SlideShare a Scribd company logo
1 of 24
Download to read offline
Vortex Flow Meters
Shedding Flow Meter
RVL Series
VRX-UM-00371-EN-03 (April 2017) User Manual
Vortex Flow Meters, Shedding Flow Meter
Page ii March 2017
VRX-UM-00371-EN-03
User Manual
CONTENTS
Description .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5
Operating Principle . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5
Fluids . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5
General Installation Information . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .6
Flow Rate and Range Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
Piping Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .6
Back Pressure . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Outputs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
K-Factors . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Electrical Installation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Power . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Wiring .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11
Three-Pin Connection Option .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Mechanical Installation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
RVL Inline Installation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
RVL Wafer Installation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
RVL Tube Installation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
Maintenance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
Specifications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
RVL Inline  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
RVL Wafer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
RVL Tube . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Dimensions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
RVL Inline  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
RVL Wafer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
RVL Tube . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
Troubleshooting . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
Current Loop .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
Over-Stressed Sensor . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
Calibration Certificate Sample .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Page iii
March 2017 VRX-UM-00371-EN-03
Vortex Flow Meters, Shedding Flow Meter
Page iv March 2017
VRX-UM-00371-EN-03
Description
DESCRIPTION
The RVL series meter uses vortex-shedding technology for repeatable flow measurement accurate to ±1 percent of full
scale. The meter has no moving parts, and any potential for fluid contamination is eliminated by the corrosion-resistant all
plastic construction. The meter includes a compact two-wire (4…20 mA) or three-wire (pulse) transmitter, contained within a
conveniently replaceable plug-in electronics module. All electronics are housed in a corrosion-resistant enclosure.
Unlike meters containing metal or moving parts, the RVL is perfect for aggressive or easily contaminated fluids. Applications
range from ultra-pure water to highly corrosive chemicals and slurries. Units can be recalibrated and the meter output span
can be reprogrammed in the field.
OPERATING PRINCIPLE
Operation of the RVL vortex flow meter is based on the vortex shedding principle. As fluid moves around a body, vortices
(eddies) are formed and move downstream. They form alternately, from one side to the other, causing pressure fluctuations.
The pressure fluctuations are sensed by a piezoelectric crystal in the sensor tube, and are converted to a 4…20 mA or pulse
signal. The frequency of the vortices is directly proportional to the flow rate. The results are extremely accurate and repeatable
measurements using no moving parts.
Bluff
Body
Counter
Detector
Detector
Figure 1: Operating principle
FLUIDS
Use any clean liquid compatible with the plastic material of construction that does not contain significant amounts of fibers
or abrasive materials.
DO NOT USE WITH EXPLOSIVE OR FLAMMABLE MATERIALS, FOOD OR BEVERAGES, OR GASEOUS FLUIDS.
Viscosities above 1 cSt raise the minimum usable flow rate and reduce the flow range. This effect is linear to viscosity. No
adjustments are required for viscosities up to 2.0 cSt. Liquids with higher viscosities adversely affect the permissible amount
and duration of over range flow. See Table 1.
Viscosity Minimum Maximum Flow Range
1 cSt 1 12 12:1
2 cSt 2 12 6:1
3 cSt 3 12 4:1
4 cSt 4 12 3:1
5 cSt 5 12 2.4:1
6 cSt 6 12 2:1
Table 1: Viscosity and flow range
Page 5
April 2017 VRX-UM-00371-EN-03
General Installation Information
GENERAL INSTALLATION INFORMATION
Before installing the meter:
•	 Find an area for installation away from large electrical motors, transformers or other devices that can produce high
electromagnetic or electrostatic fields. The vortex transmitter contains electric circuitry that can be affected by
these interferences.
•	 Proper grounding is required to eliminate electrical noise which may be present within the fluid and piping system or in
the near vicinity of the vortex transmitter. Use exterior grounding strap for non-conductive piping systems to provide a
path to earth ground. Properly ground pipes in conductive piping systems.
Flow Rate and Range Requirements
Most manufacturers state flow range capabilities by publishing the maximum allowed flow rates. Then they provide a
turndown ratio to determine minimum flow rate. To use the turndown ratio, simply divide the maximum rate by the ratio
to determine the minimum rate. Vortex flow meters have a 12:1 turndown ratio at a viscosity of 1 cSt. Higher viscosities will
reduce the turndown.
NOTE:
N The 1/4 in. NPT and 1/2 in. flare end meters have a standard turndown ratio of 8:1.
Piping Requirements
Turbulence in the pipeline can affect the accuracy of flow meters. Typical sources of turbulence are pumps, valves, change
in pipe diameter or changes-in-direction in the line. Install the meter away from the turbulence source to avoid turbulence
issues. These distances are indicated in Pipe Diameters (PD). For example, 10 PD is ten times the inside pipe diameter away
from the source of turbulence. Follow upstream and downstream distances for all sources of turbulence. See Figure 2 on page
7, Figure 3 on page 8, Figure 4 on page 9 and Figure 5 on page 9 for proper piping distance requirements.
NOTE:
N Pulsating flow affects accuracy. Pressure pulses affect accuracy.
Page 6 April 2017
VRX-UM-00371-EN-03
General Installation Information
Configuration
Piping Requirements
(pipe diameters) Accuracy
(full scale)
Repeatability
(of point)
Inlet Outlet
1 plane change
20
5
±1.00% 0.25%
1 plane change w/outlet valve 10
2 plane changes
27
5
2 plane changes w/outlet valve 10
Flow
20 Dia
Minimum
5 Dia
Minimum
Flow
20 Dia
Minimum
10 Dia
Minimum
Two Plane
Changes
Flow
5 Dia
Minimum
27 Dia
Minimum
Flow
10 Dia
Minimum
Two Plane
Changes
27 Dia
Minimum
Figure 2: Horizontal flow with sensing element in vertical orientation
Page 7
April 2017 VRX-UM-00371-EN-03
General Installation Information
Configuration
Piping Requirements Accuracy
(full scale)
Repeatability
(of point)
Inlet Outlet
1 plane change
20 PD
5 PD
±1.50% 0.25%
1 plane change w/outlet valve 10 PD
2 plane changes
27 PD
5 PD
2 plane changes w/outlet valve 10 PD
Flow
20 Dia
Minimum
5 Dia
Minimum
Flow
20 Dia
Minimum
10 Dia
Minimum
Two Plane
Changes
Flow
5 Dia
Minimum
27 Dia
Minimum
Flow
10 Dia
Minimum
Two Plane
Changes
27 Dia
Minimum
Figure 3: Horizontal flow with sensing element in horizontal position
Page 8 April 2017
VRX-UM-00371-EN-03
General Installation Information
Configuration
Piping Requirements Accuracy
(full scale)
Repeatability
(of point)
Inlet Outlet
1 plane change
20 PD
5 PD
±1.00% 0.25%
1 plane change w/outlet valve 10 PD
2 plane changes
27 PD
5 PD
2 plane changes w/outlet valve 10 PD
Flow
20 Dia
Minimum
5 Dia
Minimum
Flow
20 Dia
Minimum
10 Dia
Minimum
Flow
5 Dia
Minimum
27 Dia
Minimum
Two Plane
Changes
Flow
10 Dia
Minimum
Two Plane
Changes
27 Dia
Minimum
Figure 4: Vertical flow with a change in direction or valve
25 Dia
Minimum
10 Dia
Minimum
5 Dia
Minimum
2 Dia
Minimum
20 Dia
Minimum
Flow
25 Dia
Minimum
5 Dia
Minimum
5 Dia
Minimum
2 Dia
Minimum
20 Dia
Minimum
Flow
Two Plane
Changes
5 Dia
Minimum
30 Dia
Minimum
5 Dia
Minimum
2 Dia
Minimum
25 Dia
Minimum
Flow
Figure 5: Horizontal flow with a change in pipe diameter
Page 9
April 2017 VRX-UM-00371-EN-03
General Installation Information
Back Pressure
Back pressure, the pressure immediately downstream of the meter, must be maintained above a minimum level to avoid
cavitation. For most applications this may be ignored if the flow rate is less than 75% of maximum. For other applications, use
the following formula to calculate the minimum back pressure.
Back Pressure = 2.75 ∆P + 1.25 PV - 14.7
Where:
	∆P	 =	 Pressure drop in psi at max flow
	 PV	 =	 Vapor pressure in psia of the liquid at operating temp.
			 (For example, the PV of water at 100° F is 0.42.)
	 BP	 =	 Back pressure (downstream of meter) in psig.
Example
For water, at 100° F (37° C) in a 1/2 in. (12.7 mm) meter, where the maximum pressure drop is 8 psi minimum back pressure is
7.8 psig.
BP = (2.75 × 8) + (1.25 × 0.42) - 14.7
BP = 22 + 0.525 - 14.7
BP = 7.825
Outputs
The RVL series meters can be ordered with a current output or a rate frequency output. The current output can be re-scaled in
the field using a PC communications cable and programming software, which are both available as PN RVS220-954.
NOTE:
N The two outputs use unique circuit boards and cannot be changed in the field.
The rate frequency output produces pulses whose frequency is proportional to the flow going through the meter. Each meter
has a slightly different output frequency which is listed on the calibration sheet that accompanies the meter. See Table 2 for
the long term average full scale output frequency for standard size meters.
Meter Size Average Full Scale Frequency Pulse Width
1/4 in. (6.35 mm) 1055 Hz 0.47 msec
1/2 in. (12.7 mm) 820 Hz 0.61 msec
1/2 in. (12.7 mm) 570 Hz 0.88 msec
3/4 in. (19.05 mm) 284 Hz 1.76 msec
1 in. (25.4 mm) 292 Hz 1.71 msec
1-1/2 in. (38.1 mm) 144 Hz 3.47 msec
2 in. (50.8 mm) 148 Hz 3.38 msec
3 in. (76.2 mm) 61 Hz 8.20 msec
Table 2: Full scale output frequency
The frequency output option generates a square wave with an amplitude that matches the input power level. The pulse width
varies with frequency and is found by using the following formula.
PW in sec. =
1
2 x Maximum Frequency (Hz)
K-Factors
The K-factor is the number of pulses that must be accumulated to equal a particular volume of fluid. Think of each pulse as
representing a small fraction of the totalizing unit.
Calibration reports that accompany RVL series meters include a nominal K-factor in both gallons and liters. See “Calibration
Certificate Sample” on page 23.
Page 10 April 2017
VRX-UM-00371-EN-03
Electrical Installation
ELECTRICAL INSTALLATION
Power
Use the following guidelines when selecting a power source:
•	 Use an 8…28V DC power supply. The specific connection depends on which output is option is used.
•	 Use clean electrical line power.
•	 Do not operate this unit on circuits with noisy components such as fluorescent lights, relays, compressors or variable
frequency drives.
•	 Use linear power supplies.
NOTE:
N The power and output connections share a common ground.
Wiring
4…20 mA Loop
Connect a twisted pair wire (not provided) to the terminals of the transmitter marked 8…28V DC and Output. Do not connect
the shield to the transmitter if the twisted pair wire is shielded. The shield should be grounded at the receiver only.
See Figure 6. The transmitter is reverse-polarity protected.
+8-28 VDC
Gnd
Output
Programming
+8-28 VDC
Gnd
Output
8…28V DC
Output POWER
SUPPLY
8…28V DC
4…20 mA
Load
RECEIVER
Figure 6: Loop connection with single load
The receiving equipment must accept industry standard true two-wire or loop powered 4…20 mA process transmitter inputs.
The power can either be supplied by the receiving equipment or an external power supply that supplies 24V DC an 30 mA.
