SlideShare a Scribd company logo
1 of 35
Download to read offline
Biological Requirements
of Aquaculture Livestock
Basic Biological Requirements
All living organisms have basic biological requirements for growth, reproduction and
survival. These requirements will vary with species, and may even change throughout
the life of the organism. In aquaculture, in order to obtain the best growth and survival in
these animals it is important to concentrate on optimising several special requirements:
● Water temperature (affects metabolic rate);
● Water flow;
● Water quality (salinity, oxygen, pH, etc);
● Protection from Pests, Predators, Pathogens and Competitors
● Food (quantity and quality);
● Stocking densities (numbers of other livestock or other competitors for food, etc);
● Types of culture unit;
● Protection from elements (sun, wind, rough weather, etc);
● Genetics (selectively bred from a hatchery or wild caught);
● Stress which can be caused by a number of different factors, most of which are
discussed later in this presentation.
Most Important
Factors
Temperature and food availability (quantity and quality) are
usually the two factors having the greatest influence on stock growth
and survival. If these factors are not optimised then the growth and
survival of any species is likely to be compromised and suboptimal.
Most aquaculture production systems are designed and operated to
optimise these in an economical manner. These are discussed in the
following slides but (the former is discussed in detail in Session 11,
feeding is discussed in detail in Session 12).
Water Temperature
All fish, molluscs and crustaceans are cold-blooded or
Poikilotherms. They have limited ability to manage
their body temperatures which means it is determined
by the surrounding waters ambient temperature.
Therefore, temperature is a key requirement as it
effects the metabolic rate, and thus growth rates.
The terms tropical or warmwater species generally
refers to those that originate from tropical climates
with water temperatures over 20OC, whereas
coldwater or temperate species normally live in water
below 20OC.
Water Temperature
However, the optimal temperature range varies with species - eg in Rainbow
Trout the optimal oC is around 14-16 oC, whereas in Tilapia it is around 24-32
oC.
Higher temperatures above this range make the livestock more prone to
stress, which can lead to disease infections, and even death.
Any lower temperatures below this range can lead to slowing of growth, with
very low temperatures causing stress, disease or death.
Therefore for any species there is an optimal, upper limit and lower limit
temperature – some examples for temperature profiles of different species
are given on the following slides
Temperature Tolerances of Marine Species
(Figures relate to adults)
Temperature
(o
C)
Southern
Bluefin
Tuna
Mussels Abalone Ocean
Trout
Atlantic
Salmon
No growth
(death)
>22 >24 >24 >22 >22
Optimal
growth
12 - 13 17 – 21 16 – 20 17 – 19 16 – 19
Slow or no
growth
<10 <13 <13 <10 <11
Temperatures in the sea are usually fairly constant. Seasonal variations
can result in changes of 2 to 5o
C but usually these occur over several
months. In contained waters (such as ponds, tanks, raceways),
temperatures can vary by several degrees over a 24 hour period. In
shallow bays the temperature can vary with the tides!
Temperature
(o
C)
Pacific
Oysters
Sydney
rock
Oysters
Marine
Finfish
(Snapper)
Barramund
i
Prawn
s
No growth
(death)
>26 >30 >26 >33 >30
Optimal
growth
18 - 20 22 - 26 18 – 24 26 – 30 27 – 28
Slow or no
growth
<13 <16 <16 <24 <20
Temperatures in the sea are usually fairly constant. Seasonal variations
can result in changes of 2 to 5o
C but usually these occur over several
months. In contained waters (such as ponds, tanks, raceways),
temperatures can vary by several degrees over a 24 hour period. In
shallow bays the temperature can vary with the tides!
Temperature Tolerances of Marine Species
(Figures relate to adults)
Temperature Tolerances of FW Species
To obtain a rough estimate of water temperatures, calculate the halfway
point between the average monthly maximum and minimum air
