SlideShare a Scribd company logo
1 of 14
拉普拉斯变换的引入 — — 线性定常微分方程
求解




  微分方程求解方法:粉色路径解法 优于 蓝色路径
            解法

    ( 解代数方程 显然比 解微分方程 容易 )
复习拉普拉斯变换有关内容 ( 1 )
1 复数有关概
念 1 )复数、复函数
(
       复数        s = σ + jω
       复函数 F ( s ) = Fx ( s ) + jF y ( s )
   例 1 F ( s ) = s + 2 = σ + 2 + jω
( 2 )模、相
角
      模   F ( s ) = Fx2 + F y2
                            Fy
       相角 ∠F ( s ) = arctan
                            Fx
( 3 )复数的共 F ( s ) = Fx − jF y
轭
( 4 )解析 若 F(s) 在 s 点的各阶导数都存在,则 F(s) 在 s 点解
        析。
复习拉普拉斯变换有关内容 ( 2 )
2 拉氏变换的定
义 L[ f ( t )] = F ( s ) = ∞ f ( t ) ⋅ e − st dt                        F ( s) 像
                         ∫                0
                                                                       
                                                                        f ( t ) 原像
3 常见函数的拉氏变换
                               1 t ≥ 0
( 1 )阶跃函 f ( t ) = 
数                              0 t < 0
                   ∞
     L[ 1( t ) ] = ∫ 1 ⋅ e dt =
                          − st  − 1 − st ∞ − 1
                                 s
                                   e 0 =
                                            s
                                              [ ]
                                               ( 0 − 1) = 1
                                                          s
                   0

( 2 )指数函                f ( t ) = e − at
数                   ∞                           ∞
                                                    −( s+ a ) t
      L[ f ( t )] = ∫ e   − at
                                 ⋅ e dt = ∫ e
                                   − st
                                                                  dt
                    0                           0
                   −1    − (s + a)t ∞  −1            1
                =     e            =      (0−1) =
                  s+a             0 s + a         s+a
复习拉普拉斯变换有关内容 ( 3 )
                             0      t<0
( 3 )正弦函              f(t) = 
数                            sin ωt t ≥ 0
               ∞                          ∞

   L[ f(t)] = ∫ sin ω t ⋅ e   − st
                                     dt = ∫
                                            1 jω t
                                            2j
                                                      [          ]
                                               e − e − jωt ⋅ e − st dt
               0                          0
               ∞

           =∫
                   2j
                      e[
                   1 -(s-jω)t
                              − e − (s + jω)t dt  ]
               0


             1  − 1 − (s − jω)t              ∞       − 1 − (s + jω)t ∞ 
           =     s − jω e                        −        e
             2j                                    s + jω            0 
                                              0
                                                                        

               1  1           1  1      2 jω      ω
           =               −         =  ⋅ 2     = 2
               2 j  s − jω s + jω  2 j s + ω 2 s + ω 2
                                  
复习拉普拉斯变换有关内容 ( 4 )
4 拉氏变换的几个重要定
理
( 1 )线性性 L[ a f 1(t) ± b f 2(t)] = a F1(s) ± b F2(s)
质
( 2 )微分定                L[ f ′( t ) ] = s ⋅ F ( s ) − f ( 0 )
理                   ∞                             ∞                                  ∞

     证明: = ∫ f ′( t ) ⋅ e dt = ∫ e df ( t ) = e f ( t )
       左                 − st     − st         -st
                                                                   [           ] − ∫ f ( t ) de
                                                                                ∞
                                                                                0
                                                                                                  − st

                    0                             0                                  0

                                        ∞
                  = [ 0 -f ( 0 ) ] + s ∫ f ( t ) e − st dt = sF ( s ) − f ( 0 ) = 右
                                        0

     [ f ( ) ( t ) ] = s F ( s) − s
         n              n             n- 1
                                             f ( 0 ) − s n- 2 f ′( 0 ) −  − sf ( n- 2 ) ( 0 ) − f ( n−1) ( 0 )

                               [
     0 初条件下有:L f ( n ) ( t ) = s n F ( s )    ]
复习拉普拉斯变换有关内容 ( 5 )

          [
例 2 求L δ ( t )   ]=?
解   δ ( t ) = 1′( t )
.                                     1
    L[ δ( t ) ] = L[ 1′( t ) ]   = s ⋅ − 1 ( 0− ) = 1 − 0 = 1
                                      s

