SlideShare a Scribd company logo
1 of 7
Download to read offline
DNA hydrogel microspheres and their potential applications for protein delivery and
live cell monitoring
Taeyoung Kim, Seongmin Park, Minhyuk Lee, Solhee Baek, Jong Bum Lee, and Nokyoung Park
,
Citation: Biomicrofluidics 10, 034112 (2016); doi: 10.1063/1.4953046
View online: http://dx.doi.org/10.1063/1.4953046
View Table of Contents: http://aip.scitation.org/toc/bmf/10/3
Published by the American Institute of Physics
Articles you may be interested in
Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration
Biomicrofluidics 4, 043014 (2010); 10.1063/1.3516037
The effect of DNA on mechanical properties of nanofiber hydrogels
Applied Physics Letters 93, 171903 (2008); 10.1063/1.3009204
DNA hydrogel microspheres and their potential
applications for protein delivery and live cell monitoring
Taeyoung Kim,1
Seongmin Park,1
Minhyuk Lee,1
Solhee Baek,1
Jong Bum Lee,2
and Nokyoung Park1,a)
1
Department of Chemistry, Myongji University, 116 Myongji-Ro, Cheoin-Gu, Yongin,
Gyeonggi-Do 449-728, South Korea
2
Department of Chemical Engineering, University of Seoul, Seoul 130-743, South Korea
(Received 25 March 2016; accepted 18 May 2016; published online 26 May 2016)
Microfluidic devices have been extensively developed as methods for microscale
materials fabrication. It has also been adopted for polymeric microsphere
fabrication and in situ drug encapsulation. Here, we employed multi-inlet microflui-
dic channels for DNA hydrogel microsphere formation and in situ protein encapsu-
lation. The release of encapsulated proteins from DNA hydrogels showed different
profiles accordingly with the size of microspheres. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953046]
INTRODUCTION
Materials with the ability to entrap and subsequently release functional protein drugs have
been widely studied and led to new treatments for a number of diseases.1
Many synthetic poly-
mers have been used to achieve long-term and controlled protein drug release.2–5
Recently,
DNA hydrogels which are made entirely from DNA building blocks (X-, Y-, and T-DNA) have
been developed.6,7
These DNA hydrogels were biocompatible, biodegradable, and inexpensive
to fabricate. In addition, the efficient and ligase-mediated gelation process of DNA hydrogels
provided several advantages over other bio-inspired polymers: (1) the gelling processes are
achieved under physiological conditions and (2) drugs can be encapsulated in situ the gelation
process eliminating the drug loading step. Based on these remarkable properties, it has been
demonstrated that these DNA hydrogels can be used for in-situ protein drug encapsulation with
high efficiency, and controlled insulin release up to 12 days from a bulk DNA hydrogel.
Furthermore, DNA hydrogels showed the capability to entrap live cells and maintain the cell vi-
ability. Based on the results of the demonstrations, DNA hydrogels can be considered as prom-
ising scaffold materials which have great potential to be used for a protein drug delivery and a
cell monitoring system. However, bulk gel has several limitations as (1) low accumulative
release profile (lower than 60% of loaded proteins), (2) difficulty of injecting the gel for in vivo
delivery, and precise drug release due to the large and irregular size of the hydrogels, and (3) it
is not feasible to provide a confined environment for a single cell. To overcome these con-
straints of the bulk scale approach and improve the applicability of the DNA hydrogels, it is
very important to develop methods which can produce an appropriate format of the hydrogel
for various bio-applications.
Microfluidic devices have been extensively studied as methods for microscale materials
fabrication. Especially, droplet generating devices had been employed to produce various types
of natural hydrogel microdroplets which were successfully applied for drug deliveries and cell
encapsulations.8–12
However, most of the microdroplet generations had been limited on protein-
or polysaccharide-based hydrogel, and DNA hydrogels have not been studied in spite of their
superior properties which were described above. Here, we report a method for fabrication of
DNA hydrogel microspheres using a droplet generating microfluidic device to provide an
a)
Author to whom correspondence should be addressed. Electronic mail: pospnk@mju.ac.kr
1932-1058/2016/10(3)/034112/6/$30.00 Published by AIP Publishing.10, 034112-1
BIOMICROFLUIDICS 10, 034112 (2016)
appropriate microscale format of DNA hydrogels and their applications for efficient protein
release and single cell monitoring.
MATERIALS AND METHODS
Microfludic device fabrication
The microchannel was made by general microfabrication technique. In brief, this started
from creating a channel pattern with computer-aided design software followed by transferring
this pattern to a photomask using a pattern generator. The photomask was then used to make
a SU-8 pattern on a silicon wafer. The UV exposure through the photomask and developing
process left SU-8 pattern on the silicon wafer. This pattern was then imprinted onto PDMS
through the crosslinking of liquid PDMS monomer. The channel pattern imprinted PDMS
block was holed at the end of each channel for outer tubing connection. The PDMS block
was cleaned by ultra sound sonication in ethanol and was bonded on to a PDMS coated glass
slide resulting a microfluidic device. The width and depth of flow channels were 150 lm and
20 lm, respectively.
DNA hydrogel microsphere formation
The X-DNA building blocks were synthesized following the methods described in the pre-
vious reports.6,13,14
The X-DNA in nuclease free water and T4 DNA ligase in 2Â ligase buffer
solution was introduced through inlet 1 and 2 separately by using syringe pump at the same
flow rate. The mineral oil was introduced through inlet 3. The flow rate of each phase was con-
trolled by syringe pumps. The X-DNA and the T4 ligase concentration in the droplet were
150 lM and 0.1 unit/ll, respectively. The collected droplets were stored at room temperature
for overnight for complete gelation.
Bovine serum albumin (BSA) encapsulation and release monitoring