temperatures (Meteorological Bureau). This is only useful for ponds less
than 2m deep.
Low temperature = low growth = loss of production.
Temperature
(oC)
Barramundi
Murray
Cod
Other
Native
Finfish
Yabby
Red
claw
No growth
(death)
>33 >30 >28 >33 >32
Optimal
growth
26 - 30 23 - 28 21 - 26
22 –
28
26 - 30
Slow or no
growth
<24
<17 –
18
<15 –
17
<15 <20
Figures relate to adults
Temperature Tolerances of FW Species
To obtain a rough estimate of water temperatures, calculate the halfway
point between the average monthly maximum and minimum air
temperatures (Meteorological Bureau). This is only useful for ponds
less than 2m deep.
Low temperature = low growth = loss of production.
Temperature
(oC)
Ornamentals Marron Silver
Perch
Rainbow
Trout
Eels
No growth
(death)
>24 >30 >30 >24 >28
Optimal
growth
18 - 22 20 – 25 19-21 15 – 18 18 - 22
Slow or no
growth
<14 – 15 <12 – 14 <15 <10 <12
Figures relate to adults
Water Flow
Water flow serves a variety of functions, and ensuring
adequate water flow in aquaculture production systems is
critical to successful farming. Some of the key functions of
water flow for fish and crustaceans include:
● Replenishes oxygen in the water.
● Bring in food (suspended zooplankton, small Finfish,
shrimp, etc), however, these usually represent a small
proportion of the food requirements of the Finfish or
Crustaceans.
● Removes wastes (faeces, uneaten food, carbon dioxide,
nitrogenous products).
● Will also bring in pests (eg net or tank fouling organisms),
competitors, predators and diseases.
● Too much flow can also damage the Finfish or Crustaceans
often won’t be able to feed properly leading to emancipation
and maybe death.
Water Flow - Molluscs
Water flow is also important for Molluscan species to
replenish oxygen in the water. It can also bring in food
for the culture organism (Bivalves eat suspended
phytoplankton, abalone and other Gastropods mostly
eat drift algae [seaweeds] or algal scum on surfaces).
The water flow replenishes food supply or nutrients for
seaweed / algal growth and, removes wastes (faeces,
uneaten food, pseudo-faeces, carbon dioxide,
nitrogenous products).
It will also bring in pests (eg fouling organisms),
competitors, predators and diseases, therefore
appropriate exclusion measures must be taken. Too
much water flow can also damage the Molluscs being
grown or the culture structures.
Water Quality
As well as the amount of water flow, the quality of the water is
also important. There are many different parameters of water
quality, with the most important including pH, dissolved oxygen,
salinity and nitrogenous wastes. Levels of pollution such as
sewage, heavy metals, petroleum products, etc) and
contaminants such as sewage can effect food safety, as well
as growth and health of livestock. Suspended solids or
sediments (eg clay or silt) can block gills and smother the
livestock which reduces feeding rates and growth.
It must be recognised that water quality will vary daily, weekly
and seasonally across the year.
Reflection question
What are the main water quality requirements of your holding or culture
stock? If you have several species, do you know the requirements
for all?
Species name: ________________
Temperature (oC) ________________
Dissolved oxygen (mg/L) ________________
Salinity (g/L) ________________
pH ________________
NH3 or NO2 ________________
Water flow (cm/sec) ________________
Turbidity (secchi disc cm) ________________
Other (________________)
Predators, Pathogens & Competitors -
Fish
A wide range of organisms can reduce the health or even
kill the Finfish or Crustaceans. They can be divided into
the following groups:
● Pests can cause fouling which can be a major issue
with seacages or pump ashore tanks of Crustaceans
or Finfish.
● Predators and pathogens are often difficult to control
in open water systems such as cages, better control is
possible in on-land systems such as tanks and ponds.
● Competitors can be for space, food or oxygen.
Individuals from the same species can be competitors
(larger, faster growing individuals can out compete
smaller animals).
Predators, Pathogens & Competitors -
Molluscs
A wide range of organisms can also reduce the