           [
例 3 求L cos(ω          t )] = ?
                1
解   cos ω t = [ sin′ ω t ]
.               ω
                  1               1        ω       s
    L[ cos ω t ] = L[ sin′ ω t ] = ⋅ s ⋅ 2     = 2
                  ω               ω     s +ω 2
                                                s +ω2
复习拉普拉斯变换有关内容 ( 6 )
( 3 )积分定                   [        1
                                        ]       1
                   L ∫ f ( t ) dt = ⋅ F ( s ) + f ( -1 ) ( 0)
                                    s           s
理
    零初始条件下                          [         1
                                                ]
                             L ∫ f ( t ) dt = ⋅ F ( s )
                                              s
    有:
    进一步有:
                        
                              1             1                1                        1
    L ∫∫∫ f ( t ) dt n  = n F ( s ) + n f ( −1 ) ( 0 ) + n −1 f ( − 2 ) ( 0 ) +  + f ( − n ) ( 0 )
                        s               s               s                          s
      n个                
    例 4 求 L[t]=?            t = ∫ 1( t )dt

    解                     [             ]
                                    1 1 1
        L[ t ] = L ∫ 1( t ) dt = ⋅ + t t =0 = 2
                                     s s s
                                                  1
                                                  s
    .
               t2            t2
    例 5 求 L  = ?                = ∫ t dt
               2             2
             [        ]        [
    解 L t 2 2 = L t dt = ⋅ 2 + ⋅
    .
                      ∫
                                    1 1 1 t2
                                     s s
                                            ]       1
                                                  = 3
                                           s 2 t =0 s
复习拉普拉斯变换有关内容 ( 7 )
( 4 )实位移定        L[ f ( t − τ 0 )] = e − τ 0 ⋅ s ⋅ F ( s )
理                ∞
       左
    证明: =
             ∫ 0
                      f ( t − τ 0 ) ⋅ e − t ⋅ s dt
              令       t −τ0 = τ
                 ∞                                                     ∞
          =∫                                                          ∫τ
                                                             −τ 0 s
                       f (τ ) ⋅ e   − s (τ +τ 0 )
                                                    dτ = e                     f (τ ) ⋅ e −τ s dτ = 右
               −τ 0                                                   −    0


                 0 t < 0
                 
   例   f ( t ) = 1 0 < t < a , 求F(s)
   6             0 t > a
                 
   解   f ( t ) = 1( t ) − 1( t − a )
                                             1   −as 1 1 − e −as
   .
       L[ f ( t )] = L[1( t ) − 1( t − a )] = − e ⋅ =
                                             s       s    s
复习拉普拉斯变换有关内容 ( 8 )
( 5 )复位移定                  [                   ]
                         L e A⋅t f ( t ) = F ( s − A)
理                    ∞                                        ∞

                 ∫                                  dt = ∫0 f ( t ) ⋅ e
                                                                        − ( s − A )⋅ t
    证明:左 =
                                             −t⋅s
                         e f (t ) ⋅ e
                          At
                                                                                       dt
                 0
                       
                 令 s−A=s
                     ∞                              
            = ∫ f (t ) ⋅ e         − s ⋅t
                                             dt = F (s ) = F ( s − A) = 右
                     0
                                 1
   例   Le[ ]at
                           [
               = L 1( t ) ⋅ e   =  at
                                         ] =
                                              1
                                  s s → s−a s − a
                                    
   7                                                s+3
   例    [
       L e ⋅ cos 5t =  2
          - 3t
                               ]s
                              s + 5 s →s+3
                                    2
                                       
                                             =
                                                ( s + 3) 2 + 5 2
   8
                           π 
   例   Le − 2 t cos ( 5t − ) = Le − 2 t cos 5(t − π ) 
                                                                    
                           3                                15  
   9                                                             
            - 15 s                       π
                  π
                          s               − ( s+ 2)        s+2
        = e                      = e 15          ⋅
                     s 2 + 52  s → s+ 2
                                                     ( s + 2) 2 + 52
复习拉普拉斯变换有关内容 ( 9 )
( 6 )初值定理 lim          f ( t ) = lim s ⋅ F ( s )
           t →0                      s→∞

                                ∞   df ( t ) − s t
   证明:由微分定理                 ∫
                            0        dt
                                            ⋅ e dt = s ⋅ F ( s ) − f (0)

                 df ( t ) − s t
                         ⋅ e dt = lim[ s ⋅ F ( s ) − f (0)]
               ∞
         lim ∫
         s→∞ 0    dt                     s→∞

