SlideShare a Scribd company logo
1 of 36
Download to read offline
3G Networking Protocols:
The Bridge Between the Air
Interface and the UTRAN
Technology and Testing Methodology Overview
Using the Agilent 3G Test System (3GTS)
This paper examines interactions between the RF (air) interface and the UMTS
Terrestrial Radio Access Network (UTRAN). These concepts are important for people
involved in the design and system integration of 3G network elements, such as the
Node B (base station), as well as providers of next-generation mobile voice and data
services.
The UTRAN provides the connection between the mobile user equipment and the
Internet or Public Switched Telephone Network (PSTN) via an ATM-based transport
infrastructure. 3G networking protocols are involved in processes such as connection
establishment, base station handover, and network timing synchronization. These
functions are required to provide high quality, uninterrupted mobile voice and data
services, independent of the position and movement of the user equipment or RF fade
conditions.
Part 1: 3G RAN Testing Overview
l Overview of 3GPP Protocols and Testing Methodology
l Introduction to the Agilent 3G Test System (3GTS)
Part 2: Frame Protocol
l Data Transport; RNC Flow Control; Node B Timing Alignment
l Node and Channel Synchronization Processes
l Using 3GTS Protocol Emulation
Part 1: 3G RAN Testing Overview
l Overview of 3GPP Protocols and Testing Methodology
l Introduction to the Agilent 3G Test System (3GTS)
Part 2: Frame Protocol
l Data Transport; RNC Flow Control; Node B Timing Alignment
l Node and Channel Synchronization Processes
l Using 3GTS Protocol Emulation
Agenda
The paper explores the following issues:
• Introduction to UTRAN protocols
– 3G network overview
– 3GPP protocols for the Node B (Uu and Iub interfaces)
• Frame Protocol: Functions and Deployment Issues
• Data and Control Channel Structure
– Frame TTI (Time Transmission Interval)
– Base station timing synchronization
• 3G Networking Protocol Testing Techniques
– Introduction to Agilent 3G test system (3GTS)
– Functional and performance testing
– Test cases: base station synchronization; diversity handover
Part 1:
3G Business and Technology Issues
Business Issues:
l Accelerate Time to Market
l Reduce Risks
l Develop New Network
Infrastructure
l Complex Technology
l New Skills Required
(RF, ATM, IP)
l The Need for a Systematic
Test Methodology
Business Issues:
l Accelerate Time to Market
l Reduce Risks
l Develop New Network
Infrastructure
l Complex Technology
l New Skills Required
(RF, ATM, IP)
l The Need for a Systematic
Test Methodology
Technical Issues:
l 3G Radio Access Network (RAN)
elements
l 3G Protocols across the
Iu/Iub/Iur Interface
l Examples of Systematic
3G RAN Testing:
l Transport Layer Verification
l 3G Protocol Verification
l Connection Testing
l Load Testing
Technical Issues:
l 3G Radio Access Network (RAN)
elements
l 3G Protocols across the
Iu/Iub/Iur Interface
l Examples of Systematic
3G RAN Testing:
l Transport Layer Verification
l 3G Protocol Verification
l Connection Testing
l Load Testing
3G Business and Technology Issues
Third Generation cellular wireless technology provides much greater levels of functionality and
flexibility than previous generations (for example, 1G analog and 2/2.5G digital
GSM/CDMA/GPRS systems). 3G offers improved RF spectral efficiency and higher data bit rates,
up to 2 Mbps.
An early benefit of 3G technology will be improved mobile telephone services and significantly
increased system capacity. For example, multi-mode phones will enable seamless global roaming
capability (ability to use the same handset anywhere in the world). In the longer term, 3G is also
expected to become a significant Internet access technology, providing mobile data rates ranging
from 144 kbps to 2 Mbps with guaranteed Quality of Service (QoS) levels.
However, the benefits of 3G come at a cost. RF spectrum licenses are extremely expensive and a
large number of companies are competing to enter the market. The first few companies to market
with new 3G voice and data services are likely to retain a significant competitive advantage in the
long term.
At the same time, 3G systems are significantly more complex to design and operate and require
multi-protocol support, particularly across the terrestrial Radio Access Network (RAN). Finding
enough skilled employees presents an additional challenge, as many people who come from a
2/2.5G background face a steep learning curve to gain the required experience in ATM and IP
technologies.
In an environment that includes high levels of investment, competition, and technical complexity,
combined with a critical skills shortage, there is a strong need for equipment manufacturers and
services to adopt strategies that minimize risks and accelerate time to market. In this paper, we will
look at a systematic approach to verifying the functions and performance of the 3G RAN and its
network elements.
Broadband Wireless Infrastructure
RF
Interface
Internet Core
IP, ATM, WDM
PSTN
Broadband
Wireline
Access
ADSL, Cable
Packet Switched Network
Circuit Switched Network
RAN Functions:
l Connection
Establishment
l Voice/Data Multiplexing
l QoS Management
l Diversity Handover
l RF/Mobility Functions
RAN Functions:
l Connection
Establishment
l Voice/Data Multiplexing
l QoS Management
l Diversity Handover
l RF/Mobility Functions
Broadband Wireless Access
2G 2.5G
3G Radio Access Network (RAN)
CNRNCNode B
3G
3G Network Infrastructure
Because of its potential to provide high-speed data services, 3G is likely to emerge as an
alternative to existing broadband access technologies such as ADSL and cable. From a
user perspective, 3G is purely an RF technology. However, from a service provider
viewpoint, there is a significant amount of wireline (also called terrestrial) network
infrastructure to install and operate.
The wireline components of the 3G system are referred to collectively as the Radio
Access Network (RAN). The 3G RAN is designed to handle broadband wireless access
and mobility functions, independent of the core network technology. It is responsible for
session management and connectivity to the public switched telephone network (PSTN)
and Internet. The 3G infrastructure must also inter-work with existing 2G (for example,
GSM, CDMA) and 2.5G (for example, GPRS) mobile systems.
3G services operate over an ATM infrastructure that is designed to inter-work with
existing circuit-switched and packet-switched public networks. This is achieved by
overlaying 3G-specific protocols on an ATM-based transport infrastructure. Functions
such as data/voice multiplexing, QoS management, and connection establishment are
based on existing ATM capabilities, such as the AAL-2 and AAL-5 adaptation layers,
and UNI and NNI signaling protocols.
Additional 3G-specific protocols are required to handle the connection-setup procedure
between the RF (wireless) and terrestrial (wireline) parts of the network. These protocols
also support mobile-specific features such as diversity handover. This is a complex
procedure that requires co-ordination between signal quality measurements on the RF
side, and multi-connection establishment through the wireline infrastructure.
In this paper, we will focus on development and deployment challenges of the 3G RAN.
Evolution from 2G - 2.5G - 3G
Common Core Network (CN) Entities:
• AuC = Authentication Centre
• EIR = Equipment Identity Register
• HLR = Home Location Register
• VLR = Visitor Location Register
Note: MSC & SGSN may be
integrated to form a single
device called the UMSC
(UMTS Mobile-services
Switching Centre)
Um
Circuit Switched Network (PSTN)
2G(GSM)
Gateway
MSC
(GMSC)
Mobile-services
Switching
Centre(MSC)
Base Station
Controller(BSC)
Base Transceiver
Station (BTS)
BSS
CN
AuC
HLR
EIR
2G/2.5G
User
Equipment
A
Ab
PSTN
E F
D
C
PSTN
VLR
Packet Switched Network (Internet )
Gateway GPRS
Support Node
(GGSN)
Serving GPRS
Support Node
(SGSN)
2.5G(GPRS)
Gs
Gn
Gi Gp
Gf
Gc
Gr
Gb
Radio Network
Controller(RNC)
NodeB
Iu-c Iu-p
RAN
Iur
Iub
Uu
3G User
Equipment
Mobile
Equipment
(ME)
Subscriber
Identity
Module
(SIM)
UMTS
SIM
(USIM)
3G(UMTS/W-CDMA)
Evolution from 2G to 2.5G to 3G Wireless
3G is an evolution, rather than a revolution, in terms of the principles of mobile
network architecture. The 2G network provides separation between the RF-
specific functions, known as the Base Station Subsystem (BSS), and the Core
Network (CN). This makes the CN relatively unaffected by changes in the RF
equipment, such as RF band, or encoding techniques. This approach is continued
in 2.5G and 3G systems.
The 2G core network provides the connection to the circuit-switched Public
Switched Telephone Network (PSTN). The control functions required to achieve
this are generally based on SS7 signalling, commonly used in the PSTN. The basic
elements of the 2G system include the mobile equipment (handset), base station,
mobile-services switching centre (MSC) and gateway into the PSTN (GMSC).
The 2.5G (GPRS) core network adds packet-oriented switching functions that
enable relatively low bit-rate packet data connections to the Internet (typical rates
typically in the range 9.6 kbps, up to a theoretical maximum of 182.4 kbps). The
General Packet Radio Service (GPRS) is a “connectionless” service, meaning that
the Internet connection is available continuously. It tends to be seen as a migration
step to 3G.
The 3G RAN adds an ATM-based transport infrastructure that enables connection
setup capabilities with guaranteed QoS levels. The 3G RAN is designed to inter-
work with both circuit-switched and packet-switched core networks. Benefits
include more flexible voice services, higher bit rate data services, and higher
service quality levels.
3G Standards:
The Role of the 3GPP Organization
IS 2000UMTS / W-CDMA
We will review some aspects of UMTS/W-CDMA standards and technology and
examine the unique challenges in testing at each of the five stages we have
identified.
3G Standards
The International Telecommunications Union (ITU) manages the 3G umbrella
standard known as IMT-2000. This standard endorses five different modes of RF
interface, and two major types of terrestrial infrastructure (known as the Radio
Access Network, or RAN). The intention is for any of the RF modes to work with
any of the RAN types.
The two major types of RAN are UMTS/ W-CDMA (predominantly for Europe
and Japan) and IS-2000 (previously cdma2000, predominantly for North
America). Scarcity of RF spectrum is a more serious issue in Japan and Europe.
This is driving the more rapid development of UMTS W-CDMA, which is
expected to account for 70% of 3G cellular subscribers worldwide.
UMTS W-CDMA standards proposals are submitted to the ITU by an organization
called 3GPP (Third Generation Partnership Project). 3GPP co-ordinates
submissions from a number of regional standards bodies, such as ARIB, CWTS,
ETSI, NTT DoCoMo, T1, TTA, and TTC.
UMTS/W-CDMA:
RAN Network Elements (3GPP)
CN:
Interface to various
circuit-switched or
packet-switched
networks.
e.g. Mobile Switching Center
(MSC) or Serving GPRS Support
Node (SGSN)
RNC:
Connects to a
localized group of
Node B’s. Selects
the most appropriate
Node B for each UE,
performing handover
when necessary.
Also called Base Station
Controller (BSC)
UE:
Mobile phone,
video phone,
PDA, etc.
Node B:
Converts radio
signal to and from
ATM. Involved in
handover decisions.
Also called Radio Base
Station (RBS) or Base
Transceiver Station (BTS)
UMTS/W-CDMA: RAN Network Elements
The main components of the UMTS W-CDMA RAN are shown above. The
network elements referred to in the 3GPP specifications are User Equipment, Node
B, Radio Network Controller, and Core Network Interface.
• User Equipment (also called Mobile Station or Handset): includes mobile
cellular telephones, handheld Personal Digital Assistants (PDA), and cellular
modems connected to PCs.
• Node B (also called the Base Station Controller or Radio Base Station):
provides the gateway interface between the handset/RF interface, and the
Radio Network Controller via the Iub interface. It is involved in handover
decisions, which are based on RF signal quality measurements.
• Radio Network Controller (RNC): connects to and co-ordinates as many as
150 base stations. It is involved in managing activities such as hand-over of
active calls between base stations.
• Core Network Interface (also called Mobile Switching Center or Mobile
Multimedia Switch): refers to other terrestrial core network infrastructure
connected to the RAN through the Iu interface; for example, the Internet and
PSTN.
UP = User Plane
CP = Control Plane
RNCP = Radio Network Control Plane
TNCP = Transport Network Control Plane
RNC
3GPP Protocols for the RNC
SCTP
M3UA GTP-uMTP3b
SSCF-NNI
SSCOP IP
ATM
Physical
RANAP
RNCP
AAL-5
UPTNCP
SCCP
AAL-5
ATM
IP
UDP
Iu UP
Iu-p(e.g. Internet)
Iu-c
(e.g. PSTN)
ATM
Physical
RANAP Iu UP
RNCP UPTNCP
AAL-5 AAL-2
SSCOP
SSCF-NNI
MTP3b
SCCP
AAL-5
SSCOP
SSCF-NNI
Q.2150.1
Q.2630.1
MTP3b
ALCAP
(Q.AAL-2)
Radio
Network
Transport
ATM
MAC
Radio
Network
Transport
RRC
RLC
AAL-2
Physical
PDCP
RLC
MAC
FP-cch/FP-dch
CP UP
Iub (UE - RNC)
Iub(NodeB-RNC)
RNCP UPTNCP
ATM
Physical
NBAP FP
AAL-5 AAL-2AAL-5
SSCOP
SSCF-UNI
SSCOP
Q.2150.2
Q.2630.1
Radio
Network
Transport
ALCAP
(Q.AAL-2)
Iur
(RNC - RNC)
SCTP
M3UA M3UA
SSCOP
SSCF-NNI
MTP3b
Q.2630.1
MTP3b
IP
AAL-5
ATM
Physical
RNCP
AAL-5
UPTNCP
SSCOP
SSCF-NNI
Q.2150.1SCCP
IP
SCTP
AAL-2
Iu Data
PlaneALCAP(Q.AAL-2)RNSAP
3GPP Protocols: Multiple Protocol Stacks to Support
The 3GPP specifications define a set of protocols for communication within and
between UMTS W-CDMA radio access network elements. These protocols
manage control-plane functions (for example, signalling required for base station
handover) and user-plane functions (for example, ATM-based multiplexing of
voice and data streams from multiple sources).
The 3GPP protocols sit above the ATM adaptation layers (AAL-2 and AAL-5) and
operate across the Iub, Iu, and Iur interfaces.
• The Iub is a physical communication interface between the base station
(Node B) and the Radio Network Controller (RNC). Connection
establishment (discussed later) is a 3-stage process that results in a Radio
Access Bearer (RAB) between the RNC and user equipment (UE). The
RAB provides voice and data connectivity to the UE. A different protocol
stack is needed for each stage of operation, either Node B - RNC, or UE -
RNC.
• The Iu is the communication interface between the RNC and the Core
Network Interface. It supports different protocol stacks for interfacing with
either circuit-switched (for example, PSTN) or packet-switched (for
example. Internet) networks.
• The Iur is the communication interface between adjacent RNC.
It is beyond the scope of this paper to examine these protocols in detail. However,
one message is clear: 3GPP protocols are very complex!
3G Challenges:3G Challenges:
Frequently Asked QuestionsFrequently Asked Questions
“ATM is new compared to 2G”
Q1. How can I verify that our ATM links are working on our new equipment?
“3G protocols are very complex and still evolving!”
Q2. How can I ensure the quality of each protocol layer independently,
together, and over time?
“We don’t have a Node B / RNC / MSC in our lab”
Q3. How can I verify that different pieces of equipment will inter-work?
“Quality of the voice and data services is crucial!”
Q4. How can I verify that connections are set up correctly across the
network, especially for new features like diversity?
“We need to understand what happens under load”
Q5. How can I create extreme levels of network traffic to ensure the
equipment or service meets customer expectations?
“ATM is new compared to 2G”
Q1. How can I verify that our ATM links are working on our new equipment?
“3G protocols are very complex and still evolving!”
Q2. How can I ensure the quality of each protocol layer independently,
together, and over time?
“We don’t have a Node B / RNC / MSC in our lab”
Q3. How can I verify that different pieces of equipment will inter-work?
“Quality of the voice and data services is crucial!”
Q4. How can I verify that connections are set up correctly across the
network, especially for new features like diversity?
“We need to understand what happens under load”
Q5. How can I create extreme levels of network traffic to ensure the
equipment or service meets customer expectations?
Development and Deployment Challenges
Some of the technical challenges for 3G equipment developers and service providers
include:
• The migration from traditional 2G network infrastructure to an ATM-based
transport infrastructure: ATM connectivity needs to be verified as well as more
complex functions, such as QoS and diversity.
• Complex and evolving 3GPP protocols: designers need to verify individual
protocols and the way they interact with the rest of the protocol stack. As
standards evolve, designs need to be modified and verification tests repeated.
• Time to market issues mean that the various RAN devices (Node B, RNC) are
being developed in parallel by different design teams. It is therefore very difficult
to completely verify the behavior of the equipment under development.
• Successful connection establishment requires a large number of 3GPP and ATM
signalling protocols to operate and interact correctly. Due to the higher
performance and reliability requirements for 3G, compared to 2G, advanced
features such as diversity handover and multi-diversity also need to be designed
and verified.
• Equipment and network performance are important issues. It is not sufficient to
know that your 3G components and overall system function correctly. Even if the
system works flawlessly in a functional sense, it will not be useful commercially
if it can only support a small number of users. 3G network elements and the entire
3G RAN need to handle a large number of voice and data services reliably under
normal and high-load conditions. Performance benchmarking of a piece of
equipment or trial network is generally carried out under extreme load conditions.
Functional TestingFunctional Testing
4. Advanced Connection Testing
5-Stage RAN Testing Methodology5-Stage RAN Testing Methodology
• Operation under
realistic & extreme
conditions
• Load generation of
signalling & data
2. Protocol Verification
3. Basic Connection Testing
5. Load Generation
1. Transport Layer Verification
• SONET/SDH
• ATM & AAL
functions
• 3G protocols
• PDU formats,
state machine
operations
• Single voice or
data channel
• Iub, Iu, Iur • System testing
• Multiple channels
• Mix of signalling
t Dynamic standards specification process
t Aggressive product development timeframes
t Incremental functionality and performance
System Debugging &
Regression Testing
Performance TestingPerformance Testing
Systematic Test Methodology: RAN Testing Phases
Due to the complexity of UMTS W-CDMA systems, large hardware, software, integration,
and QA teams are required to develop them. Development of 3G systems can be broken
into the following major stages:
• Individual development of hardware, Field Programmable Gate Array (FPGA), and
software modules
• Integration of hardware and software modules to form a component
• Debugging and verification of individual components
• Integration and verification of 3G systems made from these components
• Performance testing of individual components and the system as a whole
• Guaranteeing conformance and interoperability
The debugging and verification of components that result from the product development