See Figure 6 for the wiring setup using an external power source and Figure 7 using the receiver as the power source. Several
receivers may be connected in a series as shown in Figure 7, but only one should provide power, and all should have
isolated inputs.
+8-28 VDC
Gnd
Output
Programming
+8-28 VDC
Gnd
Output
4...20 mA
Additional Loads
RECEIVER/POWER SUPPLY
RECEIVER
RECEIVER
8…28V DC
Output
Figure 7: Loop connection with multiple loads
Page 11
April 2017 VRX-UM-00371-EN-03
Electrical Installation
The voltage provided by the receiver must be within the limits shown in Figure 8.
100
200
300
400
500
600
700
800
900
1000
1100
10 12
8 14 16 18 20 22 24 26 28
Supply Voltage (V DC)
Loop
Load
(Ohm's)
Operate in the
Shaded Region
Supply Voltage – 8V DC
0.02
= Maximum Loop Resistance
Figure 8: Supply voltage chart
To use this figure:
1.	 Add the resistance of all the receivers, indicators and the wire in the loop. If the wire resistance is unknown, use a value of
50 ohm for a twisted wire of 1000 feet or less with a gauge of #22 awg or heavier.
2.	 Find the total load (in ohms) on the left side of the chart in Figure 8 and follow that value horizontally until it intersects
with the shaded area.
3.	 From the intersection point look straight down to where a vertical line would intersect the voltage scale. This is the
minimum voltage needed for the transmitter to operate properly under the specific load conditions.
Example
After checking the specification for all the loads in an application the total amounted to 800 ohms. Following the 800 ohm
line to the right, the intersection point is about 3/4 of the way across the chart in Figure 9.
A vertical line through the intersection point crosses the voltage axis at about 24V DC, so with a load of 800 ohms a standard
24 volt power supply would be used.
100
200
300
400
500
600
700
800
900
1000
1100
10 12
8 14 16 18 20 22 24 26 28
Supply Voltage (V DC)
Loop
Load
(Ohm's)
Operate in the
Shaded Region
Supply Voltage - 8V DC
0.02
= Maximum Loop Resistance
Figure 9: Supply voltage example
Pulse Output
Output
+8-28 VDC
Gnd
Programming
8…28V DC
Output
Ground
8…28V DC
POWER
SUPPLY
Counter
Pulse
Output
Figure 10: Pulse output wiring
Page 12 April 2017
VRX-UM-00371-EN-03
Electrical Installation
Three-Pin Connection Option
An optional three-pin connection is available for when the transmitter/meter combination is mounted remotely from the
power source/receiver. The mating connector is PN RF8687000.
+8-28 VDC
Gnd
Output
8…28V DC
Output
White
4…20 mA Input
Black
– 4…20 mA Input
Meter
Electronics
mA
-
+
-
+
Ammeter
8…28V DC
Power Supply
4…20 mA Input
– 4…20 mA Input
P.N. RF8687000 Connector
Figure 11: Remote connection loop power
White
4…20 mA Input
Black
– 4…20 mA Input
2
1
3
CW
1 2 3 4 5 6 7 8
ON
SPAN ZERO
Figure 12: Integral configuration for rate indicator
Page 13
April 2017 VRX-UM-00371-EN-03
Mechanical Installation
MECHANICAL INSTALLATION
RVL Inline Installation
For proper installation, follow these guidelines:
•	 Install the meter where pipe vibration is minimal.
•	 Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6.
•	 Do not use upstream valves to control flow rate. Always keep upstream valves fully open.
•	 Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during
operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow
meter performance.
•	 Do not use diaphragm or piston pumps.
•	 Do not use Teflon tape or any kind of pipe dope when piping.
•	 Handle the meter with care.
•	 Do not use excessive force. Screw mating fittings (FNPT) and flanges into the meter hand-tight; then tighten an additional
1/2…3/4 turn.
•	 Always use two wrenches when turning the flow meter into a fitting; one across the flats on the flow meter end, close to
the fitting, and one on the fitting.
•	 Do not use tools inside the flow meter, as this may damage the vortex sensor, and void the warranty.
The flow meter may be mounted in any orientation. Three holes, tapped 1/4-20 UNC-2B, 0.375 in.-deep, on 3/4 in. centers are
provided on the 3/4 in. and smaller flow meters. Use these holes to provide support for the flow meter if pipe supports are
not practical.
Page 14 April 2017
VRX-UM-00371-EN-03
Mechanical Installation
RVL Wafer Installation
The RVL Wafer series transmitters are designed with wafer style flow bodies, that mount easily between standard ANSI style
pipe flanges.
For proper installation, follow these guidelines:
•	 Install the meter where pipe vibration is minimal.
•	 Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6.
•	 Do not use upstream valves to control flow rate. Always keep upstream valves fully open.
•	 Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during
operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow
meter performance.
•	 Do not use diaphragm or piston pumps.
•	 Do not use Teflon tape or any kind of pipe dope when piping.
•	 Do not allow gaskets to protrude into the flow stream on flanged meters.
Flange Size Recommended Torque
1/2…1-1/2 in. 10…15 ft Ibs
2…3 in. 20…30 ft Ibs
Table 3: Torque rating
Follow these steps for proper installation and operation:
1.	 Space flanges to accommodate the width of the flow body. See “RVL Wafer” on page 21 for dimensions.
2.	 Align the flow body centered with respect to flanges and gaskets, insert threaded rods, retaining nuts and lock washers.
3.	 Install all retaining nuts hand-tight, and then uniformly tighten the nuts in an alternating sequence, diametrically opposed
to each other. Uniform stress across the flange prevents leakage at the gasket. Torque ratings are listed in Table 3.
4.	 Use grounding rings when metal pipes are used in conjunction with this meter. See Figure 13.
Grounding
Rings
Figure 13: Grounding ring installation
Page 15
April 2017 VRX-UM-00371-EN-03
Maintenance
RVL Tube Installation
For proper installation, follow these guidelines:
•	 Install the meter where pipe vibration is minimal.
•	 Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6.
•	 Do not use upstream valves to control flow rate. Always keep upstream valves fully open.
•	 Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during
operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow
meter performance.
•	 Do not use diaphragm or piston pumps.
•	 Do not use Teflon tape or any kind of pipe dope when piping.
•	 Handle the meter with care.
To install the meter:
1.	 Remove any burrs from the pipe ends.
2.	 Slide the flare nut onto the pipe.
3.	 Push the flare nut back far enough so that it will be out of the way when you use the flaring tool.
4.	 Clip the pipe in the flaring tool, keeping the end flush with the face of the tool.
5.	 Slowly turn the handle on the tool until it bottoms out.
6.	 Unscrew the handle and remove the tool to check the quality of the flare.
a.	 If the flare is not smooth or even the first time, cut off the end with your pipe cutter, and repeat steps 4…6.
7.	 Line up and tighten the nut and flared pipe to the fitting body. Make the connection tight, but not so tight that the flow
meter body is distorted.
•	 Always use two wrenches when turning a fitting onto the flow meter; one across the flats on the flow meter end close to
the fitting, and one on the fitting.
•	 Do not use tools inside the flow meter, as this may damage the vortex sensor, and invalidate the warranty.
MAINTENANCE
RVL flow meters do not require maintenance in normal service if they are properly installed. Remove the meter from service
for cleaning if the flow tube becomes clogged with debris. Significant clogging often results in high (up to 20%) and/or erratic
output. Do not stick tools into the tube, as this may permanently damage the vortex sensor. The vortex sensor cannot be
repaired in the field. To clean the flow tube, run hot, up to 160° F (71.1° C), soapy water into the downstream end of the flow
tube. Dislodge large objects jammed against the bluff body by lightly tapping the upstream end of the flow tube against a
firm surface.
CAUTION
DO NOT REMOVE VORTEX METER DURING OPERATION. ALWAYS DISCONNECT THE PRIMARY POWER SOURCE
BEFORE INSPECTION OF SERVICE. DO NOT TAP THE FLOW TUBE SO HARD THAT THE THREADS, ON THREADED UNITS,
BECOME DAMAGED.
A schedule of maintenance checks should be determined based upon environmental conditions and frequency of use.
Inspect the meter at least once a year.
•	 Visually check for evidence of overheating by noting discoloration of wires or other components.
•	 Check for damaged or worn parts, especially the bluff body, or indications of corrosion.
•	 Check for tight, clean electrical connections and that the device is operating properly.
Page 16 April 2017
VRX-UM-00371-EN-03
Specifications
SPECIFICATIONS
RVL Inline
Fluid Liquids
Connection NPT Female or Butt (PVDF only)
Turndown Ratio
12:1 for 1/2…2 in. (12.7…50.8 mm) meters
8:1 for 1/4 in. (6.35 mm) meter
Accuracy
±1% of full scale (4…20 mA)
±2% of full scale, frequency pulse
Repeatability ±0.25% of actual flow
Materials
PVC standard
CPVC, PVDF optional
Output Signals
4…20 mA standard
Frequency pulse optional push-pull driver 150 mA sink or source
Power Supply 8…28V DC
Response Time 2 seconds minimum, step-change-in flow
Enclosure Type 4X (IP 66)
Nominal Flow Rates
Tube Size Minimum Flow Maximum Flow Full Scale Frequency Weight
1/4 in. (6.35 mm) 0.6 gpm (2.3 lpm) 5 gpm (18.9 lpm) 1052 Hz 1.5 lbs (0.68 kg)
1/2 in. (12.7 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 570 Hz 1.6 lbs (0.72 kg)
3/4 in. (19.05 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 284 Hz 1.7 lbs (0.77 kg)
1 in. (25.4 mm) 4.2 gpm (15.8 lpm) 50 gpm (189.3 lpm) 292 Hz 1.8 lbs (0.80 kg)
1-1/2 in. (38.1 mm) 8.3 gpm (31.5 lpm) 100 gpm (378.5 lpm) 144 Hz 3.1 lbs (1.40 kg)
2 in. (50.8 mm) 16.7 gpm (63.1 lpm) 200 gpm (757.1 lpm) 142 Hz 2.7 lbs (1.22 kg)
Maximum Fluid
Temperature
Maximum Operating Pressure psig (KPa)
PVC CPVC PVDF
203° F (95° C) Not recommended Consult factory Consult factory
150° F (66° C) Not recommended 63 psig (434 KPa) 130 psig (896 KPa)
100° F (38° C) 93 psig (641 KPa) 120 psig (827 KPa) 150 psig (1034 KPa)
70° F (21° C) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa)
.5 2 10 25 100
.3 1 5 15 50 200
.05
.1
.2
.5
1
2
5
8
10
12
20
FLOW (GPM)
PRESSURE
DROP
(PSID)
¼
i
n
.
½
i
n
.
¾
i
n
.
1
i
n
.
1
½
i
n
.
2
i
n
.
600
2 5 10 20 50 200
3.5
5
10
20
35
50
100
200
350
500
750
FLOW (LPM)
PRESSURE
DROP
(MILLIBAR)
1000
30 100 300 800
¼
i
n
.
½
i
n
.
¾
i
n
.
1
i
n
.
1
½
i
n
.
2
i
n
.
Figure 14: RVL inline pressure drop
Page 17
April 2017 VRX-UM-00371-EN-03
Specifications
RVL Wafer
Fluid Liquids
Connection Wafer
Turndown Ratio 12:1
Accuracy
±1% of full scale (4…20 mA)
±2% of full scale, frequency pulse
Repeatability ±0.25% of actual flow
Materials
PVC standard
CPVC, Polypropylene, PVDF optional
Output Signals
4…20 mA standard
Frequency pulse optional push-pull driver 150 mA sink or source
Power Supply 8…28V DC
Response Time 2 seconds minimum, step-change-in flow
Enclosure Type 4X (IP 66)
Nominal Flow Rates
Tube Size Minimum Flow Maximum Flow Full Scale Frequency Weight
1/2 in. (12.7 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 570 Hz 0.8 lbs (0.36 kg)
3/4 in.(19.05 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 284 Hz 0.9 lbs (0.41 kg)
1 in. (25.4 mm) 4.2 gpm (15.8 lpm) 50 gpm (189.3 lpm) 292 Hz 1.1 lbs (0.50 kg)
1-1/2 in. (38.1 mm) 8.3 gpm (31.5 lpm) 100 gpm (378.5 lpm) 144 Hz 1.7 lbs (0.77 kg)
2 in. (50.8 mm) 16.7 gpm (63.1 lpm) 200 gpm (757.1 lpm) 148 Hz 2.6 lbs (1.17 kg)
3 in. (76.2 mm) 25.0 gpm (94.6 lpm) 300 gpm (1136 lpm) 61 Hz 4.8 lbs (2.16 kg)
Maximum Fluid
Temperature
Maximum Operating Pressure, Standard
PVC CPVC Polypropylene PVDF
203° F (95° C) Not recommended Consult factory Not recommended Consult factory
150° F (66° C) Not recommended 63 psig (434 KPa) 90 psig (621 KPa) 130 psig (896 KPa)
100° F (38° C) 100 psig (690 KPa) 120 psig (827 KPa) 130 psig (896 KPa) 150 psig (1034 KPa)
70° F (21° C) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa)
Maximum Fluid
Temperature
Maximum Operating Pressure, High Pressure
PVC CPVC Polypropylene PVDF