               ∞ df ( t )
         左= ∫              ⋅ lim e − s t dt = 0 ⇒ lim[ s ⋅ F ( s ) − f (0 + )] = 0
               0+   dt       s→∞                      s→∞


         f (0 + ) = lim f ( t ) = lim s ⋅ F ( s )
                    t →0                s→∞


            f (t) = t                                                      1
    例
                       1              f (0) = lim s ⋅ F ( s ) = lim s ⋅      2
                                                                               =0
    10      F ( s) =
                                               s→∞               s→∞       s
                       s2
复习拉普拉斯变换有关内容 ( 10 )
( 7 )终值定理 lim        f ( t ) = lim s ⋅ F ( s )       (终值确实存在
          t →∞                    s→0
                                                     时)
                             ∞   df ( t ) − s t
   证明:由微分定理              ∫0       dt
                                         ⋅ e dt = s ⋅ F ( s ) − f (0)
                df ( t ) − s t
                         ⋅ e dt = lim[ s ⋅ F ( s ) − f (0)]
              ∞
        lim ∫
        s→0 0     dt                 s→0

               ∞ df ( t )                  ∞                 t
        左=∫               ⋅ lim e dt = ∫0 df (t ) = lim ∫0 df ( t )
                                 −st
                                                        t →∞
              0    dt s → 0
           = lim[ f ( t ) − f (0)] = 右 = lim[ s ⋅ F ( s ) − f (0)]
                                                 s→0
              t →∞
                         1                                          1             1
   例    F ( s) =                             f ( ∞ ) = lim s                   =
   11            s( s + a )( s + b)                    s→0  s( s + a )( s + b ) ab
                    ω                                                            ω
   例    F ( s) = 2                           f ( ∞ ) = sin ωt t →∞ ≠ lim s 2 2 = 0
   12           s + ω2                                                s→0     s +ω
复习拉普拉斯变换有关内容 ( 11 )
用拉氏变换方法解微分方
程
系统微分方程
          y′′( t ) + a1 ⋅ y′( t ) + a 2 ⋅ y( t ) = 1( t )
          y ( 0 ) = y ′( 0 ) = 0
                                         1
L变        ( s + a1 s + a 2 ) ⋅ Y ( s ) =
              2

换                                        s
                            1
          Y ( s) =
                   s( s 2 + a1 s + a 2 )

L 变换
 -1  y ( t ) = L−1 [Y ( s )]
小结
                              ∞
1 拉氏变换的定
义
            F ( s) =      ∫
                          0
                                  f ( t ) ⋅ e − ts dt
2 常见函数 L 变换 f (t )                    F (s )
  (   1 )单位脉    δ (t )                  1
  冲
  (   2 )单位阶    1( t )                  1s
  跃                                          2
  (   3 )单位斜     t                     1s
  坡                                       3
  (   4 )单位加速   t2 2                   1s
  度
  (   5 )指数函     e − at            1 (s + a)
  数
  (   6 )正弦函    sin ω t           ω (s2 + ω 2 )
  数
  (   7 )余弦函    cos ω t           s (s2 + ω 2 )
  数
小结
3 L 变换重要定
理
 (   1 )线性性    L[ a f 1(t) ± b f 2(t)] = a F1(s) ± b F2(s)
 质
 (   2 )微分定    L[ f ′( t ) ] = s ⋅ F ( s ) − f ( 0)
 理
 (   3 )积分定     [           ]  1           1
               L ∫ f ( t ) dt = ⋅ F ( s ) + f ( -1 ) ( 0 )
                               s           s
 理
 (   4 )实位移定   L [ f ( t − τ )] = e − τs⋅ ⋅ F ( s )
                 [              ]
 理
 (   5 )复位移定   L e A⋅t f ( t ) = F ( s − A)
 理
 (   6 )初值定    lim f ( t ) = lim s ⋅ F ( s )
               t →0                 s→∞
 理
 (   7 )终值定    lim f ( t ) = lim s ⋅ F ( s )
               t →∞                 s→0
 理

More Related Content

What's hot

13 master configuration deviation list a-320
13   master configuration deviation list a-32013   master configuration deviation list a-320
13 master configuration deviation list a-320Francisco Buenrostro
 
