여러 샘플들을 참고하다 보니, tensorflow를 사용하지 않는 경우에는 직접 gradient를 계산하여 back propagation을 하도록 구현한 코드가 많다. 내가 직접 구현할 필요는 없더라도, 좀 더 명확하게 이해할 필요는 있을 것 같아서 cn231n note에서 제공하는 코드와 설명을 정리.
http://blog.naver.com/freepsw/220928184473
http://cs231n.github.io/neural-networks-case-study/ 참고
데이터를 작게 생성하여, 직접 코드와 생성된 데이터를 확인하면서 좀 더 직관적으로 이해하는 과정으로 정리하다보니, 코드보다 설명이 더 많다... 아직도 명확하지는 않지만 나름대로 정리는 되었다.