Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Benefits of satellite altimetry for transboundary basins S. Biancamaria  1,2 , F. Hossain  3 , D. P. Lettenmaier  4 , N. P...
Transboundary basins <ul><li>256 river basins are shared among 2 or more countries (Wolf et al., 1999) = 45% land surfaces...
Outline <ul><li>Forecasting Brahmaputra/Ganges water elevations using satellite altimetry </li></ul><ul><li>Monitoring Ind...
Brahmaputra and Ganges basins  <ul><li>Brahmaputra: drainage area=574,000km 2 ; population=30 Millions; unmanaged. </li></...
Issue <ul><li>90% of water flowing in Bangladesh comes from India . </li></ul><ul><li>No India/Bangladesh real time data s...
Data used: in-situ measurements 27 Jul 2011 IGARSS 2011 - session WE2.T10
Data used: satellite altimetry <ul><li>Topex/Poseidon (T/P) satellite altimeter. </li></ul><ul><li>Overlap with in-situ: J...
Methodology 1/2 <ul><li>Compute the cross-correlation between upstream T/P and in-situ measurements: </li></ul>27 Jul 2011...
Methodology 2/2 <ul><li>Compute scatter plot in-situ measurements & T/P measurements k days earlier. </li></ul><ul><li>Use...
Results on the Brahmaputra <ul><li>5-day lead time Forecasts:  </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 T/P vir...
Results on the Ganges 27 Jul 2011 IGARSS 2011 - session WE2.T10 <ul><li>10-day lead time forecast: </li></ul>T/P virtual s...
SWOT and the Brahmaputra/Ganges <ul><li>SWOT = Water mask + water elevation (and river slope) with 2 or more observations ...
Expected benefits from SWOT <ul><li>Higher precision on measurements -> better forecasts. </li></ul><ul><li>More observati...
Conclusion for Brahmaputra/Ganges <ul><li>Forecasting water elevation from nadir altimeters with lead time between 5 day a...
Outline <ul><li>Forecasting Brahmaputra/Ganges water elevations using satellite altimetry </li></ul><ul><li>Monitoring Ind...
SWOT and world lakes/reservoirs 27 Jul 2011 IGARSS 2011 - session WE2.T10 2  4  6  8  10 SWOT visits per repeat cycle 3 2....
Indus reservoirs 27 Jul 2011 IGARSS 2011 - session WE2.T10 <ul><li>Indus basin=1.14x10 6 km 2 , 53% to Pakistan, 34% to In...
SWOT and Indus reservoirs <ul><li>Reservoirs are seen between 2 to 3 times per 22 days </li></ul>27 Jul 2011 IGARSS 2011 -...
Baglihar dam  <ul><li>Baglihar dam: 450 MW Run-of-river type </li></ul><ul><ul><li>Pondage volume = 37.5 x 10 6  m 3 </li>...
Baglihar dam <ul><li>Reservoir in mountainous region = SWOT might be affected by  layover . </li></ul><ul><li>Layover =geo...
Kishenganga project <ul><li>330 MW hydro-power plant. </li></ul><ul><li>Layover  modeled by SARVisor for ALOS/PalSAR, 7° i...
Conclusion for Indus reservoirs <ul><li>Hydro-electric reservoirs are needed to respond to the growing demand on electrici...
Thank you for your attention 27 Jul 2011 IGARSS 2011 - session WE2.T10
Upcoming SlideShare
Loading in …5
×

