SlideShare a Scribd company logo
1 of 17
Download to read offline
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 1/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt*
Prof. M.A.M.M. van der Meijden
Dr Jose Luis Rueda
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 2/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• The power injections (Pi)
in a DC grid are controlled
by the converters.
• On a MTDC grid as
Supergrid, the power flow
into, or out of, each
converter can be
dynamically changed
without any
reconfiguration of the
HVDC grid.
• The objective of this
paper is to establish the
effects of grounding
configurations on steady-
state post-contingency
performance of multi-
Terminal HVDC System.
Created by Dr. F. Gonzalez-Longatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 3/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
Idc
U1
Idc
b. Metallic Returna. Ground Return Idc
c. Symmetric configuration
U2
+
- +
-
+
- +
-
U1 U2
U1 U2
Idc
a. Ground Return
Idc
2Idc
Idc
Idc
2Idc
b. Metallic Return
U1
+
-
+
-
+
-
+
-
U1
U2
U2
U1
+
-
+
-
U1
U2
U2
+
-
+
-
Idc
a. Ground Return
Idc
Idc
Idc
b. Metallic return
U1
+
-
+
- U1
+
-
+
-
+
-
+
-
+
-
+
-
U2
U2
U1
U1
U2
U2
Idc
+
- Udc
Monopole configurations
Homopolar configurations
Bipolar configurations
Back-to-Back configuration
@fglongatt
@fglongatt
@fglongatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 4/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
MTDC configuration:
series or parallel
MTDC parallel configuration:
radial or meshed
I1
I2
I3
I4
I1 + I2 + I3+ I4 = 0
U1
U2
U3
U4
U1 + U2 + U3 + U4 = 0
Idc
b. Series MTDCa. Parallel MTDC
+ -Udc
+
-
+-
+
-
+-
Idc
Idc
Idc
+ -Udc
I1
Udc
+
-
+
-
+
-
+
-
I3
I2 I4
Udc
Udc
Udc
Ixy
y
x
x
+
-Udc
+
-
+
-
+
-
Udc
I1 I3
I4+
-
Ux
I2
I4
b. Mesh configurationa. Radial configuration
@fglongatt
@fglongatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 5/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• System Configuration:
• A simple MTDC test system is used in this paper for demonstratives
purposes:3-terminal, ±200kVdc, VSC-HVDC.
• Network Model: DC cable between two nodes (e.g. i and j) are
represented using a single series resistor Rij. DC side of converter stations
are modelled by an ideal dependant voltage source and ideal ground is
represented as an ideal point where voltages is zero. All electrical
quantities are represented using per unit systems. The mathematic
modelling of some grounding configuration of MTDC systems are
presented here.
GSC1
N1
GSC2
N2
N3
WFC1
PWF1 = 0.80 p.u
WF1
AC1
AC2
R12=0.0.073
Test system:
Values of resistors Rij are shown in
p.u
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 6/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• Network Model:
Test system: Circuital representation
of monopole ideal ground return
2(+)
R12
R23
R13
1(+)
3(+)
U2
U1
U3
+
-
+
-
1(0)
2(0)
3(0)
+
-
( ) (0)
1 1 1
( ) (0)
2 2 2
( ) (0)
3 3 3
U U U
U U U
U U U



    
          
         
The converter voltage (Ui) can be expressed
in terms of the terminal potentials:
Ui
(+) represents electrical potential of the
transmission terminal and Ui
(0) is used to define
potential of the neutral terminal.
For this specific case, monopolar configuration
with ideal ground return, the voltage at the neutral
point (0) is connected to ideal ground where the
electric potential is assumed zero, U(0) = 0, as
consequence: U(0) = U.
( ) (0)
 U U U
@fglongatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 7/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
The current injected (Ii) is written into a matrix form using the conductance matrix (G) of
the DC grid can be used:
( )
1 11 12 13 1
( )
2 21 22 23 2
( )
3 31 32 33 3
I G G G U
I G G G U
I G G G U



    
         
         
( )
I GU I GU
where the DC current vector I = [I,1, I2, ...,Idc,ndc]T, U = [U1, U2, ...,Undc]T is the DC voltage
vector and G is also known as the DC nodal admittance matrix (Gij, i, j = 1, …ndc).
The current injections I are not known prior to the power flow solution for the DC network.
The vector P = [P1, P2, ...,Pndc]T, which refers to power flow into the DC grid via the DC
terminals, is given by
where the symbol  is entry-wise (point-to-point) matrix multiplication operator.
Equation is known as the power balance equation and it can be solved in order to obtain
the classical power flow solution of the MTDC system.
I = GU
 P = U GU
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 8/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
2(+)
R12
R23
R13
1(+)
3(+)
U2
U1
U3
+
-
+
-
Rgnd1
1(0)
2(0)
Rgnd2
Rgnd3
3(0)
+
-
Test system: Circuital representation
of monopole with real ground return
(Rgndi).
The potential of the neutral points (0) are calculated
based on the grounding resistors (Rgndi):
(0)
1 1 1
(0)
2 2 2
(0)
3 3 3
0 0
0 0
0 0
gnd
gnd
gnd
U R I
U R I
U R I
     
