SlideShare a Scribd company logo
1 of 50
Polar Coordinates
Polar Coordinates
The location of a point P in the plane may be given
by the following two numbers:
P
x
y
(r, )
O
Polar Coordinates
r = the distance between P and the origin O(0, 0)
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )
r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P,
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
The ordered pairs (r,  ±2nπ ) with
n = 0,1, 2, 3… give the same
geometric information hence lead to
the same location P(r, ).
O
y
Polar Coordinates
r = the distance between P and the origin O(0, 0)
 = a signed angle between the positive x–axis and
the direction to P, specifically,
 is + for counter clockwise measurements and
 is – for clockwise measurements.
The location of a point P in the plane may be given
by the following two numbers:
The ordered pair (r, ) is a polar coordinate of P.
P
x
(r, )

r
The ordered pairs (r,  ±2nπ ) with
n = 0,1, 2, 3… give the same
geometric information hence lead to
the same location P(r, ).
We also use signed distance,
so with negative values of r,
we are to step backward for
a distance of l r l. O
y
Polar Coordinates
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
Polar Coordinates
Conversion Rules
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O
The rectangular and polar
coordinates relations
x =
y =
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
The rectangular and polar
coordinates relations
x = r*cos()
y =
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
y = r*sin()
r =
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
y = r*sin()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
r = √ x2 + y2
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Conversion Rules
Let (x, y)R and (r, )P be the rectangular and polar
coordinates of the same point P, then
P
x
y

r
O x = r*cos()
y = r*sin()
The rectangular and polar
coordinates relations
x = r*cos()
y = r*sin()
r = √ x2 + y2
For  we have that
tan() = y/x,
cos() = x/√x2 + y2
or if  is between 0 and π,
then  = cos–1 (x/√x2 + y2).
If needed, we write (a, b)P for a polar coordinate
ordered pair, and (a, b)R for the rectangular
coordinate ordered pair.
(r, )p ↔ (x, y)R
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
x = r*cos()
y = r*sin()
r2 = x2 + y2
tan() = y/x
For A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
x = r*cos()
y = r*sin()
A(4, 60o)P
r2 = x2 + y2
tan() = y/x
For A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
r2 = x2 + y2
tan() = y/x
x
y
60o
4
A(4, 60o)P
B(5, 0)P
(x, y)R = (4*cos(60⁰), 4*sin(60⁰),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
C
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
= (22, –22)
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
Example A. a. Plot the following polar coordinates
A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P.
Find their corresponding rectangular coordinates.
x
y
60o
4
For A(4, 60o)P
x = r*cos()
y = r*sin()
for B(5, 0o)P, (x, y) = (5, 0),
for C and D,
(x, y)R = (4cos(–45⁰), 4sin(–45⁰))
= (–4cos(3π/4), –4sin(3π/4))
= (22, –22)
A(4, 60o)P
B(5, 0)P
C(4, –45o)P
= D(–4, 3π/4 rad)P
4
Converting rectangular positions
into polar coordinates requires
more care.
r2 = x2 + y2
tan() = y/x
–45o
3π/4
C&D
(x, y)R = (4*cos(60⁰), 4*sin(60⁰)),
= (2, 23)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
x
y
E(–4, 3)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
x
y
E(–4, 3)
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)
r=5
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
There is no single formula that
would give .
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)
r=5

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
would be easier to use to extract .
x
y
E(–4, 3)
r=5

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?).
x
y
E(–4, 3)
r=5
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function

Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o so that E(–4, 3)R ≈ (5,143o)P
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
b. Find a polar coordinate then list all possible polar
coordinates for each of the following points
(with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
We have the distance formula r = x2 + y2,
hence for E, r = 16 + 9 = 5.
x
y
E(–4, 3)

r=5
would be easier to use to extract . Since E is in the
2nd quadrant, the angle  may be recovered by the
cosine inverse function (why?). So  = cos–1(–4/5) ≈
143o so that E(–4, 3)R ≈ (5,143o)P = (5,143o±n*360o)P
There is no single formula that
would give . This is because  has
to be expressed via the inverse
trig–functions hence the position of
E dictates which inverse function
Polar Coordinates
For F(3, –2)R,
x
y
F(3, –2,)
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function.

