SlideShare a Scribd company logo
1 of 71
Download to read offline
ADAPTIVE STRUCTURES
Contents
ΠConstitutive Relations
• Beam, Plate and Shell Models
Ž Applications
§
Panel Flutter
§
Noise Attenuation
ADAPTIVE STRUCTURES
Material Functions
THERMAL
TEMPERATURE
MECHANICAL
STRESS
ELECTRICAL
FIELD
Electric Flux
Density
Strain Entropy
ADAPTIVE STRUCTURES
Constitutive Relations
ð The constitutive relations are based on the assumption that the
total strain in the actuator is the sum of the mechanical strain
induced by the stress, the thermal strain due to temperature and
the controllable actuation strain due to the electric voltage.
?T
d
?T
a
e
T
T
α
σ
ε
ε
σ
+
+
=
+
+
=
S
E
C
E
ADAPTIVE STRUCTURES
Constitutive Relations
ð Re-writing the stress-strain equation:
ðIn a plane perpendicular to the piezo-polarization, it has isotropic
properties, i.e. transversely isotropic material in the plane 1-2.
ðFor orthotropic material, there is no temperature shear strain.
However there is a shear strain induced due to the electrical fields E1
and E2.
T
E
E
E
d
d
d
d
d
S
S
S
S
S
S
S
S
S
S
S
S
∆






















+






























+










































=






















0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
2
1
3
2
1
15
15
33
31
31
12
31
23
3
2
1
66
55
44
33
32
31
23
22
21
13
12
11
12
31
23
3
2
1
α
α
α
τ
τ
τ
σ
σ
σ
γ
γ
γ
ε
ε
ε
ADAPTIVE STRUCTURES
Constitutive Relations
ð For piezoceramics, the actuation strain is:
ðd33, d31 and d15 are called piezoelectric strain coefficients of a
mechanical free piezo element.
ðd31 characterizes strain in the 1 an 2 directions to an electrical
field E3 in the 3 direction
ðd33 relates strain in the 3 direction due to field in the 3 direction
ðd15 characterizes 2-3 and 3-1 shear strains due a field E2 and E1,
respectively.






























=
Λ
3
2
1
15
15
33
31
31
0
0
0
0
0
0
0
0
0
0
0
0
0
E
E
E
d
d
d
d
d
ADAPTIVE STRUCTURES
Block Force Model
•
If an electric field V is applied, then the maximum
actuator strain (free strain) will be:
•
The maximum block force (zero strain condition) is:








=
Λ
=
c
t
V
d31
max
ε
V
b
E
d
F c
c
b 31
=
ADAPTIVE STRUCTURES
Block Force Model
ð A piezo patch attached to the beam structure results
in an axial force F in the beam due to potential V. The
reactive force in the piezo element will be –F. Then the
strain in the piezo becomes
c
c
c
c
c
c
E
t
b
F
t
V
d
l
l
−
=
∆
= 31
ε
ADAPTIVE STRUCTURES
Block Force Model
ð Force-strain relation for constant field V:
ðThis plot can also be used to determine the properties
of piezo materials experimentally.
c
c
c
c
t
b
F
E
V
t
d
1
max
max
max
31
ε
ε
=
=
ADAPTIVE STRUCTURES
Pure Extension
ð Two identical patches mounted on the surface of a
beam, one on either side can produce pure extension
ðFor pure extension, same potential is applied to top
and bottom actuators. The induced force is
ðFb is the block force for each piezo patch.
ðIf piezo stiffness (beam stiffness),
actuation force becomes zero though actuation strain
equals free strain;
ðIf the actuation strain becomes zero
though actuation force equals block force
b
b
c
c A
E
A
E >>
b
b
b
b
b
c
c
c
c
c
c
c
b
b
b
b
b
c
c
b
b
c
c
b
b
c
t
b
E
A
E
t
b
E
A
E
A
E
A
E
A
E
F
A
E
A
E
A
E
A
E
t
V
d
F
=
=
+
=
+
=
;
2
2
31
b
b
c
c A
E
A
E <<
ADAPTIVE STRUCTURES
Pure Bending
ð For pure bending, an equal and opposite potential is
applied to top and bottom actuators
ðThe induced bending is
ðMb is the block moment for each piezo patch.
ðIf actuation moment becomes zero
ðIf actuation strain becomes zero
2
31
2
2
2