          
        
( )
1 1 1 1
( )
2 2 2 2
( )
3 3 3 3
0 0
0 0
0 0
gnd
gnd
gnd
U U R I
U U R I
U U R I



      
             
           
( ) (0)
1 1 1
( ) (0)
2 2 2
( ) (0)
3 3 3
U U U
U U U
U U U



    
          
         
(0)
 gndU R I
( )
  gndU U R I
@fglongatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 9/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
( )
1 1 1 1
( )
2 2 2 2
( )
3 3 3 3
0 0
0 0
0 0
gnd
gnd
gnd
U U R I
U U R I
U U R I



      
             
           
( )
  gndU U R I
1 1( ) 
       gnd gndI R U R U( )
  gndU U R I
The conductance matrix (G)
( )
I GU ( ) 1 
U G I
1 11 
       gnd gndI R G I R U
1 11            gnd gndones R G I R U
11 11
             gnd gndI ones R G R U
Finally the power balance
equations for this configuration
is described by:
11 11
               
gnd gndP = U ones R G R U
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 10/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
The power balance equations of other grounding configuration are created using the same
mathematical procedure presented before.
2(+)
R12
2(-)
R23
R13
1(+)
1(-)
3(+)
3(-)
R12
R23
R13
U2
U1
U3
+
-
+
-
+
-
U1
+
-
+
-
+
-
U3
U2
Rgnd1
1(0)
3(0)
2(0)
Rgnd2
Rgnd3
2(+)
R12
2(-)
R23
R13
1(+)
1(-)
3(+)
3(-)
R12
R23
R13
U2
U1
U3
+
-
+
-
+
-
U1
+
-
+
-
+
-
U3
U21(0)
3(0)
2(0)
Test system: Circuital representation: Bipolar
ground return
Test system: Circuital
representation: Bipolar Metallic
return
@fglongatt
@fglongatt
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 11/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• The steady-state performance of a MTDC system is described by
the power flow, it is be described by a set of nonlinear algebraic
equations:
• where G is the set of algebraic equations define the power-balance
at network nodes as shown in previous Sections, and X is state
vector and Y is the vector of independent variable and Z is a vector
of control variables.
Bound constraints:
 , , G X Y Z 0
min maxiU U U 
Nonlinear equality constraints:
Inverter
mode
Umax
DCvoltage,Udc
Umin
Pmax0-Pmax
Uref
Rectifier
mode
DC Power, Pdc
 1
dc ref ref dc
DC
U U P P
R
  
