MATHEMATICS TOPIC : COORDINATE GEOMETRY   Presented by : UMI KALSOM BINTI ABDOL RAHAMAN 870728-04-5308
Distance Mid-Point Point dividing segment with  ratio m:n GEOMETRY COORDINATE
General Information  General Equation for straight line  y = mx + c Gradient,  m =  y 2 -y 1   x 2 -x 1 2 Parallel straight line have  same gradient 2 lines perpendicular,  m 1 m 2  = -1
GEOMETRY COORDINATE a) Distance How to find the distance between two point B (x 2 ,y 2 ) A (x 1 ,y 1 ) Line AB =  (X 1 - X 2 ) 2  + (Y 1 - Y 2 ) 2
Example 1 Given P(3,2), Q(7,5), find the  distance  between point P and Q. Answer :  Let (x 1 ,y 1 ) = (7,5) and (x 2 ,y 2 )= (3,2) PQ =  (X 1 - X 2 ) 2  + (Y 1 - Y 2 ) 2 = (7-3)² + (5-2)²  =  4² + 3²  =   5 unit Q (7,5) P (3,2)
GEOMETRY COORDINATE b) Mid-Point How to find the  midpoint of two points  R = midpoint B (x 2 ,y 2 ) A (x 1 ,y 1 ) Mid Point =   x 1  + x 2   ,  y 1  + y 2 2  2 R
Example 2 Find the  midpoint  coordinates for AB lines  A( 5,7) B( 3,-1) Answer:    =  5+3   7 + (-1)   2  2   =  (  4  ,  3  ) AB   =   x 1  + x 2   ,  y 1  + y 2 2  2 B (3,-1) A (5,7)
Example 3 Given M ( a , -3), N (-4,  b ) and the midpoint  is (3,-2), find the value of  a  and  b   Answer : PQ =  a + (-4) ,  -3  +  b 2  2 a  – 4  = 3  -3 + b  =  -2 2  2 a = 10  b  = -1
c)  Point that internally divides a line segment in the ratio m:n  GEOMETRY COORDINATE P  (X 1 , Y 1 ) Q  (X 2 , Y 2 ) n m R (a,b) a =  nx 1  + mx 2   ,  b =  ny 1  + my 2 m+n  m+n
Example 4 P is a point that located in the straight line AB  which A( 2,6) and B(8,0) with ratio AP: 2PB. Find the coordinate of P. Answer : AP : 2PB A (2,6) B (8,0) P 2 1 a =  nx 1  + mx 2   ,  b =  ny 1  + my 2 m+n  m+n P  =  1 x 2 + 2 x 8   ,  1x6 + 2 x 0 2 + 1  2 + 1 = (6 , 2 ) So, coordinate  P is (6,2).
Review  DISTANCE  Line AB =  (X 1 - X 2 ) 2  + (Y 1 - Y 2 ) 2 RATIO m:n a =  nx 1  + mx 2   ,  b =  ny 1  + my 2 m+n  m+n Mid Point =   x 1  + x 2   ,  y 1  + y 2 2  2
Exercise  Find distance between the two points given: A(-1,2),B(2,6) G(4,-3), H( -5,-3) C(15,4) , E(3,-1) 2. Find the midpoint of S(10,-3) and T(-4,-1) straight line. 3. Find the ratio point P(3,4) that divide straight line AB, A(-1,2) and B(9,7).
Thank You…

mathemathics + Straight line equation

  • 1.
    MATHEMATICS TOPIC :COORDINATE GEOMETRY Presented by : UMI KALSOM BINTI ABDOL RAHAMAN 870728-04-5308
  • 2.
    Distance Mid-Point Pointdividing segment with ratio m:n GEOMETRY COORDINATE
  • 3.
    General Information General Equation for straight line y = mx + c Gradient, m = y 2 -y 1 x 2 -x 1 2 Parallel straight line have same gradient 2 lines perpendicular, m 1 m 2 = -1
  • 4.
    GEOMETRY COORDINATE a)Distance How to find the distance between two point B (x 2 ,y 2 ) A (x 1 ,y 1 ) Line AB = (X 1 - X 2 ) 2 + (Y 1 - Y 2 ) 2
  • 5.
    Example 1 GivenP(3,2), Q(7,5), find the distance between point P and Q. Answer : Let (x 1 ,y 1 ) = (7,5) and (x 2 ,y 2 )= (3,2) PQ = (X 1 - X 2 ) 2 + (Y 1 - Y 2 ) 2 = (7-3)² + (5-2)² = 4² + 3² = 5 unit Q (7,5) P (3,2)
  • 6.
    GEOMETRY COORDINATE b)Mid-Point How to find the midpoint of two points R = midpoint B (x 2 ,y 2 ) A (x 1 ,y 1 ) Mid Point = x 1 + x 2 , y 1 + y 2 2 2 R
  • 7.
    Example 2 Findthe midpoint coordinates for AB lines A( 5,7) B( 3,-1) Answer: = 5+3 7 + (-1) 2 2 = ( 4 , 3 ) AB = x 1 + x 2 , y 1 + y 2 2 2 B (3,-1) A (5,7)
  • 8.
    Example 3 GivenM ( a , -3), N (-4, b ) and the midpoint is (3,-2), find the value of a and b Answer : PQ = a + (-4) , -3 + b 2 2 a – 4 = 3 -3 + b = -2 2 2 a = 10 b = -1
  • 9.
    c) Pointthat internally divides a line segment in the ratio m:n GEOMETRY COORDINATE P (X 1 , Y 1 ) Q (X 2 , Y 2 ) n m R (a,b) a = nx 1 + mx 2 , b = ny 1 + my 2 m+n m+n
  • 10.
    Example 4 Pis a point that located in the straight line AB which A( 2,6) and B(8,0) with ratio AP: 2PB. Find the coordinate of P. Answer : AP : 2PB A (2,6) B (8,0) P 2 1 a = nx 1 + mx 2 , b = ny 1 + my 2 m+n m+n P = 1 x 2 + 2 x 8 , 1x6 + 2 x 0 2 + 1 2 + 1 = (6 , 2 ) So, coordinate P is (6,2).
  • 11.
    Review DISTANCE Line AB = (X 1 - X 2 ) 2 + (Y 1 - Y 2 ) 2 RATIO m:n a = nx 1 + mx 2 , b = ny 1 + my 2 m+n m+n Mid Point = x 1 + x 2 , y 1 + y 2 2 2
  • 12.
    Exercise Finddistance between the two points given: A(-1,2),B(2,6) G(4,-3), H( -5,-3) C(15,4) , E(3,-1) 2. Find the midpoint of S(10,-3) and T(-4,-1) straight line. 3. Find the ratio point P(3,4) that divide straight line AB, A(-1,2) and B(9,7).
  • 13.