health of, or even kill Molluscs. Pests in terms of
fouling organisms can be a major issue with
Bivalve culture and often one of the major work
tasks on mollusc farms is removing this fouling.
Predators and pathogens are often difficult to
control in open water systems, and better control is
possible in on-land systems.
Competition can also effect Molluscs in terms of
space, food or oxygen. Individuals from the same
species can be competitors (larger, faster growing
individuals can out compete smaller animals).
Food for Finfish & Crustaceans
All Finfish and Crustaceans require food to grow, in terms
of quality (protein, carbohydrates, fats, vitamins etc.) and
quantity of feeds. Naturally occurring live foods are
important for fry and juveniles however for growout most
species are fed formulated (artificial) diets such as
crumbles and pellets.
The quality, quantity, availability and timing of feeding will
influence the growth and survival. Therefore, feed
management is often closely managed to ensure it is not
wasted – feed costs can be as high as 50 to 60% of total
production costs. This is easy to control in on-land
systems (easy access), however, site selection is very
important for open water (cage) culture systems (weather
conditions can delay feedings).
Food for Finfish & Crustaceans
Phytoplankton or algae can be eaten by some
herbivorous species – in this case there needs to be
nutrients and light for photosynthesis (nutrients can
come from land-based sources, usually washed
down rivers or waterways, or from upwellings or
current flow). This is sometimes referred to as
‘greenwater’ culture.
However, the majority of juveniles eat zooplankton
(need to be small enough for the animal to ingest).
They may also eat small insects, worms, Finfish,
Crustaceans and so on. Organic matter, either
suspended or benthic (detritus) can be eaten by
some scavenger species (eg catfish).
Food for Finfish & Crustaceans
Nearly all modern Finfish and Crustacean
farms utilise man-made pelleted diets
formulated for specific species requirements of
the adults.
They occasionally may be given live feeds or
other wet foods. However this is more
common in the Ornamental sector and on
Tuna farms.
This is discussed in detail in Session 12
Foods and Feeding of Stock.
Food for Molluscs
All Molluscs also require food to grow. Naturally occurring
foods such as algae and seaweeds or formulated (artificial)
diets such as abalone pellets are required. The quality,
quantity, availability and timing of feeding will influence growth
and survival.
This is easy to control in on-land systems, however, site
selection is very important for open water culture systems
which rely on naturally occurring feed organisms for feeding
Bivalve stock.
When choosing a site for mollusc farms, it is important to
choose one that has good concentrations of suitable
microalgal species
Competition for Food - Fish
‘Competition’ can occur between individuals when
there are too many animals in the one area which
results in increased competition for food.
Larger more aggressive Finfish or Crustaceans will
tend to dominate the feeding, and feeding
hierarchies can be established.
This is overcome by ensuring sufficient feeding
levels and the spreading of feed around the pond.
This is overcome by regular size grading – see
Session 15 Handling and Harvesting Stock for
more information.
Careful observation is needed to ensure that all
stocks are feeding.
Competition for Food - Mollusc
‘Shading’ can occur when there are too many
filter feeders (Bivalves) in the one area which
results in increased competition on the lease for
food.
Food needs can vary between species, eg oysters
and razorfish (a type of clam) are okay together as
the razorfish eat more benthic materials (detritus).
However, the situation is not so good for oysters
and mussels, as mussels filter at a much higher
rate and would out compete the oysters for food.
The layout of shellfish leases in an area need to
take this into account to maximise the production
of the area.
Stocking Densities - Fish
Stocking density is a measure of how many fish are stocked per unit – this can be
measured or expressed in many ways e.g.