Chapter 04 Safety and Aircraft Hazards
Chapter 04 Safety and Aircraft Hazards Chapter 04 Safety and Aircraft Hazards
Chapter 04 Safety and Aircraft Hazards Training1PFD
 
Helicopter components
Helicopter componentsHelicopter components
Helicopter componentsabarget
 
The Chimera Grid Concept and Application
The Chimera Grid Concept and Application The Chimera Grid Concept and Application
The Chimera Grid Concept and Application Putika Ashfar Khoiri
 
Conceptual Design of Blended Wing Body Cargo Aircraft
Conceptual Design of Blended Wing Body Cargo AircraftConceptual Design of Blended Wing Body Cargo Aircraft
Conceptual Design of Blended Wing Body Cargo AircraftTechWorksLab Private Limited
 
Aircraft inspection and_repair
Aircraft inspection and_repairAircraft inspection and_repair
Aircraft inspection and_repairAgustin Limachi
 
Helikopter - bölüm 04 - helikopter sistemleri - emre akar
Helikopter - bölüm 04 - helikopter sistemleri -  emre akarHelikopter - bölüm 04 - helikopter sistemleri -  emre akar
Helikopter - bölüm 04 - helikopter sistemleri - emre akarİstanbul Arel Üniversitesi
 
Angle of attack | Flight Mechanics | GATE Aerospace
Angle of attack | Flight Mechanics | GATE AerospaceAngle of attack | Flight Mechanics | GATE Aerospace
Angle of attack | Flight Mechanics | GATE AerospaceAge of Aerospace
 
Solid Shank Rivet Codes
Solid Shank Rivet CodesSolid Shank Rivet Codes
Solid Shank Rivet Codesaimeeharden
 
Design, Analysis and Testing of Wing Spar for Optimum Weight
Design, Analysis and Testing of Wing Spar for Optimum WeightDesign, Analysis and Testing of Wing Spar for Optimum Weight
Design, Analysis and Testing of Wing Spar for Optimum WeightRSIS International
 
Takeoff and Landing | Flight Mechanics | GATE Aerospace
Takeoff and Landing | Flight Mechanics | GATE AerospaceTakeoff and Landing | Flight Mechanics | GATE Aerospace
Takeoff and Landing | Flight Mechanics | GATE AerospaceAge of Aerospace
 
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...Brock Jester
 
Foo (flight operation officer)
Foo (flight operation officer)Foo (flight operation officer)
Foo (flight operation officer)Vedo Yudistira
 

What's hot (20)

SRM A320.pdf
SRM A320.pdfSRM A320.pdf
SRM A320.pdf
 
13 master configuration deviation list a-320
13   master configuration deviation list a-32013   master configuration deviation list a-320
13 master configuration deviation list a-320
 
Chapter 04 Safety and Aircraft Hazards
Chapter 04 Safety and Aircraft Hazards Chapter 04 Safety and Aircraft Hazards
Chapter 04 Safety and Aircraft Hazards
 
Helicopter components
Helicopter componentsHelicopter components
Helicopter components
 
The Chimera Grid Concept and Application
The Chimera Grid Concept and Application The Chimera Grid Concept and Application
The Chimera Grid Concept and Application
 
Conceptual Design of Blended Wing Body Cargo Aircraft
Conceptual Design of Blended Wing Body Cargo AircraftConceptual Design of Blended Wing Body Cargo Aircraft
Conceptual Design of Blended Wing Body Cargo Aircraft
 
Aircraft inspection and_repair
Aircraft inspection and_repairAircraft inspection and_repair
Aircraft inspection and_repair
 
Helikopter - bölüm 04 - helikopter sistemleri - emre akar
Helikopter - bölüm 04 - helikopter sistemleri -  emre akarHelikopter - bölüm 04 - helikopter sistemleri -  emre akar
Helikopter - bölüm 04 - helikopter sistemleri - emre akar
 
The engineer’s licensing guidance document ELGD 2007
The engineer’s licensing guidance document ELGD 2007The engineer’s licensing guidance document ELGD 2007
The engineer’s licensing guidance document ELGD 2007
 
Theory of flight final
Theory of flight finalTheory of flight final
Theory of flight final
 
Angle of attack | Flight Mechanics | GATE Aerospace
Angle of attack | Flight Mechanics | GATE AerospaceAngle of attack | Flight Mechanics | GATE Aerospace
Angle of attack | Flight Mechanics | GATE Aerospace
 