identified above follows a progression. We have characterized the progression into five
major stages:
1. Transport Layer Verification
2. Protocol Verification
3. Basic Connection Testing
4. Advanced Connection Testing
5. Load Generation
Once project teams deliver the first generation hardware, they usually go on to fix bugs and
implement enhancements that were not addressed in the first version due to time-to-market
considerations. There is a continuous cycle of debugging and regression testing through the
5-stage testing procedure.
Agilent Technologies
3G Test Solutions
Component Test
l RF design libraries, signal generators,
vector analyzers
Base Station and Mobile Station Test
l Transmitter testers, power meters,
mobile parametric test set
RF Network Optimization
l Drive test solution
RAN Infrastructure Development Test
l 3GTS (3G Test System)
Solutions and Services
l Consulting services, product and technology training
Component Test
l RF design libraries, signal generators,
vector analyzers
Base Station and Mobile Station Test
l Transmitter testers, power meters,
mobile parametric test set
RF Network Optimization
l Drive test solution
RAN Infrastructure Development Test
l 3GTS (3G Test System)
Solutions and Services
l Consulting services, product and technology training
3G Test System (3GTS)
Product Features
For Developers of
Radio Access Networks
Multiple High-speed ATM Interfaces
l 1.5 Mbs to 622 Mbs, supporting AAL-2, AAL-5
Monitor, Simulate, and Emulate:
l Node B, RNC, CN equipment
l Iu, Iub, Iur interfaces
l Transport, Control, and User planes
Multi-channel, Multi-port, Multi-user
l Simultaneous testing across interfaces of the
complete 3G network
Connection Verification
l Simultaneous connections; Circuit and
packet data delivery; Diversity; Handover
Multiple High-speed ATM Interfaces
l 1.5 Mbs to 622 Mbs, supporting AAL-2, AAL-5
Monitor, Simulate, and Emulate:
l Node B, RNC, CN equipment
l Iu, Iub, Iur interfaces
l Transport, Control, and User planes
Multi-channel, Multi-port, Multi-user
l Simultaneous testing across interfaces of the
complete 3G network
Connection Verification
l Simultaneous connections; Circuit and
packet data delivery; Diversity; Handover
3GTS Hardware Platform
Agilent Products
l E4210B Form-13
Mainframe VXI Chassis
l E5161A Port Bundles:
l E4209B Cell Protocol Processor
l ATM LIF (option from
1.5 Mb/s to 622 Mb/s)
l E5162A Protocol Emulator
l E5160B UMTS W-CDMA
Test Software
Agilent Products
l E4210B Form-13
Mainframe VXI Chassis
l E5161A Port Bundles:
l E4209B Cell Protocol Processor
l ATM LIF (option from
1.5 Mb/s to 622 Mb/s)
l E5162A Protocol Emulator
l E5160B UMTS W-CDMA
Test Software
Monitor
Keyboard
UnixController
SCSIController
CellProtocolProcessor
ProtocolEmulator
ATMLineInterface
Port BundleSystem
Control
Agilent E5160B UMTS W-CDMA:
Analysis using the GUI
3GTS User Environment
Open Test Methodology for Your Test Management SystemOpen Test Methodology for Your Test Management SystemOpen Test Methodology for Your Test Management System
Regression Tests
System Under Test
3GTS
3G-LIF
UPE
l Unrestricted test
methodology
l Low-level protocol
layer access
l High- performance
operational
interface
l Optical and
electrical Interfaces
from 1.5Mbsto
622 Mbs
l Unrestricted test
methodology
l Low-level protocol
layer access
l High- performance
operational
interface
l Optical and
electrical Interfaces
from 1.5Mbsto
622 Mbs
GUI
3GTS
System Under
Test
Control
LAN
Test
Access
Customer Test
Environment
Part 2: Frame Protocol
About Frame Protocol
l Where it is used; What it does
l Transport channels; transport blocks; frame formats
Functions of FP
l Data transport; RNC flow control;
Node B timing alignment
Testing Issues
l Using 3GTS FP Emulation
About Frame Protocol
l Where it is used; What it does
l Transport channels; transport blocks; frame formats
Functions of FP
l Data transport; RNC flow control;
Node B timing alignment
Testing Issues
l Using 3GTS FP Emulation
Frame Protocol (FP) is a Layer-1 protocol handled by the Node B (also called
radio base station). FP provides an important synchronization function between
higher-layer radio access protocols (for example, MAC, RLC) and the timing
requirements of the radio transmission medium.
In this section, we will examine how the Node B translates air interface (RF)
frames into FP frames. We will explain FP concepts, such as the TTI parameter,
and node/channel synchronization. We will also provide examples of testing
techniques designed to verify critical aspects of an FP implementation.
About the Uu / Node B / Iub
Iub
l ATM interface between Node B and RNC
Iub
l ATM interface between Node B and RNC
Uu
l Air interface between UE and Node B
Uu
l Air interface between UE and Node B
Node B
l Maps air interface (Uu) to ATM interface (Iub)
Node B
l Maps air interface (Uu) to ATM interface (Iub)
Node B (also called the Base Station Controller or Radio Base Station)
A cell refers to the geographical area covered by a “base station”. The user communicates via one
or more cells in order to achieve reliable access to the core network. In 3GPP terminology, the
Node B is the network element that performs the radio base station function. There is one Node B
network element per cell. It connects to the UE via the Uu (air) interface and to the RNC via the
Iub interface. The Node B is the “gateway”between the User Equipment and the Radio Network
Controller. It performs a translation function between the air (RF) interface and the wireline (Iub)
interface.
While the RNC controls a number of Node Bs, and is largely responsible for handover decisions
between cells, the Node B manages power control within a cell. For example, the Node B switches
power from one directional antenna to another as the UE moves around within the cell.
Because the Node B sits between the wireless and the wireline parts of the radio access network, it
is responsible for timing synchronization between two transmission media that have very different
characteristics. Synchronization plays a role in both the uplink (UE to UTRAN) and downlink
(UTRAN to UE) directions.
Note 1 In 3GPP terminology, the Node B and the RNC are referred to collectively as the UTRAN
(UMTS Terrestrial Radio Access Network). 3GPP is the 3rd Generation Partnership Project –
responsible for co-ordinating the definition of UMTS/W-CDMA standards.
Note 2 The 3GPP defines two radio access modes: FDD and TDD. Frequency Division Duplexing
(FDD) uses different frequency bands for the uplink and downlink directions. Time Division
Duplexing (TDD) interleaves uplink and downlink traffic over the same frequency band. FDD and
TDD have slightly different synchronization requirements and procedures. Because FDD came
earlier than TDD in terms of equipment development and network field trials, this application note
will focus on FDD synchronization procedures.
About Frame Protocol
UP
Node B RNC
Uu Iub
Uplink
Downlink
MAC
air
RLC
MAC
FP
RLC
FP
AAL-2
ATM
PHY
AAL-2
ATM
PHY
air
Layer-3
Layer-2
Layer-1
ATM
Transport
Uu (Radio) Stratum
FP is a Layer-1 protocol over the Iub interface:
l Air interface frames (Uu side) map to FP frames (Iub side of Node B)
l Performs a synchronization function between higher-layer protocols
(RLC/MAC) and the radio transmission medium
FP is a Layer-1 protocol over the Iub interface:
l Air interface frames (Uu side) map to FP frames (Iub side of Node B)
l Performs a synchronization function between higher-layer protocols
(RLC/MAC) and the radio transmission medium
UE
Layer-3
Layer-2
Layer-1
About Frame Protocol
Frame Protocol (FP) is used to transport both user and control plane traffic over
the Iub interface, between the UE and RNC. The protocol stack is shown above.
Frame Protocol acts as a synchronization interface between the higher layer radio
protocols and the timing requirements of the radio transmission medium. The
transmission characteristics of FP traffic over the Iub interface are directly related
to the transmission characteristics of radio frames over the Uu interface.
Air interface frames are sent at a constant 10 ms time interval, while MAC/FP
layer frames are sent at 10, 20, 40, or 80 ms intervals (see section on
Synchronization Parameters later).
Note FP is also sometimes referred to as Frame Handling Protocol (FHP) in
earlier versions of the 3GPP documents.
About Protocol Layers
In 3GPP terminology, the flow of messages between the UE and the UTRAN,
required to control the radio access network, is called the Uu Stratum. [The flow
of messages between the UTRAN and the CN (Core Network) is called the Iu
Stratum.]
3GPP documents also use the term radio interface to refer specifically to Layers
1, 2, and 3 of the Uu stratum. FP is a Layer-1 protocol in the Uu (radio) stratum or
radio interface. The radio interface protocols are transported by the ATM transport
infrastructure [AAL/ATM (Layer-2) and PHY (Layer-1)].
UE
Uplink:
l DCH (Dedicated Channel)
l RACH (Random Access Channel)
Transport Channels
Node B RNC
IubUu
Dedicated
Common
(CCH)
Dedicated
Common
(CCH)
Downlink:
l DCH (Dedicated Channel)
l FACH (Forward Access Channel)
l PCH (Paging Channel)
l BCH (Broadcast Channel)
FP Transport Channels
l Define how & with what
characteristics data are
transferred
l e.g. Dedicated & Common
channels
l They map to
Physical Channels
on the air interface
Frame Protocol
l Provides an information
transfer service for the
MAC layer
l Logical Channels
used by the MAC layer;
define what type of
information is transferred
FP Transport Channels
l Define how & with what
characteristics data are
transferred
l e.g. Dedicated & Common
channels
l They map to
Physical Channels
on the air interface
Frame Protocol
l Provides an information
transfer service for the
MAC layer
l Logical Channels
used by the MAC layer;
define what type of
information is transferred
Transport Channels
Frame Protocol provides information transfer services to the MAC and higher layers. In 3GPP
terminology, the term transport channel is used to describe how and with what characteristics data
is transferred over the radio interface.
A transport channel is a uni-directional connection set up to provide a particular transport service
for higher layers [see next page for DCH]. The most important characteristic is whether the channel
is a common channel or a dedicated channel—that is, whether it is for use by multiple UEs or one
particular UE. Other characteristics are related to the physical layer—whether transmission is FDD
or TDD, the TTI, and so on.
The diagram shows a typical cell, and the FP transport channels necessary for one ’call’ to a UE.
(A cell is the area covered by a particular Node B). Two basic categories of transport channel are:
• Dedicated channels: transport channels that exist for the lifetime of the call only, and may
be duplicated in multiple cells depending on the geographical location of the UE; dedicated
to a specific UE.
• Common channels : transport channels that are permanent and specific to that cell; not
dedicated to a specific UE.
The common channels are used for signalling between the RNC and the UE to set up the dedicated
channels used for data traffic.
About Logical and Physical Channels
The MAC layer deals with logical channels that specify what type of information is transferred
(for example, dedicated traffic, dedicated control, common control information). The air interface
provides physical channels that are defined by specific characteristics of the RF encoding method
(see Reference Information at the end of this application note).
Dedicated to a Specific UE
l Transport channels that exist for the lifetime of the connection only
l May be duplicated in multiple cells (depending on the location of the UE)
l DCH channels can span a set of MAC PDUs (TBS)
l Multiple DCH channels can be combined in a single FP frame
Dedicated to a Specific UE
l Transport channels that exist for the lifetime of the connection only
l May be duplicated in multiple cells (depending on the location of the UE)
l DCH channels can span a set of MAC PDUs (TBS)
l Multiple DCH channels can be combined in a single FP frame
Dedicated (DCH) Channels
CRC = Cyclic Redundancy Check
FT = Frame Type (data/control)
CFN = Connection Frame Number
TFI = Transport Format Indicator (one TFI per TBS)
TB = Transport Block (MAC PDU)
TBS = Transport Block Set (corresponds to a DCH channel)
UL/DL = Uplink/Downlink
Header
-CRC
TB#1…#mFT CFN TFI#1…#n
UL/DL
-specific
Payload
-CRC
Header Payload
e.g. Uplink: Quality
Estimate (QE)
Optional
FP Frame Formats (DCH-UL/DL)
Used for handover decisions
and macro-diversity QoS
There are two types of FP frames: Dedicated Channel (DCH), and Common
Transport Channel (CCH).
DCH frame protocol provides the following services:
• Transport of Transport Block Sets (TBS) across the Iub (Base Station and
Radio Network Controller interface) and Iur (Core Network and Base Station
interface).
• Transport of outer loop power control information between the Serving
Radio Network Controller (SRNC) and the Node B
• Support of transport channel synchronization mechanism
• Support of node synchronization mechanism
• Transfer of Downlink Shared Channel (DSCH) Transport Format Indicator
(TFI) from the SRNC to Node B
• Transfer of receive timing deviation from the Node B to the SRNC
CCH provides the following services:
• Transport of TBS between the Node B and the Controlling Radio Network
Controller (CRNC) for common transport channels
• Support of transport channel synchronization mechanism
• Support of node synchronization mechanism
FP Functions: Data Transport
Transport Block
l Basic unit of information handed down from the MAC layer to FP
l Transport Block is also called MAC PDU
l Multiple MAC PDUs can be multiplexed into a single FP frame
l Transport Block Set (TBS)
l A set of MAC PDUs using the same transport channel
for example, DCH or CCH (FACH, RACH)
Transport Block
l Basic unit of information handed down from the MAC layer to FP
l Transport Block is also called MAC PDU
l Multiple MAC PDUs can be multiplexed into a single FP frame
l Transport Block Set (TBS)
l A set of MAC PDUs using the same transport channel
for example, DCH or CCH (FACH, RACH)
DCH#1 DCH#2 DCH#3 RACH#1 RACH#2FP Frames
MAC PDUs
Transport
Block
Transport
Block Set
DCH Frame CCH Frame CCH Frame
Transport
Block Set
Frame Protocol Data Transport
The Transport Block (TB) is the unit of data from higher-layer protocols that is
inserted into an FP data frame. It is often referred to as a MAC PDU. Multiple
transport blocks from higher layer protocols can be multiplexed into a single data
frame payload. A set of transport blocks that corresponds to one transport channel
is called a Transport Block Set (TBS).
The Frame Protocol Transport Format Indicator (TFI) parameter contains
information about the composition of the payload, for example how many
transport blocks it includes and the transport block sizes.
Common channel data (CCH) are not multiplexed into FP frames. In this case,
the FP frame contains one TFI parameter and one TBS (CCH payload).
Multiple dedicated data channels (DCH) can be multiplexed into a single FP
frame. In this case, there will be multiple TFIs in the FP frame header: one TFI per
TBS. Each TBS corresponds to one DCH channel.
Note TFI values are not included in the FP specification. This information is
vendor dependent. A TFI value that relates to one vendor’s equipment may have
an entirely different meaning for another vendor’s equipment.
Synchronization Parameters
FP Node Parameters
l TTI (Transmission Time Interval)
l The MAC-to-Layer-1 frame transmission frequency (UE & UTRAN)
l TTI can be 10, 20, 40, or 80 ms
l BFN (Node B Frame Number)
l Node B counts radio frame TTIs and assigns each frame a modulo 4096
(12-bit) identifier
l RFN (RNC Frame Number)
l RNC maintains its own modulo 4096 (12-bit) radio frame count
FP Node Parameters
l TTI (Transmission Time Interval)
l The MAC-to-Layer-1 frame transmission frequency (UE & UTRAN)
l TTI can be 10, 20, 40, or 80 ms
l BFN (Node B Frame Number)
l Node B counts radio frame TTIs and assigns each frame a modulo 4096
(12-bit) identifier
l RFN (RNC Frame Number)
l RNC maintains its own modulo 4096 (12-bit) radio frame count
FP Frame Header Fields
l CFN (Connection Frame Number)
l Modulo 256 (8-bit) count of the BFN (modulo 4096 for PCH)
l Provides common Layer-2 frame numbering between UE and UTRAN
l TFI (Transport Format Indicator)
l Describes the transport block length and transport block set size
l Not standardized
FP Frame Header Fields
l CFN (Connection Frame Number)
l Modulo 256 (8-bit) count of the BFN (modulo 4096 for PCH)
l Provides common Layer-2 frame numbering between UE and UTRAN
l TFI (Transport Format Indicator)
l Describes the transport block length and transport block set size
l Not standardized
Network/Node Parameters
• TTI (Transmission Time Interval)
The MAC/Layer-1 frame transmission frequency - the TTI - can be 10, 20, 40, or
80 ms. It is the transfer rate of MAC-layer frames within both the UE (MAC/air interface)
and UTRAN (MAC/FP). Note that RF physical-layer frames are sent across the air
interface at a constant rate of 10 ms, independent of the TTI.
• BFN (Node B Frame Number)
The Node B counts the FP frame transmission periods (TTI) and assigns each frame a
modulo 4096 (12-bit) identifier. This identifier is the BFN.
• RFN (RNC Frame Number)
The RNC maintains its own 12-bit frame count. It also calculates the phase offset of the
RFN relative to the BFN for each Node B connected to it (see description of node
synchronization procedure later).
FP Frame Header Parameters
• CFN (Connection Frame Number)
The CFN is associated with the same MAC (Layer-2) Transport Block Set at both the UE
and UTRAN (Uu and Iub sides of the Node B). It is passed down to
Layer-1, and indicates on which radio frame the first data for a particular channel was
received in the uplink direction, or will be transmitted in the downlink direction. The CFN
is the modulo 256 (8-bit) of the BFN (modulo 4096 for PCH, Paging Channel).
• TFI (Transport Format Indicator)
This describes the transport block length and TBS size. This is represented as the local
number of the transport format.
Node Synchronization Process
Node B
Iub
BFN#1
RNC
RFN
3. RNC calculates
BFN#1 offset
relative to RFN
1. DL Node Synch Control Frame ( t1 )
2. UL Node Synch Control Frame ( t2, t3 )
Node B
BFN#2
Node B - RNC Synchronization
l RNC is connected to multiple Node Bs, each with a different BFN
l 1. RNC sends a downlink node synchronization control frame to Node B#1
l 2. Node B#1 replies with an uplinknode synchronization control frame
l 3. RNC determines the offset between its RFN and the BFN#1
From this point on, the RNC knows what the BFN is for Node B#1
l Repeat the BFN-RFN offset calculation for each Node B
Node B - RNC Synchronization
l RNC is connected to multiple Node Bs, each with a different BFN
l 1. RNC sends a downlink node synchronization control frame to Node B#1
l 2. Node B#1 replies with an uplinknode synchronization control frame
l 3. RNC determines the offset between its RFN and the BFN#1
From this point on, the RNC knows what the BFN is for Node B#1
l Repeat the BFN-RFN offset calculation for each Node B
Repeat for BFN#2…#n
t1 = the RFN when the RNC sent the DL frame
t2 = the BFN when the Node B received the DL frame
t3 = the BFN when the Node B sent the UL frame
Frame Protocol Synchronization
There are two types of synchronization control frames – node synchronization and
channel synchronization.