=
+
=
+
=
b
c
c
c
c
c
c
c
b
b
b
b
b
c
c
b
b
c
c
b
b
b
c
t
t
b
E
I
E
I
E
I
E
I
E
M
I
E
I
E
I
E
I
E
t
t
V
d
M
b
b
c
c I
E
I
E >>
b
b
c
c I
E
I
E <<
ADAPTIVE STRUCTURES
Euler-Bernoulli Beam Model
ðBeam, adhesive and actuator form a continuous
structure
ðBernoulli´s assumption: a plane section normal to the
beam axis remains plane and normal to the beam axis
after bending
ðLinear distribution of strain in actuator and host
structure
ðGenerally gives more accurate results than uniform
strain model
( )
( ) ( )
( ) ( ) net
xx
net
z
E
z
z
z
z
z
ε
σ
ε
ε
κ
κ
ε
ε
=
Λ
−
=
=
−
= xx
0 -w,
,
ADAPTIVE STRUCTURES
Bernoulli-Euler Beam Model
ð Axial force and bending moment expressions are:
where
ð F is the axial force in the beam
ð M is the bending moment in the beam
ð b(z) is the beam width












=






+
+
Λ
Λ
xx
w
E
E
E
E
M
M
F
F
,
0
2
1
1
0 ε
( ) ( )
( ) ( )
( ) width
beam
is
2
h
2
h
-
2
h
2
h
-
z
b
zdz
z
z
b
M
dz
z
z
b
F
xx
xx
∫
∫
=
=
σ
σ
ADAPTIVE STRUCTURES
Euler–Bernoulli Beam Model
ð Axial force and bending moment due to induced
stress:
ð If the placement of the actuators is symmetric, the
coupling term will be zero; if not, this term will be non-
zero: extension-bending coupling
( ) ( ) 2
1
0
,
2
2
,
,
j
dz
z
z
E
z
b
E
h
h
j
j =
= ∫
−
( ) ( ) ( ) ( ) ( ) ( )
∫
∫ Λ
=
Λ
= Λ
Λ
2
h
2
h
-
2
h
2
h
-
, zdz
z
z
E
z
b
M
dz
z
z
E
z
b
F
ADAPTIVE STRUCTURES
Uniform Strain and Euler-Bernoulli Beam Models
ðThe thickness ratio, T, determines if the strain variation
across the piezo affects the analysis:
ðfor small T, the uniform strain model overpredicts
strain (curvature)
ðfor large T, the predicted induced bending
curvatures are identical for both models
c
b
t
t
T =
ADAPTIVE STRUCTURES
Plate with Induced Strain Actuation
ðInduced strain actuation is used to control the extension,
bending and twisting of a plate
ðUsing tailored anisotropic plates with distributed piezo
actuators, the control of specific static deformation can be
augmented
ADAPTIVE STRUCTURES
Plate with Induced Strain Actuation
ð Assumptions to develop a consistent plate model:
ð Actuators and substrates are integrated as plies of
a laminated plate
ð A consistent deformation is assumed in the
actuators and substrates
ð Generally, a thin classical laminated plate theory is
adopted
ð For systems actuated in extension:
ðAssume strains are constant across the thickness
of actuators and plate
ð For systems actuated in pure bending:
ð Assume strains vary linearly through the thickness
ADAPTIVE STRUCTURES
Plate with Induced Strain Actuation
ð Strain in the system:
ð Mid-plane strain:
ð Curvature:
{ }
T
T
xy
y
x
x
v
y
u
y
v
x
u






∂
∂
+
∂
∂
∂
∂
∂
∂
=
= 0
0
0
0
ε
ε
ε
ε
κ
ε
ε z
+
= 0
{ }
T
T
xy
y
x
y
x
w
y
w
x
w






∂
∂
∂
−
∂
∂
−
∂
∂
−
=
=
2
2
2
2
2
2
κ
κ
κ
κ
ADAPTIVE STRUCTURES
Plate with Induced Strain Actuation
ð Constitutive relation for any ply:
ð is the transformed reduced stiffness of the
plate
ðThe second term represents an equivalent stress
due to the actuation
ð Stress vector:
ðActuation strain vector
{ }
T
xy
y
x τ
σ
σ
σ =
( )
Λ
−
= ε
σ Q
{ }
T
xy
y
x Λ
Λ
Λ
=
Λ
Q
ADAPTIVE STRUCTURES
Plate with Induced Strain Actuation
ð Net forces and moments


















































