Solid Shank Rivet Codes
Solid Shank Rivet CodesSolid Shank Rivet Codes
Solid Shank Rivet Codes
 
Part145 Slides
Part145 SlidesPart145 Slides
Part145 Slides
 
Design, Analysis and Testing of Wing Spar for Optimum Weight
Design, Analysis and Testing of Wing Spar for Optimum WeightDesign, Analysis and Testing of Wing Spar for Optimum Weight
Design, Analysis and Testing of Wing Spar for Optimum Weight
 
Aviation tools_ munna
Aviation tools_ munnaAviation tools_ munna
Aviation tools_ munna
 
Takeoff and Landing | Flight Mechanics | GATE Aerospace
Takeoff and Landing | Flight Mechanics | GATE AerospaceTakeoff and Landing | Flight Mechanics | GATE Aerospace
Takeoff and Landing | Flight Mechanics | GATE Aerospace
 
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...
ACO- 11 Familiarization with Firefighter Duties Under the Airport Emergency P...
 
Foo (flight operation officer)
Foo (flight operation officer)Foo (flight operation officer)
Foo (flight operation officer)
 
Basics of Aerodynamics
Basics of AerodynamicsBasics of Aerodynamics
Basics of Aerodynamics
 
Basic aircraft structure
Basic aircraft structureBasic aircraft structure
Basic aircraft structure
 

Viewers also liked

Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo Tittonell
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo TittonellWorkshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo Tittonell
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo TittonellLotteKlapwijk
 
FARM-Africa: a New Model of Livestock Services Delivery
FARM-Africa: a New Model of Livestock Services Delivery FARM-Africa: a New Model of Livestock Services Delivery
FARM-Africa: a New Model of Livestock Services Delivery copppldsecretariat
 
Whole-farm models - some recent trends. Mike Robertson
Whole-farm models - some recent trends. Mike RobertsonWhole-farm models - some recent trends. Mike Robertson
Whole-farm models - some recent trends. Mike RobertsonJoanna Hicks
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting PersonalKirsty Hulse
 

Viewers also liked (7)

Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo Tittonell
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo TittonellWorkshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo Tittonell
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_Keynote Pablo Tittonell
 
Opio Global livestock enviro assess model GLEAM Nov 12 2014
Opio Global livestock enviro assess model GLEAM Nov 12 2014Opio Global livestock enviro assess model GLEAM Nov 12 2014
Opio Global livestock enviro assess model GLEAM Nov 12 2014
 
Seminário temp bov
Seminário temp bovSeminário temp bov
Seminário temp bov
 
FARM-Africa: a New Model of Livestock Services Delivery
FARM-Africa: a New Model of Livestock Services Delivery FARM-Africa: a New Model of Livestock Services Delivery
FARM-Africa: a New Model of Livestock Services Delivery
 
Whole-farm models - some recent trends. Mike Robertson
Whole-farm models - some recent trends. Mike RobertsonWhole-farm models - some recent trends. Mike Robertson
Whole-farm models - some recent trends. Mike Robertson
 
Predictive Modeling and Analytics select_chapters
Predictive Modeling and Analytics select_chaptersPredictive Modeling and Analytics select_chapters
Predictive Modeling and Analytics select_chapters
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 

Similar to 自动控制原理中的拉普拉斯变换

通信网第二三章习题答案
通信网第二三章习题答案通信网第二三章习题答案
通信网第二三章习题答案bupt
 
实验二 用Mathmatica软件求极限
实验二  用Mathmatica软件求极限实验二  用Mathmatica软件求极限
实验二 用Mathmatica软件求极限guestfe33f0e
 
实验二 用Mathmatica软件求极限
实验二  用Mathmatica软件求极限实验二  用Mathmatica软件求极限
实验二 用Mathmatica软件求极限Xin Zheng
 
3运动的守恒定律
3运动的守恒定律3运动的守恒定律
3运动的守恒定律vincent930218
 
Algorithms.exercises.solution
Algorithms.exercises.solutionAlgorithms.exercises.solution
Algorithms.exercises.solutionRegina Long
 
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptxyantingguo2008
 
2012力学相对论复习
2012力学相对论复习2012力学相对论复习
2012力学相对论复习xleog
 
第3章 离散系统的时域分析
第3章   离散系统的时域分析第3章   离散系统的时域分析
第3章 离散系统的时域分析reader520
 

Similar to 自动控制原理中的拉普拉斯变换 (14)