Node Synchronization
The RNC- Node B synchronization process is based on the BFN of the Node B.
Since different Node Bs have different BFNs, the RNC adjusts its timing (RFN) to
that of each of its Node Bs. To perform this synchronization:
1. The RNC sends a downlink node synchronization control frame to the Node
B, with its RFN as the only parameter.
2. The Node B replies with an uplink node synchronization control frame, which
adds its own BFN at the time the frame was received, and also the BFN at the
time it responded.
3. When the RNC receives the uplink node synchronization control frame, it
determines the phase difference between its RFN and that of the Node B BFN.
From this point on, the RNC knows that the BFN is for that Node B.
Channel Synchronization
Channel synchronization follows on from node synchronization. Knowing the
BFN means the RNC also knows the CFN used for any given channel for that
Node B. This is because the CFN is the modulo 256 (4096 for PCH, Paging
Channel) of the BFN. However, this is not enough information for the RNC to
ensure that any frames it transmits to the Node B will be accepted, as each channel
may have different characteristics and different sized reception windows.
Therefore the channel synchronization process must be completed on each channel
prior to data transmission over it.
FP Functions: Downlink Flow Control
Node B
l Sends frames to UE at
the TTI, but...
l accepts frames 'just in
time' from the RNC
Frames must arrive
within reception
window
l Related to the
frame’s CFN &
Node B’s BFN
l Note Window may be
different for each
transport channel
Node B
l Sends frames to UE at
the TTI, but...
l accepts frames 'just in
time' from the RNC
Frames must arrive
within reception
window
l Related to the
frame’s CFN &
Node B’s BFN
l Note Window may be
different for each
transport channel
Reception
Window
DL frame#2
Node B RNCIub
DL frame#1 DL frame#2
Node B discards DL
frames that arrive
outside window
Downlink
BFN
TOAWS TOAWE
+TOA -TOA
TOA = Time of Arrival
TOAWS/E = TOA Window Start/End
CFN
Node B sends timing
adjustment control
frame to RNC
UE
CFN
Downlink Flow Control
In the downlink direction (RNC to Node B), synchronization is necessary simply
for flow control. The Node B transmits frames towards the UE at the regular TTI.
However, it accepts frames from the RNC in a 'just in time' manner. This creates
some frame buffering requirements on the Node B. It also places limitations on
how early or late the RNC can send frames to the Node B.
The RNC must send a frame to a Node B within a certain time window that relates
to the frame’s CFN. The frame must arrive at the Node B just before that slot
commences. If it arrives outside the arrival time window, that is, it is too early or
too late, the Node B discards the frame.
The Time of Arrival (TOA) parameter has a positive value if the frame arrived
before the TOA Window End (TOAWE). It has a negative value if the frame
arrived after the TOAWE.
When the Node B rejects a frame, it issues a timing adjustment control frame,
indicating to the RNC the frame that was mis-timed and by what margin.
FP Functions: Uplink Timing Alignment
UE May Connect to RNC via Multiple Node Bs
l A frame from the UE arrives at staggered arrival times via each path
l RNC only accepts frames arriving within time window (related to RFN)
UE May Connect to RNC via Multiple Node Bs
l A frame from the UE arrives at staggered arrival times via each path
l RNC only accepts frames arriving within time window (related to RFN)
RNC
RFN
Iub
Node BUu
Node B
Node B
UL frame (c)
UL frame (b)
UL frame (a)
Path (b)
Path (a)
Path (c)
RNC discards UL
frames that arrive
outside window
UL frame
Reception
Window
UE
CFN
RNC initiates
timing
synchronization
process
Uplink Timing Alignment
In the uplink direction (Node B to RNC), flow control is not an issue. However,
timing alignment between Node Bs is necessary because a UE may be transmitting
to several
Node Bs at once. This occurs in soft handover (as the UE moves from one cell to
another) and in macro-diversity (the UE transmits data over multiple Node B paths
and the RNC accepts data from the path with the best QoS).
Depending on the location in relation to Node Bs, a frame from a UE could be
received at the RNC from several Node Bs at slightly staggered arrival times. In
order to be able to correctly identify frames with the same CFN on each Node B
path, the RNC only accepts frames from the Node B(s) that arrive within a
reception window for a particular CFN.
The RNC maintains its own RFN to do this (based on the BFN - see Node
Synchronization, discussed later). If the Node B transmits a dedicated channel
frame that falls outside the RNC's reception window, the RNC rejects the frame
and attempts to re-synchronize with that Node B.
Note Uplink synchronization is necessary only for dedicated channels (DCH
frames). Since common channels are specific to a certain radio cell, no duplication
of CCH frames from multiple Node Bs in the RNC is possible.
Transport Layer Verification
l Layer 1 framing, alarms, errors
l ATM SAR, Policing
Protocol Verification
l Simulation - packing/unpacking,
ranges, states, timers, error cases
l Emulation - layer(s) responding to
specs, inter-working
Basic / Advanced Connection Test
l Diversity handover
l Circuit and packet data quality
l Simultaneous bearer establishment
Transport Layer Verification
l Layer 1 framing, alarms, errors
l ATM SAR, Policing
Protocol Verification
l Simulation - packing/unpacking,
ranges, states, timers, error cases
l Emulation - layer(s) responding to
specs, inter-working
Basic / Advanced Connection Test
l Diversity handover
l Circuit and packet data quality
l Simultaneous bearer establishment
RNC and Node B Functional Testing:
Test Setup
RNC Functional Test ConfigurationRNC Functional Test Configuration
IuIub
CNRNCNode B
UE
Uu
Test Equipment
UE
Uu
RNC
Iub
Node B
UE
Uu
UE
Uu Test Equipment
Multiple ConnectionsMultiple Connections
RNC and Node B Functional Testing: Test Setup
The first 3 stages of testing can all use a similar test setup. The basic procedure is
to “surround” the device under test by connecting the test equipment to each type
of interface. For example,
• Test the RNC by connecting the test equipment to the Iub and Iu interfaces
• Test the Node B equipment by connecting the test equipment to the Iub
interface only
The basic requirements for the test equipment include:
• Simulation (stimulus/response testing)
• Traffic generation (user data and control plane signalling)
• Protocol analysis
• Emulation (protocol state machine testing)
• Emulation of underlying protocol layers (for example, Frame
Protocol) in order to fully test the higher layer protocols (for
example, RLC/MAC)
• Tester acts as a piece of equipment that is not available, for
example, the Node B and CN functions required to fully evaluate
the RNC under test
We will now look at some examples of how 3G RAN functions and performance
are verified. We will focus on the role performed by the Node B in synchronizing
the air interface (Uu) to the ATM interface (Iub).
E5162A Protocol Emulator Features
l Dedicated hardware solution for real-time handling of FP
frames over AAL-2/ATM
l Handles TTIs of 10, 20, 40, 80 ms
l Supports higher-layer encodes and decodes over FP
Uplink/Downlink Emulation
E5162A Protocol Emulator Features
l Dedicated hardware solution for real-time handling of FP
frames over AAL-2/ATM
l Handles TTIs of 10, 20, 40, 80 ms
l Supports higher-layer encodes and decodes over FP
Uplink/Downlink Emulation
Frame Protocol Emulation Testing Using
the Agilent 3GTS
FP Emulation Testing
The Agilent E5160B 3GTS software application operates with the Agilent E5162A
Protocol Emulator module to provide real-time FP emulation that can handle 10
ms TTIs. The product (currently) emulates the Node B only, performing three
functions:
• DOWNLINK SYNCHRONIZATION: The emulation maintains a BFN,
answers synchronization control frames from the RNC, and issues timing
adjustment control frames as appropriate.
• DOWNLINK DATA TRANSPORT: Generates UPE events containing any
valid data frames received from the RNC.
• UPLINK SYNCHRONIZATION: Synchronizes transmission of dedicated
channel data frames according to its BFN so that they will be accepted by the
RNC.
Note that uplink transmission of common channel data frames is asynchronous and
so no emulation is necessary.
Of these three functions, the first two are combined into the DOWNLINK
EMULATION, and the third is catered for by a number of functions termed
UPLINK EMULATION. The 3GTS online documentation covers the detailed use
of these functions.
User-Definable Parameters
l FP (transport channel, reception window)
l AAL-2 (CID), ATM (VPI, VCI)
Emulates Node & Channel Synchronization
l Responds to received DL node or channel synch
control frames
Analyzes DL Frame Arrival Times
l Checks TOA of received frames against the user-
defined window
l Sends timing adjustment control frames for out-
of-synch frames
l Retrieves frame & connection parameter
information
User-Definable Parameters
l FP (transport channel, reception window)
l AAL-2 (CID), ATM (VPI, VCI)
Emulates Node & Channel Synchronization
l Responds to received DL node or channel synch
control frames
Analyzes DL Frame Arrival Times
l Checks TOA of received frames against the user-
defined window
l Sends timing adjustment control frames for out-
of-synch frames
l Retrieves frame & connection parameter
information
Downlink Emulation Capabilities
ProtocolEmulator
ATMLineInterface
PE module
analyzes received
frame timing and
responds to DL
synch control
frames
Downlink Emulation
The 3GTS can be used to emulate the Node B side of a downlink transport channel
– for instance a FACH, PCH or DCH DL transport channel. FP transport channel,
AAL-2, and ATM parameters can be defined by the user.
Whenever a node synch or channel synch control frame (from the RNC) is
received by the DL emulation, the emulation automatically responds with an
uplink node synch or channel synch control frame.
Whenever a data frame is received, the DL emulation checks that it has arrived
within its reception window (specified by the window parameter). If it has arrived
in the window, the user programming environment is notified of the reception of a
valid data frame by a UPE event. The program can then retrieve and report on the
frame and associated connection parameters.
User-Definable Parameters
l FP (TTI, CFN)
l AAL-2 (CID), ATM (VPI, VCI)
l Injects CFN and header-CRC errors for stress testing
l Supports Silent Mode and Normal Mode DCH
Transport
l Normal Mode: User-definable ‘keep-alive’ frames are
sent when there is no user data
Emulates Synchronized DCH Transport
l User-definable DCH user traffic frames
l Sends frames Immediately or user-defined CFN
l Accurate frame scheduling for stress testing
l 256-slot Tx frame buffer with 10 ms slot resolution
User-Definable Parameters
l FP (TTI, CFN)
l AAL-2 (CID), ATM (VPI, VCI)
l Injects CFN and header-CRC errors for stress testing
l Supports Silent Mode and Normal Mode DCH
Transport
l Normal Mode: User-definable ‘keep-alive’ frames are
sent when there is no user data
Emulates Synchronized DCH Transport
l User-definable DCH user traffic frames
l Sends frames Immediately or user-defined CFN
l Accurate frame scheduling for stress testing
l 256-slot Tx frame buffer with 10 ms slot resolution
Uplink Emulation Capabilities
ProtocolEmulator
ATMLineInterface
PE module
synchronizes FP
transmission times
and generates ‘keep-
alive’ frames
UPE libraries are
available for encoding
higher-layer protocols
(RLC/MAC) over FP
Uplink Emulation
The 3GTS can be used to emulate the Node B side of an uplink transport channel.
The TTI and CFN for FP DCH transport channels, as well as AAL2 and ATM
parameters, can be defined by the user.
The emulation supports two modes of DCH UL transport channel operation– silent
mode, where if there is no traffic from the user, no data frames will be sent to the
RNC, and normal mode, where in the absence of user traffic, a ‘keep alive’ or
‘empty’ frame must be transmitted. This empty frame could be used by the RNC
to calculate handover of the dedicated channel between cells, etc.
The UL emulation also generates user traffic DCH UL frames as opposed to the
automatically generated empty frames. Transmission time can be immediate or at
a particular CFN transmission slot (10 ms interval) for that frame.
Synchronized transmission involves buffering frames requested for transmission
by the user until a valid reception window is open in the RNC. That is, the user-
requested CFN must match the current BFN (which is in turn synchronized to the
RNC’s RFN by the node synchronization procedure).
Summary:
3G Development & Deployment Issues
Business & Technical Challenges
l Deliver Next-Generation Mobile Voice and Data Services:
l Develop new 3G RAN Infrastructure
l Deal with new Technologies (ATM, IP, 3GPP)
Advantages of a Systematic Test Methodology
l Develop the Best Product or Service Faster :
l Accelerate Time to Market
l Reduce Risks for Development/Deployment/Investment
Business & Technical Challenges
l Deliver Next-Generation Mobile Voice and Data Services:
l Develop new 3G RAN Infrastructure
l Deal with new Technologies (ATM, IP, 3GPP)
Advantages of a Systematic Test Methodology
l Develop the Best Product or Service Faster :
l Accelerate Time to Market
l Reduce Risks for Development/Deployment/Investment
Conclusions
Manufacturers and service providers are racing to develop 3G wireless systems to
support the exploding demand for global, transparent wireless voice and data
services. 3G systems will provide increased user capacity, mobile data
transmission and Web access at rates of up to 2 Mb/s, and support for new
multimedia wireless devices.
To deliver these advances, however, the RAN must be able to manage a wide
range of tasks for each 3G user, including access, roaming, transparent connection
to the public switched telephone network and the Internet, and Quality of Service
(QoS) management for data and Web connections.
A systematic testing methodology allows 3G manufacturers to speed development
of RAN software and equipment, such as base station and radio network
controllers, and core network interfaces. Wireless service providers can use a
similar testing strategy for independent evaluation of vendor equipment to guide
purchasing decisions, and to evaluate field trial networks.
3G Test System3G Test System
www.agilent.com/comms/3GTS
Protocols
AAL-2 = ATM Adaptation Layer, Type 2 (for voice and low-bit-rate data)
AAL-5 = ATM Adaptation Layer, Type 5 (for packet data and ATM signalling)
ALCAP = 3GPP Adoption of Q.AAL-2 Signalling Protocols
ATM = Asynchronous Transfer Mode
FP = Frame (Handling) Protocol; cch/dch = control/data channel
GTP-u = GPRS Tunneling Protocol (Iu)
IP = Internet Protocol
Iu UP = Iu User Plane
M3UA = SS7-MTP-3-User Adaptation Layer
MAC = Media Access Control
MTP-3b = Message Transfer Part Level 3 (Broadband)
NBAP = Node B Application Protocol
NNI = ATM Network to Network Interface
PDCP = Packet Data Control Protocol
RANAP = Radio Access Network Application Part
RLC = Radio Link Control
RNSAP = Radio Network Subsystem Application Part
RRC = Radio Resource Control
SCCP = Signalling Connection Control Point
SCTP = Stream Control Transmission Protocol
SSCF = Service Specific Coordination Function
SSCOP = Service Specific Connection Oriented Protocol
STC = Signalling Transport Converter
UDP = User Datagram Protocol
UNI = ATM User to Network Interface
Reference Information
Topics:
l Mapping of radio interface channels: Physical / Transport/ Logical
l Uu (radio) stratum protocol encapsulations
Topics:
l Mapping of radio interface channels: Physical / Transport/ Logical
l Uu (radio) stratum protocol encapsulations
Physical/Transport/Logical Channel Mappings:
Uplink Direction (seen from the UTRAN side)
Dedicated
Channel
(DCH)
Random Access
Channel (RACH)
Common Packet
Channel (CPCH)
Transport
Channels (FP)
Physical Channels
(air I/F)
Dedicated Physical Data
Channel (DPDCH)
Dedicated Physical Control
Channel (DPCCH)
Physical Random Access
Channel (PRACH)
Physical Common Packet
Channel (PCPCH)
Common Pilot Channel (CPICH)
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. voice service
Common Control Channel (CCCH)
e.g. access request
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. limited packet data service
Logical Channels
(MAC)
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. bursty packet data (FDD mode only)
Physical/Transport/Logical Channel Mappings
The FP transport channels provide a mapping between physical channels on the air
interface, and logical channels at the higher protocol layers (MAC).
• The MAC layer deals with logical channels that specify what type of
information is transferred (e.g. dedicated traffic, dedicated control, common
control information).
• The air interface deals with physical channels that are defined by specific
characteristics of the RF encoding method. In FDD (Frequency Division
Duplex) mode, physical channels are defined by code, frequency, and
(uplink) relative phase. In TDD (Time Division Duplex) mode, physical
channels are defined by code, frequency, and time-slot.
This diagram shows the information transfer services (transport channels) that
Frame Protocol provides in the uplink direction. Commonly-used logical channels
are DCH and RACH.
Physical/Transport/Logical Channel Mappings:
Downlink Direction (seen from the UTRAN side)
Dedicated Channel
(DCH)
Forward
Access Channel
(FACH)
Paging Channel
(PCH)
Transport
Channels (FP)
Physical Channels
(air I/F)
Dedicated Physical Data
Channel (DPDCH)
Dedicated Physical Control
Channel (DPCCH)
Secondary Common Control
Physical Channel (S-CCPCH)
Primary Common Control Physical
Channel (P-CCPCH)
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. voice service
Common Control Channel (CCCH)
e.g. access request
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. limited packet data service
Logical Channels
(MAC)
Paging Control Channel (PCCH)
e.g. UE location & paging
Broadcast Control Channel (BCCH)
e.g. system/cell-specific information
Broadcast
Channel (BCH)
Downlink Shared
Channel (DSCH)
Dedicated Traffic Channel (DTCH)
Dedicated Control Channel (DCCH)
e.g. Synchronization/ shared information
Synchronization Channel (SCH)
Physical Downlink Shared Channel (PDSCH)
Acquisition Indication Channel (AICH)
Paging Indication Channel (PICH)
Physical/Transport Channel Mappings (cont.)
This diagram shows the information transfer services (transport channels) that
Frame Protocol provides in the downlink direction. Commonly-used logical
channels are DCH, FACH, PCH, and BCH.
Uu (Radio)
Stratum
Protocols
Extract From 3GTS
Online Help
l Reference information
Extract From 3GTS
Online Help
l Reference information
The 3GTS provides extensive online help, including operation instructions,
programming references, and technology reference information on 3GPP
protocols.
This diagram shows how higher-layer protocols (RLC/MAC) are mapped into FP
frames. It also shows how FP frames are mapped into the AAL-2 (CPS PKT and
PDU) layers. Note that the AAL-2 SSTED error checking layer is not used for
encapsulating FP.
This completes the Frame Protocol
Overview
UP
Node B RNC
Uu Iub
MAC
air
RLC
MAC
FP
RLC
FP
AAL-2
ATM
PHY
AAL-2
ATM
PHY
air
ATM
Transport
Uu (Radio) Stratum
UE
REFERENCES
Synchronization in UTRAN 3GPP 25.402
FP DCH spec 3GPP 25.427
FP CCH spec 3GPP 25.435