203° F (95° C) Not recommended Not recommended Not recommended Consult factory
150° F (66° C) Consult factory Consult factory 90 psig (621 KPa) 300 psig (2068 KPa)
100° F (38° C) Consult factory Consult factory 130 psig (896 KPa) 400 psig (2750 KPa)
70° F (21° C) Consult factory Consult factory 150 psig (1034 KPa) 400 psig (2750 KPa)
.5 2 10 25 100 300
.3 1 5 15 50 200
.05
.1
.2
.5
1
2
5
8
10
12
20
FLOW (GPM)
PRESSURE
DROP
(PSID)
1
½
i
n
.
1
in
.
2
in
.
3
i
n
.
¾
i
n
.
½
i
n
.
600
2 5 10 20 50 200
3.5
5
10
20
35
50
100
200
350
500
750
FLOW (LPM)
PRESSURE
DROP
(MILLIBAR)
1000
30 100 300 800
1200
1
/
2
i
n
.
3
/
4
i
n
.
1
i
n
.
1
½
i
n
.
2
i
n
.
3
i
n
.
Figure 15: RVL wafer pressure drop
Page 18 April 2017
VRX-UM-00371-EN-03
Specifications
RVL Tube
Fluid Liquids
Connection Tube (Flare end)
Turndown Ratio
12:1 for 3/4 in. (19.05 mm) and 1 in. (25.4 mm) meters
8:1 for 1/2 in. (12.7 mm) meter
Accuracy
±1% of full scale (4…20 mA)
±2% of full scale, frequency pulse
Repeatability ±0.25% of actual flow
Materials
PVC standard
CPVC, Polypropylene, PVDF optional
Output Signals
4…20 mA standard
Frequency pulse optional push-pull driver 150 mA sink or source
Power Supply 8…28V DC
Response Time 2 seconds minimum, step-change-in flow.
Enclosure Type 4X (IP 66)
Nominal Flow Rates
Tube Size Minimum Flow Maximum Flow Weight
1/2 in. (12.7 mm) 0.6 gpm (2.3 lpm) 5 gpm (18.9 lpm) 1.5 lbs (0.68 kg)
3/4 in. (19.05 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 1.6 lbs (0.72 kg)
1 in. (25.4 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 1.7 lbs (0.77 kg)
Maximum Fluid Temperature
Maximum Operating Pressure
PVDF
150° F(66° C) 130 psig (896 KPa)
100° F (38° C) 150 psig (1034 KPa)
70° F (21° C) 150 psig (1034 KPa)
.5 2 10 25 100
.3 1 5 15 50 200
.05
.1
.2
.5
1
2
5
8
10
12
20
PRESSURE
DROP
(PSID)
½
i
n
.
1
i
n
.
¾
i
n
.
FLOW (GPM)
FLOW (LPM)
600
2 5 10 20 50 200
3.5
5
10
20
35
50
100
200
350
500
750
FLOW (LPM)
PRESSURE
DROP
(MILLIBAR)
1000
30 100 300 800
1
i
n
.
½
i
n
.
¾
i
n
.
Figure 16: RVL tube pressure drop
Page 19
April 2017 VRX-UM-00371-EN-03
Dimensions
DIMENSIONS
RVL Inline
I
E
D
B
A
C
F
Cord Grip
NPT/BUTT
END
Cover
Conduit Adapter
Terminal Strip
Electronics Module
Three-Pin Connector
Flow Sensor Body
Cord Grip
Figure 17: RVL inline dimensions
PVC/CPVC
Size
A
in. (mm)
B
in. (mm)
C
in. (mm)
D
in. (mm)
E
in. (mm)
F
in. (mm)
I
in. (mm)
1/4 in. (6.35 mm) 3.81 (97) 1.75 (45) 5.25 (133) 2.50 (64) 0.30 (8) 2.88 (73) 3.00 (76)
1/2 in. (12.7 mm) 3.81 (97) 1.75 (45) 7.13 (181) 2.50 (64) 0.55 (14) 2.88 (73) 3.00 (76)
3/4 in. (19.05 mm) 3.81 (97) 1.75 (45) 7.63 (194) 2.50 (64) 0.74 (19) 2.88 (73) 3.00 (76)
1 in. (25.4 mm) 3.92 (100) 1.75 (45) 8.03 (204) 2.50 (64) 0.96 (24) 2.88 (73) 3.00 (76)
1-1/2 in. (38.1 mm) 3.90 (99) 2.00 (51) 8.37 (213) 2.50 (64) 1.50 (38) 2.88 (73) 3.38 (86)
2 in. (50.8 mm) 4.31 (109) 2.00 (51) 8.37 (213) 2.50 (64) 1.94 (49) 2.88 (73) 3.38 (86)
PVDF (BUTT Fusion Only)
Size
A
in. (mm)
B
in. (mm)
C
in. (mm)
D
in. (mm)
E
in. (mm)
F
in. (mm)
I
in. (mm)
1/4 in. (6.35 mm) 5.90 (150) 0.63 (16) 4.87 (124) 1.31 (33) 0.30 (8) 2.88 (73) 3.00 (76)
1/2 in. (12.7 mm) 5.75 (146) 0.78 (20) 4.87 (124) 1.31 (33) 0.55 (14) 2.88 (73) 3.00 (76)
3/4 in. (19.05 mm) 5.75 (146) 0.94 (24) 4.87 (124) 1.44 (37) 0.74 (19) 2.88 (73) 3.00 (76)
1 in. (25.4 mm) 5.88 (149) 1.19 (30) 5.09 (129) 2.00 (51) 0.96 (24) 2.88 (73) 3.00 (76)
1-1/2 in. (38.1 mm) 6.21 (158) 1.50 (38) 6.24 (158) 2.50 (64) 1.50 (38) 2.88 (73) 3.38 (86)
2 in. (50.8 mm) 6.60 (168) 1.88 (48) 6.77 (172) 3.00 (76) 1.94 (49) 2.88 (73) 3.38 (86)
Page 20 April 2017
VRX-UM-00371-EN-03
Dimensions
RVL Wafer
C
E
D
A
B
Cord Grip
Terminal Strip
Electronics Module
Three-Pin Connector
Flow Sensor Body
Cover
Conduit Adapter
Cord Grip
Figure 18: RVL wafer dimensions
RVL (Wafer) Dimensions PP/PVC/CPVC/PVDF
Size
A
in. (mm)
B
in. (mm)
C
in. (mm)
D
in. (mm)
E
in. (mm)
1/2 in. (12.7 mm) 5.85 (149) 0.78 (20) 2.03 (52) 1.75 (45) 2.88 (73)
3/4 in. (19.05 mm) 5.90(150) 0.94 (24) 2.03 (52) 1.75 (45) 2.88 (73)
1 in. (25.4 mm) 5.69 (145) 1.19 (30) 2.25 (57) 1.75 (45) 2.88 (73)
1-1/2 in. (38.1 mm) 6.00 (152) 1.50 (38) 2.63 (67) 1.75 (45) 2.88 (73)
2 in. (50.8 mm) 6.37 (162) 1.88 (48) 3.22 (82) 1.75 (45) 2.88 (73)
3 in. (76.2 mm) 6.88 (175) 2.50 (64) 4.25 (108) 1.75 (45) 2.88 (73)
RVL Tube
C
B
A
Terminal Strip
Electronics Module
Three-Pin Connector
Flow Sensor Body
Cover
Conduit Adapter
Cord Grip
Figure 19: RVL tube dimensions
Tube Size
A
in. (mm)
B)
in. (mm)
C
in. (mm)
1/2 in. (12.7 mm) 1.31 (33.3) 6.25 (158.8) 4.87 (123.7)
3/4 in. (19.05 mm) 1.31 (33.3) 6.25 (158.8) 4.66 (118.4)
1 in. (25.4 mm) 1.44 (36.6) 6.59 (167.4) 5.42 (137.7)
Page 21
April 2017 VRX-UM-00371-EN-03
Troubleshooting
TROUBLESHOOTING
If difficulty is encountered, locate the symptom most likely present and follow the appropriate instructions.
Current Loop
No Current Output
•	 Place a DC voltmeter across the two terminal block screws. With the electronics module powered there must be at least
8V DC present. If there is less than 8V DC, but more than 0V DC, check the power source for sufficient voltage to drive the
loop, as shown in Figure 8 on page 12.
◊	 If there is 0V DC present, check for a broken wire or connector in the loop.
•	 Check for the proper polarity of the current loop connections.
•	 Make sure the receiving device is configured to provide source current to the electronics module.
Zero Flow Indication (4 mA in Loop)
•	 Check that the flow is greater than the minimum specified for the particular size flow meter in use.
◊	 If the flow rate is too low, replace the flow meter with the proper size flow meter.
◊	 If the flow rate is sufficient, partially remove the electronic module. Check that the three pin connector that connects
the electronics module to the flow transducers is positively connected. See Figure 20. Align and insert the connector on
to the bottom of the electronics module if it is disconnected.
Terminal Strip
Electronics Module
Three-Pin Connector
Flow Sensor Body
Figure 20: Electrical connection
Erratic Flow Indication
•	 Check that there is at least 8V DC present across the two terminal block screws.
•	 Check for material clogging the flow meter and in the upstream piping.
•	 Check for erosion of the bluff body by sighting down the meters bore. Erosion or damage to the bluff body causes erratic
readings and compromise accuracy. If the erosion continues, the flow meter will need to be periodically replaced.
•	 Check upstream piping distance. See “Piping Requirements” on page 6.
•	 Check for excessive pipe vibration. Normal amounts of pipe vibration are easily tolerated. The transmitter module contains
a highly effective active filter that rejects false signals caused by pipe vibration. This filter is most effective under flowing
conditions. If vibration is causing the meter to indicate flow when the flow is stopped it will most likely not cause error
under flowing conditions. The false flow indication may be ignored, or the pipe may be restrained by firm clamps.
•	 Check for electrical noise. Under some conditions there can be high common mode AC noise present between the fluid
and the power supply ground. The flow meter is designed to reject up to 50 volts of AC common mode noise without loss
of accuracy. If noise adjustment is used, accuracy is effected at low flow rates. Place a ground strap on the pipe on both
sides of the flow meter (the flow meter is made of non-conductive plastic) and connect them both to the one point where
the loop is grounded if metal piping is used. See “Wiring” on page 11. Use a grounding orifice if plastic piping is used. The
transmitter module contains a highly effective active filter that will reject false signals due to high common mode voltage.
This filter is most effective under flowing conditions. If a false indication of flow is encountered at zero flow, it will probably
not cause error under flowing conditions.
Over-Stressed Sensor
The sensor can be over-stressed if the maximum permitted flow rate of 125% of recommended capacity (100% of HT meters)
is exceeded.
Page 22 April 2017
VRX-UM-00371-EN-03
Calibration Certificate Sample
CALIBRATION CERTIFICATE SAMPLE
Calibration Report
Unit Under Test (UUT) Information:	 Master Meter:
Description:	 3/4 in. In-Line NPT End Flow Meter	 Std uncertainty:	±0.25%
Model Number:	 RVL075-N 1 VNN	 Traceability No:	30400/31801
Serial Number:	 99999		 Model No:	 FT8-8N EXW-LEG-5/FT-16 NEXW-LEG-1
Sensor Type:	 Vortex Shedding	 Serial No:	806890/16011903
Output type:	 0-5V
Minimum Flow:	 2.1 GPM	 7.9 LPM	 Customer Information:
Maximum Flow:	 25 GPM	 94.6 LPM	 Customer Name:
Calibration Date:	 October 24, 2007	 Customer No.:
Calibration Interval:	12 Months		 Order No.:
Cal. Liquid:	 Water
Ambient Temperature: 71.74 °F
Ambient Humidity:	 31.39 %RH
Linear Points:	 5
UUT Calibration Data Table In GPM:
Flow
Standard
Actual
GPM
UUT
Hz
UUT
Temp °F
Visc.
cSt
UUT F/V
Hz/cSt
UUT K
CYC/GAL
(Hz*60)/NK
GPM
Linear
COEFF.
Raw Err
% FS
Calc.
0-5V
Meas.
0-5V
Output
Err % FS
1 25.00 100.000 72.00 0.949 105.406 240.00 24.57 1.0174 1.71 5.000 5.000 0.00
1 18.00 75.000 72.00 0.949 79.055 250.00 18.43 0.9767 -1.71 3.600 3.680 0.40
1 12.00 50.000 72.00 0.949 52.703 250.00 12.29 0.9767 -1.14 2.400 2.420 0.10
1 6.00 25.000 72.00 0.949 26.352 250.00 6.14 0.9767 -0.57 1.200 1.200 0.00
1 2.10 10.000 72.00 0.949 10.541 285.71 2.46 0.8547 -1.43 0.420 0.420 0.00
Nominal K (NK) 244.186
UUT Calibration Data Table In LPM:
Flow
Standard
Actual
GPM
UUT
Hz
UUT
Temp °F
Visc.
cSt
UUT F/V
Hz/cSt
UUT K
CYC/GAL
(Hz*60)/NK
GPM
Linear
COEFF.
Raw Err
% FS
Calc.
0-5V
Meas.
0-5V
Output
Err % FS
1 94.64 100.000 72.00 0.949 105.406 63.40 93.01 1.0174 1.71 5.000 5.000 0.00
1 68.14 75.000 72.00 0.949 79.055 66.04 69.76 0.9767 -1.71 3.600 3.680 0.40
1 45.42 50.000 72.00 0.949 52.703 66.04 46.51 0.9767 -1.14 2.400 2.420 0.10
1 22.71 25.000 72.00 0.949 26.352 66.04 23.25 0.9767 -0.57 1.200 1.200 0.00
1 7.95 10.000 72.00 0.949 10.541 75.48 9.30 0.8547 -1.43 0.420 0.420 0.00
Nominal K (NK) 64.507
Status: PASS
Meter Accuracy (of FS): ± 0.4 %
Average Calib. Temperature : 72 F
Average Calib. Specific Gravity : 1 Calibrated By: Ramon Benedict
Average Calib. Viscosity : 0.95 cSt
Flow Direction : Forward Certified By: Larry Perez
Racine calibrations are performed using standards traceable to National Institute of Standards and Technology.
The equipment and calibration procedures comply with ISO 9001.
Page 23
April 2017 VRX-UM-00371-EN-03
Vortex Flow Meters, Shedding Flow Meter
www.badgermeter.com
Trademarks appearing in this document are the property of their respective entities. Due to continuous research, product improvements and enhancements, Badger Meter reserves
the right to change product or system specifications without notice, except to the extent an outstanding contractual obligation exists. © 2017 Badger Meter, Inc. All rights reserved.
Control. Manage. Optimize.
The Americas | Badger Meter | 4545 West Brown Deer Rd | PO Box 245036 | Milwaukee, WI 53224-9536 | 800-876-3837 | 414-355-0400
México | Badger Meter de las Americas, S.A. de C.V. | Pedro Luis Ogazón N°32 | Esq. Angelina N°24 | Colonia Guadalupe Inn | CP 01050 | México, DF | México | +52-55-5662-0882
Europe, Eastern Europe Branch Office (for Poland, Latvia, Lithuania, Estonia, Ukraine, Belarus) | Badger Meter Europe | ul. Korfantego 6 | 44-193 Knurów | Poland | +48-32-236-8787
Europe, Middle East and Africa | Badger Meter Europa GmbH | Nurtinger Str 76 | 72639 Neuffen | Germany | +49-7025-9208-0
Europe, Middle East Branch Office | Badger Meter Europe | PO Box 341442 | Dubai Silicon Oasis, Head Quarter Building, Wing C, Office #C209 | Dubai / UAE | +971-4-371 2503
Slovakia | Badger Meter Slovakia s.r.o. | Racianska 109/B | 831 02 Bratislava, Slovakia | +421-2-44 63 83 01
Asia Pacific | Badger Meter | 80 Marine Parade Rd | 21-06 Parkway Parade | Singapore 449269 | +65-63464836
China | Badger Meter | 7-1202 | 99 Hangzhong Road | Minhang District | Shanghai | China 201101 | +86-21-5763 5412
Switzerland | Badger Meter Swiss AG | Mittelholzerstrasse 8 | 3006 Bern | Switzerland | +41-31-932 01 11 Legacy Document: 09-VRX-UM-00362