作业
作业作业
作业
 
6习题课 振动
6习题课 振动6习题课 振动
6习题课 振动
 
通信网第二三章习题答案
通信网第二三章习题答案通信网第二三章习题答案
通信网第二三章习题答案
 
实验二 用Mathmatica软件求极限
实验二  用Mathmatica软件求极限实验二  用Mathmatica软件求极限
实验二 用Mathmatica软件求极限
 
实验二 用Mathmatica软件求极限
实验二  用Mathmatica软件求极限实验二  用Mathmatica软件求极限
实验二 用Mathmatica软件求极限
 
Graduate report
Graduate reportGraduate report
Graduate report
 
3 1矩陣列運算
3 1矩陣列運算3 1矩陣列運算
3 1矩陣列運算
 
3运动的守恒定律
3运动的守恒定律3运动的守恒定律
3运动的守恒定律
 
Algorithms.exercises.solution
Algorithms.exercises.solutionAlgorithms.exercises.solution
Algorithms.exercises.solution
 
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx
福建省福州大学2019年暑假物理竞赛夏令营-物理奥赛进阶之路:0-1+微积分初步+40张ppt.pptx
 
電路學Chapter6-1
電路學Chapter6-1電路學Chapter6-1
電路學Chapter6-1
 
2012力学相对论复习
2012力学相对论复习2012力学相对论复习
2012力学相对论复习
 
第3章 离散系统的时域分析
第3章   离散系统的时域分析第3章   离散系统的时域分析
第3章 离散系统的时域分析
 
Part 6 2010
Part 6 2010Part 6 2010
Part 6 2010
 

自动控制原理中的拉普拉斯变换

  • 1. 拉普拉斯变换的引入 — — 线性定常微分方程 求解 微分方程求解方法:粉色路径解法 优于 蓝色路径 解法 ( 解代数方程 显然比 解微分方程 容易 )
  • 2. 复习拉普拉斯变换有关内容 ( 1 ) 1 复数有关概 念 1 )复数、复函数 ( 复数 s = σ + jω 复函数 F ( s ) = Fx ( s ) + jF y ( s ) 例 1 F ( s ) = s + 2 = σ + 2 + jω ( 2 )模、相 角 模 F ( s ) = Fx2 + F y2 Fy 相角 ∠F ( s ) = arctan Fx ( 3 )复数的共 F ( s ) = Fx − jF y 轭 ( 4 )解析 若 F(s) 在 s 点的各阶导数都存在,则 F(s) 在 s 点解 析。
  • 3. 复习拉普拉斯变换有关内容 ( 2 ) 2 拉氏变换的定 义 L[ f ( t )] = F ( s ) = ∞ f ( t ) ⋅ e − st dt F ( s) 像 ∫ 0   f ( t ) 原像 3 常见函数的拉氏变换 1 t ≥ 0 ( 1 )阶跃函 f ( t ) =  数 0 t < 0 ∞ L[ 1( t ) ] = ∫ 1 ⋅ e dt = − st − 1 − st ∞ − 1 s e 0 = s [ ] ( 0 − 1) = 1 s 0 ( 2 )指数函 f ( t ) = e − at 数 ∞ ∞ −( s+ a ) t L[ f ( t )] = ∫ e − at ⋅ e dt = ∫ e − st dt 0 0 −1 − (s + a)t ∞ −1 1 = e  = (0−1) = s+a  0 s + a s+a
  • 4. 复习拉普拉斯变换有关内容 ( 3 ) 0 t<0 ( 3 )正弦函 f(t) =  数 sin ωt t ≥ 0 ∞ ∞ L[ f(t)] = ∫ sin ω t ⋅ e − st dt = ∫ 1 jω t 2j [ ] e − e − jωt ⋅ e − st dt 0 0 ∞ =∫ 2j e[ 1 -(s-jω)t − e − (s + jω)t dt ] 0 1  − 1 − (s − jω)t ∞ − 1 − (s + jω)t ∞  =  s − jω e − e 2j  s + jω 0  0  1  1 1  1 2 jω ω = − = ⋅ 2 = 2 2 j  s − jω s + jω  2 j s + ω 2 s + ω 2  
