UNIVERSITI TUN HUSSEIN ONN MALAYSIA
86400 PARIT RAJA, BATU PAHAT
TUGASAN INDIVIDU
PROGRAM SARJANA MUDA PENDIDIKAN ( SEKOLAH RENDAH )
ALGEBRA ( BBR 23703 )
NAMA : NOR KHARI IZARDI BIN ISMAIL
NO. K.PENGENALAN : 820101 – 06 – 6353
NO. MATRIK : DB 100058
PPG : SAINS SEKSYEN 3
NAMA PENSYARAH : DR. MUHD. SAIFULLAH BIN RUSIMAN
BBR 23703
ALGEBRA
INDIVIDUAL ASSIGNMENT NO. 1
Question 1 [5%]
(a) Solve 3x² + 2x² - 5 = 0 by
(i) completing the squares
Solution
3x² + 2² = 0
3x² + 2x = 5
3x² + 2x= 5
3 3 3
x² + 2x = 5
3 3
x² + 2x + 3 ² = 5 + 3 ²
3 2 3 2
x² + 2x + 2 ² = 5 + 2 ²
3 6 3 6
x² + 2x + 1 ² = 5 + 1 ²
3 3 3 3
x + 1 ² = 5 + 1
3 3 9
x + 1 ² = 16
3 9
x + 1 = ⁺₋ 16
3 9
x + 1 = ⁺₋ 4
3 3
x + 1 = 4
3 3
x = 4 - 1 atau x = - 4 - 1
3 3 3 3
x = 3 x = - 5
2 3
X = 1
ii) Quadratic formula
3x2
+ 2x – 5 = 0
a = 3 b = 2 c = -5
x = -b ± b2
– 4ac
2a
x = - (2) ± (2)2
– 4 (3) (-5)
2 (3)
x = -2 ± 4 – 12 ( -5)
6
x = -2 ± 64
6
x = -2 ± 8
6
x = -2 + 8 atau x = - 2 - 8
6 6
x = 1 atau x = - 1.667
Question 2[ 5%]
b. Show that -1 is the root of x3
–2x2
–x + 2
Hence, factorize completely.
Solution:
x3
–2x2
– x + 2
= [ –1 ]3
– 2 [ –1 ]2
– [ –1 ] + 2
= 0
Showed
x3
– 2x2
– x + 2
= x [ x2
– 2x – 1 ] + 2
BBR 23703
ALGEBRA
INDIVIDUAL ASSIGNMENT NO. 2
Question 1 [6%]
Sketch the graph and determine the domain and range.
a. y = 2x + 7
Solution:
y = 2x + 7
y
x
x 20 40 0 10
y 47 87 7 27
b. y = -x2 + x + 4
y
-1.56 -2.56 x
x 0 2 -5 -6
y 4 2 -26 -38
c. y =
y
x
x 2 5 10
y 1 0.25 0.02
____1____
[ x-3]2
Question 2 [4%]
Given f ( = + 4 , g ( + and h ( = 2
Calculate
a) f o g
f g ( = f
= f
= __3_ + 4
= _9_ + 4
²
b) f o g o h = fg
= fg
= _9_ + 4
²
= _9_ + 4
²

Contoh soalan dan jawapan Algebra

  • 1.
    UNIVERSITI TUN HUSSEINONN MALAYSIA 86400 PARIT RAJA, BATU PAHAT TUGASAN INDIVIDU PROGRAM SARJANA MUDA PENDIDIKAN ( SEKOLAH RENDAH ) ALGEBRA ( BBR 23703 ) NAMA : NOR KHARI IZARDI BIN ISMAIL NO. K.PENGENALAN : 820101 – 06 – 6353 NO. MATRIK : DB 100058 PPG : SAINS SEKSYEN 3 NAMA PENSYARAH : DR. MUHD. SAIFULLAH BIN RUSIMAN
  • 2.
    BBR 23703 ALGEBRA INDIVIDUAL ASSIGNMENTNO. 1 Question 1 [5%] (a) Solve 3x² + 2x² - 5 = 0 by (i) completing the squares Solution 3x² + 2² = 0 3x² + 2x = 5 3x² + 2x= 5 3 3 3 x² + 2x = 5 3 3 x² + 2x + 3 ² = 5 + 3 ² 3 2 3 2 x² + 2x + 2 ² = 5 + 2 ² 3 6 3 6 x² + 2x + 1 ² = 5 + 1 ² 3 3 3 3
  • 3.
    x + 1² = 5 + 1 3 3 9 x + 1 ² = 16 3 9 x + 1 = ⁺₋ 16 3 9 x + 1 = ⁺₋ 4 3 3 x + 1 = 4 3 3 x = 4 - 1 atau x = - 4 - 1 3 3 3 3 x = 3 x = - 5 2 3 X = 1
  • 4.
    ii) Quadratic formula 3x2 +2x – 5 = 0 a = 3 b = 2 c = -5 x = -b ± b2 – 4ac 2a x = - (2) ± (2)2 – 4 (3) (-5) 2 (3) x = -2 ± 4 – 12 ( -5) 6 x = -2 ± 64 6 x = -2 ± 8 6 x = -2 + 8 atau x = - 2 - 8 6 6 x = 1 atau x = - 1.667
  • 5.
    Question 2[ 5%] b.Show that -1 is the root of x3 –2x2 –x + 2 Hence, factorize completely. Solution: x3 –2x2 – x + 2 = [ –1 ]3 – 2 [ –1 ]2 – [ –1 ] + 2 = 0 Showed x3 – 2x2 – x + 2 = x [ x2 – 2x – 1 ] + 2
  • 6.
    BBR 23703 ALGEBRA INDIVIDUAL ASSIGNMENTNO. 2 Question 1 [6%] Sketch the graph and determine the domain and range. a. y = 2x + 7 Solution: y = 2x + 7 y x x 20 40 0 10 y 47 87 7 27
  • 7.
    b. y =-x2 + x + 4 y -1.56 -2.56 x x 0 2 -5 -6 y 4 2 -26 -38
  • 8.
    c. y = y x x2 5 10 y 1 0.25 0.02 ____1____ [ x-3]2
  • 9.
    Question 2 [4%] Givenf ( = + 4 , g ( + and h ( = 2 Calculate a) f o g f g ( = f = f = __3_ + 4 = _9_ + 4 ²
  • 10.
    b) f og o h = fg = fg = _9_ + 4 ² = _9_ + 4 ²