More Related Content

What's hot

3g Wireless Technology Paper Presentation
3g Wireless Technology Paper Presentation3g Wireless Technology Paper Presentation
3g Wireless Technology Paper Presentationguestac67362
 
Wireless Standards - Generations
Wireless Standards - GenerationsWireless Standards - Generations
Wireless Standards - Generationsbhadrah
 
Evolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesEvolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesAkhil Bansal
 
4 G mobile technology
4 G mobile technology4 G mobile technology
4 G mobile technologyAman Jain
 
4G Fourth generation
4G Fourth generation 4G Fourth generation
4G Fourth generation Deep Mehta
 
4 G Mobile Technology Research Paper
4 G Mobile Technology Research Paper4 G Mobile Technology Research Paper
4 G Mobile Technology Research Paperaakashmehta1993
 
Evolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesEvolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesAkhil Bansal
 
Cellular technology overview
Cellular technology overviewCellular technology overview
Cellular technology overviewLee Chang Fatt
 
Evaluation of cellular network
Evaluation of cellular networkEvaluation of cellular network
Evaluation of cellular networkMr SMAK
 
ppt on 4g in detail from og to 4g
ppt on 4g in detail from og to 4gppt on 4g in detail from og to 4g
ppt on 4g in detail from og to 4gNeeraj Dixit
 
Generations of Telecommunication
Generations of TelecommunicationGenerations of Telecommunication
Generations of TelecommunicationMahmood Showrav
 
Challenges and Opportunities for Wireless Networks
Challenges and Opportunities for Wireless NetworksChallenges and Opportunities for Wireless Networks
Challenges and Opportunities for Wireless NetworksCPqD
 

What's hot (20)

ppt on 3G network
ppt on 3G networkppt on 3G network
ppt on 3G network
 
3g Wireless Technology Paper Presentation
3g Wireless Technology Paper Presentation3g Wireless Technology Paper Presentation
3g Wireless Technology Paper Presentation
 
3g and 4g
3g and 4g3g and 4g
3g and 4g
 
3G System
3G System3G System
3G System
 
3g technologies
3g technologies3g technologies
3g technologies
 
4G Mobile Communications
4G Mobile Communications4G Mobile Communications
4G Mobile Communications
 
Wireless Standards - Generations
Wireless Standards - GenerationsWireless Standards - Generations
Wireless Standards - Generations
 
Evolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesEvolution of Wireless Communication Technologies
Evolution of Wireless Communication Technologies
 
4 G mobile technology
4 G mobile technology4 G mobile technology
4 G mobile technology
 
4G Fourth generation
4G Fourth generation 4G Fourth generation
4G Fourth generation
 
4 G Mobile Technology Research Paper
4 G Mobile Technology Research Paper4 G Mobile Technology Research Paper
4 G Mobile Technology Research Paper
 
5g
5g5g
5g
 
Evolution of Wireless Communication Technologies
Evolution of Wireless Communication TechnologiesEvolution of Wireless Communication Technologies
Evolution of Wireless Communication Technologies
 
Cellular technology overview
Cellular technology overviewCellular technology overview
Cellular technology overview
 
3G&4G
3G&4G3G&4G
3G&4G
 
Evaluation of cellular network
Evaluation of cellular networkEvaluation of cellular network
Evaluation of cellular network
 
5 g mobile system
5 g mobile system5 g mobile system
5 g mobile system
 
ppt on 4g in detail from og to 4g
ppt on 4g in detail from og to 4gppt on 4g in detail from og to 4g
ppt on 4g in detail from og to 4g
 
Generations of Telecommunication
Generations of TelecommunicationGenerations of Telecommunication
Generations of Telecommunication
 
Challenges and Opportunities for Wireless Networks
Challenges and Opportunities for Wireless NetworksChallenges and Opportunities for Wireless Networks
Challenges and Opportunities for Wireless Networks
 