r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
the advantage of obtaining the answer directly from
the x and y coordinates.

r=√13
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
x
y
G(–3, –1)
r=√10
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
G is the 3rd quadrant. Hence  can’t
be obtained directly via the inverse–
trig functions.
x
y
G(–3, –1)
r=√10
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
For F(3, –2)R, r = 9 + 4 = √13.
x
y
F(3, –2,)

r=√13
Since F is in the 4th quadrant, the
angle  may be recovered by the
sine inverse or the tangent inverse
function. The tangent inverse has
= (√13, –0.588rad ± 2nπ)P
For G(–3, –1)R, r = 9 + 1 = √10.
G is the 3rd quadrant. Hence  can’t
be obtained directly via the inverse–
trig functions. We will find the angle
A as shown first, then  = A + 180⁰.
x
y
G(–3, –1)
r=√10
A
the advantage of obtaining the answer directly from
the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
and that F(3, –2)R ≈ (√13, –0.588rad)P
Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o
x
y
G(–3, –1)
r=√10
A
Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o so
 = 180 + 18.3o = 198.3o
x
y
G(–3, –1)
r=√10
A

Polar Coordinates
Again, using tangent inverse
A = tan–1(1/3) ≈ 18.3o so
 = 180 + 18.3o = 198.3o or
G ≈ (√10, 198.3o ± n x 360o)P
x
y
G(–3, –1)
r=√10
A


More Related Content

What's hot

t6 polar coordinates
t6 polar coordinatest6 polar coordinates
t6 polar coordinatesmath260
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
Introduction To Polar Coordinates And Graphs
Introduction To Polar Coordinates And GraphsIntroduction To Polar Coordinates And Graphs
Introduction To Polar Coordinates And Graphseekeeney
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs xharbormath240
 
t7 polar equations and graphs
t7 polar equations and graphst7 polar equations and graphs
t7 polar equations and graphsmath260
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphsmath267
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinatesmath267
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesMatthew Leingang
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs xmath260
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS Rc Os
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Sonendra Kumar Gupta
 
3 rd quarter projectin math
3 rd quarter projectin math3 rd quarter projectin math
3 rd quarter projectin mathiam_soojin
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus garghanish
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1TGTMATH
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS Rc Os
 

What's hot (20)

t6 polar coordinates
t6 polar coordinatest6 polar coordinates
t6 polar coordinates
 
Polar Co Ordinates
Polar Co OrdinatesPolar Co Ordinates
Polar Co Ordinates
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
Introduction To Polar Coordinates And Graphs
Introduction To Polar Coordinates And GraphsIntroduction To Polar Coordinates And Graphs
Introduction To Polar Coordinates And Graphs
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs x
 
t7 polar equations and graphs
t7 polar equations and graphst7 polar equations and graphs
t7 polar equations and graphs
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphs
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs x
 
Polar Curves
Polar CurvesPolar Curves
Polar Curves
 
calculus Ppt
calculus Pptcalculus Ppt
calculus Ppt
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS
 
07 vectors
07   vectors07   vectors
07 vectors
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
 
3 rd quarter projectin math
3 rd quarter projectin math3 rd quarter projectin math
3 rd quarter projectin math
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS
 

Similar to 10. polar coordinates x

20 polar equations and graphs x
20 polar equations and graphs x20 polar equations and graphs x
20 polar equations and graphs xmath267
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinatesmath267
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinatesmath267
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2kerrynix
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptxmath267
 
Chapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedChapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedEasyStudy3
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate systemalg1testreview
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate systemelem-alg-sample
 
1 rectangular coordinate system x
1 rectangular coordinate system x1 rectangular coordinate system x
1 rectangular coordinate system xTzenma
 
planes and distances
planes and distancesplanes and distances
planes and distancesElias Dinsa
 