● Kg of fish per cubic metre of water
● Number of fish per tank
● Number of fish per litre
● Number of fish per square metre of floor space
Appropriate stocking densities are critical and they can provide a method to manage
or slow growth rates due to the level of competition between stock (mainly in tanks).
However, we need to ensure that Finfish are not damaging each other at high
densities, eg. fin nipping, spiking, scale loss. Understocking can be just as big a
problem as overstocking, eg. some species need a critical mass of animals to initiate
appropriate feeding behaviour such as Finfish feeding schools.
This is also discussed in Session 15.
Stocking Densities - Crustacean
Appropriate stocking densities are critical for good, even growth rates of
Crustaceans. Excessive levels result in slow growth rates due to the level of
competition (space, feed, oxygen) between stock. Damage to legs and antennae can
also occur at high densities with elevated stress offering an opening to disease.
Cannibalism can also increase with stocking density, with increased cannibalism
occurring during moulting.
As most crustaceans are benthic or live on the floor of the culture system, stocking
density is generally expressed in quantity per square metre.
This is also discussed in Session 15 Handling and Harvesting Stock.
Stocking Densities - Mollusc
Appropriate stocking densities are critical and they provide a method to control
growth rates (fast or slow) due to the level of competition between Molluscs.
Understocking can be just as big a problem as overstocking, eg not enough oysters
in a basket can lead to excessive rumbling which damages the growing margin of
the shell.
Stocking densities should take into account numbers of other filter feeders that
would compete with Molluscs for food.
This is also discussed in Session 15 Handling and Harvesting Stock.
Type of Culture or Holding Unit - Fish
The overall traits of the species to be cultured or held must be taken into account
when selecting the type of unit or structure. The type of culture system can influence
a wide range of factors including:
• Access to food and oxygen;
• Culture unit fouling levels;
• Stocking densities;
• Ease of handling, stocking, harvesting.
ith most species there is often a range of technologies that can be chosen, eg both
Rainbow Trout and Barramundi are grown in freshwater ponds, raceways and
cages, seawater cages, recirculating tanks and flow-through tanks and raceways,
whilst Yabbies are mainly grown in earthen ponds. The type of system will depend
on the biological needs of the culture species and the economics of providing this in
a way that generates a profit for the farmer.
Type of Culture or Holding Unit - Mollusc
The types of culture units can influence a wide range of factors including:
● Access to food and oxygen;
● Rumbling or fouling levels;
● Stocking densities;
● Ease of handling, stocking, harvesting.
Single seed or individual Bivalves can utilise a range of different culture units, whilst
attached Bivalves are usually only on sticks or a similar substrate. Abalone need a
substrate to move around on, either cages, tanks or raceways.
Type of Culture or Holding Unit
We have already discussed Extensive Production systems, these are generally
Farm ponds and dams and are similar to natural conditions.
● Stocking densities are low (close to natural levels)
● Little or no water quality maintenance.
● Stock uses naturally occurring feed.
● Cost of production is low but so are yields.
● Usually hobby ventures or small scale production in non-specialised waterways
such as irrigation ditches, gully dams, natural soaks etc.
Limited food and control over the environment limit productivity and can lead to
stress and compromises growth and survival on the culture species in extensive
production systems.
Types of Culture Unit
Semi-intensive – commercial ponds & dams is usually undertaken
in specially constructed ponds, tanks, dams or areas of enclosed
water.
● Stocking densities are moderate to high
● Moderate to high water quality maintenance (aeration & exchange)
● Stock uses naturally occuring and supplemented feed.