Biancamaria_etal_IGARSS2011_22Jul2011.ppt

309 views

Published on

  • Be the first to comment

  • Be the first to like this

Biancamaria_etal_IGARSS2011_22Jul2011.ppt

  1. 1. Benefits of satellite altimetry for transboundary basins S. Biancamaria 1,2 , F. Hossain 3 , D. P. Lettenmaier 4 , N. Pourthié 2 and C. Lion 1,2 1 LEGOS, Toulouse, France 2 CNES, Toulouse, France 3 CEE, Tennessee Tech University, Cookeville, TN, USA 4 CEE, University of Washington, Seattle, WA, USA 27 Jul 2011 IGARSS 2011 - session WE2.T10
  2. 2. Transboundary basins <ul><li>256 river basins are shared among 2 or more countries (Wolf et al., 1999) = 45% land surfaces </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  3. 3. Outline <ul><li>Forecasting Brahmaputra/Ganges water elevations using satellite altimetry </li></ul><ul><li>Monitoring Indus reservoirs with SWOT </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  4. 4. Brahmaputra and Ganges basins <ul><li>Brahmaputra: drainage area=574,000km 2 ; population=30 Millions; unmanaged. </li></ul><ul><li>Ganges: drainage area=1,065,000km 2 ; population=500 Millions; 34 dams/diversions. </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 Bangladesh
  5. 5. Issue <ul><li>90% of water flowing in Bangladesh comes from India . </li></ul><ul><li>No India/Bangladesh real time data sharing . </li></ul><ul><li>Using in-situ measurements at its border -> forecast in Bangladesh only with 2 or 3 days lead time. </li></ul><ul><li>Study purpose: Use satellite-based water elevation upstream in India to forecast water elevation at the gauge locations (India/Bangladesh border). </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  6. 6. Data used: in-situ measurements 27 Jul 2011 IGARSS 2011 - session WE2.T10
  7. 7. Data used: satellite altimetry <ul><li>Topex/Poseidon (T/P) satellite altimeter. </li></ul><ul><li>Overlap with in-situ: January 2000/August 2002. </li></ul><ul><li>Data downloaded from HYDROWEB: http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/ </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 242_1 166_1 014_1 116_2 T/P Virtual station Distance from gage Mean time between obs. 242_1 550 km 14 days 166_1 250 km 16 days Mean time between obs. Distance from gage T/P Virtual station 12 days 1560 km 116_2 22 days 530 km 014_1
  8. 8. Methodology 1/2 <ul><li>Compute the cross-correlation between upstream T/P and in-situ measurements: </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 Water level Correlation Time Lead time 0 0 0.6 with k=lead time k 0.8 k Upstream: h alti (t) Downstream; h insitu (t)
  9. 9. Methodology 2/2 <ul><li>Compute scatter plot in-situ measurements & T/P measurements k days earlier. </li></ul><ul><li>Use linear fit to forecast water level at gauge location from T/P measurements. </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 h in-situ (t) 0 h alti (t-k) Linear fit of h insitu (t)=f[h alti (t-k)] Water level 0 Time h insitu (downstream) k day lead time forecast
  10. 10. Results on the Brahmaputra <ul><li>5-day lead time Forecasts: </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 T/P virtual station 250 km upstream: T/P virtual station 550 km upstream: 5-day forecast RMSE ~ 0.5 m 5-day forecast RMSE ~ 0.5 m Brahmaputra water elevation 5 4 3 2 1 0 -1 -2 -3 2000 2001 2002 Water elevation (m) Brahmaputra water elevation 5 4 3 2 1 0 -1 -2 -3 2000 2001 2002 Water elevation (m) In-situ T/P forecast Legend:
  11. 11. Results on the Ganges 27 Jul 2011 IGARSS 2011 - session WE2.T10 <ul><li>10-day lead time forecast: </li></ul>T/P virtual station 530 km upstream: 5-day forecast RMSE ~ 0.6 m Ganges water elevation 6 4 2 0 -2 -4 2001 2001.4 2001.8 Water elevation (m) 10-day forecast RMSE ~ 0.9 m Ganges water elevation 6 4 2 0 -2 -4 2001 2001.4 2001.8 Water elevation (m) T/P virtual station 1560 km upstream: <ul><li>5-day lead time forecast: </li></ul>In-situ T/P forecast Legend:
  12. 12. SWOT and the Brahmaputra/Ganges <ul><li>SWOT = Water mask + water elevation (and river slope) with 2 or more observations per 22 days </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  13. 13. Expected benefits from SWOT <ul><li>Higher precision on measurements -> better forecasts. </li></ul><ul><li>More observations on the basin -> better time sampling. </li></ul><ul><li>Water extent will improve inundation forecast: </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 Brahmaputra water elevation 5 4 3 2 1 0 -1 -2 -3 2000 2001 2002 Water elevation (m) Brahmaputra water elevation Discharge (10 4 m 3 .S -1 ) 7 6 5 4 3 2 1 0 2000 2001 2002
  14. 14. Conclusion for Brahmaputra/Ganges <ul><li>Forecasting water elevation from nadir altimeters with lead time between 5 day and 10 day. </li></ul><ul><li>Expected improvement from SWOT due to water elev. + extent, better accuracy, global observation. </li></ul><ul><li>Fore more details: Biancamaria et al., GRL, 38, L11401, “Forecasting transboundary river water elevations from space” (June 2011). </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  15. 15. Outline <ul><li>Forecasting Brahmaputra/Ganges water elevations using satellite altimetry </li></ul><ul><li>Monitoring Indus reservoirs with SWOT </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  16. 16. SWOT and world lakes/reservoirs 27 Jul 2011 IGARSS 2011 - session WE2.T10 2 4 6 8 10 SWOT visits per repeat cycle 3 2.5 2 1.5 1 0.5 0 Surface area seen (10 6 km 2 )
  17. 17. Indus reservoirs 27 Jul 2011 IGARSS 2011 - session WE2.T10 <ul><li>Indus basin=1.14x10 6 km 2 , 53% to Pakistan, 34% to India. </li></ul><ul><li>2008 filling of Baglihar reservoir by India. </li></ul><ul><li>2009 construction of Kishenganga dam. </li></ul>-> Lack of information = difficulties in downstream water management
  18. 18. SWOT and Indus reservoirs <ul><li>Reservoirs are seen between 2 to 3 times per 22 days </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  19. 19. Baglihar dam <ul><li>Baglihar dam: 450 MW Run-of-river type </li></ul><ul><ul><li>Pondage volume = 37.5 x 10 6 m 3 </li></ul></ul><ul><ul><li>Full pondage level – dead storage level = 5 m </li></ul></ul><ul><ul><li>-> Pondage area > 1 km 2 </li></ul></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 5 m 37.5x10 6 m 3 <ul><li>SWOT requirements on lakes and reservoirs = 10 cm error on 1 km 2 area. </li></ul><ul><li>-> SWOT should be able to observe Baglihar dam </li></ul>
  20. 20. Baglihar dam <ul><li>Reservoir in mountainous region = SWOT might be affected by layover . </li></ul><ul><li>Layover =geometric distortion when radar beam reaches top of a tall feature before it reaches the base. </li></ul><ul><li>Layover modeled by SARVisor for ALOS/PalSAR, 7° incidence angle (yellow= layover ): </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 Baglihar Baglihar Ascending track: Descending track:
  21. 21. Kishenganga project <ul><li>330 MW hydro-power plant. </li></ul><ul><li>Layover modeled by SARVisor for ALOS/PalSAR, 7° incidence angle (yellow= layover ): </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10 Kishenganga Ascending track: Descending track: Kishenganga
  22. 22. Conclusion for Indus reservoirs <ul><li>Hydro-electric reservoirs are needed to respond to the growing demand on electricity. </li></ul><ul><li>Water management for downstream country is more difficult. </li></ul><ul><li>Huge potential of SWOT to provide reservoir water volume changes </li></ul><ul><li>Ongoing study to characterize layover on SWOT data and better quantifying SWOT accuracy and time sampling. </li></ul>27 Jul 2011 IGARSS 2011 - session WE2.T10
  23. 23. Thank you for your attention 27 Jul 2011 IGARSS 2011 - session WE2.T10

×