BSA solution was prepared by dissolving BSA in nuclease free water and then mixed with
DNA ligase solution to have the final concentration of 23 mg/ml in DNA micro-hydrogel. The
collected micro-hydrogels were centrifuged down, and the oil was removed remaining minimum
amount of oil. The protein release studies were conducted by suspending 30 ll of the collected
micro-hydrogel of each size in 100 ll of 1Â PBS buffer (pH 7.4). The micro-hydrogel volumes
were estimated from the flow rates of aqueous phase and collecting time periods, for example,
the collecting for 10 min with flow rate of 0.1 ll per min gave 1 ll of hydrogel. The protein
loaded hydrogel samples collected in 1Â PBS buffer were shaken at 70 revolutions per minute
at room temperature. For every 24 h, the samples were centrifuged at 1500 rpm for 5 min to sep-
arate the hydrogels from the solution and 100 ll of the supernatant was removed. The samples
were well mixed by short vortexing and returned to shaking incubation after addition of 100 ll
of 1Â PBS blank solution. The removed supernatant solutions were used for measuring the
released BSA amount using colorimetric Bradford assay by calibration with standards.
Cell encapsulation
HL-60 cells were stained with CellTrackerTM
Red CMTPX (Invitrogen) and suspended in
OPTi-MEM I media. The cell solution was mixed with DNA ligase solution to have the final
concentration of 2570 cells/ll in DNA micro-hydrogel. The X-DNA was stained with SYBR I
to enhance the image contrast with encapsulated cells. The cells encapsulated in the micro-
hydrogels were stored in 37 
C incubator between the microscopic imaging processes.
RESULTS AND DISCUSSION
Since the introduction of microfluidics based droplet formation method,15
it has been vastly
employed to fabricate microspheres of diverse materials due to its ability to generate uniform-
sized droplets and to control the sizes of microspheres. This method has been used to assemble
034112-2 Kim et al. Biomicrofluidics 10, 034112 (2016)
small colloidal particles into photonic balls16
and has also been used as a platform technology
to monitor protein crystallization in a nanoliter droplet.17
In addition, protein drug release from
monodisperse microspheres has been studied extensively due to their reproducibly controlled
release behavior and the accessibility of alternative routes of administration including oral, pul-
monary, subcutaneous, and intramuscular pathways.18–21
In this study, a microfluidic device as
shown in Figure 1(a), composing of three inlets (two aqueous phase and one oil phase), a flow
channel, and an outlet has been used to generate uniform size of aqueous microdroplets func-
tioning as a DNA ligation microreactor to crosslink X-DNA into hydrogel. Syringe pumps were
used to introduce the liquid components into the inlet channels and to control the flow rates of
each phase. As shown in Figure 1(a), the X-DNA and the DNA ligase were injected separately
through inlets 1 and 2 to prevent an early gelation which prohibits formation of uniform micro-
droplets, merging in a short mixing channel prior to the junction. The mixture containing
X-DNA and DNA ligase was then sheared at the junction by an oil flow injected through inlet
3 generating microdroplets (Figure 1(b)) kept the droplets in the oil phase.
The sizes of micro-hydrogel droplets (20–90 lm in diameter) were controlled by altering
the ratio of flow rates between aqueous phase and oil phase (Figures 2(a) and 2(b)), and the
collected hydrogel microspheres had reasonably uniform size according to the measuring from
the microscopic images. For example, the size of micro-hydrogel produced at the flow rate ratio
of 0.12 (aqueous/oil) was measured to 21.9 6 2.6 lm (Figures 2(c) and 2(d)). To confirm the
gelation of X-DNA in a microdroplet which has approximately 4 pl volume, microdroplets col-
lected in oil phase (Figure 2(c)) were transferred to aqueous phase by repeated steps of centrifu-
gation, removal of oil supernatant, and suspension of the droplets into nuclease free water.
After transferring into water, the DNA micro-hydrogel was stained with SYBR I, which is a
double stranded DNA-specific green fluorescent dye and observed under a microscope. The
defined green fluorescence spheres confirmed the formation of DNA micro-hydrogels with uni-
form sizes of 20.5 6 3.2 lm (Figures 2(c) (inset) and 2(d)) and also successful enzymatic liga-
tion in pl scale microdroplets.
To investigate the potential of the DNA hydrogel microsphere as a protein drug carrier, the
controlled release of bovine serum albumin (BSA) from different size of DNA hydrogel micro-
spheres was monitored. BSA was encapsulated in micro-hydrogel by introducing a BSA and
DNA ligase mixture from a single channel (inlet 2) separately from X-DNA channel (inlet 1).
In this study, two different sizes (23.3 and 32.1 lm in diameter) of BSA encapsulating micro-
hydrogel were used for a protein release profiling. The BSA release from DNA hydrogel micro-
spheres was monitored for 14 days as shown in Figure 3. The entrapped BSA was linearly
released without bursting and the release from the DNA micro-hydrogel was size dependent.
These release profiles were well correlated with previous report studied with bulk DNA
FIG. 1. (a) A schematic drawing of microchannels. (b) A micro-scopic image of channels and droplets being generated.
034112-3 Kim et al. Biomicrofluidics 10, 034112 (2016)
hydrogels presenting that DNA hydrogel is biodegradable and the encapsulated proteins were
released from DNA hydrogel by the degradation.6
The BSA release from 23.3 and 32.1 lm
hydrogel reached saturation point in 5 and 7 days, respectively, and the reason of the difference
could be explained as the time needed for hydrogel degradation which is necessary for BSA
FIG. 2. (a) DNA hydrogel droplets generation at different flow rates of inlet 1, 2, and 3 (flow rates are normalized to that of
inlet 3). (b) Droplet sizes at the different ratios of aqueous and oil phase flow rates (open diamond: oil flow fixed and aque-
ous flow rates are varied, closed circle: aqueous flow fixed and oil flow rates are varied. aqueous phase rates are calculated