=






















xy
y
x
xy
y
x
z
y
x
z
y
x
D
D
D
D
D
D
D
D
D
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
M
M
M
N
N
N
κ
κ
κ
γ
ε
ε
0
0
0
6
26
16
26
22
11
16
12
11
6
26
16
26
22
11
16
12
11
6
26
16
26
22
11
16
12
11
6
26
16
26
22
11
16
12
11
ADAPTIVE STRUCTURES
Shells
t
T
a ng e ntia l stra in
H
Axia l stra in
R
X
θ
o
Qx
Nx
Qθ
Nθ
N x
θ
Nxθ
X
θ
o
Mx
Mxθ
M x
θ
Mθ
ADAPTIVE STRUCTURES
Shells
ð Strain-Displacement Relations
ε κ
ε κ
ε τ
θ θ
θ
x x
x
u
x
w
x
v w
R R
w
R
v
v
x R
u
R
w
x R
v
x
=
∂
∂
= −
∂
∂
=
∂
∂
θ
+ = −
∂
∂
θ
+
∂
∂
θ
=
∂
∂
+
∂
∂
θ
= −
∂
∂∂
θ
+
∂
∂
; ;
; ;
;
2
2
2
2
2 2
2
1 1
1 2 2
ADAPTIVE STRUCTURES
Piezo Patch Contributions
ð Finite Patches
M M M H x H x H H
M M M H x H x H H
N N N H x H x H H S x S
N N N H x H x H H S x S
x x x
x x x
p pinner pouter
p pinner pouter
p pinner pouter
p pinner pouter
= + − −
= + − −
= + − −
= + − −
1 2 1 2
1 2 1 2
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) $ ( )
( ) ( ) ( ) ( ) ( ) $ ( )
, ,
, ,
θ θ
θ θ
θ θ θ
θ θ θ
θ θ θ
θ θ θ
ADAPTIVE STRUCTURES
Concluding Remarks
ðAnalytical models for beam, plate and shell type
elements have been presented.
ðThe weak form of the equations of motion are desirable
since they circumvent the need to differentiate terms with
patch force and moment terms.
ðThe analytical models provide a physical appreciation
of the interaction between the structure and the actuating
piezo patches
ADAPTIVE STRUCTURES
Finite Element Models
ΠPiezoelectric Finite Elements
F Solid, Plate and Beam Models
• Simple Plate Finite Element Model
Ž Actuation and Sensing Examples
F Bimorph beam
F Adaptive Composite Plate
ADAPTIVE STRUCTURES
Solid Elements
Allik and Hughes (1970)
u,v,w, ϕ : linear
16 dof
Static condensation of the electric dof
Gandhi and Hagood (1997)
u,v,w, ϕ : linear
16 dof + internal dof
Nonlinear constitutive relations
ADAPTIVE STRUCTURES
Solid Elements
Tzou and Tseng (1990)
u,v,w,ϕ : linear + quadratic incompatible modes
32 dof
Static condensation of the electric dof
Ha and Keilers (1992)
u,v,w,ϕ : linear + quadratic incompatible modes
32 dof
Equivalent single layer model
Static condensation of incompatible modes
ADAPTIVE STRUCTURES
Solid Elements
Chin and Varadan (1994)
u,v,w,ϕ : linear
32 dof
Lagrange method
Allik and Webman (1974)
u,v,w,ϕ : quadratic
80 dof
Sonar transducers
ADAPTIVE STRUCTURES
Shell Elements
Lammering (1991)
u,v,w,β
x, β
y : linear
28 dof
Shallow shell theory