Similar to 2g 3g telecommunication system

Features And Techniques Of The 3 Gpp Lte System Transmissio Nx
Features And Techniques Of The 3 Gpp Lte System Transmissio NxFeatures And Techniques Of The 3 Gpp Lte System Transmissio Nx
Features And Techniques Of The 3 Gpp Lte System Transmissio Nxntoumba
 
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...IRJET Journal
 
TCP Performance Measurement in GPRS Link Adaptation Process
TCP Performance Measurement in GPRS Link Adaptation ProcessTCP Performance Measurement in GPRS Link Adaptation Process
TCP Performance Measurement in GPRS Link Adaptation ProcessCSCJournals
 
NTT DoCoMo and the Future Implications of High
NTT DoCoMo and the Future Implications of HighNTT DoCoMo and the Future Implications of High
NTT DoCoMo and the Future Implications of HighLuke Markey
 
Efficient Vertical Handoff Management in LTE Cellular Networks
Efficient Vertical Handoff Management in LTE Cellular NetworksEfficient Vertical Handoff Management in LTE Cellular Networks
Efficient Vertical Handoff Management in LTE Cellular NetworksIRJET Journal
 
RF Planning and Optimization in GSM and UMTS Networks
RF Planning and Optimization in GSM and UMTS NetworksRF Planning and Optimization in GSM and UMTS Networks
RF Planning and Optimization in GSM and UMTS NetworksApurv Agrawal
 
A survey on LTE Architecture
A survey on LTE ArchitectureA survey on LTE Architecture
A survey on LTE ArchitectureManjunatha RK
 
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONS
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONSANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONS
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONSIRJET Journal
 
DATA COM PRESENTATION-1.pptx
DATA COM PRESENTATION-1.pptxDATA COM PRESENTATION-1.pptx
DATA COM PRESENTATION-1.pptxKelvinDube4
 
Andy sutton - Multi-RAT mobile backhaul for Het-Nets
Andy sutton - Multi-RAT mobile backhaul for Het-NetsAndy sutton - Multi-RAT mobile backhaul for Het-Nets
Andy sutton - Multi-RAT mobile backhaul for Het-Netshmatthews1
 
Site specific assessment of node b using key service quality indicators over ...
Site specific assessment of node b using key service quality indicators over ...Site specific assessment of node b using key service quality indicators over ...
Site specific assessment of node b using key service quality indicators over ...Alexander Decker
 
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...IRJET Journal
 
Interference Mitigation using Adaptive Digital Beamforming for 5G Applications
Interference Mitigation using Adaptive Digital Beamforming for 5G ApplicationsInterference Mitigation using Adaptive Digital Beamforming for 5G Applications
Interference Mitigation using Adaptive Digital Beamforming for 5G ApplicationsIRJET Journal
 
Whitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gWhitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gSaurabh Verma
 
Whitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gWhitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gSaurabh Verma
 
5G TECHNALOGY FOR MOBILE NETWORK
5G TECHNALOGY FOR MOBILE NETWORK5G TECHNALOGY FOR MOBILE NETWORK
5G TECHNALOGY FOR MOBILE NETWORKIRJET Journal
 

Similar to 2g 3g telecommunication system (20)

Features And Techniques Of The 3 Gpp Lte System Transmissio Nx
Features And Techniques Of The 3 Gpp Lte System Transmissio NxFeatures And Techniques Of The 3 Gpp Lte System Transmissio Nx
Features And Techniques Of The 3 Gpp Lte System Transmissio Nx
 
Long Term Evolution Technologies, 3G & 4G.
Long Term Evolution Technologies, 3G & 4G.Long Term Evolution Technologies, 3G & 4G.
Long Term Evolution Technologies, 3G & 4G.
 
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...
STATISTICAL ANALYSIS OF RECEIVED POWER IN AN ANTENNA DOWN- TILT ON CELLULAR N...
 
TCP Performance Measurement in GPRS Link Adaptation Process
TCP Performance Measurement in GPRS Link Adaptation ProcessTCP Performance Measurement in GPRS Link Adaptation Process
TCP Performance Measurement in GPRS Link Adaptation Process
 
NTT DoCoMo and the Future Implications of High
NTT DoCoMo and the Future Implications of HighNTT DoCoMo and the Future Implications of High
NTT DoCoMo and the Future Implications of High
 
Dd33630634
Dd33630634Dd33630634
Dd33630634
 
Dd33630634
Dd33630634Dd33630634
Dd33630634
 
Efficient Vertical Handoff Management in LTE Cellular Networks
Efficient Vertical Handoff Management in LTE Cellular NetworksEfficient Vertical Handoff Management in LTE Cellular Networks
Efficient Vertical Handoff Management in LTE Cellular Networks
 
RF Planning and Optimization in GSM and UMTS Networks
RF Planning and Optimization in GSM and UMTS NetworksRF Planning and Optimization in GSM and UMTS Networks
RF Planning and Optimization in GSM and UMTS Networks
 
A survey on LTE Architecture
A survey on LTE ArchitectureA survey on LTE Architecture
A survey on LTE Architecture
 
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONS
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONSANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONS
ANALYSIS AND REDUCTION OF TIMING JITTER USING HYBRID OFDM - DFMA PONS
 
4g magic communication
4g magic communication4g magic communication
4g magic communication
 
DATA COM PRESENTATION-1.pptx
DATA COM PRESENTATION-1.pptxDATA COM PRESENTATION-1.pptx
DATA COM PRESENTATION-1.pptx
 
Andy sutton - Multi-RAT mobile backhaul for Het-Nets
Andy sutton - Multi-RAT mobile backhaul for Het-NetsAndy sutton - Multi-RAT mobile backhaul for Het-Nets
Andy sutton - Multi-RAT mobile backhaul for Het-Nets
 
Site specific assessment of node b using key service quality indicators over ...
Site specific assessment of node b using key service quality indicators over ...Site specific assessment of node b using key service quality indicators over ...
Site specific assessment of node b using key service quality indicators over ...
 
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...
IRJET-QOS parameter analysis of UMTS networks based on Handovers and Sectoriz...
 
Interference Mitigation using Adaptive Digital Beamforming for 5G Applications
Interference Mitigation using Adaptive Digital Beamforming for 5G ApplicationsInterference Mitigation using Adaptive Digital Beamforming for 5G Applications
Interference Mitigation using Adaptive Digital Beamforming for 5G Applications
 
Whitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gWhitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5g
 
Whitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5gWhitepaper tipping the_scale_for_5g
Whitepaper tipping the_scale_for_5g
 
5G TECHNALOGY FOR MOBILE NETWORK
5G TECHNALOGY FOR MOBILE NETWORK5G TECHNALOGY FOR MOBILE NETWORK
5G TECHNALOGY FOR MOBILE NETWORK
 