Linear inequalities:
 max
conv dc dc convI = Y U I
Power Balance Equations
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 12/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• VSC-HVDC terminals:
• Constant power control mode on the wind farm converter station
(P3)
• DC voltage droop control on the grid side converter stations (U1
and U2, DC1 = 0.0005 and DC2 = 0.0002 p.u/MW), thus enabling
N-1 security.
GSC1
N1
GSC2
N2
N3
WFC1
PWF1 = 0.80 p.u
WF1
AC1
AC2
R12=0.0.073
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 13/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
A MATLAB® R2014a (64-bit) program (m-file) has been developed for this very
specific propose. Interior-point algorithm is used to solve the optimization problem in
this paper. Bound constraints are considered in all simulations in order to ensure a secure
system operation (0.90 < Udc < 1.10 p.u).
Numerical results of N-1 contingency analysis in DIgSILENT PowerFactory v15.2.4 are
used for comparative purposes.
(Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3).
1dc(+)
2dc(-)
3dc(-)
2dc(+)
3dc(+)
1dc(+)
3dc(-)
-106.0 kV
-1.06003 p.u.
0.0 deg
2dc(-..
-105.5 kV
-1.05533 p.u.
0.0 deg
1dc(-..
-104.7 kV
-1.04712 p.u.
0.0 deg
3dc(+)
106.0 kV
1.06003 p.u.
0.0 deg
2dc(+)
105.5 kV
1.05533 p.u.
0.0 deg
1dc(+)
104.7 kV
1.04712 p.u.
0.0 deg
3ac
100.0 kV
1.00000 p.u.
0.0 deg
2ac
100.0 kV
1.0000..
0.0 deg
1ac
100.0 kV
1.00000 p.u.
0.0 deg
fglongatt.org
PowerFactory 15.2.4
GROUNDING AND CONFIGURATION OF MTDC
Symetric Bipolar-Earth Return Multi-terminal HVDC
Prof. Francisco M. Gonzalez-Longatt
fglongatt@fglongatt.org
Project: MTDC
Graphic: Grid
Date: 6/4/2015
Annex:
Grid: SummaryGrid
Generation = 400.00 MW 0.00 Mvar 400.00 MVA
External Infeed = -394.93 MW 0.00 Mvar 394.93 MVA
Inter AreaFlow = 0.00 MW 0.00 Mvar
Load P(U) = 0.00 MW 0.00 Mvar 0.00 MVA
Load P(Un) = 0.00 MW 0.00 Mvar 0.00 MVA
Load P(Un-U) = 0.00 MW 0.00 Mvar
Motor Load P = 0.00 MW 0.00 Mvar 0.00 MVA
Losses = 5.07 MW 0.00 Mvar
Line Charging = 0.00 Mvar
Compensation ind. = 0.00 Mvar
Compensation cap. = 0.00 Mvar
Installed Capacity = 500.00 MW
Spinning Reserve = 100.00 MW
Total Power Factor:
Generation = 1.00 [-]
Load/Motor = 0.00 / 0.00 [-]
-0.0 kV
-0.00000 p.u.
0.0 deg
-0.0 kV
-0.00000 p.u.
0.0 deg
-0.0 kV
-0.00000 p.u.
0.0 deg
Rb(..
188..
Ra(..
188..
Rgnd3
0.0
GND3
0.0
0.0
0.000
Rb(..
11.1
Ra(..
11.1
Rgnd2
0.0
GND2
0.0
0.0
0.000
GSC2(-)
-11.7
-0.0
0.067
0.0
0.0
0.111
11.7
0.0
-0.111
WFC1(-)
-200.0
-0.0
1.155
0.0
0.0
1.887
200.0
0.0
-1.887
GSC1(-)209.1
0.0
1.207
0.0
0.0
-1.997
-209.1
0.0
1.997
Rb
199..
Ra
199..
Rgnd1
0.0
GND1
0.0
0.0
0.000
WFC1(+)
-200.0
-0.0
1.155
200.0
0.0
1.887
0.0
0.0
-1.887
GSC2(+)
-11.7
-0.0
0.067
11.7
0.0
0.111
0.0
0.0
-0.111
GSC1(+)
209.1
0.0
1.207
-209.1
0.0
-1.997
0.0
0.0
1.997
Cable12(-)
19.5
-58.9
0.0
0.563
59.4
0.0
-0.563
Cable23(-)
15.7
47.9
0.0
-0.452
-47.7
0.0
0.452
Cable13(-)
49.7
-150.2
0.0
1.435
152.1
0.0
-1.435
Cable12(+)
19.5
-58.9
0.0
-0.563
59.4
0.0
0.563
Cable23(+)
15.7
47.9
0.0
0.452
-47.7
0.0
-0.452
Cable13(+)
49.7
-150.2
0.0
-1.435
152.1
0.0
1.435
WF1
80.0
400.0
0.0
2.309
V
~
AC2 23.3
0.0
0.135
V
~
AC1
-418.3
-0.0
2.415
DIgSILENT
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 14/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• Minimal numerical discrepancies between the DIgSILENT
PowerFactory and proposed method. The largest numerical
difference in post-contingency states is below 0.002 p.u, as
consequence, the proposed method can be used with minor
discrepancies.
Node
Voltage (p.u)
DIgSILENT
Voltage (p.u)
MATLAB
Contingency
3dc(-) -1.0791 -1.0791 Cable13(-)
2dc(-) -1.0600 -1.0598 Cable13(-)
1dc(-) -1.0510 -1.0508 Cable23(-)
3dc(+) 1.0791 1.0791 Cable13(+)
2dc(+) 1.0600 1.0598 Cable13(+)
1dc(+) 1.0510 1.0508 Cable23(+)
DC cable outage is an important contingency because create an important change on the
power flows (magnitudes and directions) in the DC-transmission system and post-
contingency is interesting from the grounding point of view.
SIMULATION RESULTS OF N-1 CONTINGENCY ANALYSIS: CABLES OUTAGE. BIPOLAR EARTH
RETURN CONFIGURATION
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 15/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• Case I: bipolar ideal earth return (Rgnd =0).
• Case II, bipolar earth return (Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3)
• Case III: bipolar (no ground return).
Simulations are based on simple contingency, DC cable outage.
• Case I, ideal return: the lowest post contingency DC voltages.
• It should be noticed the use of bipolar configuration without any grounding connection
provides the highest post-contingency DC voltages.
• It must recognised the benefits of using earth path return in asymmetrical DC systems.
• There are two major positive impacts: it helps to control post-contingency dc voltages
and also provided alternative current path helping on the power flow distribution on
weakly connected DC terminals.
Node Case I Case II Case III Contingency
3dc(-) -1.0783 -1.0791 -1.0884 Cable13(-)
2dc(-) -1.0590 -1.0598 -1.0706 Cable13(-)
1dc(-) -1.0512 -1.0508 -1.0595 Cable23(-)
3dc(+) 1.0783 1.0791 1.0884 Cable13(+)
2dc(+) 1.0590 1.0598 1.0706 Cable13(+)
1dc(+) 1.0512 1.0508 1.0595 Cable23(+)
RESULTS COMPARISON OF N-1 CONTINGENCY ANALYSIS: GROUNDING
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 16/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org
• Selection of final grounding scheme and grounding resistors
requires a complete DC system analysis.
• Grounding configuration affects the performance of the MTDC
system virtually in any possible mode: normal (asymmetrical
operation) and abnormal operation (faults), steady-state and
dynamic.
• This paper has two contribution
1. to introduce a simple optimization-based-approach to calculate the steady-
state post-contingency of MTDC systems and
2. to use that approach in order to illustrate basic effects of grounding
configurations on steady-state post-contingency performance.
• A 3-terminal HVDC system is used to formulate the main
theoretical framework for performance prediction on post-
contingency steady-state of MTDC system as well as for
demonstrative purposes.
www.fglongatt.org
Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 17/15
50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September
1st-4th,2015|StaffordshireUniversity,UK
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org