More Related Content

What's hot

Mod mag m1000 manual badger meter electromagnetic flow meter_m-series
 Mod mag m1000 manual badger meter electromagnetic flow meter_m-series Mod mag m1000 manual badger meter electromagnetic flow meter_m-series
Mod mag m1000 manual badger meter electromagnetic flow meter_m-seriesENVIMART
 
Vortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterVortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterENVIMART
 
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...ENVIMART
 
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...ENVIMART
 
Mod mag m2000 manual badger meter electromagnetic flow meter_m-series
 Mod mag m2000 manual badger meter electromagnetic flow meter_m-series Mod mag m2000 manual badger meter electromagnetic flow meter_m-series
Mod mag m2000 manual badger meter electromagnetic flow meter_m-seriesENVIMART
 
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meter
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meterDynasonics dxn manual badger meter portable clamp-on ultrasonic flow meter
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meterENVIMART
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanPinjamanTanpaJaminan
 
Instruction manual | Celestron CGEM DX Telescopes | Optics Trade
Instruction manual | Celestron CGEM DX Telescopes | Optics TradeInstruction manual | Celestron CGEM DX Telescopes | Optics Trade
Instruction manual | Celestron CGEM DX Telescopes | Optics TradeOptics-Trade
 
Vmw vsphere-high-availability
Vmw vsphere-high-availabilityVmw vsphere-high-availability
Vmw vsphere-high-availability선중 한
 
Ingersoll rand sierra h150 a redc1
Ingersoll rand sierra h150 a   redc1Ingersoll rand sierra h150 a   redc1
Ingersoll rand sierra h150 a redc1LICELI MORALES
 
Thomson profile rail_linear_guides_catalog
Thomson profile rail_linear_guides_catalogThomson profile rail_linear_guides_catalog
Thomson profile rail_linear_guides_catalogElectromate
 
Timken bearing damage analysis with lubrication reference guide
Timken bearing damage analysis with lubrication reference guideTimken bearing damage analysis with lubrication reference guide
Timken bearing damage analysis with lubrication reference guideRicky Smith CMRP, CMRT
 
Multisim 9 for educators
Multisim 9 for educatorsMultisim 9 for educators
Multisim 9 for educatorsdinhto1985
 
Dl5 k2 1 owners manual
Dl5 k2 1 owners manualDl5 k2 1 owners manual
Dl5 k2 1 owners manualIrwin Zucker
 

What's hot (20)

Mod mag m1000 manual badger meter electromagnetic flow meter_m-series
 Mod mag m1000 manual badger meter electromagnetic flow meter_m-series Mod mag m1000 manual badger meter electromagnetic flow meter_m-series
Mod mag m1000 manual badger meter electromagnetic flow meter_m-series
 
Vortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meterVortex vn2000 manual badger meter flow meters hot tap insertion meter
Vortex vn2000 manual badger meter flow meters hot tap insertion meter
 
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...
Dynasonics tfx 500w manual badger meter-clamp-on transit time ultrasonic flow...
 
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
Dynasonics is 6000 manual badger meter-doppler stationary area velocity flow ...
 
Mod mag m2000 manual badger meter electromagnetic flow meter_m-series
 Mod mag m2000 manual badger meter electromagnetic flow meter_m-series Mod mag m2000 manual badger meter electromagnetic flow meter_m-series
Mod mag m2000 manual badger meter electromagnetic flow meter_m-series
 
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meter
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meterDynasonics dxn manual badger meter portable clamp-on ultrasonic flow meter
Dynasonics dxn manual badger meter portable clamp-on ultrasonic flow meter
 
Dpu 7910a
Dpu 7910aDpu 7910a
Dpu 7910a
 
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa JaminanKTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
KTA, Pinjaman Tanpa Jaminan, Dana Pinjaman Tanpa Jaminan
 
Instruction manual | Celestron CGEM DX Telescopes | Optics Trade
Instruction manual | Celestron CGEM DX Telescopes | Optics TradeInstruction manual | Celestron CGEM DX Telescopes | Optics Trade
Instruction manual | Celestron CGEM DX Telescopes | Optics Trade
 
Ax2040 en
Ax2040 enAx2040 en
Ax2040 en
 
Vmw vsphere-high-availability
Vmw vsphere-high-availabilityVmw vsphere-high-availability
Vmw vsphere-high-availability
 
Ingersoll rand sierra h150 a redc1
Ingersoll rand sierra h150 a   redc1Ingersoll rand sierra h150 a   redc1
Ingersoll rand sierra h150 a redc1
 
Lfa
LfaLfa
Lfa
 
Thomson profile rail_linear_guides_catalog
Thomson profile rail_linear_guides_catalogThomson profile rail_linear_guides_catalog
Thomson profile rail_linear_guides_catalog
 
Timken bearing damage analysis with lubrication reference guide
Timken bearing damage analysis with lubrication reference guideTimken bearing damage analysis with lubrication reference guide
Timken bearing damage analysis with lubrication reference guide
 
St3300655 lw
St3300655 lwSt3300655 lw
St3300655 lw
 
8000 guide
8000 guide8000 guide
8000 guide
 
Multisim 9 for educators
Multisim 9 for educatorsMultisim 9 for educators
Multisim 9 for educators
 
Odoo development
Odoo developmentOdoo development
Odoo development
 
Dl5 k2 1 owners manual
Dl5 k2 1 owners manualDl5 k2 1 owners manual
Dl5 k2 1 owners manual
 

Similar to Vortex rvl manual badger meter series flow meter

CLAAS C490 Cutter Bar Service Repair Manual
CLAAS C490 Cutter Bar Service Repair ManualCLAAS C490 Cutter Bar Service Repair Manual
CLAAS C490 Cutter Bar Service Repair Manualudfjjsjefkkekmm
 
Claas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualClaas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualeudskkejedmm
 
Claas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualClaas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualjfdjskmdmme
 
Claas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualClaas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualjfdjskmdmme
 
Claas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualClaas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualjfdjskmdmme
 
Claas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualClaas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualeudskkejedmm
 
Claas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualClaas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualeudskkejedmm
 
Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100cromicom
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualfhhsjdkmem
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualudjdkdkdmm
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualjfksekmmdme
 
En acs150 um rev c_a4_screen
En acs150 um rev c_a4_screenEn acs150 um rev c_a4_screen
En acs150 um rev c_a4_screenToàn Huỳnh
 
Manual bomba centrífuga griswold
Manual bomba centrífuga griswoldManual bomba centrífuga griswold
Manual bomba centrífuga griswoldOmar Soto Basilio
 
Perkins 4000 series 4016 e61 trs gas engine service repair manual
Perkins 4000 series 4016 e61 trs gas engine service repair manualPerkins 4000 series 4016 e61 trs gas engine service repair manual
Perkins 4000 series 4016 e61 trs gas engine service repair manualfjskekxswesemm
 
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manual
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair ManualPERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manual
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manualjnsekmdmm
 
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manualPerkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manualjknsmmem
 
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manualPerkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manualfjkskmmdmme
 

Similar to Vortex rvl manual badger meter series flow meter (20)

Ir fa10
Ir fa10Ir fa10
Ir fa10
 
CLAAS C490 Cutter Bar Service Repair Manual
CLAAS C490 Cutter Bar Service Repair ManualCLAAS C490 Cutter Bar Service Repair Manual
CLAAS C490 Cutter Bar Service Repair Manual
 
Claas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualClaas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manual
 
Claas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualClaas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manual
 
Claas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualClaas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manual
 
Claas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manualClaas c490 cutter bar service repair manual
Claas c490 cutter bar service repair manual
 
Claas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manualClaas c370 cutter bar service repair manual
Claas c370 cutter bar service repair manual
 
Claas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manualClaas c430 cutter bar service repair manual
Claas c430 cutter bar service repair manual
 
Battery Testing Guide
Battery Testing GuideBattery Testing Guide
Battery Testing Guide
 
Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manual
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manual
 
Crown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manualCrown wave50 work assit vehicle service repair manual
Crown wave50 work assit vehicle service repair manual
 
En acs150 um rev c_a4_screen
En acs150 um rev c_a4_screenEn acs150 um rev c_a4_screen
En acs150 um rev c_a4_screen
 
Manual bomba centrífuga griswold
Manual bomba centrífuga griswoldManual bomba centrífuga griswold
Manual bomba centrífuga griswold
 
Submerged pump
Submerged pump Submerged pump
Submerged pump
 
Perkins 4000 series 4016 e61 trs gas engine service repair manual
Perkins 4000 series 4016 e61 trs gas engine service repair manualPerkins 4000 series 4016 e61 trs gas engine service repair manual
Perkins 4000 series 4016 e61 trs gas engine service repair manual
 
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manual
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair ManualPERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manual
PERKINS 2000 SERIES 2006 DIESEL ENGINE(model 2006TWG2)Service Repair Manual
 
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manualPerkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 twg2)service repair manual
 
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manualPerkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manual
Perkins 2000 series 2006 diesel engine(model 2006 tg1a)service repair manual
 