Upper-lower nodal electric potential dof
Thirupati et al (1997)
u,v,w,φ
: quadratic
32 dof
3D degenerated shell theory
Piezo effect as initial strain problem
ADAPTIVE STRUCTURES
Shell Elements
Varadan et al (1993)
u,w,φ: linear
9 dof
Lagrange formulation
Mooney transducers
Tzou and Ye (1993)
u,v,w,φ: in-plane quadratic, thickness linear
48 dof
Layerwise constant shear angle theory
Laminated piezo shell continuum
ADAPTIVE STRUCTURES
Plate Elements
Suleman and Venkayya (1995)
u,v,w, θx,θy,θz : bilinear
φ
: linear
24 dof
Mindlin plate element C0
1 dof per piezo patch/layer
Ray et al (1994)
w: cubic
φ
: linear
104 dof
Linear potential in thickness
1 dof per piezo patch/layer
ADAPTIVE STRUCTURES
Plate Elements
Yin and Shen (1997)
u,v,w, β
x,β
y, φ: quadratic
54 dof
Mindlin plate theory C0
Linear voltage but transverse field dof
ADAPTIVE STRUCTURES
Beam Elements
Shen (1994)
U: linear
W: cubic hermite
Β: linear
8 dof
Timoshenko beam theory with Hu-Washizu
Principle (Mixed)
Offset nodes
ADAPTIVE STRUCTURES
Summary of Available Elements
Elements Shape and approximations
Solid 4-nodes linear tetrahedron
8-nodes linear hexahedron
20-nodes quadratichexahedron
available
available
available
Shell 3-nodes linear axisymmetric flat triangle
8-nodes quadratic axisymm. quadrangle
4-nodes linear flat quadrangle
8-nodes 3D-degenerated quadratic quad
12-nodes 3D-degenerated quadratic prism
available
available
available
not available
available
Plate 3-nodes linear triangle
4-nodes linear quadrangle
8-nodes quadrangle
9-nodes quadrangle
not available
available
available
available
Beam 2-nodes linear element
3-nodes quadratic element
available
not available
ADAPTIVE STRUCTURES
Adaptive Composite Plate Model
•If an electric field V is applied, then maximum actuator strain
(free strain) will be:
ADAPTIVE STRUCTURES
Kinetic, Potential and Electrical Energies
•The Hamiltonian for the system is
[ ] 0
2
1
=
+
Π
−
∫ dt
W
T
t
t
e
δ
dV
T
S
dV
u
u
T c
c
V
T
V
T
∫
∫ =
Π
=
2
1
;
2
1 &
&
ρ
p
e
e
V
e dV
T
S
W
T
p
∫
=
2
1
ADAPTIVE STRUCTURES
Stress-Strain Relations
e
c
c
e
c
T
e
S
S
T
S
S
T
e
c
e
−
=
+
= ε
{ }
{ }
p
n
ts
yz
ts
xz
b
xy
b
y
b
x
m
xy
m
y
m
x
e
ts
b
m
E
E
S
S
S
S
S
S
S
S
S
S
S
S
S
−
−
=
=
...
1
{ }
{ }
p
n
ts
yz
ts
xz
b
xy
b
y
b
x
m
xy
m
y
m
x
e
ts
b
m
D
D
T
T
T
T
T
T
T
T
T
T
T
T
T
...
1
=
=
ADAPTIVE STRUCTURES
Stress-Strain Relations
T
S
S
S
S
T
T
T
m
e
ts
b
m
T
T
e
c
∆