● Cost of production is raised but so are yields.
● Ponds can be used for controlled breeding, commercial growout,
holding and stock manipulation
The ability to have some control over critical factors such as oxygen
levels and other environmental factors, along with provision of
artificial feeds improves the stress management of the culture species
and increases growth and survival on the culture species in semi-
intensive production systems.
Type of Culture or Holding Unit
Intensive – Battery culture generally occurs in indoor tanks, raceways or ponds.
These are often highly engineered systems with the capacity to precisely control the
culture environment.
● Stocking densities are high to very high.
● Rigid control of water quality parameters and maintenance.
● Specially formulated feed for maximum growth rates and water quality control.
● Cost of production is high due to capital (equipment) and operating costs (labour,
power, feed etc) but results in very high productivity.
● System often used to fatten or purge stocks before market and in the
manipulation of brood stock.
The ability to precisely control the environment ensure the culture species receives
the conditions for good growth and survival meaning productivity is highest in
intensive culture systems.
Protection from Elements - Fish
The local climatic conditions can impact fish and
the sun, wind and rough weather are the main
considerations for Finfish. The sun can dry out
skin and lead to sunburn if the culture unit is too
shallow, this can lead to stress or death. Wind can
cause jerking of the cages which causes stress to
fish and wears equipment or lead to erosion in
earthen ponds.
In a previous training module, we discussed the
issue of climate change and increased extreme
weather events which needs to be considered -
farms in cyclone prone areas need to be
constructed appropriately.
Environmental Elements - Crustaceans
The local climatic conditions can impact fish
and the sun, wind, lunar cycles and rain are
the main considerations. Sunlight can
influence algal blooms and water
temperature. Wind can cause surface
turbulence in the pond waters assisting in
aeration and mixing. Lunar cycles coincide
with moulting, and may play a role in
reproduction.
Rainfall and runoff may lower pond salinity
also affecting moulting cycles.
Protection from Elements - Molluscs
The local climatic conditions can impact fish and
the sun, wind and rough weather are the main
considerations. Sun can dry out fouling and other
external pests, but too much can lead to stress or
death of the Mollusc being grown. Wind can
hasten the drying process and can be a major
problem in warm climates.
Rough weather can lead to increased rumbling
within the culture units or stripping or losses of
Molluscs from the culture units.
Genetics
Genetics plays a major role in the performance of all living animals.
Agriculture and increasingly aquaculture relies heavily on selective
breeding of varieties of animals that grow faster, have higher yields,
better survival or disease resistance.
With wild caught seedstock (eg Mussels, Tuna) the grower doesn’t
know much about the genetic stock they came from, and has no
capacity to choose stock that will perform better under culture
conditions. With hatchery bred and reared seedstock, the grower
has much better control over the genetics, eg can undertake
selective breeding to enhance particular traits such as fast growth,
disease resistance and so on.
Selective breeding programs are already being undertaken by many
organisations to improve productivity, this along with Genetic
Modification will play a major role in the future of aquaculture
Stress
Stress is a major issue with production of any living organism. In aquaculture,
stress can be caused by a number of different factors, including:
● Poor handling
● Overstocking
● Suboptimal environment (water quality)
● Suboptimal feeds
● Presence of pests, predators, competitors.
Stress is discussed in more detail in the next section.
Additional
Information
Optimising growth and
survival by
manipulating the
livestock and the
culture or holding
environment is
discussed in detail in
Session Eleven.