More from ENVIMART

Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Zinc Continuous Analysis from SEIBOLD-Wasser.pdfZinc Continuous Analysis from SEIBOLD-Wasser.pdf
Zinc Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Nickel Continuous Analysis from SEIBOLD-Wasser.pdfNickel Continuous Analysis from SEIBOLD-Wasser.pdf
Nickel Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Manganese Continuous Analysis from SEIBOLD-Wasser.pdfManganese Continuous Analysis from SEIBOLD-Wasser.pdf
Manganese Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Lead Continuous Analysis from SEIBOLD-Wasser.pdf
Lead Continuous Analysis from SEIBOLD-Wasser.pdfLead Continuous Analysis from SEIBOLD-Wasser.pdf
Lead Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdfIron Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Iron Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Continuous Analysis from SEIBOLD-Wasser.pdfIron Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Chromium Continuous Analysis from SEIBOLD-Wasser.pdf
Chromium Continuous Analysis from SEIBOLD-Wasser.pdfChromium Continuous Analysis from SEIBOLD-Wasser.pdf
Chromium Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdfCopper Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdfCopper Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Copper Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Continuous Analysis from SEIBOLD-Wasser.pdfCopper Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdf
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdfCobalt Continuous Analysis from SEIBOLD-Wasser.pdf
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdf
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdfCadmium Continuous Analysis from SEIBOLD-Wasser.pdf
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdf
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdfArsenic Continuous Analysis from SEIBOLD-Wasser.pdf
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdf
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdfAluminium Continuous Analysis from SEIBOLD-Wasser.pdf
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdfENVIMART
 
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdfATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdfENVIMART
 
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdfATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdfENVIMART
 
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdf
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdfATIs-B12-Wet-Gas-Detector-Product-Literature.pdf
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdfENVIMART
 
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdf
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdfATIs-B12-Wet-Gas-Detector-Support-Drawings.pdf
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdfENVIMART
 
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdf
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdfATIs-B14-Gas-Alarm-Module-Product-Literature.pdf
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdfENVIMART
 
B12-2-Wire-Gas-Transmitter.pdf
B12-2-Wire-Gas-Transmitter.pdfB12-2-Wire-Gas-Transmitter.pdf
B12-2-Wire-Gas-Transmitter.pdfENVIMART
 

More from ENVIMART (20)

Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Zinc Continuous Analysis from SEIBOLD-Wasser.pdfZinc Continuous Analysis from SEIBOLD-Wasser.pdf
Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
 
Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Nickel Continuous Analysis from SEIBOLD-Wasser.pdfNickel Continuous Analysis from SEIBOLD-Wasser.pdf
Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
 
Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Manganese Continuous Analysis from SEIBOLD-Wasser.pdfManganese Continuous Analysis from SEIBOLD-Wasser.pdf
Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
 
Lead Continuous Analysis from SEIBOLD-Wasser.pdf
Lead Continuous Analysis from SEIBOLD-Wasser.pdfLead Continuous Analysis from SEIBOLD-Wasser.pdf
Lead Continuous Analysis from SEIBOLD-Wasser.pdf
 
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdfIron Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Manganese Continuous Analysis from SEIBOLD-Wasser.pdf
 
Iron Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Continuous Analysis from SEIBOLD-Wasser.pdfIron Continuous Analysis from SEIBOLD-Wasser.pdf
Iron Continuous Analysis from SEIBOLD-Wasser.pdf
 
Chromium Continuous Analysis from SEIBOLD-Wasser.pdf
Chromium Continuous Analysis from SEIBOLD-Wasser.pdfChromium Continuous Analysis from SEIBOLD-Wasser.pdf
Chromium Continuous Analysis from SEIBOLD-Wasser.pdf
 
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdfCopper Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Zinc Continuous Analysis from SEIBOLD-Wasser.pdf
 
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdfCopper Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Nickel Continuous Analysis from SEIBOLD-Wasser.pdf
 
Copper Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Continuous Analysis from SEIBOLD-Wasser.pdfCopper Continuous Analysis from SEIBOLD-Wasser.pdf
Copper Continuous Analysis from SEIBOLD-Wasser.pdf
 
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdf
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdfCobalt Continuous Analysis from SEIBOLD-Wasser.pdf
Cobalt Continuous Analysis from SEIBOLD-Wasser.pdf
 
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdf
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdfCadmium Continuous Analysis from SEIBOLD-Wasser.pdf
Cadmium Continuous Analysis from SEIBOLD-Wasser.pdf
 
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdf
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdfArsenic Continuous Analysis from SEIBOLD-Wasser.pdf
Arsenic Continuous Analysis from SEIBOLD-Wasser.pdf
 
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdf
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdfAluminium Continuous Analysis from SEIBOLD-Wasser.pdf
Aluminium Continuous Analysis from SEIBOLD-Wasser.pdf
 
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdfATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Product-Literature.pdf
 
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdfATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdf
ATIs-B12-2-Wire-Gas-Transmitter-Support-Drawings.pdf
 
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdf
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdfATIs-B12-Wet-Gas-Detector-Product-Literature.pdf
ATIs-B12-Wet-Gas-Detector-Product-Literature.pdf
 
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdf
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdfATIs-B12-Wet-Gas-Detector-Support-Drawings.pdf
ATIs-B12-Wet-Gas-Detector-Support-Drawings.pdf
 
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdf
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdfATIs-B14-Gas-Alarm-Module-Product-Literature.pdf
ATIs-B14-Gas-Alarm-Module-Product-Literature.pdf
 
B12-2-Wire-Gas-Transmitter.pdf
B12-2-Wire-Gas-Transmitter.pdfB12-2-Wire-Gas-Transmitter.pdf
B12-2-Wire-Gas-Transmitter.pdf
 

Recently uploaded

Role of nanotechnology in management of stored grain pests of cereals and pulses
Role of nanotechnology in management of stored grain pests of cereals and pulsesRole of nanotechnology in management of stored grain pests of cereals and pulses
Role of nanotechnology in management of stored grain pests of cereals and pulsesRavikumar Vaniya
 
Role of Induced Systemic Resistance (ISR)In Plant Disease Management
Role of Induced Systemic Resistance (ISR)In Plant Disease ManagementRole of Induced Systemic Resistance (ISR)In Plant Disease Management
Role of Induced Systemic Resistance (ISR)In Plant Disease ManagementRavikumar Vaniya
 
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...robinsonayot
 
A Review on Integrated River Basin Management and Development Master Plan of ...
A Review on Integrated River Basin Management and Development Master Plan of ...A Review on Integrated River Basin Management and Development Master Plan of ...
A Review on Integrated River Basin Management and Development Master Plan of ...Mark Jaeno P. Duyan
 
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxHertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxEdgar Hertwich
 
My Museum presentation by Jamilyn Gonzalez
My Museum presentation by Jamilyn GonzalezMy Museum presentation by Jamilyn Gonzalez
My Museum presentation by Jamilyn Gonzalezjamilyngonzalez24
 
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptx
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptxCAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptx
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptxSangram Sahoo
 
Palynology: History, branches, basic principles and application, collection o...
Palynology: History, branches, basic principles and application, collection o...Palynology: History, branches, basic principles and application, collection o...
Palynology: History, branches, basic principles and application, collection o...Sangram Sahoo
 
Heat Index related presentation ppt in india
Heat Index related presentation ppt in indiaHeat Index related presentation ppt in india
Heat Index related presentation ppt in indiaSriSravani2
 
Production, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollenProduction, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollenSangram Sahoo
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRavikumar Vaniya
 
Cooperative Mangrove Project: Introduction, Scope, and Perspectives
Cooperative Mangrove Project: Introduction, Scope, and PerspectivesCooperative Mangrove Project: Introduction, Scope, and Perspectives
Cooperative Mangrove Project: Introduction, Scope, and PerspectivesCIFOR-ICRAF
 
Clinico-mycological profile of isolates of superficial fungal infection: A st...
Clinico-mycological profile of isolates of superficial fungal infection: A st...Clinico-mycological profile of isolates of superficial fungal infection: A st...
Clinico-mycological profile of isolates of superficial fungal infection: A st...Open Access Research Paper
 
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...Amil Baba Dawood bangali
 
A Complete Guide to Understanding Air Quality Monitoring.pptx
A Complete Guide to Understanding Air Quality Monitoring.pptxA Complete Guide to Understanding Air Quality Monitoring.pptx
A Complete Guide to Understanding Air Quality Monitoring.pptxArabcalUAE
 
ADBB 5cladba Precursor JWH018 +85244677121
ADBB 5cladba Precursor JWH018 +85244677121ADBB 5cladba Precursor JWH018 +85244677121
ADBB 5cladba Precursor JWH018 +85244677121leephoebe968
 
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...CIFOR-ICRAF
 
slidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reuseslidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reusedhanalakshmi88488
 

Recently uploaded (20)

Role of nanotechnology in management of stored grain pests of cereals and pulses
Role of nanotechnology in management of stored grain pests of cereals and pulsesRole of nanotechnology in management of stored grain pests of cereals and pulses
Role of nanotechnology in management of stored grain pests of cereals and pulses
 
Role of Induced Systemic Resistance (ISR)In Plant Disease Management
Role of Induced Systemic Resistance (ISR)In Plant Disease ManagementRole of Induced Systemic Resistance (ISR)In Plant Disease Management
Role of Induced Systemic Resistance (ISR)In Plant Disease Management
 
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...
Test bank for beckmann and ling s obstetrics and gynecology 8th edition by ro...
 
A Review on Integrated River Basin Management and Development Master Plan of ...
A Review on Integrated River Basin Management and Development Master Plan of ...A Review on Integrated River Basin Management and Development Master Plan of ...
A Review on Integrated River Basin Management and Development Master Plan of ...
 
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxHertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
 
My Museum presentation by Jamilyn Gonzalez
My Museum presentation by Jamilyn GonzalezMy Museum presentation by Jamilyn Gonzalez
My Museum presentation by Jamilyn Gonzalez
 
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptx
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptxCAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptx
CAUSES,EFFECTS,CONTROL OF DEFORESTATION.pptx
 
Palynology: History, branches, basic principles and application, collection o...
Palynology: History, branches, basic principles and application, collection o...Palynology: History, branches, basic principles and application, collection o...
Palynology: History, branches, basic principles and application, collection o...
 
Heat Index related presentation ppt in india
Heat Index related presentation ppt in indiaHeat Index related presentation ppt in india
Heat Index related presentation ppt in india
 
Water Pollution
Water Pollution Water Pollution
Water Pollution
 
Production, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollenProduction, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollen
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease Management
 
Cooperative Mangrove Project: Introduction, Scope, and Perspectives
Cooperative Mangrove Project: Introduction, Scope, and PerspectivesCooperative Mangrove Project: Introduction, Scope, and Perspectives
Cooperative Mangrove Project: Introduction, Scope, and Perspectives
 
Clinico-mycological profile of isolates of superficial fungal infection: A st...
Clinico-mycological profile of isolates of superficial fungal infection: A st...Clinico-mycological profile of isolates of superficial fungal infection: A st...
Clinico-mycological profile of isolates of superficial fungal infection: A st...
 
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
 
A Complete Guide to Understanding Air Quality Monitoring.pptx
A Complete Guide to Understanding Air Quality Monitoring.pptxA Complete Guide to Understanding Air Quality Monitoring.pptx
A Complete Guide to Understanding Air Quality Monitoring.pptx
 
ADBB 5cladba Precursor JWH018 +85244677121
ADBB 5cladba Precursor JWH018 +85244677121ADBB 5cladba Precursor JWH018 +85244677121
ADBB 5cladba Precursor JWH018 +85244677121
 
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...
Sungsang Mangrove Restoration and Ecotourism (SMART): A participatory action ...
 
slidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reuseslidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reuse
 
Elemental Analysis of Plants using ICP-OES(2023)
Elemental Analysis of Plants using ICP-OES(2023)Elemental Analysis of Plants using ICP-OES(2023)
Elemental Analysis of Plants using ICP-OES(2023)
 