−


























=






=
0
0
0
α
ε
0
e
e
0
g
0
0
e
0
c
c
e
0
c
c
ADAPTIVE STRUCTURES
Strain-Displacement Relations










−
−
−
+










+










+
=










=
xy
yy
xx
y
x
y
x
x
y
y
x
b
xy
b
y
b
x
b
w
w
w
z
w
w
w
w
v
u
v
u
S
S
S
S
,
,
,
,
,
2
,
2
,
,
,
,
,
2
2
2
1
( )
ξη
η
η
ξ
ξ H
C +
+
+
=
4
1
N
{ }
{ }
p
n
e
i
y
x
s
i
q
w
v
u
q
φ
φ
θ
θ
...
;
1
=
=
ADAPTIVE STRUCTURES
Strain-Displacement Relations












=






= e
s
e
s
e
s
q
q
S
S
S
b
0
0
b
el
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i
s
i n
i
N
x
N
N
x
N
x
N
z
x
N
z
y
N
z
x
N
z
x
N
y
N
y
N
x
N
,
,
1
;
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
=














































−
∂
∂
∂
∂
∂
∂
∂
∂
−
∂
∂
−
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
=
b
ADAPTIVE STRUCTURES
System Matrices
el
j
e
V
e
j
ee
j
e
V
c
j
ce
j
c
V
c
j
cc
j
V
T
j
cc
n
j
dV
dV
dV
dV
j
T
j
T
j
T
j
,
,
1
,
,
,
,
L
=
=
=
=
=
∫
∫
∫
∫
for
b
e
b
K
b
e
b
K
b
c
b
K
N
N
M ρ
ADAPTIVE STRUCTURES
Geometric Stiffness
dA
N
dA
N
dA
N
dA
N x
A
y
xy
y
A
x
xy
y
A
y
y
A
x
g N
N
N
N
N
N
N
N
K T
T
T
x
T
x ∫
∫
∫
∫ +
+
+
=
ADAPTIVE STRUCTURES
Equations of Motion






=












+












+












+












+
















∆
∆
0
0
0
0
K
0
0
0
K
K
K
K
0
0
0
0
K
0
0
0
M
T T
e
c
g
e
c
e
c
ee
ec
ce
e
c
cc
e
c
cc
P
U
U
U
U
U
U
U
U
U
U
48
4 7
6
48
4 7
6
4 8
4 7
6
48
4 7
6
&
&
&
&
48
4 7
6
stiffness
nonlinear
stiffness
thermal
stiffness
piezo
stiffness
linear
inertia
ADAPTIVE STRUCTURES
Actuation and Sensing Mechanisms
U U
c e
= −
K K
cc ce
1
U U
e ee ec c
=
−
K K
1
ADAPTIVE STRUCTURES
Bimorph Beam
ADAPTIVE STRUCTURES
Bimorph Beam
ADAPTIVE STRUCTURES
Composite Plate
ADAPTIVE STRUCTURES
Composite Plate
ADAPTIVE STRUCTURES
PANEL FLUTTER
V
25 cm
2
5
c
m
ADAPTIVE STRUCTURES
PANEL FLUTTER –BOUNDARY EFFECT
ADAPTIVE STRUCTURES
PANEL FLUTTER –IN PLANE LOADING
ADAPTIVE STRUCTURES
PANEL FLUTTER






=












+












+
























+












+
















+
















∆
∆
0
0
0
0
K
0
0
0
K
0
0
0
K
K
K
K
0
0
0
0
K
0
0
0
G
0
0
0
M
T T
e
c
g
e
c
a
e
c
e
c
ee
ec
ce
e
c
cc
e
c
e
c
cc
P
U
U
U
U
U
U
U
U
U
U
U
U
U
U
48
4 7
6
48
4 7
6
48
4 7
6
4 8
4 7
6
48
4 7
6
&
&
48
4 7
6
&
&
&
&
48
4 7
6
stiffness
nonlinear
stiffness
aero
stiffness
thermal
stiffness
piezo
stiffness
linear
damping
aero
inertia
ADAPTIVE STRUCTURES
AERODYNAMIC LOADS








−
−
−
−
+
−
−
=
∞
∞
∞
∞
∞
t
t
x
a w
M
r
w
V
M
M
w
M
q
p ,
2
,
2
2
,
2
1
2
1
1
1
2
1
2








−
+
−
= t
t
a
x
a w
a
D
r
w
a
D
g
w
a
D
p ,
3
,
4
0
,
3
2 β
λ
ω
λ
( )
( )
1
2
;
1
2
2
2
2
2
3
−
−
=
−
=
∞
∞
∞
M
M
g
M
D
a
q
a
a
β
µ
λ
λ
ADAPTIVE STRUCTURES
AERODYNAMIC LOADS
dA
w
t
w
a
D
r
t
w
a
D
g
x
w
a
D
W
A
a
a ∫ 