More Related Content

Similar to Effects of Grounding Configurations on Post-Contingency Performance of MTDC system: A 3-Terminal Example

Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Francisco Gonzalez-Longatt
 
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...Francisco Gonzalez-Longatt
 
Sistemas_Proteccion.pdf
Sistemas_Proteccion.pdfSistemas_Proteccion.pdf
Sistemas_Proteccion.pdfDanyPQ
 
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THD
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THDImpact of Grid Connected Photovoltaic System on Total Harmonics Distortion THD
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THDijtsrd
 
Control of the powerquality for a DFIG powered by multilevel inverters
Control of the powerquality for a DFIG powered  by multilevel inverters Control of the powerquality for a DFIG powered  by multilevel inverters
Control of the powerquality for a DFIG powered by multilevel inverters IJECEIAES
 
Development and Performance Evaluation of an Intelligent Electric Power Switc...
Development and Performance Evaluation of an Intelligent Electric Power Switc...Development and Performance Evaluation of an Intelligent Electric Power Switc...
Development and Performance Evaluation of an Intelligent Electric Power Switc...YogeshIJTSRD
 
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...Francisco Gonzalez-Longatt
 
Application of crowbar protection on dfig based wind turbine connected to grid-2
Application of crowbar protection on dfig based wind turbine connected to grid-2Application of crowbar protection on dfig based wind turbine connected to grid-2
Application of crowbar protection on dfig based wind turbine connected to grid-2IAEME Publication
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationiaemedu
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationiaemedu
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationIAEME Publication
 
Outage analysis and system disturbances on 330k v and 132kv transmission syst...
Outage analysis and system disturbances on 330k v and 132kv transmission syst...Outage analysis and system disturbances on 330k v and 132kv transmission syst...
Outage analysis and system disturbances on 330k v and 132kv transmission syst...Najeem Olawale Adelakun
 
Modeling and implementation of a proportional derivative controller for elect...
Modeling and implementation of a proportional derivative controller for elect...Modeling and implementation of a proportional derivative controller for elect...
Modeling and implementation of a proportional derivative controller for elect...Alexander Decker
 
Power Generation using T-Box and Fault Detection System using PLC
Power Generation using T-Box and Fault Detection System using PLCPower Generation using T-Box and Fault Detection System using PLC
Power Generation using T-Box and Fault Detection System using PLCIRJET Journal
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterIRJET Journal
 
Comparison analysis of different classification methods of power quality dis...
Comparison analysis of different classification methods of  power quality dis...Comparison analysis of different classification methods of  power quality dis...
Comparison analysis of different classification methods of power quality dis...IJECEIAES
 
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...IJPEDS-IAES
 

Similar to Effects of Grounding Configurations on Post-Contingency Performance of MTDC system: A 3-Terminal Example (20)

Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
 
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
 
Sistemas_Proteccion.pdf
Sistemas_Proteccion.pdfSistemas_Proteccion.pdf
Sistemas_Proteccion.pdf
 
Expert System Based on Fuzzy Logic: Application on Faults Detection and Diagn...
Expert System Based on Fuzzy Logic: Application on Faults Detection and Diagn...Expert System Based on Fuzzy Logic: Application on Faults Detection and Diagn...
Expert System Based on Fuzzy Logic: Application on Faults Detection and Diagn...
 