54 the rectangular coordinate system
54 the rectangular coordinate system54 the rectangular coordinate system
54 the rectangular coordinate systemalg-ready-review
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i xmath266
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)itutor
 

Similar to 10. polar coordinates x (20)

20 polar equations and graphs x
20 polar equations and graphs x20 polar equations and graphs x
20 polar equations and graphs x
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2
 
0801 ch 8 day 1
0801 ch 8 day 10801 ch 8 day 1
0801 ch 8 day 1
 
Curve tracing
Curve tracingCurve tracing
Curve tracing
 
23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx23 Double Integral over Polar Coordinate.pptx
23 Double Integral over Polar Coordinate.pptx
 
Chapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space mergedChapter 12 vectors and the geometry of space merged
Chapter 12 vectors and the geometry of space merged
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate system
 
1 rectangular coordinate system x
1 rectangular coordinate system x1 rectangular coordinate system x
1 rectangular coordinate system x
 
planes and distances
planes and distancesplanes and distances
planes and distances
 
6869212.ppt
6869212.ppt6869212.ppt
6869212.ppt
 
parabola class 12
parabola class 12parabola class 12
parabola class 12
 
54 the rectangular coordinate system
54 the rectangular coordinate system54 the rectangular coordinate system
54 the rectangular coordinate system
 
Polar co
Polar coPolar co
Polar co
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i x
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)
 
D4 trigonometrypdf
D4 trigonometrypdfD4 trigonometrypdf
D4 trigonometrypdf
 

Recently uploaded

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Recently uploaded (20)