Recently uploaded

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 

Recently uploaded (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 

2g 3g telecommunication system

  • 1. 3G Networking Protocols: The Bridge Between the Air Interface and the UTRAN Technology and Testing Methodology Overview Using the Agilent 3G Test System (3GTS) This paper examines interactions between the RF (air) interface and the UMTS Terrestrial Radio Access Network (UTRAN). These concepts are important for people involved in the design and system integration of 3G network elements, such as the Node B (base station), as well as providers of next-generation mobile voice and data services. The UTRAN provides the connection between the mobile user equipment and the Internet or Public Switched Telephone Network (PSTN) via an ATM-based transport infrastructure. 3G networking protocols are involved in processes such as connection establishment, base station handover, and network timing synchronization. These functions are required to provide high quality, uninterrupted mobile voice and data services, independent of the position and movement of the user equipment or RF fade conditions.
  • 2. Part 1: 3G RAN Testing Overview l Overview of 3GPP Protocols and Testing Methodology l Introduction to the Agilent 3G Test System (3GTS) Part 2: Frame Protocol l Data Transport; RNC Flow Control; Node B Timing Alignment l Node and Channel Synchronization Processes l Using 3GTS Protocol Emulation Part 1: 3G RAN Testing Overview l Overview of 3GPP Protocols and Testing Methodology l Introduction to the Agilent 3G Test System (3GTS) Part 2: Frame Protocol l Data Transport; RNC Flow Control; Node B Timing Alignment l Node and Channel Synchronization Processes l Using 3GTS Protocol Emulation Agenda The paper explores the following issues: • Introduction to UTRAN protocols – 3G network overview – 3GPP protocols for the Node B (Uu and Iub interfaces) • Frame Protocol: Functions and Deployment Issues • Data and Control Channel Structure – Frame TTI (Time Transmission Interval) – Base station timing synchronization • 3G Networking Protocol Testing Techniques – Introduction to Agilent 3G test system (3GTS) – Functional and performance testing – Test cases: base station synchronization; diversity handover
  • 3. Part 1: 3G Business and Technology Issues Business Issues: l Accelerate Time to Market l Reduce Risks l Develop New Network Infrastructure l Complex Technology l New Skills Required (RF, ATM, IP) l The Need for a Systematic Test Methodology Business Issues: l Accelerate Time to Market l Reduce Risks l Develop New Network Infrastructure l Complex Technology l New Skills Required (RF, ATM, IP) l The Need for a Systematic Test Methodology Technical Issues: l 3G Radio Access Network (RAN) elements l 3G Protocols across the Iu/Iub/Iur Interface l Examples of Systematic 3G RAN Testing: l Transport Layer Verification l 3G Protocol Verification l Connection Testing l Load Testing Technical Issues: l 3G Radio Access Network (RAN) elements l 3G Protocols across the Iu/Iub/Iur Interface l Examples of Systematic 3G RAN Testing: l Transport Layer Verification l 3G Protocol Verification l Connection Testing l Load Testing 3G Business and Technology Issues Third Generation cellular wireless technology provides much greater levels of functionality and flexibility than previous generations (for example, 1G analog and 2/2.5G digital GSM/CDMA/GPRS systems). 3G offers improved RF spectral efficiency and higher data bit rates, up to 2 Mbps. An early benefit of 3G technology will be improved mobile telephone services and significantly increased system capacity. For example, multi-mode phones will enable seamless global roaming capability (ability to use the same handset anywhere in the world). In the longer term, 3G is also expected to become a significant Internet access technology, providing mobile data rates ranging from 144 kbps to 2 Mbps with guaranteed Quality of Service (QoS) levels. However, the benefits of 3G come at a cost. RF spectrum licenses are extremely expensive and a large number of companies are competing to enter the market. The first few companies to market with new 3G voice and data services are likely to retain a significant competitive advantage in the long term. At the same time, 3G systems are significantly more complex to design and operate and require multi-protocol support, particularly across the terrestrial Radio Access Network (RAN). Finding enough skilled employees presents an additional challenge, as many people who come from a 2/2.5G background face a steep learning curve to gain the required experience in ATM and IP technologies. In an environment that includes high levels of investment, competition, and technical complexity, combined with a critical skills shortage, there is a strong need for equipment manufacturers and services to adopt strategies that minimize risks and accelerate time to market. In this paper, we will look at a systematic approach to verifying the functions and performance of the 3G RAN and its network elements.
  • 4. Broadband Wireless Infrastructure RF Interface Internet Core IP, ATM, WDM PSTN Broadband Wireline Access ADSL, Cable Packet Switched Network Circuit Switched Network RAN Functions: l Connection Establishment l Voice/Data Multiplexing l QoS Management l Diversity Handover l RF/Mobility Functions RAN Functions: l Connection Establishment l Voice/Data Multiplexing l QoS Management l Diversity Handover l RF/Mobility Functions Broadband Wireless Access 2G 2.5G 3G Radio Access Network (RAN) CNRNCNode B 3G 3G Network Infrastructure Because of its potential to provide high-speed data services, 3G is likely to emerge as an alternative to existing broadband access technologies such as ADSL and cable. From a user perspective, 3G is purely an RF technology. However, from a service provider viewpoint, there is a significant amount of wireline (also called terrestrial) network infrastructure to install and operate. The wireline components of the 3G system are referred to collectively as the Radio Access Network (RAN). The 3G RAN is designed to handle broadband wireless access and mobility functions, independent of the core network technology. It is responsible for session management and connectivity to the public switched telephone network (PSTN) and Internet. The 3G infrastructure must also inter-work with existing 2G (for example, GSM, CDMA) and 2.5G (for example, GPRS) mobile systems. 3G services operate over an ATM infrastructure that is designed to inter-work with existing circuit-switched and packet-switched public networks. This is achieved by overlaying 3G-specific protocols on an ATM-based transport infrastructure. Functions such as data/voice multiplexing, QoS management, and connection establishment are based on existing ATM capabilities, such as the AAL-2 and AAL-5 adaptation layers, and UNI and NNI signaling protocols. Additional 3G-specific protocols are required to handle the connection-setup procedure between the RF (wireless) and terrestrial (wireline) parts of the network. These protocols also support mobile-specific features such as diversity handover. This is a complex procedure that requires co-ordination between signal quality measurements on the RF side, and multi-connection establishment through the wireline infrastructure. In this paper, we will focus on development and deployment challenges of the 3G RAN.
  • 5. Evolution from 2G - 2.5G - 3G Common Core Network (CN) Entities: • AuC = Authentication Centre • EIR = Equipment Identity Register • HLR = Home Location Register • VLR = Visitor Location Register Note: MSC & SGSN may be integrated to form a single device called the UMSC (UMTS Mobile-services Switching Centre) Um Circuit Switched Network (PSTN) 2G(GSM) Gateway MSC (GMSC) Mobile-services Switching Centre(MSC) Base Station Controller(BSC) Base Transceiver Station (BTS) BSS CN AuC HLR EIR 2G/2.5G User Equipment A Ab PSTN E F D C PSTN VLR Packet Switched Network (Internet ) Gateway GPRS Support Node (GGSN) Serving GPRS Support Node (SGSN) 2.5G(GPRS) Gs Gn Gi Gp Gf Gc Gr Gb Radio Network Controller(RNC) NodeB Iu-c Iu-p RAN Iur Iub Uu 3G User Equipment Mobile Equipment (ME) Subscriber Identity Module (SIM) UMTS SIM (USIM) 3G(UMTS/W-CDMA) Evolution from 2G to 2.5G to 3G Wireless 3G is an evolution, rather than a revolution, in terms of the principles of mobile network architecture. The 2G network provides separation between the RF- specific functions, known as the Base Station Subsystem (BSS), and the Core Network (CN). This makes the CN relatively unaffected by changes in the RF equipment, such as RF band, or encoding techniques. This approach is continued in 2.5G and 3G systems. The 2G core network provides the connection to the circuit-switched Public Switched Telephone Network (PSTN). The control functions required to achieve this are generally based on SS7 signalling, commonly used in the PSTN. The basic elements of the 2G system include the mobile equipment (handset), base station, mobile-services switching centre (MSC) and gateway into the PSTN (GMSC). The 2.5G (GPRS) core network adds packet-oriented switching functions that enable relatively low bit-rate packet data connections to the Internet (typical rates typically in the range 9.6 kbps, up to a theoretical maximum of 182.4 kbps). The General Packet Radio Service (GPRS) is a “connectionless” service, meaning that the Internet connection is available continuously. It tends to be seen as a migration step to 3G. The 3G RAN adds an ATM-based transport infrastructure that enables connection setup capabilities with guaranteed QoS levels. The 3G RAN is designed to inter- work with both circuit-switched and packet-switched core networks. Benefits include more flexible voice services, higher bit rate data services, and higher service quality levels.
  • 6. 3G Standards: The Role of the 3GPP Organization IS 2000UMTS / W-CDMA We will review some aspects of UMTS/W-CDMA standards and technology and examine the unique challenges in testing at each of the five stages we have identified. 3G Standards The International Telecommunications Union (ITU) manages the 3G umbrella standard known as IMT-2000. This standard endorses five different modes of RF interface, and two major types of terrestrial infrastructure (known as the Radio Access Network, or RAN). The intention is for any of the RF modes to work with any of the RAN types. The two major types of RAN are UMTS/ W-CDMA (predominantly for Europe and Japan) and IS-2000 (previously cdma2000, predominantly for North America). Scarcity of RF spectrum is a more serious issue in Japan and Europe. This is driving the more rapid development of UMTS W-CDMA, which is expected to account for 70% of 3G cellular subscribers worldwide. UMTS W-CDMA standards proposals are submitted to the ITU by an organization called 3GPP (Third Generation Partnership Project). 3GPP co-ordinates submissions from a number of regional standards bodies, such as ARIB, CWTS, ETSI, NTT DoCoMo, T1, TTA, and TTC.
  • 7. UMTS/W-CDMA: RAN Network Elements (3GPP) CN: Interface to various circuit-switched or packet-switched networks. e.g. Mobile Switching Center (MSC) or Serving GPRS Support Node (SGSN) RNC: Connects to a localized group of Node B’s. Selects the most appropriate Node B for each UE, performing handover when necessary. Also called Base Station Controller (BSC) UE: Mobile phone, video phone, PDA, etc. Node B: Converts radio signal to and from ATM. Involved in handover decisions. Also called Radio Base Station (RBS) or Base Transceiver Station (BTS) UMTS/W-CDMA: RAN Network Elements The main components of the UMTS W-CDMA RAN are shown above. The network elements referred to in the 3GPP specifications are User Equipment, Node B, Radio Network Controller, and Core Network Interface. • User Equipment (also called Mobile Station or Handset): includes mobile cellular telephones, handheld Personal Digital Assistants (PDA), and cellular modems connected to PCs. • Node B (also called the Base Station Controller or Radio Base Station): provides the gateway interface between the handset/RF interface, and the Radio Network Controller via the Iub interface. It is involved in handover decisions, which are based on RF signal quality measurements. • Radio Network Controller (RNC): connects to and co-ordinates as many as 150 base stations. It is involved in managing activities such as hand-over of active calls between base stations. • Core Network Interface (also called Mobile Switching Center or Mobile Multimedia Switch): refers to other terrestrial core network infrastructure connected to the RAN through the Iu interface; for example, the Internet and PSTN.
  • 8. UP = User Plane CP = Control Plane RNCP = Radio Network Control Plane TNCP = Transport Network Control Plane RNC 3GPP Protocols for the RNC SCTP M3UA GTP-uMTP3b SSCF-NNI SSCOP IP ATM Physical RANAP RNCP AAL-5 UPTNCP SCCP AAL-5 ATM IP UDP Iu UP Iu-p(e.g. Internet) Iu-c (e.g. PSTN) ATM Physical RANAP Iu UP RNCP UPTNCP AAL-5 AAL-2 SSCOP SSCF-NNI MTP3b SCCP AAL-5 SSCOP SSCF-NNI Q.2150.1 Q.2630.1 MTP3b ALCAP (Q.AAL-2) Radio Network Transport ATM MAC Radio Network Transport RRC RLC AAL-2 Physical PDCP RLC MAC FP-cch/FP-dch CP UP Iub (UE - RNC) Iub(NodeB-RNC) RNCP UPTNCP ATM Physical NBAP FP AAL-5 AAL-2AAL-5 SSCOP SSCF-UNI SSCOP Q.2150.2 Q.2630.1 Radio Network Transport ALCAP (Q.AAL-2) Iur (RNC - RNC) SCTP M3UA M3UA SSCOP SSCF-NNI MTP3b Q.2630.1 MTP3b IP AAL-5 ATM Physical RNCP AAL-5 UPTNCP SSCOP SSCF-NNI Q.2150.1SCCP IP SCTP AAL-2 Iu Data PlaneALCAP(Q.AAL-2)RNSAP 3GPP Protocols: Multiple Protocol Stacks to Support The 3GPP specifications define a set of protocols for communication within and between UMTS W-CDMA radio access network elements. These protocols manage control-plane functions (for example, signalling required for base station handover) and user-plane functions (for example, ATM-based multiplexing of voice and data streams from multiple sources). The 3GPP protocols sit above the ATM adaptation layers (AAL-2 and AAL-5) and operate across the Iub, Iu, and Iur interfaces. • The Iub is a physical communication interface between the base station (Node B) and the Radio Network Controller (RNC). Connection establishment (discussed later) is a 3-stage process that results in a Radio Access Bearer (RAB) between the RNC and user equipment (UE). The RAB provides voice and data connectivity to the UE. A different protocol stack is needed for each stage of operation, either Node B - RNC, or UE - RNC. • The Iu is the communication interface between the RNC and the Core Network Interface. It supports different protocol stacks for interfacing with either circuit-switched (for example, PSTN) or packet-switched (for example. Internet) networks. • The Iur is the communication interface between adjacent RNC. It is beyond the scope of this paper to examine these protocols in detail. However, one message is clear: 3GPP protocols are very complex!
  • 9. 3G Challenges:3G Challenges: Frequently Asked QuestionsFrequently Asked Questions “ATM is new compared to 2G” Q1. How can I verify that our ATM links are working on our new equipment? “3G protocols are very complex and still evolving!” Q2. How can I ensure the quality of each protocol layer independently, together, and over time? “We don’t have a Node B / RNC / MSC in our lab” Q3. How can I verify that different pieces of equipment will inter-work? “Quality of the voice and data services is crucial!” Q4. How can I verify that connections are set up correctly across the network, especially for new features like diversity? “We need to understand what happens under load” Q5. How can I create extreme levels of network traffic to ensure the equipment or service meets customer expectations? “ATM is new compared to 2G” Q1. How can I verify that our ATM links are working on our new equipment? “3G protocols are very complex and still evolving!” Q2. How can I ensure the quality of each protocol layer independently, together, and over time? “We don’t have a Node B / RNC / MSC in our lab” Q3. How can I verify that different pieces of equipment will inter-work? “Quality of the voice and data services is crucial!” Q4. How can I verify that connections are set up correctly across the network, especially for new features like diversity? “We need to understand what happens under load” Q5. How can I create extreme levels of network traffic to ensure the equipment or service meets customer expectations? Development and Deployment Challenges Some of the technical challenges for 3G equipment developers and service providers include: • The migration from traditional 2G network infrastructure to an ATM-based transport infrastructure: ATM connectivity needs to be verified as well as more complex functions, such as QoS and diversity. • Complex and evolving 3GPP protocols: designers need to verify individual protocols and the way they interact with the rest of the protocol stack. As standards evolve, designs need to be modified and verification tests repeated. • Time to market issues mean that the various RAN devices (Node B, RNC) are being developed in parallel by different design teams. It is therefore very difficult to completely verify the behavior of the equipment under development. • Successful connection establishment requires a large number of 3GPP and ATM signalling protocols to operate and interact correctly. Due to the higher performance and reliability requirements for 3G, compared to 2G, advanced features such as diversity handover and multi-diversity also need to be designed and verified. • Equipment and network performance are important issues. It is not sufficient to know that your 3G components and overall system function correctly. Even if the system works flawlessly in a functional sense, it will not be useful commercially if it can only support a small number of users. 3G network elements and the entire 3G RAN need to handle a large number of voice and data services reliably under normal and high-load conditions. Performance benchmarking of a piece of equipment or trial network is generally carried out under extreme load conditions.
  • 10. Functional TestingFunctional Testing 4. Advanced Connection Testing 5-Stage RAN Testing Methodology5-Stage RAN Testing Methodology • Operation under realistic & extreme conditions • Load generation of signalling & data 2. Protocol Verification 3. Basic Connection Testing 5. Load Generation 1. Transport Layer Verification • SONET/SDH • ATM & AAL functions • 3G protocols • PDU formats, state machine operations • Single voice or data channel • Iub, Iu, Iur • System testing • Multiple channels • Mix of signalling t Dynamic standards specification process t Aggressive product development timeframes t Incremental functionality and performance System Debugging & Regression Testing Performance TestingPerformance Testing Systematic Test Methodology: RAN Testing Phases Due to the complexity of UMTS W-CDMA systems, large hardware, software, integration, and QA teams are required to develop them. Development of 3G systems can be broken into the following major stages: • Individual development of hardware, Field Programmable Gate Array (FPGA), and software modules • Integration of hardware and software modules to form a component • Debugging and verification of individual components • Integration and verification of 3G systems made from these components • Performance testing of individual components and the system as a whole • Guaranteeing conformance and interoperability The debugging and verification of components that result from the product development identified above follows a progression. We have characterized the progression into five major stages: 1. Transport Layer Verification 2. Protocol Verification 3. Basic Connection Testing 4. Advanced Connection Testing 5. Load Generation Once project teams deliver the first generation hardware, they usually go on to fix bugs and implement enhancements that were not addressed in the first version due to time-to-market considerations. There is a continuous cycle of debugging and regression testing through the 5-stage testing procedure.