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THD
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THDImpact of Grid Connected Photovoltaic System on Total Harmonics Distortion THD
Impact of Grid Connected Photovoltaic System on Total Harmonics Distortion THD
 
Incipient Fault Detection of the Inverter Fed Induction Motor Drive
Incipient Fault Detection of the Inverter Fed Induction Motor DriveIncipient Fault Detection of the Inverter Fed Induction Motor Drive
Incipient Fault Detection of the Inverter Fed Induction Motor Drive
 
Lic presentation
Lic presentationLic presentation
Lic presentation
 
Control of the powerquality for a DFIG powered by multilevel inverters
Control of the powerquality for a DFIG powered  by multilevel inverters Control of the powerquality for a DFIG powered  by multilevel inverters
Control of the powerquality for a DFIG powered by multilevel inverters
 
Development and Performance Evaluation of an Intelligent Electric Power Switc...
Development and Performance Evaluation of an Intelligent Electric Power Switc...Development and Performance Evaluation of an Intelligent Electric Power Switc...
Development and Performance Evaluation of an Intelligent Electric Power Switc...
 
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...
Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Po...
 
Application of crowbar protection on dfig based wind turbine connected to grid-2
Application of crowbar protection on dfig based wind turbine connected to grid-2Application of crowbar protection on dfig based wind turbine connected to grid-2
Application of crowbar protection on dfig based wind turbine connected to grid-2
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operation
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operation
 
Wind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operationWind and solar integrated to smart grid using islanding operation
Wind and solar integrated to smart grid using islanding operation
 
Outage analysis and system disturbances on 330k v and 132kv transmission syst...
Outage analysis and system disturbances on 330k v and 132kv transmission syst...Outage analysis and system disturbances on 330k v and 132kv transmission syst...
Outage analysis and system disturbances on 330k v and 132kv transmission syst...
 
Modeling and implementation of a proportional derivative controller for elect...
Modeling and implementation of a proportional derivative controller for elect...Modeling and implementation of a proportional derivative controller for elect...
Modeling and implementation of a proportional derivative controller for elect...
 
Power Generation using T-Box and Fault Detection System using PLC
Power Generation using T-Box and Fault Detection System using PLCPower Generation using T-Box and Fault Detection System using PLC
Power Generation using T-Box and Fault Detection System using PLC
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down Cycloconverter
 
Comparison analysis of different classification methods of power quality dis...
Comparison analysis of different classification methods of  power quality dis...Comparison analysis of different classification methods of  power quality dis...
Comparison analysis of different classification methods of power quality dis...
 
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Distur...
 

More from Francisco Gonzalez-Longatt

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsFrancisco Gonzalez-Longatt
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) Francisco Gonzalez-Longatt
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system Francisco Gonzalez-Longatt
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolFrancisco Gonzalez-Longatt
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Francisco Gonzalez-Longatt
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Francisco Gonzalez-Longatt
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Francisco Gonzalez-Longatt
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...Francisco Gonzalez-Longatt
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Francisco Gonzalez-Longatt
 
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...Francisco Gonzalez-Longatt
 
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...Francisco Gonzalez-Longatt
 

More from Francisco Gonzalez-Longatt (20)

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia Systems
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR)
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency Conntrol
 
0. Introduction to future energy systems
0. Introduction to future energy systems0. Introduction to future energy systems
0. Introduction to future energy systems
 
Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
 
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
 
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

Effects of Grounding Configurations on Post-Contingency Performance of MTDC system: A 3-Terminal Example