by combining flow rates of inlet 1 and inlet 2). (c) DNA hydrogel droplets collected at the ratio of 0.12 in oil phase (inset:
transferred DNA hydrogel microspheres to water and stained with SYBR I). (d) Size distributions of DNA hydrogels (black
bars: in oil phase, gray bars: after transferred to aqueous phase).
FIG. 3. BSA release profiles from two different sizes of DNA hydrogel microspheres. Open diamond and closed square
indicate 23.3 and 32.1 lm of hydrogel microsphere diameter, respectively.
034112-4 Kim et al. Biomicrofluidics 10, 034112 (2016)
release is longer for the larger microsphere than smaller one. The accumulative quantity of
released proteins was close to 100% of that of loaded proteins for both of the droplet sizes.
These results show that the DNA micro-hydrogel demonstrated the ability of controlled release
for proteins.
To explore more applications of DNA micro-hydrogel, we studied its ability to encapsulate
a live single cell. Although single cell behavior in a microenvironment has been studied exten-
sively by encapsulating individual cell into a droplet,22,23
most of the researches had been per-
formed in solution phase droplets which are not easy to replicate the extracellular matrix envi-
ronment which is very dense. In this study, we have employed DNA micro-hydrogel which
provides interconnected and very dense environment to develop a high-throughput single cell
monitoring system. The physiological conditions of DNA gelation process allowed premixing
the cells with gel precursor and kept the cells alive through the entire process of micro-
hydrogel formation. Live cells were encapsulated into the hydrogel microsphere using the simi-
lar process of the protein encapsulation. Leukaemia (HL-60) cells suspended in a cell media
were mixed with ligase solution and were introduced through one inlet to be mixed with X-
DNA building blocks prior to the junction (Figures 4(a)–4(c)). The cells entrapped in the gener-
ated droplets were encapsulated into DNA micro-hydrogel by the ligation process. A cell dye
which emits red fluorescence only in live cells was used to confirm the cell survival within the
DNA micro-hydrogel. As shown in Figure 4(d), the cells in DNA micro-hydrogel emitted red
fluorescence suggesting the cell viability in the DNA micro-hydrogel. According to a cell sur-
vival assay in a DNA hydrogel, the HL-60 cells did survive for 7 days without exchanging
media. With the ability of encapsulating the individual live cell in a micro-hydrogel and keep-
ing them alive for several days, this method has a potential to be a platform technology for a
single cell monitoring system under physiological condition.
CONCLUSIONS
In summary, we present a new method to produce DNA micro-hydrogel and its applica-
tions for protein delivery and single cell encapsulation. The micro-hydrogels have been fabri-
cated using microfluidic droplet generation and enzyme catalyzed ligation. The size of micro-
hydrogel could be altered to have different controlled protein release profiles. Furthermore, it
FIG. 4. (a) Fluorescence image of the microchannel junction where DNA and cell solutions, stained with green and red flu-
orescent dyes, respectively, merged. (b) and (c) Images of a single cell encapsulating into a DNA hydrogel microdroplet.
(d) Fluorescence image of cells encapsulated within DNA hydrogel microspheres.
034112-5 Kim et al. Biomicrofluidics 10, 034112 (2016)
has also been used to encapsulate individual live cell and monitor it for several days in a
micro-hydrogel. Since each micro-hydrogel volume is extremely small (pl scale), the cost of
monitoring will be much cheaper than conventional systems using microtiter plate. More impor-
tantly, because the cells were encapsulated within a hydrogel which may provide extracellular
matrix mimic environment, it will be possible to monitor cell’s behavior more similar to in-
vivo situation. This DNA micro-hydrogel should open a new way of a high-throughput single
cell monitoring system, providing unique hydrogel microenvironment as well as a protein con-
trolled release system.
ACKNOWLEDGMENTS
This work was supported by 2015 Research Fund of Myongji University.
1
K. Fu, A. M. Klibanov, and R. Langer, Nat. Biotechnol. 18, 24 (2000).
2
R. Langer and J. Folkman, Nature 263, 797 (1976).
3
R. Langer, Science 249, 1527 (1990).
4
O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S.
Jones, and S. D. Putney, Nat. Med. 2, 795 (1996).
5
G. Z. Zhu, S. R. Mallery, and S. P. Schwendeman, Nat. Biotechnol. 18, 52 (2000).
6
S. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, and D. Luo, Nat. Mater. 5, 797 (2006).
7
N. Park, S. H. Um, H. Funabashi, J. F. Xu, and D. Luo, Nat. Mater. 8, 432 (2009).
8
M. Lian, C. P. Collier, M. J. Doktycz, and S. T. Retterer, Biomicrofluidics 6, 044108 (2012).
9
J. Wan, Polymers 4, 1084–1108 (2012).
10
S. Sugaya, M. Yamada, A. Hori, and M. Seki, Biomicrofluidics 7, 054120 (2013).
11
L. Yu, S. M. Grist, S. S. Nasseri, E. Cheng, Y.-C. E. Hwang, C. Ni, and K. C. Cheung, Biomicrofluidics 9, 024118
(2015).
12
C. Martino, T. Y. Lee, S.-H. Kim, and A. J. deMello, Biomicrofluidics 9, 024101 (2015).
13
Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. Mceuen, and D. Luo, Nat. Mater. 3, 38 (2004).
14
S. H. Um, J. B. Lee, S. Y. Kwon, Y. Li, and D. Luo, Nat. Protoc. 1, 995 (2006).
15
T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
16
G. R. Yi, S. J. Jeon, T. Thorsen, V. N. Manoharan, S. R. Quake, D. J. Pine, and S. M. Yang, Synth. Met. 139, 803 (2003).
17
B. Zheng, J. D. Tice, L. S. Roach, and R. F. Ismagilov, Angew. Chem., Int. Ed. 43, 2508 (2004).
18
C. Berkland, K. K. Kim, and D. W. Pack, J. Controlled Release 73, 59 (2001).
19
N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, J. Am. Chem. Soc. 124, 12398 (2002).
20
L. Y. Wang, G. H. Ma, and Z. G. Su, J. Controlled Release 106, 62 (2005).
21
H. G. Zhu and M. J. McShane, Chem. Commun. 2006, 153.
22
J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Koster,
H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, Chem. Biol. 15, 875 (2008).
23
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N.
Perrimon, and M. L. Samuels, Proc. Natl. Acad. Sci. U.S.A. 106, 14195 (2009).
034112-6 Kim et al. Biomicrofluidics 10, 034112 (2016)

