and main spar. Its noted that the strains in the healthy wing were decreased gradually in the rejoins moved away than the wing chord. The same behavior was noted in the strains induced in the upper and lower skins. Figure (9) showed the safe lateral deformations induced in the lower skin along the intersection of the skins and main spar. The lateral deformations of both the lower and upper skins at the intersection of skins with main spar were approximately coincident. Also, the lateral deformations were increased gradually in the rejoins moved away than the wing chord. A similar behavior was noted in the study of Salu Kumar Das and Sandipan Roy [13]. The second run included the static solution of the finite element model subjected to damage at the main spar at the location apart 20% than the chord. The damage simulated as a cut in the element connection of the spar and skins. The strain distributions are illustrated in figure (10), where noted that a climax is initiated in the distribution at the location of the damage. In addition to variation in the shape of the distribution of the strains in the rejoin between the damage and the end tip of the wing. Figure (11) showed the distribution of the lateral
  • 13. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 122 editor@iaeme.com deformations of the lower skin at the intersection of the main spar with skins. The distribution indicated that there are two shapes, the first shape in the rejoin between the chord and the damage where the distribution was gradually increased. The second shape is between the damage and the end tip of the wing, where the distribution appeared to be semi gradually comparative with the first region. This is behavior due to the present of damage at the location 20% than the chord. In which the stiffness if reduced rapidly at that location. So, this behavior can be used as a key to detect the damage location. The other runs were executed for the finite element models that included the damages at the locations apart than the chord by 40%, 60% and 80%. The behavior of the strain distribution indicates a decreasing towards the end tip of the wing such that initiated a sudden climax at the location of the damage as shown in figures (12, 14, and 16). The behavior of the lateral deformations indicated variations the shape of the curve, such that the curve appeared to be gradually increased the region between the chord and the damage. Semi to rapid increasing in the lateral deformation occurred in region between the damage and the end tip of wing as shown in figures (13, 15, and 17).
  • 14. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 123 editor@iaeme.com
  • 15. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 124 editor@iaeme.com
  • 16. Detection of Damage in Stiffeners of Aircraft Wing Structure Based On Induced Skin Strains and Lateral Deflections http://www.iaeme.com/IJMET/index.asp 125 editor@iaeme.com CONFLICT OF INTERESTS Declare that there is no “conflict of interests” regarding the publication of this paper. ACKNOWLEDGMENTS My thankful for the assistance from the staff of post graduate laboratory at Department of Mechanical Engineering ,College of Engineering, Babylon University ,Iraq. DATA AVAILABILITY All data concerned with the fixation and performing the test of pressure distributions through wing in wind tunnel are available in the author and can be obtained via mailing. The codes of the finite element analysis can be obtained after publication of the research and can be contacting with author for this purpose. REFERENCES [1] Structural Health Monitoring for Civil Structures: From the Lab to the Field, Piervincenzo Rizzo, Yi Qing Ni, and Jinying Zhu Volume 2010, Article ID 165132.
  • 17. Dr. Hatem Hadi Obeid http://www.iaeme.com/IJMET/index.asp 126 editor@iaeme.com [2] Experimental modal analysis and dynamic strain fiber Bragg gratings for structural health monitoring of composite antenna sub-reflector, Aikaterini Panopoulou, S. Fransen's, Vicente Gomez-Molinero, Vassilis Kostopoulos [3] E.N. Jacobs, K.E. Ward, & R.M. Pinkerton. NACA Report No. 460, "The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel". NACA, 1933. [4] Fundamentals of aerodynamics", John D. Anderson,Jr, third ed, chap 4 [5] Moran, Jack (2003). An introduction to theoretical and computational aerodynamics. Dover. p. 7. ISBN 0-486-42879-6. [6] Payne, Greg (8 Jul 1994), NACA 6, 7, and 8 series, archived from the original on April 27, 2009 [7] An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminium laminates, Ming-ming Xu, Guang-yan Huang, Yong-xiang Dong, Shun- shan Feng, Composite Structures, Volume 188, 15 March 2018, Pages 450-460. [8] The Finite Element Method Using MATLAB, Second Edition 2nd Edition, Young W. Kwon, Hyochoong Bang, [9] Programing the Finite Element Method with Matlab, Jack Chessa, 3rd October 2002 [10] William Weaver, Jr. and Paul R. Johnston,"Finite Element Programs for Structural Analysis", Standford University, Printice-Hall Inc, N. J., 1984. [11] MATLAB Code for Structural Analysis of 2-D Structures Subjected to Static and Self- Weight Loading Conditions, Naman Jain, International Journal of Trend in Research and Development, Volume 4, 2017. [12] EFFECT OF HIGHER ORDER ELEMENT ON NUMERICAL INSTABILITY IN TOPOLOGICAL OPTIMIZATION OF LINEAR STATIC LOADING STRUCTURE, N AMAN JAIN, Journal of Theoretical and Applied Mechanics, Sofia, Vol.48 No.3 (2018) pp. 78-94. [13] Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer, Salu Kumar Das , Sandipan Roy, 2nd International conference on Advances in Mechanical Engineering (ICAME 2018), IOP Conf. Series: Materials Science and Engineering 402 (2018) 012077.