  • 1. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 1/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org Dr Francisco M. Gonzalez-Longatt* Prof. M.A.M.M. van der Meijden Dr Jose Luis Rueda
  • 2. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 2/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • The power injections (Pi) in a DC grid are controlled by the converters. • On a MTDC grid as Supergrid, the power flow into, or out of, each converter can be dynamically changed without any reconfiguration of the HVDC grid. • The objective of this paper is to establish the effects of grounding configurations on steady- state post-contingency performance of multi- Terminal HVDC System. Created by Dr. F. Gonzalez-Longatt
  • 3. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 3/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org Idc U1 Idc b. Metallic Returna. Ground Return Idc c. Symmetric configuration U2 + - + - + - + - U1 U2 U1 U2 Idc a. Ground Return Idc 2Idc Idc Idc 2Idc b. Metallic Return U1 + - + - + - + - U1 U2 U2 U1 + - + - U1 U2 U2 + - + - Idc a. Ground Return Idc Idc Idc b. Metallic return U1 + - + - U1 + - + - + - + - + - + - U2 U2 U1 U1 U2 U2 Idc + - Udc Monopole configurations Homopolar configurations Bipolar configurations Back-to-Back configuration @fglongatt @fglongatt @fglongatt
  • 4. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 4/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org MTDC configuration: series or parallel MTDC parallel configuration: radial or meshed I1 I2 I3 I4 I1 + I2 + I3+ I4 = 0 U1 U2 U3 U4 U1 + U2 + U3 + U4 = 0 Idc b. Series MTDCa. Parallel MTDC + -Udc + - +- + - +- Idc Idc Idc + -Udc I1 Udc + - + - + - + - I3 I2 I4 Udc Udc Udc Ixy y x x + -Udc + - + - + - Udc I1 I3 I4+ - Ux I2 I4 b. Mesh configurationa. Radial configuration @fglongatt @fglongatt
  • 5. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 5/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • System Configuration: • A simple MTDC test system is used in this paper for demonstratives purposes:3-terminal, ±200kVdc, VSC-HVDC. • Network Model: DC cable between two nodes (e.g. i and j) are represented using a single series resistor Rij. DC side of converter stations are modelled by an ideal dependant voltage source and ideal ground is represented as an ideal point where voltages is zero. All electrical quantities are represented using per unit systems. The mathematic modelling of some grounding configuration of MTDC systems are presented here. GSC1 N1 GSC2 N2 N3 WFC1 PWF1 = 0.80 p.u WF1 AC1 AC2 R12=0.0.073 Test system: Values of resistors Rij are shown in p.u
  • 6. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 6/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • Network Model: Test system: Circuital representation of monopole ideal ground return 2(+) R12 R23 R13 1(+) 3(+) U2 U1 U3 + - + - 1(0) 2(0) 3(0) + - ( ) (0) 1 1 1 ( ) (0) 2 2 2 ( ) (0) 3 3 3 U U U U U U U U U                              The converter voltage (Ui) can be expressed in terms of the terminal potentials: Ui (+) represents electrical potential of the transmission terminal and Ui (0) is used to define potential of the neutral terminal. For this specific case, monopolar configuration with ideal ground return, the voltage at the neutral point (0) is connected to ideal ground where the electric potential is assumed zero, U(0) = 0, as consequence: U(0) = U. ( ) (0)  U U U @fglongatt
  • 7. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 7/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org The current injected (Ii) is written into a matrix form using the conductance matrix (G) of the DC grid can be used: ( ) 1 11 12 13 1 ( ) 2 21 22 23 2 ( ) 3 31 32 33 3 I G G G U I G G G U I G G G U                             ( ) I GU I GU where the DC current vector I = [I,1, I2, ...,Idc,ndc]T, U = [U1, U2, ...,Undc]T is the DC voltage vector and G is also known as the DC nodal admittance matrix (Gij, i, j = 1, …ndc). The current injections I are not known prior to the power flow solution for the DC network. The vector P = [P1, P2, ...,Pndc]T, which refers to power flow into the DC grid via the DC terminals, is given by where the symbol  is entry-wise (point-to-point) matrix multiplication operator. Equation is known as the power balance equation and it can be solved in order to obtain the classical power flow solution of the MTDC system. I = GU  P = U GU