  • 5. 复习拉普拉斯变换有关内容 ( 4 ) 4 拉氏变换的几个重要定 理 ( 1 )线性性 L[ a f 1(t) ± b f 2(t)] = a F1(s) ± b F2(s) 质 ( 2 )微分定 L[ f ′( t ) ] = s ⋅ F ( s ) − f ( 0 ) 理 ∞ ∞ ∞ 证明: = ∫ f ′( t ) ⋅ e dt = ∫ e df ( t ) = e f ( t ) 左 − st − st -st [ ] − ∫ f ( t ) de ∞ 0 − st 0 0 0 ∞ = [ 0 -f ( 0 ) ] + s ∫ f ( t ) e − st dt = sF ( s ) − f ( 0 ) = 右 0 [ f ( ) ( t ) ] = s F ( s) − s n n n- 1 f ( 0 ) − s n- 2 f ′( 0 ) −  − sf ( n- 2 ) ( 0 ) − f ( n−1) ( 0 ) [ 0 初条件下有:L f ( n ) ( t ) = s n F ( s ) ]
  • 6. 复习拉普拉斯变换有关内容 ( 5 ) [ 例 2 求L δ ( t ) ]=? 解 δ ( t ) = 1′( t ) . 1 L[ δ( t ) ] = L[ 1′( t ) ] = s ⋅ − 1 ( 0− ) = 1 − 0 = 1 s [ 例 3 求L cos(ω t )] = ? 1 解 cos ω t = [ sin′ ω t ] . ω 1 1 ω s L[ cos ω t ] = L[ sin′ ω t ] = ⋅ s ⋅ 2 = 2 ω ω s +ω 2 s +ω2
  • 7. 复习拉普拉斯变换有关内容 ( 6 ) ( 3 )积分定 [ 1 ] 1 L ∫ f ( t ) dt = ⋅ F ( s ) + f ( -1 ) ( 0) s s 理 零初始条件下 [ 1 ] L ∫ f ( t ) dt = ⋅ F ( s ) s 有: 进一步有:   1 1 1 1 L ∫∫∫ f ( t ) dt n  = n F ( s ) + n f ( −1 ) ( 0 ) + n −1 f ( − 2 ) ( 0 ) +  + f ( − n ) ( 0 )   s s s s  n个  例 4 求 L[t]=? t = ∫ 1( t )dt 解 [ ] 1 1 1 L[ t ] = L ∫ 1( t ) dt = ⋅ + t t =0 = 2 s s s 1 s . t2  t2 例 5 求 L  = ? = ∫ t dt 2 2 [ ] [ 解 L t 2 2 = L t dt = ⋅ 2 + ⋅ . ∫ 1 1 1 t2 s s ] 1 = 3 s 2 t =0 s
  • 8. 复习拉普拉斯变换有关内容 ( 7 ) ( 4 )实位移定 L[ f ( t − τ 0 )] = e − τ 0 ⋅ s ⋅ F ( s ) 理 ∞ 左 证明: = ∫ 0 f ( t − τ 0 ) ⋅ e − t ⋅ s dt 令 t −τ0 = τ ∞ ∞ =∫ ∫τ −τ 0 s f (τ ) ⋅ e − s (τ +τ 0 ) dτ = e f (τ ) ⋅ e −τ s dτ = 右 −τ 0 − 0 0 t < 0  例 f ( t ) = 1 0 < t < a , 求F(s) 6 0 t > a  解 f ( t ) = 1( t ) − 1( t − a ) 1 −as 1 1 − e −as . L[ f ( t )] = L[1( t ) − 1( t − a )] = − e ⋅ = s s s
  • 9. 复习拉普拉斯变换有关内容 ( 8 ) ( 5 )复位移定 [ ] L e A⋅t f ( t ) = F ( s − A) 理 ∞ ∞ ∫ dt = ∫0 f ( t ) ⋅ e − ( s − A )⋅ t 证明:左 = −t⋅s e f (t ) ⋅ e At dt 0  令 s−A=s ∞   = ∫ f (t ) ⋅ e − s ⋅t dt = F (s ) = F ( s − A) = 右 0 1 例 Le[ ]at [ = L 1( t ) ⋅ e = at ] = 1 s s → s−a s − a  7  s+3 例 [ L e ⋅ cos 5t =  2 - 3t ]s s + 5 s →s+3 2  = ( s + 3) 2 + 5 2 8  π  例 Le − 2 t cos ( 5t − ) = Le − 2 t cos 5(t − π )     3   15   9     - 15 s   π π s − ( s+ 2) s+2 = e   = e 15 ⋅  s 2 + 52  s → s+ 2  ( s + 2) 2 + 52