More Related Content

What's hot

Emans et al 1995 relatime HC
Emans et al 1995 relatime HCEmans et al 1995 relatime HC
Emans et al 1995 relatime HCNeil Emans, Ph.D
 
Analysis of myc antibody specificity
Analysis of myc antibody specificityAnalysis of myc antibody specificity
Analysis of myc antibody specificityCameron McInnes
 
Development and evaluation of long circulating nanoparticles loaded with betu...
Development and evaluation of long circulating nanoparticles loaded with betu...Development and evaluation of long circulating nanoparticles loaded with betu...
Development and evaluation of long circulating nanoparticles loaded with betu...Debanjan Chatterjee
 
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...as747
 
IndianaCTSI_Seed2010_Jessany Maldonado
IndianaCTSI_Seed2010_Jessany MaldonadoIndianaCTSI_Seed2010_Jessany Maldonado
IndianaCTSI_Seed2010_Jessany MaldonadoJessany Maldonado
 
Biolostic transformation of a procaryote, bacillus megaterium
Biolostic transformation of a procaryote, bacillus megateriumBiolostic transformation of a procaryote, bacillus megaterium
Biolostic transformation of a procaryote, bacillus megateriumCAS0609
 
Decellularized Plants as Tissue Engineering Scaffolds
Decellularized Plants as Tissue Engineering ScaffoldsDecellularized Plants as Tissue Engineering Scaffolds
Decellularized Plants as Tissue Engineering ScaffoldsZamrun Mehatri
 
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell LineGeneration of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Linemdmitc
 
Universal and rapid salt extraction of high quality genomic dna for pcr-based...
Universal and rapid salt extraction of high quality genomic dna for pcr-based...Universal and rapid salt extraction of high quality genomic dna for pcr-based...
Universal and rapid salt extraction of high quality genomic dna for pcr-based...CAS0609
 
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...Federal University of Bahia
 
Personalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertensionPersonalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertensionSusanta Kumar Rout
 

What's hot (20)

Emans et al 1995 relatime HC
Emans et al 1995 relatime HCEmans et al 1995 relatime HC
Emans et al 1995 relatime HC
 
Analysis of myc antibody specificity
Analysis of myc antibody specificityAnalysis of myc antibody specificity
Analysis of myc antibody specificity
 
Development and evaluation of long circulating nanoparticles loaded with betu...
Development and evaluation of long circulating nanoparticles loaded with betu...Development and evaluation of long circulating nanoparticles loaded with betu...
Development and evaluation of long circulating nanoparticles loaded with betu...
 
mdch lab poster bonita3
mdch lab poster  bonita3mdch lab poster  bonita3
mdch lab poster bonita3
 
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...
Differentiation & Activity Of Human Pre-Osteoclasts On Chitosan-Ashish Sh...
 
IndianaCTSI_Seed2010_Jessany Maldonado
IndianaCTSI_Seed2010_Jessany MaldonadoIndianaCTSI_Seed2010_Jessany Maldonado
IndianaCTSI_Seed2010_Jessany Maldonado
 
ApoB Sequencing
ApoB SequencingApoB Sequencing
ApoB Sequencing
 
Biolostic transformation of a procaryote, bacillus megaterium
Biolostic transformation of a procaryote, bacillus megateriumBiolostic transformation of a procaryote, bacillus megaterium
Biolostic transformation of a procaryote, bacillus megaterium
 
Crossing kingdoms-Using decellularized plants as perfusable tissue-
Crossing kingdoms-Using decellularized plants as perfusable tissue-Crossing kingdoms-Using decellularized plants as perfusable tissue-
Crossing kingdoms-Using decellularized plants as perfusable tissue-
 
Decellularized Plants as Tissue Engineering Scaffolds
Decellularized Plants as Tissue Engineering ScaffoldsDecellularized Plants as Tissue Engineering Scaffolds
Decellularized Plants as Tissue Engineering Scaffolds
 
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell LineGeneration of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
Generation of MRP2 Efflux Transporter Knock-Out in HepaRG Cell Line
 
Apogossypolone
ApogossypoloneApogossypolone
Apogossypolone
 
Zeng2014
Zeng2014Zeng2014
Zeng2014
 
Universal and rapid salt extraction of high quality genomic dna for pcr-based...
Universal and rapid salt extraction of high quality genomic dna for pcr-based...Universal and rapid salt extraction of high quality genomic dna for pcr-based...
Universal and rapid salt extraction of high quality genomic dna for pcr-based...
 
GaryWarnesWHD2010
GaryWarnesWHD2010GaryWarnesWHD2010
GaryWarnesWHD2010
 
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...
Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and ...
 