  • 8. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 8/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org 2(+) R12 R23 R13 1(+) 3(+) U2 U1 U3 + - + - Rgnd1 1(0) 2(0) Rgnd2 Rgnd3 3(0) + - Test system: Circuital representation of monopole with real ground return (Rgndi). The potential of the neutral points (0) are calculated based on the grounding resistors (Rgndi): (0) 1 1 1 (0) 2 2 2 (0) 3 3 3 0 0 0 0 0 0 gnd gnd gnd U R I U R I U R I                           ( ) 1 1 1 1 ( ) 2 2 2 2 ( ) 3 3 3 3 0 0 0 0 0 0 gnd gnd gnd U U R I U U R I U U R I                                     ( ) (0) 1 1 1 ( ) (0) 2 2 2 ( ) (0) 3 3 3 U U U U U U U U U                              (0)  gndU R I ( )   gndU U R I @fglongatt
  • 9. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 9/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org ( ) 1 1 1 1 ( ) 2 2 2 2 ( ) 3 3 3 3 0 0 0 0 0 0 gnd gnd gnd U U R I U U R I U U R I                                     ( )   gndU U R I 1 1( )         gnd gndI R U R U( )   gndU U R I The conductance matrix (G) ( ) I GU ( ) 1  U G I 1 11         gnd gndI R G I R U 1 11            gnd gndones R G I R U 11 11              gnd gndI ones R G R U Finally the power balance equations for this configuration is described by: 11 11                 gnd gndP = U ones R G R U
  • 10. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 10/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org The power balance equations of other grounding configuration are created using the same mathematical procedure presented before. 2(+) R12 2(-) R23 R13 1(+) 1(-) 3(+) 3(-) R12 R23 R13 U2 U1 U3 + - + - + - U1 + - + - + - U3 U2 Rgnd1 1(0) 3(0) 2(0) Rgnd2 Rgnd3 2(+) R12 2(-) R23 R13 1(+) 1(-) 3(+) 3(-) R12 R23 R13 U2 U1 U3 + - + - + - U1 + - + - + - U3 U21(0) 3(0) 2(0) Test system: Circuital representation: Bipolar ground return Test system: Circuital representation: Bipolar Metallic return @fglongatt @fglongatt
  • 11. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 11/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • The steady-state performance of a MTDC system is described by the power flow, it is be described by a set of nonlinear algebraic equations: • where G is the set of algebraic equations define the power-balance at network nodes as shown in previous Sections, and X is state vector and Y is the vector of independent variable and Z is a vector of control variables. Bound constraints:  , , G X Y Z 0 min maxiU U U  Nonlinear equality constraints: Inverter mode Umax DCvoltage,Udc Umin Pmax0-Pmax Uref Rectifier mode DC Power, Pdc  1 dc ref ref dc DC U U P P R    Linear inequalities:  max conv dc dc convI = Y U I Power Balance Equations
  • 12. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 12/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • VSC-HVDC terminals: • Constant power control mode on the wind farm converter station (P3) • DC voltage droop control on the grid side converter stations (U1 and U2, DC1 = 0.0005 and DC2 = 0.0002 p.u/MW), thus enabling N-1 security. GSC1 N1 GSC2 N2 N3 WFC1 PWF1 = 0.80 p.u WF1 AC1 AC2 R12=0.0.073
  • 13. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 13/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org A MATLAB® R2014a (64-bit) program (m-file) has been developed for this very specific propose. Interior-point algorithm is used to solve the optimization problem in this paper. Bound constraints are considered in all simulations in order to ensure a secure system operation (0.90 < Udc < 1.10 p.u). Numerical results of N-1 contingency analysis in DIgSILENT PowerFactory v15.2.4 are used for comparative purposes. (Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3). 1dc(+) 2dc(-) 3dc(-) 2dc(+) 3dc(+) 1dc(+) 3dc(-) -106.0 kV -1.06003 p.u. 0.0 deg 2dc(-.. -105.5 kV -1.05533 p.u. 0.0 deg 1dc(-.. -104.7 kV -1.04712 p.u. 0.0 deg 3dc(+) 106.0 kV 1.06003 p.u. 0.0 deg 2dc(+) 105.5 kV 1.05533 p.u. 0.0 deg 1dc(+) 104.7 kV 1.04712 p.u. 0.0 deg 3ac 100.0 kV 1.00000 p.u. 0.0 deg 2ac 100.0 kV 1.0000.. 0.0 deg 1ac 100.0 kV 1.00000 p.u. 0.0 deg fglongatt.org PowerFactory 15.2.4 GROUNDING AND CONFIGURATION OF MTDC Symetric Bipolar-Earth Return Multi-terminal HVDC Prof. Francisco M. Gonzalez-Longatt fglongatt@fglongatt.org Project: MTDC Graphic: Grid Date: 6/4/2015 Annex: Grid: SummaryGrid Generation = 400.00 MW 0.00 Mvar 400.00 MVA External Infeed = -394.93 MW 0.00 Mvar 394.93 MVA Inter AreaFlow = 0.00 MW 0.00 Mvar Load P(U) = 0.00 MW 0.00 Mvar 0.00 MVA Load P(Un) = 0.00 MW 0.00 Mvar 0.00 MVA Load P(Un-U) = 0.00 MW 0.00 Mvar Motor Load P = 0.00 MW 0.00 Mvar 0.00 MVA Losses = 5.07 MW 0.00 Mvar Line Charging = 0.00 Mvar Compensation ind. = 0.00 Mvar Compensation cap. = 0.00 Mvar Installed Capacity = 500.00 MW Spinning Reserve = 100.00 MW Total Power Factor: Generation = 1.00 [-] Load/Motor = 0.00 / 0.00 [-] -0.0 kV -0.00000 p.u. 0.0 deg -0.0 kV -0.00000 p.u. 0.0 deg -0.0 kV -0.00000 p.u. 0.0 deg Rb(.. 