  • 11. Agilent Technologies 3G Test Solutions Component Test l RF design libraries, signal generators, vector analyzers Base Station and Mobile Station Test l Transmitter testers, power meters, mobile parametric test set RF Network Optimization l Drive test solution RAN Infrastructure Development Test l 3GTS (3G Test System) Solutions and Services l Consulting services, product and technology training Component Test l RF design libraries, signal generators, vector analyzers Base Station and Mobile Station Test l Transmitter testers, power meters, mobile parametric test set RF Network Optimization l Drive test solution RAN Infrastructure Development Test l 3GTS (3G Test System) Solutions and Services l Consulting services, product and technology training
  • 12. 3G Test System (3GTS) Product Features For Developers of Radio Access Networks Multiple High-speed ATM Interfaces l 1.5 Mbs to 622 Mbs, supporting AAL-2, AAL-5 Monitor, Simulate, and Emulate: l Node B, RNC, CN equipment l Iu, Iub, Iur interfaces l Transport, Control, and User planes Multi-channel, Multi-port, Multi-user l Simultaneous testing across interfaces of the complete 3G network Connection Verification l Simultaneous connections; Circuit and packet data delivery; Diversity; Handover Multiple High-speed ATM Interfaces l 1.5 Mbs to 622 Mbs, supporting AAL-2, AAL-5 Monitor, Simulate, and Emulate: l Node B, RNC, CN equipment l Iu, Iub, Iur interfaces l Transport, Control, and User planes Multi-channel, Multi-port, Multi-user l Simultaneous testing across interfaces of the complete 3G network Connection Verification l Simultaneous connections; Circuit and packet data delivery; Diversity; Handover
  • 13. 3GTS Hardware Platform Agilent Products l E4210B Form-13 Mainframe VXI Chassis l E5161A Port Bundles: l E4209B Cell Protocol Processor l ATM LIF (option from 1.5 Mb/s to 622 Mb/s) l E5162A Protocol Emulator l E5160B UMTS W-CDMA Test Software Agilent Products l E4210B Form-13 Mainframe VXI Chassis l E5161A Port Bundles: l E4209B Cell Protocol Processor l ATM LIF (option from 1.5 Mb/s to 622 Mb/s) l E5162A Protocol Emulator l E5160B UMTS W-CDMA Test Software Monitor Keyboard UnixController SCSIController CellProtocolProcessor ProtocolEmulator ATMLineInterface Port BundleSystem Control
  • 14. Agilent E5160B UMTS W-CDMA: Analysis using the GUI
  • 15. 3GTS User Environment Open Test Methodology for Your Test Management SystemOpen Test Methodology for Your Test Management SystemOpen Test Methodology for Your Test Management System Regression Tests System Under Test 3GTS 3G-LIF UPE l Unrestricted test methodology l Low-level protocol layer access l High- performance operational interface l Optical and electrical Interfaces from 1.5Mbsto 622 Mbs l Unrestricted test methodology l Low-level protocol layer access l High- performance operational interface l Optical and electrical Interfaces from 1.5Mbsto 622 Mbs GUI 3GTS System Under Test Control LAN Test Access Customer Test Environment
  • 16. Part 2: Frame Protocol About Frame Protocol l Where it is used; What it does l Transport channels; transport blocks; frame formats Functions of FP l Data transport; RNC flow control; Node B timing alignment Testing Issues l Using 3GTS FP Emulation About Frame Protocol l Where it is used; What it does l Transport channels; transport blocks; frame formats Functions of FP l Data transport; RNC flow control; Node B timing alignment Testing Issues l Using 3GTS FP Emulation Frame Protocol (FP) is a Layer-1 protocol handled by the Node B (also called radio base station). FP provides an important synchronization function between higher-layer radio access protocols (for example, MAC, RLC) and the timing requirements of the radio transmission medium. In this section, we will examine how the Node B translates air interface (RF) frames into FP frames. We will explain FP concepts, such as the TTI parameter, and node/channel synchronization. We will also provide examples of testing techniques designed to verify critical aspects of an FP implementation.
  • 17. About the Uu / Node B / Iub Iub l ATM interface between Node B and RNC Iub l ATM interface between Node B and RNC Uu l Air interface between UE and Node B Uu l Air interface between UE and Node B Node B l Maps air interface (Uu) to ATM interface (Iub) Node B l Maps air interface (Uu) to ATM interface (Iub) Node B (also called the Base Station Controller or Radio Base Station) A cell refers to the geographical area covered by a “base station”. The user communicates via one or more cells in order to achieve reliable access to the core network. In 3GPP terminology, the Node B is the network element that performs the radio base station function. There is one Node B network element per cell. It connects to the UE via the Uu (air) interface and to the RNC via the Iub interface. The Node B is the “gateway”between the User Equipment and the Radio Network Controller. It performs a translation function between the air (RF) interface and the wireline (Iub) interface. While the RNC controls a number of Node Bs, and is largely responsible for handover decisions between cells, the Node B manages power control within a cell. For example, the Node B switches power from one directional antenna to another as the UE moves around within the cell. Because the Node B sits between the wireless and the wireline parts of the radio access network, it is responsible for timing synchronization between two transmission media that have very different characteristics. Synchronization plays a role in both the uplink (UE to UTRAN) and downlink (UTRAN to UE) directions. Note 1 In 3GPP terminology, the Node B and the RNC are referred to collectively as the UTRAN (UMTS Terrestrial Radio Access Network). 3GPP is the 3rd Generation Partnership Project – responsible for co-ordinating the definition of UMTS/W-CDMA standards. Note 2 The 3GPP defines two radio access modes: FDD and TDD. Frequency Division Duplexing (FDD) uses different frequency bands for the uplink and downlink directions. Time Division Duplexing (TDD) interleaves uplink and downlink traffic over the same frequency band. FDD and TDD have slightly different synchronization requirements and procedures. Because FDD came earlier than TDD in terms of equipment development and network field trials, this application note will focus on FDD synchronization procedures.
  • 18. About Frame Protocol UP Node B RNC Uu Iub Uplink Downlink MAC air RLC MAC FP RLC FP AAL-2 ATM PHY AAL-2 ATM PHY air Layer-3 Layer-2 Layer-1 ATM Transport Uu (Radio) Stratum FP is a Layer-1 protocol over the Iub interface: l Air interface frames (Uu side) map to FP frames (Iub side of Node B) l Performs a synchronization function between higher-layer protocols (RLC/MAC) and the radio transmission medium FP is a Layer-1 protocol over the Iub interface: l Air interface frames (Uu side) map to FP frames (Iub side of Node B) l Performs a synchronization function between higher-layer protocols (RLC/MAC) and the radio transmission medium UE Layer-3 Layer-2 Layer-1 About Frame Protocol Frame Protocol (FP) is used to transport both user and control plane traffic over the Iub interface, between the UE and RNC. The protocol stack is shown above. Frame Protocol acts as a synchronization interface between the higher layer radio protocols and the timing requirements of the radio transmission medium. The transmission characteristics of FP traffic over the Iub interface are directly related to the transmission characteristics of radio frames over the Uu interface. Air interface frames are sent at a constant 10 ms time interval, while MAC/FP layer frames are sent at 10, 20, 40, or 80 ms intervals (see section on Synchronization Parameters later). Note FP is also sometimes referred to as Frame Handling Protocol (FHP) in earlier versions of the 3GPP documents. About Protocol Layers In 3GPP terminology, the flow of messages between the UE and the UTRAN, required to control the radio access network, is called the Uu Stratum. [The flow of messages between the UTRAN and the CN (Core Network) is called the Iu Stratum.] 3GPP documents also use the term radio interface to refer specifically to Layers 1, 2, and 3 of the Uu stratum. FP is a Layer-1 protocol in the Uu (radio) stratum or radio interface. The radio interface protocols are transported by the ATM transport infrastructure [AAL/ATM (Layer-2) and PHY (Layer-1)].
  • 19. UE Uplink: l DCH (Dedicated Channel) l RACH (Random Access Channel) Transport Channels Node B RNC IubUu Dedicated Common (CCH) Dedicated Common (CCH) Downlink: l DCH (Dedicated Channel) l FACH (Forward Access Channel) l PCH (Paging Channel) l BCH (Broadcast Channel) FP Transport Channels l Define how & with what characteristics data are transferred l e.g. Dedicated & Common channels l They map to Physical Channels on the air interface Frame Protocol l Provides an information transfer service for the MAC layer l Logical Channels used by the MAC layer; define what type of information is transferred FP Transport Channels l Define how & with what characteristics data are transferred l e.g. Dedicated & Common channels l They map to Physical Channels on the air interface Frame Protocol l Provides an information transfer service for the MAC layer l Logical Channels used by the MAC layer; define what type of information is transferred Transport Channels Frame Protocol provides information transfer services to the MAC and higher layers. In 3GPP terminology, the term transport channel is used to describe how and with what characteristics data is transferred over the radio interface. A transport channel is a uni-directional connection set up to provide a particular transport service for higher layers [see next page for DCH]. The most important characteristic is whether the channel is a common channel or a dedicated channel—that is, whether it is for use by multiple UEs or one particular UE. Other characteristics are related to the physical layer—whether transmission is FDD or TDD, the TTI, and so on. The diagram shows a typical cell, and the FP transport channels necessary for one ’call’ to a UE. (A cell is the area covered by a particular Node B). Two basic categories of transport channel are: • Dedicated channels: transport channels that exist for the lifetime of the call only, and may be duplicated in multiple cells depending on the geographical location of the UE; dedicated to a specific UE. • Common channels : transport channels that are permanent and specific to that cell; not dedicated to a specific UE. The common channels are used for signalling between the RNC and the UE to set up the dedicated channels used for data traffic. About Logical and Physical Channels The MAC layer deals with logical channels that specify what type of information is transferred (for example, dedicated traffic, dedicated control, common control information). The air interface provides physical channels that are defined by specific characteristics of the RF encoding method (see Reference Information at the end of this application note).
  • 20. Dedicated to a Specific UE l Transport channels that exist for the lifetime of the connection only l May be duplicated in multiple cells (depending on the location of the UE) l DCH channels can span a set of MAC PDUs (TBS) l Multiple DCH channels can be combined in a single FP frame Dedicated to a Specific UE l Transport channels that exist for the lifetime of the connection only l May be duplicated in multiple cells (depending on the location of the UE) l DCH channels can span a set of MAC PDUs (TBS) l Multiple DCH channels can be combined in a single FP frame Dedicated (DCH) Channels CRC = Cyclic Redundancy Check FT = Frame Type (data/control) CFN = Connection Frame Number TFI = Transport Format Indicator (one TFI per TBS) TB = Transport Block (MAC PDU) TBS = Transport Block Set (corresponds to a DCH channel) UL/DL = Uplink/Downlink Header -CRC TB#1…#mFT CFN TFI#1…#n UL/DL -specific Payload -CRC Header Payload e.g. Uplink: Quality Estimate (QE) Optional FP Frame Formats (DCH-UL/DL) Used for handover decisions and macro-diversity QoS There are two types of FP frames: Dedicated Channel (DCH), and Common Transport Channel (CCH). DCH frame protocol provides the following services: • Transport of Transport Block Sets (TBS) across the Iub (Base Station and Radio Network Controller interface) and Iur (Core Network and Base Station interface). • Transport of outer loop power control information between the Serving Radio Network Controller (SRNC) and the Node B • Support of transport channel synchronization mechanism • Support of node synchronization mechanism • Transfer of Downlink Shared Channel (DSCH) Transport Format Indicator (TFI) from the SRNC to Node B • Transfer of receive timing deviation from the Node B to the SRNC CCH provides the following services: • Transport of TBS between the Node B and the Controlling Radio Network Controller (CRNC) for common transport channels • Support of transport channel synchronization mechanism • Support of node synchronization mechanism
  • 21. FP Functions: Data Transport Transport Block l Basic unit of information handed down from the MAC layer to FP l Transport Block is also called MAC PDU l Multiple MAC PDUs can be multiplexed into a single FP frame l Transport Block Set (TBS) l A set of MAC PDUs using the same transport channel for example, DCH or CCH (FACH, RACH) Transport Block l Basic unit of information handed down from the MAC layer to FP l Transport Block is also called MAC PDU l Multiple MAC PDUs can be multiplexed into a single FP frame l Transport Block Set (TBS) l A set of MAC PDUs using the same transport channel for example, DCH or CCH (FACH, RACH) DCH#1 DCH#2 DCH#3 RACH#1 RACH#2FP Frames MAC PDUs Transport Block Transport Block Set DCH Frame CCH Frame CCH Frame Transport Block Set Frame Protocol Data Transport The Transport Block (TB) is the unit of data from higher-layer protocols that is inserted into an FP data frame. It is often referred to as a MAC PDU. Multiple transport blocks from higher layer protocols can be multiplexed into a single data frame payload. A set of transport blocks that corresponds to one transport channel is called a Transport Block Set (TBS). The Frame Protocol Transport Format Indicator (TFI) parameter contains information about the composition of the payload, for example how many transport blocks it includes and the transport block sizes. Common channel data (CCH) are not multiplexed into FP frames. In this case, the FP frame contains one TFI parameter and one TBS (CCH payload). Multiple dedicated data channels (DCH) can be multiplexed into a single FP frame. In this case, there will be multiple TFIs in the FP frame header: one TFI per TBS. Each TBS corresponds to one DCH channel. Note TFI values are not included in the FP specification. This information is vendor dependent. A TFI value that relates to one vendor’s equipment may have an entirely different meaning for another vendor’s equipment.
  • 22. Synchronization Parameters FP Node Parameters l TTI (Transmission Time Interval) l The MAC-to-Layer-1 frame transmission frequency (UE & UTRAN) l TTI can be 10, 20, 40, or 80 ms l BFN (Node B Frame Number) l Node B counts radio frame TTIs and assigns each frame a modulo 4096 (12-bit) identifier l RFN (RNC Frame Number) l RNC maintains its own modulo 4096 (12-bit) radio frame count FP Node Parameters l TTI (Transmission Time Interval) l The MAC-to-Layer-1 frame transmission frequency (UE & UTRAN) l TTI can be 10, 20, 40, or 80 ms l BFN (Node B Frame Number) l Node B counts radio frame TTIs and assigns each frame a modulo 4096 (12-bit) identifier l RFN (RNC Frame Number) l RNC maintains its own modulo 4096 (12-bit) radio frame count FP Frame Header Fields l CFN (Connection Frame Number) l Modulo 256 (8-bit) count of the BFN (modulo 4096 for PCH) l Provides common Layer-2 frame numbering between UE and UTRAN l TFI (Transport Format Indicator) l Describes the transport block length and transport block set size l Not standardized FP Frame Header Fields l CFN (Connection Frame Number) l Modulo 256 (8-bit) count of the BFN (modulo 4096 for PCH) l Provides common Layer-2 frame numbering between UE and UTRAN l TFI (Transport Format Indicator) l Describes the transport block length and transport block set size l Not standardized Network/Node Parameters • TTI (Transmission Time Interval) The MAC/Layer-1 frame transmission frequency - the TTI - can be 10, 20, 40, or 80 ms. It is the transfer rate of MAC-layer frames within both the UE (MAC/air interface) and UTRAN (MAC/FP). Note that RF physical-layer frames are sent across the air interface at a constant rate of 10 ms, independent of the TTI. • BFN (Node B Frame Number) The Node B counts the FP frame transmission periods (TTI) and assigns each frame a modulo 4096 (12-bit) identifier. This identifier is the BFN. • RFN (RNC Frame Number) The RNC maintains its own 12-bit frame count. It also calculates the phase offset of the RFN relative to the BFN for each Node B connected to it (see description of node synchronization procedure later). FP Frame Header Parameters • CFN (Connection Frame Number) The CFN is associated with the same MAC (Layer-2) Transport Block Set at both the UE and UTRAN (Uu and Iub sides of the Node B). It is passed down to Layer-1, and indicates on which radio frame the first data for a particular channel was received in the uplink direction, or will be transmitted in the downlink direction. The CFN is the modulo 256 (8-bit) of the BFN (modulo 4096 for PCH, Paging Channel). • TFI (Transport Format Indicator) This describes the transport block length and TBS size. This is represented as the local number of the transport format.