Exp 4 Lab Report
Exp 4 Lab ReportExp 4 Lab Report
Exp 4 Lab Report
 
IJBM2014
IJBM2014IJBM2014
IJBM2014
 
Personalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertensionPersonalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertension
 
Recombination mcq
Recombination mcqRecombination mcq
Recombination mcq
 

Similar to Dna hydrogel microspheres and their potential applications for protein delivery and

Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito Methods
Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito MethodsKen-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito Methods
Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito MethodsKen Lee
 
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...inventionjournals
 
Kariuki practical report
Kariuki  practical reportKariuki  practical report
Kariuki practical reportSamuel Kariuki
 
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...journal ijrtem
 
Report on molecular biology techniques
Report on molecular biology techniquesReport on molecular biology techniques
Report on molecular biology techniquesraghavworah
 
Overcoming challenges of host cell DNA removal in vaccine manufacturing
Overcoming challenges of host cell DNA removal in vaccine manufacturingOvercoming challenges of host cell DNA removal in vaccine manufacturing
Overcoming challenges of host cell DNA removal in vaccine manufacturingDr. Priyabrata Pattnaik
 
Isolation of plant genomic DNA
Isolation of plant genomic DNAIsolation of plant genomic DNA
Isolation of plant genomic DNAShivram Khadke
 
Nanoparticles ishita slideshare
Nanoparticles ishita slideshareNanoparticles ishita slideshare
Nanoparticles ishita slideshareIshita Bajpai
 
Nature - 454 Sequencing
Nature - 454 SequencingNature - 454 Sequencing
Nature - 454 SequencingMichael Weiner
 
Automated DNA purification from diverse Microbiome samples using dedicated Mi...
Automated DNA purification from diverse Microbiome samples using dedicated Mi...Automated DNA purification from diverse Microbiome samples using dedicated Mi...
Automated DNA purification from diverse Microbiome samples using dedicated Mi...QIAGEN
 
Direct Immobilization In Poly(Dimethylsiloxane)
Direct Immobilization In Poly(Dimethylsiloxane)Direct Immobilization In Poly(Dimethylsiloxane)
Direct Immobilization In Poly(Dimethylsiloxane)christophemarquette
 
Legionellen Lund Universität
Legionellen Lund UniversitätLegionellen Lund Universität
Legionellen Lund UniversitätRoland Ritter
 

Similar to Dna hydrogel microspheres and their potential applications for protein delivery and (20)

Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito Methods
Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito MethodsKen-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito Methods
Ken-Wing Lee, Dan Bogenhagen - Scalable isolation of mammalian mito Methods
 
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...
Production of Amphiphilic Surfactant Molecule From Saccharomyces Cerevisiae M...
 
Kariuki practical report
Kariuki  practical reportKariuki  practical report
Kariuki practical report
 
cell Viability princes
cell Viability  princescell Viability  princes
cell Viability princes
 
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...
DNA Barcoding of Stone Fish Uranoscopus Oligolepis: Intra Species Delineation...
 
Report on molecular biology techniques
Report on molecular biology techniquesReport on molecular biology techniques
Report on molecular biology techniques
 
Overcoming challenges of host cell DNA removal in vaccine manufacturing
Overcoming challenges of host cell DNA removal in vaccine manufacturingOvercoming challenges of host cell DNA removal in vaccine manufacturing
Overcoming challenges of host cell DNA removal in vaccine manufacturing
 
Evaluation of microencapsulation
Evaluation of microencapsulationEvaluation of microencapsulation
Evaluation of microencapsulation
 
Isolation of plant genomic DNA
Isolation of plant genomic DNAIsolation of plant genomic DNA
Isolation of plant genomic DNA
 
Detection of Biofilm
Detection of BiofilmDetection of Biofilm
Detection of Biofilm
 
FINAL
FINAL FINAL
FINAL
 
Nanoparticles ishita slideshare
Nanoparticles ishita slideshareNanoparticles ishita slideshare
Nanoparticles ishita slideshare
 
Nature - 454 Sequencing
Nature - 454 SequencingNature - 454 Sequencing
Nature - 454 Sequencing
 
Automated DNA purification from diverse Microbiome samples using dedicated Mi...
Automated DNA purification from diverse Microbiome samples using dedicated Mi...Automated DNA purification from diverse Microbiome samples using dedicated Mi...
Automated DNA purification from diverse Microbiome samples using dedicated Mi...
 
Autophagy Is Involved in the Apoptosis of Human Retinal Pigment Epithelial Ce...
Autophagy Is Involved in the Apoptosis of Human Retinal Pigment Epithelial Ce...Autophagy Is Involved in the Apoptosis of Human Retinal Pigment Epithelial Ce...
Autophagy Is Involved in the Apoptosis of Human Retinal Pigment Epithelial Ce...
 
Targeted dds
Targeted ddsTargeted dds
Targeted dds
 
Direct Immobilization In Poly(Dimethylsiloxane)
Direct Immobilization In Poly(Dimethylsiloxane)Direct Immobilization In Poly(Dimethylsiloxane)
Direct Immobilization In Poly(Dimethylsiloxane)
 
Legionellen Lund Universität
Legionellen Lund UniversitätLegionellen Lund Universität
Legionellen Lund Universität
 
published
publishedpublished
published
 
Amiji poster
Amiji posterAmiji poster
Amiji poster
 

Recently uploaded

Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 

Recently uploaded (20)

Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 

Dna hydrogel microspheres and their potential applications for protein delivery and