Vortex rvl manual badger meter series flow meter

  • 1. Vortex Flow Meters Shedding Flow Meter RVL Series VRX-UM-00371-EN-03 (April 2017) User Manual
  • 2. Vortex Flow Meters, Shedding Flow Meter Page ii March 2017 VRX-UM-00371-EN-03
  • 3. User Manual CONTENTS Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 General Installation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Flow Rate and Range Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Piping Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Back Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 K-Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Three-Pin Connection Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Mechanical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 RVL Inline Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 RVL Wafer Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 RVL Tube Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RVL Inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RVL Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 RVL Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 RVL Inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 RVL Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 RVL Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Over-Stressed Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Calibration Certificate Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Page iii March 2017 VRX-UM-00371-EN-03
  • 4. Vortex Flow Meters, Shedding Flow Meter Page iv March 2017 VRX-UM-00371-EN-03
  • 5. Description DESCRIPTION The RVL series meter uses vortex-shedding technology for repeatable flow measurement accurate to ±1 percent of full scale. The meter has no moving parts, and any potential for fluid contamination is eliminated by the corrosion-resistant all plastic construction. The meter includes a compact two-wire (4…20 mA) or three-wire (pulse) transmitter, contained within a conveniently replaceable plug-in electronics module. All electronics are housed in a corrosion-resistant enclosure. Unlike meters containing metal or moving parts, the RVL is perfect for aggressive or easily contaminated fluids. Applications range from ultra-pure water to highly corrosive chemicals and slurries. Units can be recalibrated and the meter output span can be reprogrammed in the field. OPERATING PRINCIPLE Operation of the RVL vortex flow meter is based on the vortex shedding principle. As fluid moves around a body, vortices (eddies) are formed and move downstream. They form alternately, from one side to the other, causing pressure fluctuations. The pressure fluctuations are sensed by a piezoelectric crystal in the sensor tube, and are converted to a 4…20 mA or pulse signal. The frequency of the vortices is directly proportional to the flow rate. The results are extremely accurate and repeatable measurements using no moving parts. Bluff Body Counter Detector Detector Figure 1: Operating principle FLUIDS Use any clean liquid compatible with the plastic material of construction that does not contain significant amounts of fibers or abrasive materials. DO NOT USE WITH EXPLOSIVE OR FLAMMABLE MATERIALS, FOOD OR BEVERAGES, OR GASEOUS FLUIDS. Viscosities above 1 cSt raise the minimum usable flow rate and reduce the flow range. This effect is linear to viscosity. No adjustments are required for viscosities up to 2.0 cSt. Liquids with higher viscosities adversely affect the permissible amount and duration of over range flow. See Table 1. Viscosity Minimum Maximum Flow Range 1 cSt 1 12 12:1 2 cSt 2 12 6:1 3 cSt 3 12 4:1 4 cSt 4 12 3:1 5 cSt 5 12 2.4:1 6 cSt 6 12 2:1 Table 1: Viscosity and flow range Page 5 April 2017 VRX-UM-00371-EN-03
  • 6. General Installation Information GENERAL INSTALLATION INFORMATION Before installing the meter: • Find an area for installation away from large electrical motors, transformers or other devices that can produce high electromagnetic or electrostatic fields. The vortex transmitter contains electric circuitry that can be affected by these interferences. • Proper grounding is required to eliminate electrical noise which may be present within the fluid and piping system or in the near vicinity of the vortex transmitter. Use exterior grounding strap for non-conductive piping systems to provide a path to earth ground. Properly ground pipes in conductive piping systems. Flow Rate and Range Requirements Most manufacturers state flow range capabilities by publishing the maximum allowed flow rates. Then they provide a turndown ratio to determine minimum flow rate. To use the turndown ratio, simply divide the maximum rate by the ratio to determine the minimum rate. Vortex flow meters have a 12:1 turndown ratio at a viscosity of 1 cSt. Higher viscosities will reduce the turndown. NOTE: N The 1/4 in. NPT and 1/2 in. flare end meters have a standard turndown ratio of 8:1. Piping Requirements Turbulence in the pipeline can affect the accuracy of flow meters. Typical sources of turbulence are pumps, valves, change in pipe diameter or changes-in-direction in the line. Install the meter away from the turbulence source to avoid turbulence issues. These distances are indicated in Pipe Diameters (PD). For example, 10 PD is ten times the inside pipe diameter away from the source of turbulence. Follow upstream and downstream distances for all sources of turbulence. See Figure 2 on page 7, Figure 3 on page 8, Figure 4 on page 9 and Figure 5 on page 9 for proper piping distance requirements. NOTE: N Pulsating flow affects accuracy. Pressure pulses affect accuracy. Page 6 April 2017 VRX-UM-00371-EN-03
  • 7. General Installation Information Configuration Piping Requirements (pipe diameters) Accuracy (full scale) Repeatability (of point) Inlet Outlet 1 plane change 20 5 ±1.00% 0.25% 1 plane change w/outlet valve 10 2 plane changes 27 5 2 plane changes w/outlet valve 10 Flow 20 Dia Minimum 5 Dia Minimum Flow 20 Dia Minimum 10 Dia Minimum Two Plane Changes Flow 5 Dia Minimum 27 Dia Minimum Flow 10 Dia Minimum Two Plane Changes 27 Dia Minimum Figure 2: Horizontal flow with sensing element in vertical orientation Page 7 April 2017 VRX-UM-00371-EN-03
  • 8. General Installation Information Configuration Piping Requirements Accuracy (full scale) Repeatability (of point) Inlet Outlet 1 plane change 20 PD 5 PD ±1.50% 0.25% 1 plane change w/outlet valve 10 PD 2 plane changes 27 PD 5 PD 2 plane changes w/outlet valve 10 PD Flow 20 Dia Minimum 5 Dia Minimum Flow 20 Dia Minimum 10 Dia Minimum Two Plane Changes Flow 5 Dia Minimum 27 Dia Minimum Flow 10 Dia Minimum Two Plane Changes 27 Dia Minimum Figure 3: Horizontal flow with sensing element in horizontal position Page 8 April 2017 VRX-UM-00371-EN-03
  • 9. General Installation Information Configuration Piping Requirements Accuracy (full scale) Repeatability (of point) Inlet Outlet 1 plane change 20 PD 5 PD ±1.00% 0.25% 1 plane change w/outlet valve 10 PD 2 plane changes 27 PD 5 PD 2 plane changes w/outlet valve 10 PD Flow 20 Dia Minimum 5 Dia Minimum Flow 20 Dia Minimum 10 Dia Minimum Flow 5 Dia Minimum 27 Dia Minimum Two Plane Changes Flow 10 Dia Minimum Two Plane Changes 27 Dia Minimum Figure 4: Vertical flow with a change in direction or valve 25 Dia Minimum 10 Dia Minimum 5 Dia Minimum 2 Dia Minimum 20 Dia Minimum Flow 25 Dia Minimum 5 Dia Minimum 5 Dia Minimum 2 Dia Minimum 20 Dia Minimum Flow Two Plane Changes 5 Dia Minimum 30 Dia Minimum 5 Dia Minimum 2 Dia Minimum 25 Dia Minimum Flow Figure 5: Horizontal flow with a change in pipe diameter Page 9 April 2017 VRX-UM-00371-EN-03
  • 10. General Installation Information Back Pressure Back pressure, the pressure immediately downstream of the meter, must be maintained above a minimum level to avoid cavitation. For most applications this may be ignored if the flow rate is less than 75% of maximum. For other applications, use the following formula to calculate the minimum back pressure. Back Pressure = 2.75 ∆P + 1.25 PV - 14.7 Where: ∆P = Pressure drop in psi at max flow PV = Vapor pressure in psia of the liquid at operating temp. (For example, the PV of water at 100° F is 0.42.) BP = Back pressure (downstream of meter) in psig. Example For water, at 100° F (37° C) in a 1/2 in. (12.7 mm) meter, where the maximum pressure drop is 8 psi minimum back pressure is 7.8 psig. BP = (2.75 × 8) + (1.25 × 0.42) - 14.7 BP = 22 + 0.525 - 14.7 BP = 7.825 Outputs The RVL series meters can be ordered with a current output or a rate frequency output. The current output can be re-scaled in the field using a PC communications cable and programming software, which are both available as PN RVS220-954. NOTE: N The two outputs use unique circuit boards and cannot be changed in the field. The rate frequency output produces pulses whose frequency is proportional to the flow going through the meter. Each meter has a slightly different output frequency which is listed on the calibration sheet that accompanies the meter. See Table 2 for the long term average full scale output frequency for standard size meters. Meter Size Average Full Scale Frequency Pulse Width 1/4 in. (6.35 mm) 1055 Hz 0.47 msec 1/2 in. (12.7 mm) 820 Hz 0.61 msec 1/2 in. (12.7 mm) 570 Hz 0.88 msec 3/4 in. (19.05 mm) 284 Hz 1.76 msec 1 in. (25.4 mm) 292 Hz 1.71 msec 1-1/2 in. (38.1 mm) 144 Hz 3.47 msec 2 in. (50.8 mm) 148 Hz 3.38 msec 3 in. (76.2 mm) 61 Hz 8.20 msec Table 2: Full scale output frequency The frequency output option generates a square wave with an amplitude that matches the input power level. The pulse width varies with frequency and is found by using the following formula. PW in sec. = 1 2 x Maximum Frequency (Hz) K-Factors The K-factor is the number of pulses that must be accumulated to equal a particular volume of fluid. Think of each pulse as representing a small fraction of the totalizing unit. Calibration reports that accompany RVL series meters include a nominal K-factor in both gallons and liters. See “Calibration Certificate Sample” on page 23. Page 10 April 2017 VRX-UM-00371-EN-03
  • 11. Electrical Installation ELECTRICAL INSTALLATION Power Use the following guidelines when selecting a power source: • Use an 8…28V DC power supply. The specific connection depends on which output is option is used. • Use clean electrical line power. • Do not operate this unit on circuits with noisy components such as fluorescent lights, relays, compressors or variable frequency drives. • Use linear power supplies. NOTE: N The power and output connections share a common ground. Wiring 4…20 mA Loop Connect a twisted pair wire (not provided) to the terminals of the transmitter marked 8…28V DC and Output. Do not connect the shield to the transmitter if the twisted pair wire is shielded. The shield should be grounded at the receiver only. See Figure 6. The transmitter is reverse-polarity protected. +8-28 VDC Gnd Output Programming +8-28 VDC Gnd Output 8…28V DC Output POWER SUPPLY 8…28V DC 4…20 mA Load RECEIVER Figure 6: Loop connection with single load The receiving equipment must accept industry standard true two-wire or loop powered 4…20 mA process transmitter inputs. The power can either be supplied by the receiving equipment or an external power supply that supplies 24V DC an 30 mA. See Figure 6 for the wiring setup using an external power source and Figure 7 using the receiver as the power source. Several receivers may be connected in a series as shown in Figure 7, but only one should provide power, and all should have isolated inputs. +8-28 VDC Gnd Output Programming +8-28 VDC Gnd Output 4...20 mA Additional Loads RECEIVER/POWER SUPPLY RECEIVER RECEIVER 8…28V DC Output Figure 7: Loop connection with multiple loads Page 11 April 2017 VRX-UM-00371-EN-03