∂
∂
−
∂
∂
+
∂
∂
−
= 3
4
0
3
2 β
λ
ω
λ
el
n
,
1,
j
for L
=
=








−
=
∫
∫
dA
dA
a
D
r
g
x
A
T
j
a
A
T
a
j
,
3
,
2
N
N
K
N
N
G
λ
β
λ
ADAPTIVE STRUCTURES
RESULTS
Critical Aerodynamic Parameter
8
.
36
=
critical
λ
Configuration
#1 #2 #3 #4 #5
0 V 46.9 70.5 88.5 91.8 63.9
400 V 66.7 93.5 92.5 99.2 76.5
critical
λ +42% +32% +5% +8% +20%
Mass +17% +69% +86% +69% +52%
#1 #2 #3 #4 #5
ADAPTIVE STRUCTURES
ACTIVE CONTROL
1
i
n
_1
2
Ou t
por
t2
C
C M a t
r
i
x
M u x
M u x
x
' = A
x
+Bu
y = Cx
+Du
Pl
a t
e M odel
St
a t
e Noi
s e
Sou r
ce
Sys t
em
Vi
s u a l
i
za t
i
on
Ou t
pu tNoi
s e
Sou r
ce
Ou t
po
+
+
Su m
Dyn
a m i
c M odelofPl
a t
e w i
t
h Pi
ezoel
ect
r
i
c Sen
s or
s a n
d A
ct
u a t
or
s
ADAPTIVE STRUCTURES
ACTIVE CONTROL
1st mode 2nd mode
ADAPTIVE STRUCTURES
ACTIVE CONTROL
ADAPTIVE STRUCTURES
ACTIVE CONTROL
n
ω
ω
Mode OPEN
LOOP
CLOSED LOOP
(rad/s) (rad/s) Damping Comments
57.30249 57.30438561 0.009520978 Structure
365.4731 70.25461695 0.927711305 Controller
1057.714 365.4493213 0.007791086 Structure
1133.858 567.3243875 0.52316159 Controller
1193.705 1056.67806 0.000688374 Structure
2178.078 1133.858129 0 Structure
ADAPTIVE STRUCTURES
NOISE SUPPRESSION
ADAPTIVE STRUCTURES
STRUCTURE BORNE NOISE
ADAPTIVE STRUCTURES
SPECTRUM OF CABIN NOISE
ADAPTIVE STRUCTURES
A composite shell element with electromechanical properties
and with principal radii of curvature Rx and Ry has been
formulated and implemented.
This 8-noded isoparametric finite element has five degrees
of freedom at each node, which includes three displacements
and two rotations .
To derive the equations of motion for the laminated
composite shell, in an acoustic field with piezoelectrically
coupled electromechanical properties, we use the
generalized form of Hamilton’
s principle
[ ] 0
2
1
=
−
+
Π
−
∫ dt
W
W
T
t
t
p
e
δ
COMPOSITE SHELL
ADAPTIVE STRUCTURES
[ ] 0
2
1
=
+
Π
−
∫ dt
W
T
t
t
p
p
p
δ
0
1
2
2
2
2
=
∂
∂
−
∇
t
p
c
p
•
To derive the equations of motion for the acoustic cavity, we use the
generalized form of Hamilton’
s principle
boundary
vibrating
a
at
boundary
rigid
a
at
0
2
2
t
w
n
p
n
p
a
∂
∂
−
=
∂
∂
=
∂
∂
ρ
With the following boundary conditions:
ACOUSTIC CAVITY MODEL
ADAPTIVE STRUCTURES










=



















 Θ
−
+
























Θ
0
0
p
e
p
s
ee
es
pp
se
ss
e
p
s
pp
T
ss F
U
U
U
U
U
U
K
0
K
0
K
0
K
K
0
0
0
0
M
0
0
M
&
&
&
&
&
&
.
and
matrix
coupling
acoustic
-
structural
the
is
matrix;
stiffness"
"
acoustic
the
is
1
matrix;
mass"
"
acoustic
the
is
1
2








∂
∂
∂
∂
∂
∂
=
=
Θ
=
=
∫
∫
∫
z
y
x
dS
dV
dV
c
p
i
p
i
p
i
p
i
p
S
T
s
p
V
T
p
a
pp
p
V
T
p
a
pp
N
N
N
b
N
N
b
b
K
N
N
M
ρ
ρ
EQUATIONS OF MOTION
ADAPTIVE STRUCTURES
( )
( )
( )