188.. Ra(.. 188.. Rgnd3 0.0 GND3 0.0 0.0 0.000 Rb(.. 11.1 Ra(.. 11.1 Rgnd2 0.0 GND2 0.0 0.0 0.000 GSC2(-) -11.7 -0.0 0.067 0.0 0.0 0.111 11.7 0.0 -0.111 WFC1(-) -200.0 -0.0 1.155 0.0 0.0 1.887 200.0 0.0 -1.887 GSC1(-)209.1 0.0 1.207 0.0 0.0 -1.997 -209.1 0.0 1.997 Rb 199.. Ra 199.. Rgnd1 0.0 GND1 0.0 0.0 0.000 WFC1(+) -200.0 -0.0 1.155 200.0 0.0 1.887 0.0 0.0 -1.887 GSC2(+) -11.7 -0.0 0.067 11.7 0.0 0.111 0.0 0.0 -0.111 GSC1(+) 209.1 0.0 1.207 -209.1 0.0 -1.997 0.0 0.0 1.997 Cable12(-) 19.5 -58.9 0.0 0.563 59.4 0.0 -0.563 Cable23(-) 15.7 47.9 0.0 -0.452 -47.7 0.0 0.452 Cable13(-) 49.7 -150.2 0.0 1.435 152.1 0.0 -1.435 Cable12(+) 19.5 -58.9 0.0 -0.563 59.4 0.0 0.563 Cable23(+) 15.7 47.9 0.0 0.452 -47.7 0.0 -0.452 Cable13(+) 49.7 -150.2 0.0 -1.435 152.1 0.0 1.435 WF1 80.0 400.0 0.0 2.309 V ~ AC2 23.3 0.0 0.135 V ~ AC1 -418.3 -0.0 2.415 DIgSILENT
  • 14. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 14/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • Minimal numerical discrepancies between the DIgSILENT PowerFactory and proposed method. The largest numerical difference in post-contingency states is below 0.002 p.u, as consequence, the proposed method can be used with minor discrepancies. Node Voltage (p.u) DIgSILENT Voltage (p.u) MATLAB Contingency 3dc(-) -1.0791 -1.0791 Cable13(-) 2dc(-) -1.0600 -1.0598 Cable13(-) 1dc(-) -1.0510 -1.0508 Cable23(-) 3dc(+) 1.0791 1.0791 Cable13(+) 2dc(+) 1.0600 1.0598 Cable13(+) 1dc(+) 1.0510 1.0508 Cable23(+) DC cable outage is an important contingency because create an important change on the power flows (magnitudes and directions) in the DC-transmission system and post- contingency is interesting from the grounding point of view. SIMULATION RESULTS OF N-1 CONTINGENCY ANALYSIS: CABLES OUTAGE. BIPOLAR EARTH RETURN CONFIGURATION
  • 15. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 15/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • Case I: bipolar ideal earth return (Rgnd =0). • Case II, bipolar earth return (Rgnd1 = 1, Rgnd2 = 2, Rgnd3 = 3) • Case III: bipolar (no ground return). Simulations are based on simple contingency, DC cable outage. • Case I, ideal return: the lowest post contingency DC voltages. • It should be noticed the use of bipolar configuration without any grounding connection provides the highest post-contingency DC voltages. • It must recognised the benefits of using earth path return in asymmetrical DC systems. • There are two major positive impacts: it helps to control post-contingency dc voltages and also provided alternative current path helping on the power flow distribution on weakly connected DC terminals. Node Case I Case II Case III Contingency 3dc(-) -1.0783 -1.0791 -1.0884 Cable13(-) 2dc(-) -1.0590 -1.0598 -1.0706 Cable13(-) 1dc(-) -1.0512 -1.0508 -1.0595 Cable23(-) 3dc(+) 1.0783 1.0791 1.0884 Cable13(+) 2dc(+) 1.0590 1.0598 1.0706 Cable13(+) 1dc(+) 1.0512 1.0508 1.0595 Cable23(+) RESULTS COMPARISON OF N-1 CONTINGENCY ANALYSIS: GROUNDING
  • 16. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 16/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org • Selection of final grounding scheme and grounding resistors requires a complete DC system analysis. • Grounding configuration affects the performance of the MTDC system virtually in any possible mode: normal (asymmetrical operation) and abnormal operation (faults), steady-state and dynamic. • This paper has two contribution 1. to introduce a simple optimization-based-approach to calculate the steady- state post-contingency of MTDC systems and 2. to use that approach in order to illustrate basic effects of grounding configurations on steady-state post-contingency performance. • A 3-terminal HVDC system is used to formulate the main theoretical framework for performance prediction on post- contingency steady-state of MTDC system as well as for demonstrative purposes.
  • 17. www.fglongatt.org Dr Francisco M. Gonzalez-Longatt PhD | http://fglongatt.org | Copyright © 2008-2014 17/15 50thInternationalUniversitiesPowerEngineeringConference(UPEC2015)September 1st-4th,2015|StaffordshireUniversity,UK Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2008-2015.http:www.fglongatt.org