  • 12. Electrical Installation The voltage provided by the receiver must be within the limits shown in Figure 8. 100 200 300 400 500 600 700 800 900 1000 1100 10 12 8 14 16 18 20 22 24 26 28 Supply Voltage (V DC) Loop Load (Ohm's) Operate in the Shaded Region Supply Voltage – 8V DC 0.02 = Maximum Loop Resistance Figure 8: Supply voltage chart To use this figure: 1. Add the resistance of all the receivers, indicators and the wire in the loop. If the wire resistance is unknown, use a value of 50 ohm for a twisted wire of 1000 feet or less with a gauge of #22 awg or heavier. 2. Find the total load (in ohms) on the left side of the chart in Figure 8 and follow that value horizontally until it intersects with the shaded area. 3. From the intersection point look straight down to where a vertical line would intersect the voltage scale. This is the minimum voltage needed for the transmitter to operate properly under the specific load conditions. Example After checking the specification for all the loads in an application the total amounted to 800 ohms. Following the 800 ohm line to the right, the intersection point is about 3/4 of the way across the chart in Figure 9. A vertical line through the intersection point crosses the voltage axis at about 24V DC, so with a load of 800 ohms a standard 24 volt power supply would be used. 100 200 300 400 500 600 700 800 900 1000 1100 10 12 8 14 16 18 20 22 24 26 28 Supply Voltage (V DC) Loop Load (Ohm's) Operate in the Shaded Region Supply Voltage - 8V DC 0.02 = Maximum Loop Resistance Figure 9: Supply voltage example Pulse Output Output +8-28 VDC Gnd Programming 8…28V DC Output Ground 8…28V DC POWER SUPPLY Counter Pulse Output Figure 10: Pulse output wiring Page 12 April 2017 VRX-UM-00371-EN-03
  • 13. Electrical Installation Three-Pin Connection Option An optional three-pin connection is available for when the transmitter/meter combination is mounted remotely from the power source/receiver. The mating connector is PN RF8687000. +8-28 VDC Gnd Output 8…28V DC Output White 4…20 mA Input Black – 4…20 mA Input Meter Electronics mA - + - + Ammeter 8…28V DC Power Supply 4…20 mA Input – 4…20 mA Input P.N. RF8687000 Connector Figure 11: Remote connection loop power White 4…20 mA Input Black – 4…20 mA Input 2 1 3 CW 1 2 3 4 5 6 7 8 ON SPAN ZERO Figure 12: Integral configuration for rate indicator Page 13 April 2017 VRX-UM-00371-EN-03
  • 14. Mechanical Installation MECHANICAL INSTALLATION RVL Inline Installation For proper installation, follow these guidelines: • Install the meter where pipe vibration is minimal. • Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6. • Do not use upstream valves to control flow rate. Always keep upstream valves fully open. • Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow meter performance. • Do not use diaphragm or piston pumps. • Do not use Teflon tape or any kind of pipe dope when piping. • Handle the meter with care. • Do not use excessive force. Screw mating fittings (FNPT) and flanges into the meter hand-tight; then tighten an additional 1/2…3/4 turn. • Always use two wrenches when turning the flow meter into a fitting; one across the flats on the flow meter end, close to the fitting, and one on the fitting. • Do not use tools inside the flow meter, as this may damage the vortex sensor, and void the warranty. The flow meter may be mounted in any orientation. Three holes, tapped 1/4-20 UNC-2B, 0.375 in.-deep, on 3/4 in. centers are provided on the 3/4 in. and smaller flow meters. Use these holes to provide support for the flow meter if pipe supports are not practical. Page 14 April 2017 VRX-UM-00371-EN-03
  • 15. Mechanical Installation RVL Wafer Installation The RVL Wafer series transmitters are designed with wafer style flow bodies, that mount easily between standard ANSI style pipe flanges. For proper installation, follow these guidelines: • Install the meter where pipe vibration is minimal. • Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6. • Do not use upstream valves to control flow rate. Always keep upstream valves fully open. • Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow meter performance. • Do not use diaphragm or piston pumps. • Do not use Teflon tape or any kind of pipe dope when piping. • Do not allow gaskets to protrude into the flow stream on flanged meters. Flange Size Recommended Torque 1/2…1-1/2 in. 10…15 ft Ibs 2…3 in. 20…30 ft Ibs Table 3: Torque rating Follow these steps for proper installation and operation: 1. Space flanges to accommodate the width of the flow body. See “RVL Wafer” on page 21 for dimensions. 2. Align the flow body centered with respect to flanges and gaskets, insert threaded rods, retaining nuts and lock washers. 3. Install all retaining nuts hand-tight, and then uniformly tighten the nuts in an alternating sequence, diametrically opposed to each other. Uniform stress across the flange prevents leakage at the gasket. Torque ratings are listed in Table 3. 4. Use grounding rings when metal pipes are used in conjunction with this meter. See Figure 13. Grounding Rings Figure 13: Grounding ring installation Page 15 April 2017 VRX-UM-00371-EN-03
  • 16. Maintenance RVL Tube Installation For proper installation, follow these guidelines: • Install the meter where pipe vibration is minimal. • Use the upstream and downstream piping requirements shown in “Piping Requirements” on page 6. • Do not use upstream valves to control flow rate. Always keep upstream valves fully open. • Connect good quality ball valves with integral unions directly to the flow meter if the valves are fully open during operation for easy isolation and removal of the flow meter. Cavitation and flow rate pulsation adversely affects the flow meter performance. • Do not use diaphragm or piston pumps. • Do not use Teflon tape or any kind of pipe dope when piping. • Handle the meter with care. To install the meter: 1. Remove any burrs from the pipe ends. 2. Slide the flare nut onto the pipe. 3. Push the flare nut back far enough so that it will be out of the way when you use the flaring tool. 4. Clip the pipe in the flaring tool, keeping the end flush with the face of the tool. 5. Slowly turn the handle on the tool until it bottoms out. 6. Unscrew the handle and remove the tool to check the quality of the flare. a. If the flare is not smooth or even the first time, cut off the end with your pipe cutter, and repeat steps 4…6. 7. Line up and tighten the nut and flared pipe to the fitting body. Make the connection tight, but not so tight that the flow meter body is distorted. • Always use two wrenches when turning a fitting onto the flow meter; one across the flats on the flow meter end close to the fitting, and one on the fitting. • Do not use tools inside the flow meter, as this may damage the vortex sensor, and invalidate the warranty. MAINTENANCE RVL flow meters do not require maintenance in normal service if they are properly installed. Remove the meter from service for cleaning if the flow tube becomes clogged with debris. Significant clogging often results in high (up to 20%) and/or erratic output. Do not stick tools into the tube, as this may permanently damage the vortex sensor. The vortex sensor cannot be repaired in the field. To clean the flow tube, run hot, up to 160° F (71.1° C), soapy water into the downstream end of the flow tube. Dislodge large objects jammed against the bluff body by lightly tapping the upstream end of the flow tube against a firm surface. CAUTION DO NOT REMOVE VORTEX METER DURING OPERATION. ALWAYS DISCONNECT THE PRIMARY POWER SOURCE BEFORE INSPECTION OF SERVICE. DO NOT TAP THE FLOW TUBE SO HARD THAT THE THREADS, ON THREADED UNITS, BECOME DAMAGED. A schedule of maintenance checks should be determined based upon environmental conditions and frequency of use. Inspect the meter at least once a year. • Visually check for evidence of overheating by noting discoloration of wires or other components. • Check for damaged or worn parts, especially the bluff body, or indications of corrosion. • Check for tight, clean electrical connections and that the device is operating properly. Page 16 April 2017 VRX-UM-00371-EN-03
  • 17. Specifications SPECIFICATIONS RVL Inline Fluid Liquids Connection NPT Female or Butt (PVDF only) Turndown Ratio 12:1 for 1/2…2 in. (12.7…50.8 mm) meters 8:1 for 1/4 in. (6.35 mm) meter Accuracy ±1% of full scale (4…20 mA) ±2% of full scale, frequency pulse Repeatability ±0.25% of actual flow Materials PVC standard CPVC, PVDF optional Output Signals 4…20 mA standard Frequency pulse optional push-pull driver 150 mA sink or source Power Supply 8…28V DC Response Time 2 seconds minimum, step-change-in flow Enclosure Type 4X (IP 66) Nominal Flow Rates Tube Size Minimum Flow Maximum Flow Full Scale Frequency Weight 1/4 in. (6.35 mm) 0.6 gpm (2.3 lpm) 5 gpm (18.9 lpm) 1052 Hz 1.5 lbs (0.68 kg) 1/2 in. (12.7 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 570 Hz 1.6 lbs (0.72 kg) 3/4 in. (19.05 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 284 Hz 1.7 lbs (0.77 kg) 1 in. (25.4 mm) 4.2 gpm (15.8 lpm) 50 gpm (189.3 lpm) 292 Hz 1.8 lbs (0.80 kg) 1-1/2 in. (38.1 mm) 8.3 gpm (31.5 lpm) 100 gpm (378.5 lpm) 144 Hz 3.1 lbs (1.40 kg) 2 in. (50.8 mm) 16.7 gpm (63.1 lpm) 200 gpm (757.1 lpm) 142 Hz 2.7 lbs (1.22 kg) Maximum Fluid Temperature Maximum Operating Pressure psig (KPa) PVC CPVC PVDF 203° F (95° C) Not recommended Consult factory Consult factory 150° F (66° C) Not recommended 63 psig (434 KPa) 130 psig (896 KPa) 100° F (38° C) 93 psig (641 KPa) 120 psig (827 KPa) 150 psig (1034 KPa) 70° F (21° C) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa) .5 2 10 25 100 .3 1 5 15 50 200 .05 .1 .2 .5 1 2 5 8 10 12 20 FLOW (GPM) PRESSURE DROP (PSID) ¼ i n . ½ i n . ¾ i n . 1 i n . 1 ½ i n . 2 i n . 600 2 5 10 20 50 200 3.5 5 10 20 35 50 100 200 350 500 750 FLOW (LPM) PRESSURE DROP (MILLIBAR) 1000 30 100 300 800 ¼ i n . ½ i n . ¾ i n . 1 i n . 1 ½ i n . 2 i n . Figure 14: RVL inline pressure drop Page 17 April 2017 VRX-UM-00371-EN-03
  • 18. Specifications RVL Wafer Fluid Liquids Connection Wafer Turndown Ratio 12:1 Accuracy ±1% of full scale (4…20 mA) ±2% of full scale, frequency pulse Repeatability ±0.25% of actual flow Materials PVC standard CPVC, Polypropylene, PVDF optional Output Signals 4…20 mA standard Frequency pulse optional push-pull driver 150 mA sink or source Power Supply 8…28V DC Response Time 2 seconds minimum, step-change-in flow Enclosure Type 4X (IP 66) Nominal Flow Rates Tube Size Minimum Flow Maximum Flow Full Scale Frequency Weight 1/2 in. (12.7 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 570 Hz 0.8 lbs (0.36 kg) 3/4 in.(19.05 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 284 Hz 0.9 lbs (0.41 kg) 1 in. (25.4 mm) 4.2 gpm (15.8 lpm) 50 gpm (189.3 lpm) 292 Hz 1.1 lbs (0.50 kg) 1-1/2 in. (38.1 mm) 8.3 gpm (31.5 lpm) 100 gpm (378.5 lpm) 144 Hz 1.7 lbs (0.77 kg) 2 in. (50.8 mm) 16.7 gpm (63.1 lpm) 200 gpm (757.1 lpm) 148 Hz 2.6 lbs (1.17 kg) 3 in. (76.2 mm) 25.0 gpm (94.6 lpm) 300 gpm (1136 lpm) 61 Hz 4.8 lbs (2.16 kg) Maximum Fluid Temperature Maximum Operating Pressure, Standard PVC CPVC Polypropylene PVDF 203° F (95° C) Not recommended Consult factory Not recommended Consult factory 150° F (66° C) Not recommended 63 psig (434 KPa) 90 psig (621 KPa) 130 psig (896 KPa) 100° F (38° C) 100 psig (690 KPa) 120 psig (827 KPa) 130 psig (896 KPa) 150 psig (1034 KPa) 70° F (21° C) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa) 150 psig (1034 KPa) Maximum Fluid Temperature Maximum Operating Pressure, High Pressure PVC CPVC Polypropylene PVDF 203° F (95° C) Not recommended Not recommended Not recommended Consult factory 150° F (66° C) Consult factory Consult factory 90 psig (621 KPa) 300 psig (2068 KPa) 100° F (38° C) Consult factory Consult factory 130 psig (896 KPa) 400 psig (2750 KPa) 70° F (21° C) Consult factory Consult factory 150 psig (1034 KPa) 400 psig (2750 KPa) .5 2 10 25 100 300 .3 1 5 15 50 200 .05 .1 .2 .5 1 2 5 8 10 12 20 FLOW (GPM) PRESSURE DROP (PSID) 1 ½ i n . 1 in . 2 in . 3 i n . ¾ i n . ½ i n . 600 2 5 10 20 50 200 3.5 5 10 20 35 50 100 200 350 500 750 FLOW (LPM) PRESSURE DROP (MILLIBAR) 1000 30 100 300 800 1200 1 / 2 i n . 3 / 4 i n . 1 i n . 1 ½ i n . 2 i n . 3 i n . Figure 15: RVL wafer pressure drop Page 18 April 2017 VRX-UM-00371-EN-03