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

10. polar coordinates x

  • 2. Polar Coordinates The location of a point P in the plane may be given by the following two numbers: P x y (r, ) O
  • 3. Polar Coordinates r = the distance between P and the origin O(0, 0) The location of a point P in the plane may be given by the following two numbers: P x (r, ) r O y
  • 4. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, The location of a point P in the plane may be given by the following two numbers: P x (r, )  r O y
  • 5. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: P x (r, )  r O y
  • 6. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r O y
  • 7. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r The ordered pairs (r,  ±2nπ ) with n = 0,1, 2, 3… give the same geometric information hence lead to the same location P(r, ). O y
  • 8. Polar Coordinates r = the distance between P and the origin O(0, 0)  = a signed angle between the positive x–axis and the direction to P, specifically,  is + for counter clockwise measurements and  is – for clockwise measurements. The location of a point P in the plane may be given by the following two numbers: The ordered pair (r, ) is a polar coordinate of P. P x (r, )  r The ordered pairs (r,  ±2nπ ) with n = 0,1, 2, 3… give the same geometric information hence lead to the same location P(r, ). We also use signed distance, so with negative values of r, we are to step backward for a distance of l r l. O y
  • 9. Polar Coordinates If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair.
  • 10. Polar Coordinates Conversion Rules If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair.
  • 11. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O The rectangular and polar coordinates relations x = y = r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 12. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() The rectangular and polar coordinates relations x = r*cos() y = r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 13. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() The rectangular and polar coordinates relations x = r*cos() y = r*sin() y = r*sin() r = If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 14. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() y = r*sin() The rectangular and polar coordinates relations x = r*cos() y = r*sin() r = √ x2 + y2 If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 15. Polar Coordinates Conversion Rules Let (x, y)R and (r, )P be the rectangular and polar coordinates of the same point P, then P x y  r O x = r*cos() y = r*sin() The rectangular and polar coordinates relations x = r*cos() y = r*sin() r = √ x2 + y2 For  we have that tan() = y/x, cos() = x/√x2 + y2 or if  is between 0 and π, then  = cos–1 (x/√x2 + y2). If needed, we write (a, b)P for a polar coordinate ordered pair, and (a, b)R for the rectangular coordinate ordered pair. (r, )p ↔ (x, y)R
  • 16. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates.
  • 17. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y x = r*cos() y = r*sin() r2 = x2 + y2 tan() = y/x For A(4, 60o)P
  • 18. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 x = r*cos() y = r*sin() A(4, 60o)P r2 = x2 + y2 tan() = y/x For A(4, 60o)P
  • 19. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P
  • 20. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23) r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P
  • 21. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), r2 = x2 + y2 tan() = y/x x y 60o 4 A(4, 60o)P B(5, 0)P (x, y)R = (4*cos(60⁰), 4*sin(60⁰), = (2, 23)
  • 22. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o C (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 23. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 24. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 25. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 26. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 27. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) = (22, –22) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 28. Polar Coordinates Example A. a. Plot the following polar coordinates A(4, 60o)P , B(5, 0o)P, C(4, –45o)P, D(–4, 3π/4 rad)P. Find their corresponding rectangular coordinates. x y 60o 4 For A(4, 60o)P x = r*cos() y = r*sin() for B(5, 0o)P, (x, y) = (5, 0), for C and D, (x, y)R = (4cos(–45⁰), 4sin(–45⁰)) = (–4cos(3π/4), –4sin(3π/4)) = (22, –22) A(4, 60o)P B(5, 0)P C(4, –45o)P = D(–4, 3π/4 rad)P 4 Converting rectangular positions into polar coordinates requires more care. r2 = x2 + y2 tan() = y/x –45o 3π/4 C&D (x, y)R = (4*cos(60⁰), 4*sin(60⁰)), = (2, 23)
  • 29. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R.
  • 30. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. x y E(–4, 3)
  • 31. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, x y E(–4, 3)
  • 32. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3) r=5
  • 33. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. There is no single formula that would give . We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3) r=5 
  • 34. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. would be easier to use to extract . x y E(–4, 3) r=5 
  • 35. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). x y E(–4, 3) r=5 There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function 
  • 36. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 37. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o so that E(–4, 3)R ≈ (5,143o)P There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 38. Polar Coordinates b. Find a polar coordinate then list all possible polar coordinates for each of the following points (with r > 0): E(–4, 3)R, F(3, –2)R, and G(–3, –1)R. We have the distance formula r = x2 + y2, hence for E, r = 16 + 9 = 5. x y E(–4, 3)  r=5 would be easier to use to extract . Since E is in the 2nd quadrant, the angle  may be recovered by the cosine inverse function (why?). So  = cos–1(–4/5) ≈ 143o so that E(–4, 3)R ≈ (5,143o)P = (5,143o±n*360o)P There is no single formula that would give . This is because  has to be expressed via the inverse trig–functions hence the position of E dictates which inverse function
  • 39. Polar Coordinates For F(3, –2)R, x y F(3, –2,)
  • 40. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) r=√13
  • 41. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function.  r=√13
  • 42. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,) Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has the advantage of obtaining the answer directly from the x and y coordinates.  r=√13
  • 43. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad
  • 44. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 45. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. x y G(–3, –1) r=√10 the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 46. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. G is the 3rd quadrant. Hence  can’t be obtained directly via the inverse– trig functions. x y G(–3, –1) r=√10 the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 47. Polar Coordinates For F(3, –2)R, r = 9 + 4 = √13. x y F(3, –2,)  r=√13 Since F is in the 4th quadrant, the angle  may be recovered by the sine inverse or the tangent inverse function. The tangent inverse has = (√13, –0.588rad ± 2nπ)P For G(–3, –1)R, r = 9 + 1 = √10. G is the 3rd quadrant. Hence  can’t be obtained directly via the inverse– trig functions. We will find the angle A as shown first, then  = A + 180⁰. x y G(–3, –1) r=√10 A the advantage of obtaining the answer directly from the x and y coordinates. So  = tan–1(–2/3) ≈ –0.588rad and that F(3, –2)R ≈ (√13, –0.588rad)P
  • 48. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o x y G(–3, –1) r=√10 A
  • 49. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o so  = 180 + 18.3o = 198.3o x y G(–3, –1) r=√10 A 
  • 50. Polar Coordinates Again, using tangent inverse A = tan–1(1/3) ≈ 18.3o so  = 180 + 18.3o = 198.3o or G ≈ (√10, 198.3o ± n x 360o)P x y G(–3, –1) r=√10 A 