  • 1. DNA hydrogel microspheres and their potential applications for protein delivery and live cell monitoring Taeyoung Kim, Seongmin Park, Minhyuk Lee, Solhee Baek, Jong Bum Lee, and Nokyoung Park , Citation: Biomicrofluidics 10, 034112 (2016); doi: 10.1063/1.4953046 View online: http://dx.doi.org/10.1063/1.4953046 View Table of Contents: http://aip.scitation.org/toc/bmf/10/3 Published by the American Institute of Physics Articles you may be interested in Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration Biomicrofluidics 4, 043014 (2010); 10.1063/1.3516037 The effect of DNA on mechanical properties of nanofiber hydrogels Applied Physics Letters 93, 171903 (2008); 10.1063/1.3009204
  • 2. DNA hydrogel microspheres and their potential applications for protein delivery and live cell monitoring Taeyoung Kim,1 Seongmin Park,1 Minhyuk Lee,1 Solhee Baek,1 Jong Bum Lee,2 and Nokyoung Park1,a) 1 Department of Chemistry, Myongji University, 116 Myongji-Ro, Cheoin-Gu, Yongin, Gyeonggi-Do 449-728, South Korea 2 Department of Chemical Engineering, University of Seoul, Seoul 130-743, South Korea (Received 25 March 2016; accepted 18 May 2016; published online 26 May 2016) Microfluidic devices have been extensively developed as methods for microscale materials fabrication. It has also been adopted for polymeric microsphere fabrication and in situ drug encapsulation. Here, we employed multi-inlet microflui- dic channels for DNA hydrogel microsphere formation and in situ protein encapsu- lation. The release of encapsulated proteins from DNA hydrogels showed different profiles accordingly with the size of microspheres. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953046] INTRODUCTION Materials with the ability to entrap and subsequently release functional protein drugs have been widely studied and led to new treatments for a number of diseases.1 Many synthetic poly- mers have been used to achieve long-term and controlled protein drug release.2–5 Recently, DNA hydrogels which are made entirely from DNA building blocks (X-, Y-, and T-DNA) have been developed.6,7 These DNA hydrogels were biocompatible, biodegradable, and inexpensive to fabricate. In addition, the efficient and ligase-mediated gelation process of DNA hydrogels provided several advantages over other bio-inspired polymers: (1) the gelling processes are achieved under physiological conditions and (2) drugs can be encapsulated in situ the gelation process eliminating the drug loading step. Based on these remarkable properties, it has been demonstrated that these DNA hydrogels can be used for in-situ protein drug encapsulation with high efficiency, and controlled insulin release up to 12 days from a bulk DNA hydrogel. Furthermore, DNA hydrogels showed the capability to entrap live cells and maintain the cell vi- ability. Based on the results of the demonstrations, DNA hydrogels can be considered as prom- ising scaffold materials which have great potential to be used for a protein drug delivery and a cell monitoring system. However, bulk gel has several limitations as (1) low accumulative release profile (lower than 60% of loaded proteins), (2) difficulty of injecting the gel for in vivo delivery, and precise drug release due to the large and irregular size of the hydrogels, and (3) it is not feasible to provide a confined environment for a single cell. To overcome these con- straints of the bulk scale approach and improve the applicability of the DNA hydrogels, it is very important to develop methods which can produce an appropriate format of the hydrogel for various bio-applications. Microfluidic devices have been extensively studied as methods for microscale materials fabrication. Especially, droplet generating devices had been employed to produce various types of natural hydrogel microdroplets which were successfully applied for drug deliveries and cell encapsulations.8–12 However, most of the microdroplet generations had been limited on protein- or polysaccharide-based hydrogel, and DNA hydrogels have not been studied in spite of their superior properties which were described above. Here, we report a method for fabrication of DNA hydrogel microspheres using a droplet generating microfluidic device to provide an a) Author to whom correspondence should be addressed. Electronic mail: pospnk@mju.ac.kr 1932-1058/2016/10(3)/034112/6/$30.00 Published by AIP Publishing.10, 034112-1 BIOMICROFLUIDICS 10, 034112 (2016)
  • 3. appropriate microscale format of DNA hydrogels and their applications for efficient protein release and single cell monitoring. MATERIALS AND METHODS Microfludic device fabrication The microchannel was made by general microfabrication technique. In brief, this started from creating a channel pattern with computer-aided design software followed by transferring this pattern to a photomask using a pattern generator. The photomask was then used to make a SU-8 pattern on a silicon wafer. The UV exposure through the photomask and developing process left SU-8 pattern on the silicon wafer. This pattern was then imprinted onto PDMS through the crosslinking of liquid PDMS monomer. The channel pattern imprinted PDMS block was holed at the end of each channel for outer tubing connection. The PDMS block was cleaned by ultra sound sonication in ethanol and was bonded on to a PDMS coated glass slide resulting a microfluidic device. The width and depth of flow channels were 150 lm and 20 lm, respectively. DNA hydrogel microsphere formation The X-DNA building blocks were synthesized following the methods described in the pre- vious reports.6,13,14 The X-DNA in nuclease free water and T4 DNA ligase in 2Â ligase buffer solution was introduced through inlet 1 and 2 separately by using syringe pump at the same flow rate. The mineral oil was introduced through inlet 3. The flow rate of each phase was con- trolled by syringe pumps. The X-DNA and the T4 ligase concentration in the droplet were 150 lM and 0.1 unit/ll, respectively. The collected droplets were stored at room temperature for overnight for complete gelation. Bovine serum albumin (BSA) encapsulation and release monitoring BSA solution was prepared by dissolving BSA in nuclease