  • 10. 复习拉普拉斯变换有关内容 ( 9 ) ( 6 )初值定理 lim f ( t ) = lim s ⋅ F ( s ) t →0 s→∞ ∞ df ( t ) − s t 证明:由微分定理 ∫ 0 dt ⋅ e dt = s ⋅ F ( s ) − f (0) df ( t ) − s t ⋅ e dt = lim[ s ⋅ F ( s ) − f (0)] ∞ lim ∫ s→∞ 0 dt s→∞ ∞ df ( t ) 左= ∫ ⋅ lim e − s t dt = 0 ⇒ lim[ s ⋅ F ( s ) − f (0 + )] = 0 0+ dt s→∞ s→∞ f (0 + ) = lim f ( t ) = lim s ⋅ F ( s ) t →0 s→∞ f (t) = t 1 例 1 f (0) = lim s ⋅ F ( s ) = lim s ⋅ 2 =0 10 F ( s) = s→∞ s→∞ s s2
  • 11. 复习拉普拉斯变换有关内容 ( 10 ) ( 7 )终值定理 lim f ( t ) = lim s ⋅ F ( s ) (终值确实存在 t →∞ s→0 时) ∞ df ( t ) − s t 证明:由微分定理 ∫0 dt ⋅ e dt = s ⋅ F ( s ) − f (0) df ( t ) − s t ⋅ e dt = lim[ s ⋅ F ( s ) − f (0)] ∞ lim ∫ s→0 0 dt s→0 ∞ df ( t ) ∞ t 左=∫ ⋅ lim e dt = ∫0 df (t ) = lim ∫0 df ( t ) −st t →∞ 0 dt s → 0 = lim[ f ( t ) − f (0)] = 右 = lim[ s ⋅ F ( s ) − f (0)] s→0 t →∞ 1 1 1 例 F ( s) = f ( ∞ ) = lim s = 11 s( s + a )( s + b) s→0 s( s + a )( s + b ) ab ω ω 例 F ( s) = 2 f ( ∞ ) = sin ωt t →∞ ≠ lim s 2 2 = 0 12 s + ω2 s→0 s +ω
  • 12. 复习拉普拉斯变换有关内容 ( 11 ) 用拉氏变换方法解微分方 程 系统微分方程 y′′( t ) + a1 ⋅ y′( t ) + a 2 ⋅ y( t ) = 1( t ) y ( 0 ) = y ′( 0 ) = 0 1 L变 ( s + a1 s + a 2 ) ⋅ Y ( s ) = 2 换 s 1 Y ( s) = s( s 2 + a1 s + a 2 ) L 变换 -1 y ( t ) = L−1 [Y ( s )]
  • 13. 小结 ∞ 1 拉氏变换的定 义 F ( s) = ∫ 0 f ( t ) ⋅ e − ts dt 2 常见函数 L 变换 f (t ) F (s ) ( 1 )单位脉 δ (t ) 1 冲 ( 2 )单位阶 1( t ) 1s 跃 2 ( 3 )单位斜 t 1s 坡 3 ( 4 )单位加速 t2 2 1s 度 ( 5 )指数函 e − at 1 (s + a) 数 ( 6 )正弦函 sin ω t ω (s2 + ω 2 ) 数 ( 7 )余弦函 cos ω t s (s2 + ω 2 ) 数
  • 14. 小结 3 L 变换重要定 理 ( 1 )线性性 L[ a f 1(t) ± b f 2(t)] = a F1(s) ± b F2(s) 质 ( 2 )微分定 L[ f ′( t ) ] = s ⋅ F ( s ) − f ( 0) 理 ( 3 )积分定 [ ] 1 1 L ∫ f ( t ) dt = ⋅ F ( s ) + f ( -1 ) ( 0 ) s s 理 ( 4 )实位移定 L [ f ( t − τ )] = e − τs⋅ ⋅ F ( s ) [ ] 理 ( 5 )复位移定 L e A⋅t f ( t ) = F ( s − A) 理 ( 6 )初值定 lim f ( t ) = lim s ⋅ F ( s ) t →0 s→∞ 理 ( 7 )终值定 lim f ( t ) = lim s ⋅ F ( s ) t →∞ s→0 理