  • 19. Specifications RVL Tube Fluid Liquids Connection Tube (Flare end) Turndown Ratio 12:1 for 3/4 in. (19.05 mm) and 1 in. (25.4 mm) meters 8:1 for 1/2 in. (12.7 mm) meter Accuracy ±1% of full scale (4…20 mA) ±2% of full scale, frequency pulse Repeatability ±0.25% of actual flow Materials PVC standard CPVC, Polypropylene, PVDF optional Output Signals 4…20 mA standard Frequency pulse optional push-pull driver 150 mA sink or source Power Supply 8…28V DC Response Time 2 seconds minimum, step-change-in flow. Enclosure Type 4X (IP 66) Nominal Flow Rates Tube Size Minimum Flow Maximum Flow Weight 1/2 in. (12.7 mm) 0.6 gpm (2.3 lpm) 5 gpm (18.9 lpm) 1.5 lbs (0.68 kg) 3/4 in. (19.05 mm) 1.3 gpm (4.7 lpm) 15 gpm (56.8 lpm) 1.6 lbs (0.72 kg) 1 in. (25.4 mm) 2.1 gpm (7.9 lpm) 25 gpm (94.6 lpm) 1.7 lbs (0.77 kg) Maximum Fluid Temperature Maximum Operating Pressure PVDF 150° F(66° C) 130 psig (896 KPa) 100° F (38° C) 150 psig (1034 KPa) 70° F (21° C) 150 psig (1034 KPa) .5 2 10 25 100 .3 1 5 15 50 200 .05 .1 .2 .5 1 2 5 8 10 12 20 PRESSURE DROP (PSID) ½ i n . 1 i n . ¾ i n . FLOW (GPM) FLOW (LPM) 600 2 5 10 20 50 200 3.5 5 10 20 35 50 100 200 350 500 750 FLOW (LPM) PRESSURE DROP (MILLIBAR) 1000 30 100 300 800 1 i n . ½ i n . ¾ i n . Figure 16: RVL tube pressure drop Page 19 April 2017 VRX-UM-00371-EN-03
  • 20. Dimensions DIMENSIONS RVL Inline I E D B A C F Cord Grip NPT/BUTT END Cover Conduit Adapter Terminal Strip Electronics Module Three-Pin Connector Flow Sensor Body Cord Grip Figure 17: RVL inline dimensions PVC/CPVC Size A in. (mm) B in. (mm) C in. (mm) D in. (mm) E in. (mm) F in. (mm) I in. (mm) 1/4 in. (6.35 mm) 3.81 (97) 1.75 (45) 5.25 (133) 2.50 (64) 0.30 (8) 2.88 (73) 3.00 (76) 1/2 in. (12.7 mm) 3.81 (97) 1.75 (45) 7.13 (181) 2.50 (64) 0.55 (14) 2.88 (73) 3.00 (76) 3/4 in. (19.05 mm) 3.81 (97) 1.75 (45) 7.63 (194) 2.50 (64) 0.74 (19) 2.88 (73) 3.00 (76) 1 in. (25.4 mm) 3.92 (100) 1.75 (45) 8.03 (204) 2.50 (64) 0.96 (24) 2.88 (73) 3.00 (76) 1-1/2 in. (38.1 mm) 3.90 (99) 2.00 (51) 8.37 (213) 2.50 (64) 1.50 (38) 2.88 (73) 3.38 (86) 2 in. (50.8 mm) 4.31 (109) 2.00 (51) 8.37 (213) 2.50 (64) 1.94 (49) 2.88 (73) 3.38 (86) PVDF (BUTT Fusion Only) Size A in. (mm) B in. (mm) C in. (mm) D in. (mm) E in. (mm) F in. (mm) I in. (mm) 1/4 in. (6.35 mm) 5.90 (150) 0.63 (16) 4.87 (124) 1.31 (33) 0.30 (8) 2.88 (73) 3.00 (76) 1/2 in. (12.7 mm) 5.75 (146) 0.78 (20) 4.87 (124) 1.31 (33) 0.55 (14) 2.88 (73) 3.00 (76) 3/4 in. (19.05 mm) 5.75 (146) 0.94 (24) 4.87 (124) 1.44 (37) 0.74 (19) 2.88 (73) 3.00 (76) 1 in. (25.4 mm) 5.88 (149) 1.19 (30) 5.09 (129) 2.00 (51) 0.96 (24) 2.88 (73) 3.00 (76) 1-1/2 in. (38.1 mm) 6.21 (158) 1.50 (38) 6.24 (158) 2.50 (64) 1.50 (38) 2.88 (73) 3.38 (86) 2 in. (50.8 mm) 6.60 (168) 1.88 (48) 6.77 (172) 3.00 (76) 1.94 (49) 2.88 (73) 3.38 (86) Page 20 April 2017 VRX-UM-00371-EN-03
  • 21. Dimensions RVL Wafer C E D A B Cord Grip Terminal Strip Electronics Module Three-Pin Connector Flow Sensor Body Cover Conduit Adapter Cord Grip Figure 18: RVL wafer dimensions RVL (Wafer) Dimensions PP/PVC/CPVC/PVDF Size A in. (mm) B in. (mm) C in. (mm) D in. (mm) E in. (mm) 1/2 in. (12.7 mm) 5.85 (149) 0.78 (20) 2.03 (52) 1.75 (45) 2.88 (73) 3/4 in. (19.05 mm) 5.90(150) 0.94 (24) 2.03 (52) 1.75 (45) 2.88 (73) 1 in. (25.4 mm) 5.69 (145) 1.19 (30) 2.25 (57) 1.75 (45) 2.88 (73) 1-1/2 in. (38.1 mm) 6.00 (152) 1.50 (38) 2.63 (67) 1.75 (45) 2.88 (73) 2 in. (50.8 mm) 6.37 (162) 1.88 (48) 3.22 (82) 1.75 (45) 2.88 (73) 3 in. (76.2 mm) 6.88 (175) 2.50 (64) 4.25 (108) 1.75 (45) 2.88 (73) RVL Tube C B A Terminal Strip Electronics Module Three-Pin Connector Flow Sensor Body Cover Conduit Adapter Cord Grip Figure 19: RVL tube dimensions Tube Size A in. (mm) B) in. (mm) C in. (mm) 1/2 in. (12.7 mm) 1.31 (33.3) 6.25 (158.8) 4.87 (123.7) 3/4 in. (19.05 mm) 1.31 (33.3) 6.25 (158.8) 4.66 (118.4) 1 in. (25.4 mm) 1.44 (36.6) 6.59 (167.4) 5.42 (137.7) Page 21 April 2017 VRX-UM-00371-EN-03
  • 22. Troubleshooting TROUBLESHOOTING If difficulty is encountered, locate the symptom most likely present and follow the appropriate instructions. Current Loop No Current Output • Place a DC voltmeter across the two terminal block screws. With the electronics module powered there must be at least 8V DC present. If there is less than 8V DC, but more than 0V DC, check the power source for sufficient voltage to drive the loop, as shown in Figure 8 on page 12. ◊ If there is 0V DC present, check for a broken wire or connector in the loop. • Check for the proper polarity of the current loop connections. • Make sure the receiving device is configured to provide source current to the electronics module. Zero Flow Indication (4 mA in Loop) • Check that the flow is greater than the minimum specified for the particular size flow meter in use. ◊ If the flow rate is too low, replace the flow meter with the proper size flow meter. ◊ If the flow rate is sufficient, partially remove the electronic module. Check that the three pin connector that connects the electronics module to the flow transducers is positively connected. See Figure 20. Align and insert the connector on to the bottom of the electronics module if it is disconnected. Terminal Strip Electronics Module Three-Pin Connector Flow Sensor Body Figure 20: Electrical connection Erratic Flow Indication • Check that there is at least 8V DC present across the two terminal block screws. • Check for material clogging the flow meter and in the upstream piping. • Check for erosion of the bluff body by sighting down the meters bore. Erosion or damage to the bluff body causes erratic readings and compromise accuracy. If the erosion continues, the flow meter will need to be periodically replaced. • Check upstream piping distance. See “Piping Requirements” on page 6. • Check for excessive pipe vibration. Normal amounts of pipe vibration are easily tolerated. The transmitter module contains a highly effective active filter that rejects false signals caused by pipe vibration. This filter is most effective under flowing conditions. If vibration is causing the meter to indicate flow when the flow is stopped it will most likely not cause error under flowing conditions. The false flow indication may be ignored, or the pipe may be restrained by firm clamps. • Check for electrical noise. Under some conditions there can be high common mode AC noise present between the fluid and the power supply ground. The flow meter is designed to reject up to 50 volts of AC common mode noise without loss of accuracy. If noise adjustment is used, accuracy is effected at low flow rates. Place a ground strap on the pipe on both sides of the flow meter (the flow meter is made of non-conductive plastic) and connect them both to the one point where the loop is grounded if metal piping is used. See “Wiring” on page 11. Use a grounding orifice if plastic piping is used. The transmitter module contains a highly effective active filter that will reject false signals due to high common mode voltage. This filter is most effective under flowing conditions. If a false indication of flow is encountered at zero flow, it will probably not cause error under flowing conditions. Over-Stressed Sensor The sensor can be over-stressed if the maximum permitted flow rate of 125% of recommended capacity (100% of HT meters) is exceeded. Page 22 April 2017 VRX-UM-00371-EN-03
  • 23. Calibration Certificate Sample CALIBRATION CERTIFICATE SAMPLE Calibration Report Unit Under Test (UUT) Information: Master Meter: Description: 3/4 in. In-Line NPT End Flow Meter Std uncertainty: ±0.25% Model Number: RVL075-N 1 VNN Traceability No: 30400/31801 Serial Number: 99999 Model No: FT8-8N EXW-LEG-5/FT-16 NEXW-LEG-1 Sensor Type: Vortex Shedding Serial No: 806890/16011903 Output type: 0-5V Minimum Flow: 2.1 GPM 7.9 LPM Customer Information: Maximum Flow: 25 GPM 94.6 LPM Customer Name: Calibration Date: October 24, 2007 Customer No.: Calibration Interval: 12 Months Order No.: Cal. Liquid: Water Ambient Temperature: 71.74 °F Ambient Humidity: 31.39 %RH Linear Points: 5 UUT Calibration Data Table In GPM: Flow Standard Actual GPM UUT Hz UUT Temp °F Visc. cSt UUT F/V Hz/cSt UUT K CYC/GAL (Hz*60)/NK GPM Linear COEFF. Raw Err % FS Calc. 0-5V Meas. 0-5V Output Err % FS 1 25.00 100.000 72.00 0.949 105.406 240.00 24.57 1.0174 1.71 5.000 5.000 0.00 1 18.00 75.000 72.00 0.949 79.055 250.00 18.43 0.9767 -1.71 3.600 3.680 0.40 1 12.00 50.000 72.00 0.949 52.703 250.00 12.29 0.9767 -1.14 2.400 2.420 0.10 1 6.00 25.000 72.00 0.949 26.352 250.00 6.14 0.9767 -0.57 1.200 1.200 0.00 1 2.10 10.000 72.00 0.949 10.541 285.71 2.46 0.8547 -1.43 0.420 0.420 0.00 Nominal K (NK) 244.186 UUT Calibration Data Table In LPM: Flow Standard Actual GPM UUT Hz UUT Temp °F Visc. cSt UUT F/V Hz/cSt UUT K CYC/GAL (Hz*60)/NK GPM Linear COEFF. Raw Err % FS Calc. 0-5V Meas. 0-5V Output Err % FS 1 94.64 100.000 72.00 0.949 105.406 63.40 93.01 1.0174 1.71 5.000 5.000 0.00 1 68.14 75.000 72.00 0.949 79.055 66.04 69.76 0.9767 -1.71 3.600 3.680 0.40 1 45.42 50.000 72.00 0.949 52.703 66.04 46.51 0.9767 -1.14 2.400 2.420 0.10 1 22.71 25.000 72.00 0.949 26.352 66.04 23.25 0.9767 -0.57 1.200 1.200 0.00 1 7.95 10.000 72.00 0.949 10.541 75.48 9.30 0.8547 -1.43 0.420 0.420 0.00 Nominal K (NK) 64.507 Status: PASS Meter Accuracy (of FS): ± 0.4 % Average Calib. Temperature : 72 F Average Calib. Specific Gravity : 1 Calibrated By: Ramon Benedict Average Calib. Viscosity : 0.95 cSt Flow Direction : Forward Certified By: Larry Perez Racine calibrations are performed using standards traceable to National Institute of Standards and Technology. The equipment and calibration procedures comply with ISO 9001. Page 23 April 2017 VRX-UM-00371-EN-03
  • 24. Vortex Flow Meters, Shedding Flow Meter www.badgermeter.com Trademarks appearing in this document are the property of their respective entities. Due to continuous research, product improvements and enhancements, Badger Meter reserves the right to change product or system specifications without notice, except to the extent an outstanding contractual obligation exists. © 2017 Badger Meter, Inc. All rights reserved. Control. Manage. Optimize. The Americas | Badger Meter | 4545 West Brown Deer Rd | PO Box 245036 | Milwaukee, WI 53224-9536 | 800-876-3837 | 414-355-0400 México | Badger Meter de las Americas, S.A. de C.V. | Pedro Luis Ogazón N°32 | Esq. Angelina N°24 | Colonia Guadalupe Inn | CP 01050 | México, DF | México | +52-55-5662-0882 Europe, Eastern Europe Branch Office (for Poland, Latvia, Lithuania, Estonia, Ukraine, Belarus) | Badger Meter Europe | ul. Korfantego 6 | 44-193 Knurów | Poland | +48-32-236-8787 Europe, Middle East and Africa | Badger Meter Europa GmbH | Nurtinger Str 76 | 72639 Neuffen | Germany | +49-7025-9208-0 Europe, Middle East Branch Office | Badger Meter Europe | PO Box 341442 | Dubai Silicon Oasis, Head Quarter Building, Wing C, Office #C209 | Dubai / UAE | +971-4-371 2503 Slovakia | Badger Meter Slovakia s.r.o. | Racianska 109/B | 831 02 Bratislava, Slovakia | +421-2-44 63 83 01 Asia Pacific | Badger Meter | 80 Marine Parade Rd | 21-06 Parkway Parade | Singapore 449269 | +65-63464836 China | Badger Meter | 7-1202 | 99 Hangzhong Road | Minhang District | Shanghai | China 201101 | +86-21-5763 5412 Switzerland | Badger Meter Swiss AG | Mittelholzerstrasse 8 | 3006 Bern | Switzerland | +41-31-932 01 11 Legacy Document: 09-VRX-UM-00362