free water and then mixed with DNA ligase solution to have the final concentration of 23 mg/ml in DNA micro-hydrogel. The collected micro-hydrogels were centrifuged down, and the oil was removed remaining minimum amount of oil. The protein release studies were conducted by suspending 30 ll of the collected micro-hydrogel of each size in 100 ll of 1Â PBS buffer (pH 7.4). The micro-hydrogel volumes were estimated from the flow rates of aqueous phase and collecting time periods, for example, the collecting for 10 min with flow rate of 0.1 ll per min gave 1 ll of hydrogel. The protein loaded hydrogel samples collected in 1Â PBS buffer were shaken at 70 revolutions per minute at room temperature. For every 24 h, the samples were centrifuged at 1500 rpm for 5 min to sep- arate the hydrogels from the solution and 100 ll of the supernatant was removed. The samples were well mixed by short vortexing and returned to shaking incubation after addition of 100 ll of 1Â PBS blank solution. The removed supernatant solutions were used for measuring the released BSA amount using colorimetric Bradford assay by calibration with standards. Cell encapsulation HL-60 cells were stained with CellTrackerTM Red CMTPX (Invitrogen) and suspended in OPTi-MEM I media. The cell solution was mixed with DNA ligase solution to have the final concentration of 2570 cells/ll in DNA micro-hydrogel. The X-DNA was stained with SYBR I to enhance the image contrast with encapsulated cells. The cells encapsulated in the micro- hydrogels were stored in 37 C incubator between the microscopic imaging processes. RESULTS AND DISCUSSION Since the introduction of microfluidics based droplet formation method,15 it has been vastly employed to fabricate microspheres of diverse materials due to its ability to generate uniform- sized droplets and to control the sizes of microspheres. This method has been used to assemble 034112-2 Kim et al. Biomicrofluidics 10, 034112 (2016)
  • 4. small colloidal particles into photonic balls16 and has also been used as a platform technology to monitor protein crystallization in a nanoliter droplet.17 In addition, protein drug release from monodisperse microspheres has been studied extensively due to their reproducibly controlled release behavior and the accessibility of alternative routes of administration including oral, pul- monary, subcutaneous, and intramuscular pathways.18–21 In this study, a microfluidic device as shown in Figure 1(a), composing of three inlets (two aqueous phase and one oil phase), a flow channel, and an outlet has been used to generate uniform size of aqueous microdroplets func- tioning as a DNA ligation microreactor to crosslink X-DNA into hydrogel. Syringe pumps were used to introduce the liquid components into the inlet channels and to control the flow rates of each phase. As shown in Figure 1(a), the X-DNA and the DNA ligase were injected separately through inlets 1 and 2 to prevent an early gelation which prohibits formation of uniform micro- droplets, merging in a short mixing channel prior to the junction. The mixture containing X-DNA and DNA ligase was then sheared at the junction by an oil flow injected through inlet 3 generating microdroplets (Figure 1(b)) kept the droplets in the oil phase. The sizes of micro-hydrogel droplets (20–90 lm in diameter) were controlled by altering the ratio of flow rates between aqueous phase and oil phase (Figures 2(a) and 2(b)), and the collected hydrogel microspheres had reasonably uniform size according to the measuring from the microscopic images. For example, the size of micro-hydrogel produced at the flow rate ratio of 0.12 (aqueous/oil) was measured to 21.9 6 2.6 lm (Figures 2(c) and 2(d)). To confirm the gelation of X-DNA in a microdroplet which has approximately 4 pl volume, microdroplets col- lected in oil phase (Figure 2(c)) were transferred to aqueous phase by repeated steps of centrifu- gation, removal of oil supernatant, and suspension of the droplets into nuclease free water. After transferring into water, the DNA micro-hydrogel was stained with SYBR I, which is a double stranded DNA-specific green fluorescent dye and observed under a microscope. The defined green fluorescence spheres confirmed the formation of DNA micro-hydrogels with uni- form sizes of 20.5 6 3.2 lm (Figures 2(c) (inset) and 2(d)) and also successful enzymatic liga- tion in pl scale microdroplets. To investigate the potential of the DNA hydrogel microsphere as a protein drug carrier, the controlled release of bovine serum albumin (BSA) from different size of DNA hydrogel micro- spheres was monitored. BSA was encapsulated in micro-hydrogel by introducing a BSA and DNA ligase mixture from a single channel (inlet 2) separately from X-DNA channel (inlet 1). In this study, two different sizes (23.3 and 32.1 lm in diameter) of BSA encapsulating micro- hydrogel were used for a protein release profiling. The BSA release from DNA hydrogel micro- spheres was monitored for 14 days as shown in Figure 3. The entrapped BSA was linearly released without bursting and the release from the DNA micro-hydrogel was size dependent. These release profiles were well correlated with previous report studied with bulk DNA FIG. 1. (a) A schematic drawing of microchannels. (b) A micro-scopic image of channels and droplets being generated. 034112-3 Kim et al. Biomicrofluidics 10, 034112 (2016)
  • 5. hydrogels presenting that DNA hydrogel is biodegradable and the encapsulated proteins were released from DNA hydrogel by the degradation.6 The BSA release from 23.3 and 32.1 lm hydrogel reached saturation point in 5 and 7 days, respectively, and the reason of the difference could be explained as the time needed for hydrogel degradation which is necessary for BSA FIG. 2. (a) DNA hydrogel droplets generation at different flow rates of inlet 1, 2, and 3 (flow rates are normalized to that of inlet 3). (b) Droplet sizes at the different ratios of aqueous and oil phase flow rates (open diamond: oil flow fixed and aque- ous flow rates are varied, closed circle: aqueous flow fixed and oil flow rates are varied. aqueous phase rates are calculated by combining flow rates of inlet 1 and inlet 2). (c) DNA hydrogel droplets collected at the ratio of 0.12 in oil phase (inset: transferred DNA hydrogel microspheres to water and stained with SYBR I). (d) Size distributions of DNA hydrogels (black bars: in oil phase, gray bars: after transferred to aqueous phase). FIG. 3. BSA release profiles from two different sizes of DNA hydrogel microspheres. Open diamond and closed square indicate 23.3 and 32.1 lm of hydrogel microsphere diameter, respectively. 034112-4 Kim et al. Biomicrofluidics 10, 034112 (2016)