>
<
= −
−
−
−
o
z
z
d
o
z
z
d
f
z
z
e
P
z
z
e
P
z
P
o
o
for
for
( )







>
−
−
<
−
−
=
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
for
for
2
2
1
1
k
j
o
o
k
j
o
f
e
P
e
P
P
Axial distribution:
Circumferential Distribution:
ASSUMED PRESSURE DISTRIBUTION
ADAPTIVE STRUCTURES
Propeller
Noise
Stiffening
Force
Interior
Noise
Piezoelectric
Actuator
Fuselage
PASSIVE ACTUATION MECHANISM
ADAPTIVE STRUCTURES
Acoustic Elements
Adaptive Composite Shell
with Piezo Layer
FINITE ELEMENT MESH
ADAPTIVE STRUCTURES
Propeller
Plane
z = 3.5 m
z = 0
θ = 0
r
=
1
.
3
m
ACTUATOR CONFIGURATION
ADAPTIVE STRUCTURES
Propeller
Plane
z = 3.5 m
z = 0
θ = 0
r
=
1
.
3
m
ACTUATOR CONFIGURATION
ADAPTIVE STRUCTURES
NOISE REDUCTION
0
20
40
60
80
100
120
140
ANGULAR POSITION (Deg)
NOISE
REDUCTION
(dB)
45 90
θ = 0
Frequency 90 Hz
Actuation 400 V
Case 2 - Line Pattern
Frequency 90 Hz
No Actuation
Frequency 90 Hz
Actuation 400 V
Case 1 - Chess Pattern
Symmetric
360
135 180 225 270 270
External Pressure
Distribution
θ = 180
RESULTS
ADAPTIVE STRUCTURES
´ Analytical and finite element models with
electromechanical properties have been presented.
´ Application of piezoelectric patches to control pane
flutter has been demonstrated.
´ Internal noise reduction using a stiffened fuselage
with piezo pacthes achieved considerable reduction in
noise levels.
CONCLUSIONS

More Related Content

Similar to Afzal_Suleman_1.pdf

Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperSRINIVASULU N V
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesCs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesGirish Zope
 
Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Priyabrata Behera
 
1. Rock Elasticity
1. Rock Elasticity1. Rock Elasticity
1. Rock ElasticityJames Craig
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryIDES Editor
 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of MaterialsAditya .
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1MARTIN ATHIYO
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelRam Mohan
 
CORSO SMORZATORI_LEZ 2_31-05-2023.pdf
CORSO SMORZATORI_LEZ 2_31-05-2023.pdfCORSO SMORZATORI_LEZ 2_31-05-2023.pdf
CORSO SMORZATORI_LEZ 2_31-05-2023.pdfmichelepalermo6
 

Similar to Afzal_Suleman_1.pdf (20)

Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paper
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Lecture-3-1.pptx
Lecture-3-1.pptxLecture-3-1.pptx
Lecture-3-1.pptx
 
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. GuedesCs guedes09 - Good Doc for Stress strain by R.M. Guedes
Cs guedes09 - Good Doc for Stress strain by R.M. Guedes
 
Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02Strengthofmaterialsbyskmondal 130102103545-phpapp02
Strengthofmaterialsbyskmondal 130102103545-phpapp02
 
Load cell
Load cellLoad cell
Load cell
 
1. Rock Elasticity
1. Rock Elasticity1. Rock Elasticity
1. Rock Elasticity
 
L20
L20L20
L20
 
ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
mechanics of solid
mechanics of solidmechanics of solid
mechanics of solid
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of Materials
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Ch12 ssm
Ch12 ssmCh12 ssm
Ch12 ssm
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
Beams And Columns
Beams And ColumnsBeams And Columns
Beams And Columns
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanel
 
CORSO SMORZATORI_LEZ 2_31-05-2023.pdf
CORSO SMORZATORI_LEZ 2_31-05-2023.pdfCORSO SMORZATORI_LEZ 2_31-05-2023.pdf
CORSO SMORZATORI_LEZ 2_31-05-2023.pdf
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 

Recently uploaded (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 

Afzal_Suleman_1.pdf