  • 23. Node Synchronization Process Node B Iub BFN#1 RNC RFN 3. RNC calculates BFN#1 offset relative to RFN 1. DL Node Synch Control Frame ( t1 ) 2. UL Node Synch Control Frame ( t2, t3 ) Node B BFN#2 Node B - RNC Synchronization l RNC is connected to multiple Node Bs, each with a different BFN l 1. RNC sends a downlink node synchronization control frame to Node B#1 l 2. Node B#1 replies with an uplinknode synchronization control frame l 3. RNC determines the offset between its RFN and the BFN#1 From this point on, the RNC knows what the BFN is for Node B#1 l Repeat the BFN-RFN offset calculation for each Node B Node B - RNC Synchronization l RNC is connected to multiple Node Bs, each with a different BFN l 1. RNC sends a downlink node synchronization control frame to Node B#1 l 2. Node B#1 replies with an uplinknode synchronization control frame l 3. RNC determines the offset between its RFN and the BFN#1 From this point on, the RNC knows what the BFN is for Node B#1 l Repeat the BFN-RFN offset calculation for each Node B Repeat for BFN#2…#n t1 = the RFN when the RNC sent the DL frame t2 = the BFN when the Node B received the DL frame t3 = the BFN when the Node B sent the UL frame Frame Protocol Synchronization There are two types of synchronization control frames – node synchronization and channel synchronization. Node Synchronization The RNC- Node B synchronization process is based on the BFN of the Node B. Since different Node Bs have different BFNs, the RNC adjusts its timing (RFN) to that of each of its Node Bs. To perform this synchronization: 1. The RNC sends a downlink node synchronization control frame to the Node B, with its RFN as the only parameter. 2. The Node B replies with an uplink node synchronization control frame, which adds its own BFN at the time the frame was received, and also the BFN at the time it responded. 3. When the RNC receives the uplink node synchronization control frame, it determines the phase difference between its RFN and that of the Node B BFN. From this point on, the RNC knows that the BFN is for that Node B. Channel Synchronization Channel synchronization follows on from node synchronization. Knowing the BFN means the RNC also knows the CFN used for any given channel for that Node B. This is because the CFN is the modulo 256 (4096 for PCH, Paging Channel) of the BFN. However, this is not enough information for the RNC to ensure that any frames it transmits to the Node B will be accepted, as each channel may have different characteristics and different sized reception windows. Therefore the channel synchronization process must be completed on each channel prior to data transmission over it.
  • 24. FP Functions: Downlink Flow Control Node B l Sends frames to UE at the TTI, but... l accepts frames 'just in time' from the RNC Frames must arrive within reception window l Related to the frame’s CFN & Node B’s BFN l Note Window may be different for each transport channel Node B l Sends frames to UE at the TTI, but... l accepts frames 'just in time' from the RNC Frames must arrive within reception window l Related to the frame’s CFN & Node B’s BFN l Note Window may be different for each transport channel Reception Window DL frame#2 Node B RNCIub DL frame#1 DL frame#2 Node B discards DL frames that arrive outside window Downlink BFN TOAWS TOAWE +TOA -TOA TOA = Time of Arrival TOAWS/E = TOA Window Start/End CFN Node B sends timing adjustment control frame to RNC UE CFN Downlink Flow Control In the downlink direction (RNC to Node B), synchronization is necessary simply for flow control. The Node B transmits frames towards the UE at the regular TTI. However, it accepts frames from the RNC in a 'just in time' manner. This creates some frame buffering requirements on the Node B. It also places limitations on how early or late the RNC can send frames to the Node B. The RNC must send a frame to a Node B within a certain time window that relates to the frame’s CFN. The frame must arrive at the Node B just before that slot commences. If it arrives outside the arrival time window, that is, it is too early or too late, the Node B discards the frame. The Time of Arrival (TOA) parameter has a positive value if the frame arrived before the TOA Window End (TOAWE). It has a negative value if the frame arrived after the TOAWE. When the Node B rejects a frame, it issues a timing adjustment control frame, indicating to the RNC the frame that was mis-timed and by what margin.
  • 25. FP Functions: Uplink Timing Alignment UE May Connect to RNC via Multiple Node Bs l A frame from the UE arrives at staggered arrival times via each path l RNC only accepts frames arriving within time window (related to RFN) UE May Connect to RNC via Multiple Node Bs l A frame from the UE arrives at staggered arrival times via each path l RNC only accepts frames arriving within time window (related to RFN) RNC RFN Iub Node BUu Node B Node B UL frame (c) UL frame (b) UL frame (a) Path (b) Path (a) Path (c) RNC discards UL frames that arrive outside window UL frame Reception Window UE CFN RNC initiates timing synchronization process Uplink Timing Alignment In the uplink direction (Node B to RNC), flow control is not an issue. However, timing alignment between Node Bs is necessary because a UE may be transmitting to several Node Bs at once. This occurs in soft handover (as the UE moves from one cell to another) and in macro-diversity (the UE transmits data over multiple Node B paths and the RNC accepts data from the path with the best QoS). Depending on the location in relation to Node Bs, a frame from a UE could be received at the RNC from several Node Bs at slightly staggered arrival times. In order to be able to correctly identify frames with the same CFN on each Node B path, the RNC only accepts frames from the Node B(s) that arrive within a reception window for a particular CFN. The RNC maintains its own RFN to do this (based on the BFN - see Node Synchronization, discussed later). If the Node B transmits a dedicated channel frame that falls outside the RNC's reception window, the RNC rejects the frame and attempts to re-synchronize with that Node B. Note Uplink synchronization is necessary only for dedicated channels (DCH frames). Since common channels are specific to a certain radio cell, no duplication of CCH frames from multiple Node Bs in the RNC is possible.
  • 26. Transport Layer Verification l Layer 1 framing, alarms, errors l ATM SAR, Policing Protocol Verification l Simulation - packing/unpacking, ranges, states, timers, error cases l Emulation - layer(s) responding to specs, inter-working Basic / Advanced Connection Test l Diversity handover l Circuit and packet data quality l Simultaneous bearer establishment Transport Layer Verification l Layer 1 framing, alarms, errors l ATM SAR, Policing Protocol Verification l Simulation - packing/unpacking, ranges, states, timers, error cases l Emulation - layer(s) responding to specs, inter-working Basic / Advanced Connection Test l Diversity handover l Circuit and packet data quality l Simultaneous bearer establishment RNC and Node B Functional Testing: Test Setup RNC Functional Test ConfigurationRNC Functional Test Configuration IuIub CNRNCNode B UE Uu Test Equipment UE Uu RNC Iub Node B UE Uu UE Uu Test Equipment Multiple ConnectionsMultiple Connections RNC and Node B Functional Testing: Test Setup The first 3 stages of testing can all use a similar test setup. The basic procedure is to “surround” the device under test by connecting the test equipment to each type of interface. For example, • Test the RNC by connecting the test equipment to the Iub and Iu interfaces • Test the Node B equipment by connecting the test equipment to the Iub interface only The basic requirements for the test equipment include: • Simulation (stimulus/response testing) • Traffic generation (user data and control plane signalling) • Protocol analysis • Emulation (protocol state machine testing) • Emulation of underlying protocol layers (for example, Frame Protocol) in order to fully test the higher layer protocols (for example, RLC/MAC) • Tester acts as a piece of equipment that is not available, for example, the Node B and CN functions required to fully evaluate the RNC under test We will now look at some examples of how 3G RAN functions and performance are verified. We will focus on the role performed by the Node B in synchronizing the air interface (Uu) to the ATM interface (Iub).
  • 27. E5162A Protocol Emulator Features l Dedicated hardware solution for real-time handling of FP frames over AAL-2/ATM l Handles TTIs of 10, 20, 40, 80 ms l Supports higher-layer encodes and decodes over FP Uplink/Downlink Emulation E5162A Protocol Emulator Features l Dedicated hardware solution for real-time handling of FP frames over AAL-2/ATM l Handles TTIs of 10, 20, 40, 80 ms l Supports higher-layer encodes and decodes over FP Uplink/Downlink Emulation Frame Protocol Emulation Testing Using the Agilent 3GTS FP Emulation Testing The Agilent E5160B 3GTS software application operates with the Agilent E5162A Protocol Emulator module to provide real-time FP emulation that can handle 10 ms TTIs. The product (currently) emulates the Node B only, performing three functions: • DOWNLINK SYNCHRONIZATION: The emulation maintains a BFN, answers synchronization control frames from the RNC, and issues timing adjustment control frames as appropriate. • DOWNLINK DATA TRANSPORT: Generates UPE events containing any valid data frames received from the RNC. • UPLINK SYNCHRONIZATION: Synchronizes transmission of dedicated channel data frames according to its BFN so that they will be accepted by the RNC. Note that uplink transmission of common channel data frames is asynchronous and so no emulation is necessary. Of these three functions, the first two are combined into the DOWNLINK EMULATION, and the third is catered for by a number of functions termed UPLINK EMULATION. The 3GTS online documentation covers the detailed use of these functions.
  • 28. User-Definable Parameters l FP (transport channel, reception window) l AAL-2 (CID), ATM (VPI, VCI) Emulates Node & Channel Synchronization l Responds to received DL node or channel synch control frames Analyzes DL Frame Arrival Times l Checks TOA of received frames against the user- defined window l Sends timing adjustment control frames for out- of-synch frames l Retrieves frame & connection parameter information User-Definable Parameters l FP (transport channel, reception window) l AAL-2 (CID), ATM (VPI, VCI) Emulates Node & Channel Synchronization l Responds to received DL node or channel synch control frames Analyzes DL Frame Arrival Times l Checks TOA of received frames against the user- defined window l Sends timing adjustment control frames for out- of-synch frames l Retrieves frame & connection parameter information Downlink Emulation Capabilities ProtocolEmulator ATMLineInterface PE module analyzes received frame timing and responds to DL synch control frames Downlink Emulation The 3GTS can be used to emulate the Node B side of a downlink transport channel – for instance a FACH, PCH or DCH DL transport channel. FP transport channel, AAL-2, and ATM parameters can be defined by the user. Whenever a node synch or channel synch control frame (from the RNC) is received by the DL emulation, the emulation automatically responds with an uplink node synch or channel synch control frame. Whenever a data frame is received, the DL emulation checks that it has arrived within its reception window (specified by the window parameter). If it has arrived in the window, the user programming environment is notified of the reception of a valid data frame by a UPE event. The program can then retrieve and report on the frame and associated connection parameters.
  • 29. User-Definable Parameters l FP (TTI, CFN) l AAL-2 (CID), ATM (VPI, VCI) l Injects CFN and header-CRC errors for stress testing l Supports Silent Mode and Normal Mode DCH Transport l Normal Mode: User-definable ‘keep-alive’ frames are sent when there is no user data Emulates Synchronized DCH Transport l User-definable DCH user traffic frames l Sends frames Immediately or user-defined CFN l Accurate frame scheduling for stress testing l 256-slot Tx frame buffer with 10 ms slot resolution User-Definable Parameters l FP (TTI, CFN) l AAL-2 (CID), ATM (VPI, VCI) l Injects CFN and header-CRC errors for stress testing l Supports Silent Mode and Normal Mode DCH Transport l Normal Mode: User-definable ‘keep-alive’ frames are sent when there is no user data Emulates Synchronized DCH Transport l User-definable DCH user traffic frames l Sends frames Immediately or user-defined CFN l Accurate frame scheduling for stress testing l 256-slot Tx frame buffer with 10 ms slot resolution Uplink Emulation Capabilities ProtocolEmulator ATMLineInterface PE module synchronizes FP transmission times and generates ‘keep- alive’ frames UPE libraries are available for encoding higher-layer protocols (RLC/MAC) over FP Uplink Emulation The 3GTS can be used to emulate the Node B side of an uplink transport channel. The TTI and CFN for FP DCH transport channels, as well as AAL2 and ATM parameters, can be defined by the user. The emulation supports two modes of DCH UL transport channel operation– silent mode, where if there is no traffic from the user, no data frames will be sent to the RNC, and normal mode, where in the absence of user traffic, a ‘keep alive’ or ‘empty’ frame must be transmitted. This empty frame could be used by the RNC to calculate handover of the dedicated channel between cells, etc. The UL emulation also generates user traffic DCH UL frames as opposed to the automatically generated empty frames. Transmission time can be immediate or at a particular CFN transmission slot (10 ms interval) for that frame. Synchronized transmission involves buffering frames requested for transmission by the user until a valid reception window is open in the RNC. That is, the user- requested CFN must match the current BFN (which is in turn synchronized to the RNC’s RFN by the node synchronization procedure).
  • 30. Summary: 3G Development & Deployment Issues Business & Technical Challenges l Deliver Next-Generation Mobile Voice and Data Services: l Develop new 3G RAN Infrastructure l Deal with new Technologies (ATM, IP, 3GPP) Advantages of a Systematic Test Methodology l Develop the Best Product or Service Faster : l Accelerate Time to Market l Reduce Risks for Development/Deployment/Investment Business & Technical Challenges l Deliver Next-Generation Mobile Voice and Data Services: l Develop new 3G RAN Infrastructure l Deal with new Technologies (ATM, IP, 3GPP) Advantages of a Systematic Test Methodology l Develop the Best Product or Service Faster : l Accelerate Time to Market l Reduce Risks for Development/Deployment/Investment Conclusions Manufacturers and service providers are racing to develop 3G wireless systems to support the exploding demand for global, transparent wireless voice and data services. 3G systems will provide increased user capacity, mobile data transmission and Web access at rates of up to 2 Mb/s, and support for new multimedia wireless devices. To deliver these advances, however, the RAN must be able to manage a wide range of tasks for each 3G user, including access, roaming, transparent connection to the public switched telephone network and the Internet, and Quality of Service (QoS) management for data and Web connections. A systematic testing methodology allows 3G manufacturers to speed development of RAN software and equipment, such as base station and radio network controllers, and core network interfaces. Wireless service providers can use a similar testing strategy for independent evaluation of vendor equipment to guide purchasing decisions, and to evaluate field trial networks.
  • 31. 3G Test System3G Test System www.agilent.com/comms/3GTS Protocols AAL-2 = ATM Adaptation Layer, Type 2 (for voice and low-bit-rate data) AAL-5 = ATM Adaptation Layer, Type 5 (for packet data and ATM signalling) ALCAP = 3GPP Adoption of Q.AAL-2 Signalling Protocols ATM = Asynchronous Transfer Mode FP = Frame (Handling) Protocol; cch/dch = control/data channel GTP-u = GPRS Tunneling Protocol (Iu) IP = Internet Protocol Iu UP = Iu User Plane M3UA = SS7-MTP-3-User Adaptation Layer MAC = Media Access Control MTP-3b = Message Transfer Part Level 3 (Broadband) NBAP = Node B Application Protocol NNI = ATM Network to Network Interface PDCP = Packet Data Control Protocol RANAP = Radio Access Network Application Part RLC = Radio Link Control RNSAP = Radio Network Subsystem Application Part RRC = Radio Resource Control SCCP = Signalling Connection Control Point SCTP = Stream Control Transmission Protocol SSCF = Service Specific Coordination Function SSCOP = Service Specific Connection Oriented Protocol STC = Signalling Transport Converter UDP = User Datagram Protocol UNI = ATM User to Network Interface
  • 32. Reference Information Topics: l Mapping of radio interface channels: Physical / Transport/ Logical l Uu (radio) stratum protocol encapsulations Topics: l Mapping of radio interface channels: Physical / Transport/ Logical l Uu (radio) stratum protocol encapsulations
  • 33. Physical/Transport/Logical Channel Mappings: Uplink Direction (seen from the UTRAN side) Dedicated Channel (DCH) Random Access Channel (RACH) Common Packet Channel (CPCH) Transport Channels (FP) Physical Channels (air I/F) Dedicated Physical Data Channel (DPDCH) Dedicated Physical Control Channel (DPCCH) Physical Random Access Channel (PRACH) Physical Common Packet Channel (PCPCH) Common Pilot Channel (CPICH) Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. voice service Common Control Channel (CCCH) e.g. access request Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. limited packet data service Logical Channels (MAC) Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. bursty packet data (FDD mode only) Physical/Transport/Logical Channel Mappings The FP transport channels provide a mapping between physical channels on the air interface, and logical channels at the higher protocol layers (MAC). • The MAC layer deals with logical channels that specify what type of information is transferred (e.g. dedicated traffic, dedicated control, common control information). • The air interface deals with physical channels that are defined by specific characteristics of the RF encoding method. In FDD (Frequency Division Duplex) mode, physical channels are defined by code, frequency, and (uplink) relative phase. In TDD (Time Division Duplex) mode, physical channels are defined by code, frequency, and time-slot. This diagram shows the information transfer services (transport channels) that Frame Protocol provides in the uplink direction. Commonly-used logical channels are DCH and RACH.
  • 34. Physical/Transport/Logical Channel Mappings: Downlink Direction (seen from the UTRAN side) Dedicated Channel (DCH) Forward Access Channel (FACH) Paging Channel (PCH) Transport Channels (FP) Physical Channels (air I/F) Dedicated Physical Data Channel (DPDCH) Dedicated Physical Control Channel (DPCCH) Secondary Common Control Physical Channel (S-CCPCH) Primary Common Control Physical Channel (P-CCPCH) Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. voice service Common Control Channel (CCCH) e.g. access request Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. limited packet data service Logical Channels (MAC) Paging Control Channel (PCCH) e.g. UE location & paging Broadcast Control Channel (BCCH) e.g. system/cell-specific information Broadcast Channel (BCH) Downlink Shared Channel (DSCH) Dedicated Traffic Channel (DTCH) Dedicated Control Channel (DCCH) e.g. Synchronization/ shared information Synchronization Channel (SCH) Physical Downlink Shared Channel (PDSCH) Acquisition Indication Channel (AICH) Paging Indication Channel (PICH) Physical/Transport Channel Mappings (cont.) This diagram shows the information transfer services (transport channels) that Frame Protocol provides in the downlink direction. Commonly-used logical channels are DCH, FACH, PCH, and BCH.
  • 35. Uu (Radio) Stratum Protocols Extract From 3GTS Online Help l Reference information Extract From 3GTS Online Help l Reference information The 3GTS provides extensive online help, including operation instructions, programming references, and technology reference information on 3GPP protocols. This diagram shows how higher-layer protocols (RLC/MAC) are mapped into FP frames. It also shows how FP frames are mapped into the AAL-2 (CPS PKT and PDU) layers. Note that the AAL-2 SSTED error checking layer is not used for encapsulating FP.
  • 36. This completes the Frame Protocol Overview UP Node B RNC Uu Iub MAC air RLC MAC FP RLC FP AAL-2 ATM PHY AAL-2 ATM PHY air ATM Transport Uu (Radio) Stratum UE REFERENCES Synchronization in UTRAN 3GPP 25.402 FP DCH spec 3GPP 25.427 FP CCH spec 3GPP 25.435