  • 6. release is longer for the larger microsphere than smaller one. The accumulative quantity of released proteins was close to 100% of that of loaded proteins for both of the droplet sizes. These results show that the DNA micro-hydrogel demonstrated the ability of controlled release for proteins. To explore more applications of DNA micro-hydrogel, we studied its ability to encapsulate a live single cell. Although single cell behavior in a microenvironment has been studied exten- sively by encapsulating individual cell into a droplet,22,23 most of the researches had been per- formed in solution phase droplets which are not easy to replicate the extracellular matrix envi- ronment which is very dense. In this study, we have employed DNA micro-hydrogel which provides interconnected and very dense environment to develop a high-throughput single cell monitoring system. The physiological conditions of DNA gelation process allowed premixing the cells with gel precursor and kept the cells alive through the entire process of micro- hydrogel formation. Live cells were encapsulated into the hydrogel microsphere using the simi- lar process of the protein encapsulation. Leukaemia (HL-60) cells suspended in a cell media were mixed with ligase solution and were introduced through one inlet to be mixed with X- DNA building blocks prior to the junction (Figures 4(a)–4(c)). The cells entrapped in the gener- ated droplets were encapsulated into DNA micro-hydrogel by the ligation process. A cell dye which emits red fluorescence only in live cells was used to confirm the cell survival within the DNA micro-hydrogel. As shown in Figure 4(d), the cells in DNA micro-hydrogel emitted red fluorescence suggesting the cell viability in the DNA micro-hydrogel. According to a cell sur- vival assay in a DNA hydrogel, the HL-60 cells did survive for 7 days without exchanging media. With the ability of encapsulating the individual live cell in a micro-hydrogel and keep- ing them alive for several days, this method has a potential to be a platform technology for a single cell monitoring system under physiological condition. CONCLUSIONS In summary, we present a new method to produce DNA micro-hydrogel and its applica- tions for protein delivery and single cell encapsulation. The micro-hydrogels have been fabri- cated using microfluidic droplet generation and enzyme catalyzed ligation. The size of micro- hydrogel could be altered to have different controlled protein release profiles. Furthermore, it FIG. 4. (a) Fluorescence image of the microchannel junction where DNA and cell solutions, stained with green and red flu- orescent dyes, respectively, merged. (b) and (c) Images of a single cell encapsulating into a DNA hydrogel microdroplet. (d) Fluorescence image of cells encapsulated within DNA hydrogel microspheres. 034112-5 Kim et al. Biomicrofluidics 10, 034112 (2016)
  • 7. has also been used to encapsulate individual live cell and monitor it for several days in a micro-hydrogel. Since each micro-hydrogel volume is extremely small (pl scale), the cost of monitoring will be much cheaper than conventional systems using microtiter plate. More impor- tantly, because the cells were encapsulated within a hydrogel which may provide extracellular matrix mimic environment, it will be possible to monitor cell’s behavior more similar to in- vivo situation. This DNA micro-hydrogel should open a new way of a high-throughput single cell monitoring system, providing unique hydrogel microenvironment as well as a protein con- trolled release system. ACKNOWLEDGMENTS This work was supported by 2015 Research Fund of Myongji University. 1 K. Fu, A. M. Klibanov, and R. Langer, Nat. Biotechnol. 18, 24 (2000). 2 R. Langer and J. Folkman, Nature 263, 797 (1976). 3 R. Langer, Science 249, 1527 (1990). 4 O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney, Nat. Med. 2, 795 (1996). 5 G. Z. Zhu, S. R. Mallery, and S. P. Schwendeman, Nat. Biotechnol. 18, 52 (2000). 6 S. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, and D. Luo, Nat. Mater. 5, 797 (2006). 7 N. Park, S. H. Um, H. Funabashi, J. F. Xu, and D. Luo, Nat. Mater. 8, 432 (2009). 8 M. Lian, C. P. Collier, M. J. Doktycz, and S. T. Retterer, Biomicrofluidics 6, 044108 (2012). 9 J. Wan, Polymers 4, 1084–1108 (2012). 10 S. Sugaya, M. Yamada, A. Hori, and M. Seki, Biomicrofluidics 7, 054120 (2013). 11 L. Yu, S. M. Grist, S. S. Nasseri, E. Cheng, Y.-C. E. Hwang, C. Ni, and K. C. Cheung, Biomicrofluidics 9, 024118 (2015). 12 C. Martino, T. Y. Lee, S.-H. Kim, and A. J. deMello, Biomicrofluidics 9, 024101 (2015). 13 Y. G. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L. Mceuen, and D. Luo, Nat. Mater. 3, 38 (2004). 14 S. H. Um, J. B. Lee, S. Y. Kwon, Y. Li, and D. Luo, Nat. Protoc. 1, 995 (2006). 15 T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001). 16 G. R. Yi, S. J. Jeon, T. Thorsen, V. N. Manoharan, S. R. Quake, D. J. Pine, and S. M. Yang, Synth. Met. 139, 803 (2003). 17 B. Zheng, J. D. Tice, L. S. Roach, and R. F. Ismagilov, Angew. Chem., Int. Ed. 43, 2508 (2004). 18 C. Berkland, K. K. Kim, and D. W. Pack, J. Controlled Release 73, 59 (2001). 19 N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, J. Am. Chem. Soc. 124, 12398 (2002). 20 L. Y. Wang, G. H. Ma, and Z. G. Su, J. Controlled Release 106, 62 (2005). 21 H. G. Zhu and M. J. McShane, Chem. Commun. 2006, 153. 22 J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Koster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, Chem. Biol. 15, 875 (2008). 23 E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, Proc. Natl. Acad. Sci. U.S.A. 106, 14195 (2009). 034112-6 Kim et al. Biomicrofluidics 10, 034112 (2016)