More Related Content

What's hot

Environmental impact of fishing and carbon footprinting due to fishing
Environmental impact of fishing and carbon footprinting due to fishingEnvironmental impact of fishing and carbon footprinting due to fishing
Environmental impact of fishing and carbon footprinting due to fishingJEEVAN GOWDA
 
Stress and infectious disease
Stress and infectious disease  Stress and infectious disease
Stress and infectious disease As Siyam
 
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...Ashish sahu
 
Connecting e.k.'s and examples
Connecting e.k.'s and examples Connecting e.k.'s and examples
Connecting e.k.'s and examples gaponte102883
 
Environment impact of Aquaculture
Environment impact of AquacultureEnvironment impact of Aquaculture
Environment impact of AquacultureSnehaSahu20
 
stress and infectious disease
 stress and infectious disease  stress and infectious disease
stress and infectious disease As Siyam
 
Environmental issues
Environmental issuesEnvironmental issues
Environmental issuesMahendra Pal
 
Arctic vs Antarctic comparison paper
Arctic vs Antarctic comparison paperArctic vs Antarctic comparison paper
Arctic vs Antarctic comparison paperchris benston
 
Pathology disease development process
Pathology disease development processPathology disease development process
Pathology disease development processkheersagar
 
Fao fisheries & aquaculture main elements of fish muscle
Fao fisheries & aquaculture   main elements of fish muscleFao fisheries & aquaculture   main elements of fish muscle
Fao fisheries & aquaculture main elements of fish muscleamcosta8
 
Aquatic biotechnology Chapter 10
Aquatic biotechnology Chapter 10 Aquatic biotechnology Chapter 10
Aquatic biotechnology Chapter 10 Essence
 
deficiency & imbalances due to dietary components in fish
deficiency & imbalances due to dietary components in fish deficiency & imbalances due to dietary components in fish
deficiency & imbalances due to dietary components in fish harapriya behera
 
Sustainable seafood
Sustainable seafoodSustainable seafood
Sustainable seafoodJohnLeam
 
Climate change and fisheries
Climate change and fisheriesClimate change and fisheries
Climate change and fisheriesLashio University
 

What's hot (20)

Silvercup Fish Food Manual
Silvercup Fish Food ManualSilvercup Fish Food Manual
Silvercup Fish Food Manual
 
Stress
StressStress
Stress
 
Environmental impact of fishing and carbon footprinting due to fishing
Environmental impact of fishing and carbon footprinting due to fishingEnvironmental impact of fishing and carbon footprinting due to fishing
Environmental impact of fishing and carbon footprinting due to fishing
 
Stress and infectious disease
Stress and infectious disease  Stress and infectious disease
Stress and infectious disease
 
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...
Effect of anthropogenic factors on fish egg and larvae ashish sahu sahu81862@...
 
Connecting e.k.'s and examples
Connecting e.k.'s and examples Connecting e.k.'s and examples
Connecting e.k.'s and examples
 
Environment impact of Aquaculture
Environment impact of AquacultureEnvironment impact of Aquaculture
Environment impact of Aquaculture
 
stress and infectious disease
 stress and infectious disease  stress and infectious disease
stress and infectious disease
 
Environmental issues
Environmental issuesEnvironmental issues
Environmental issues
 
Algal toxins &amp; its effects
Algal toxins &amp; its effectsAlgal toxins &amp; its effects
Algal toxins &amp; its effects
 
Non infectious diseases of fish
Non infectious diseases of fishNon infectious diseases of fish
Non infectious diseases of fish
 
Arctic vs Antarctic comparison paper
Arctic vs Antarctic comparison paperArctic vs Antarctic comparison paper
Arctic vs Antarctic comparison paper
 
Pathology disease development process
Pathology disease development processPathology disease development process
Pathology disease development process
 
Fao fisheries & aquaculture main elements of fish muscle
Fao fisheries & aquaculture   main elements of fish muscleFao fisheries & aquaculture   main elements of fish muscle
Fao fisheries & aquaculture main elements of fish muscle
 
Marine biome
Marine biomeMarine biome
Marine biome
 
Aquatic biotechnology Chapter 10
Aquatic biotechnology Chapter 10 Aquatic biotechnology Chapter 10
Aquatic biotechnology Chapter 10
 
deficiency & imbalances due to dietary components in fish
deficiency & imbalances due to dietary components in fish deficiency & imbalances due to dietary components in fish
deficiency & imbalances due to dietary components in fish
 
Red tide aglae
Red tide aglaeRed tide aglae
Red tide aglae
 
Sustainable seafood
Sustainable seafoodSustainable seafood
Sustainable seafood
 
Climate change and fisheries
Climate change and fisheriesClimate change and fisheries
Climate change and fisheries
 

Similar to Aquaculture basics module 3 bio requirements

The effect of climate change on natural food levels
The effect of climate change on natural food levelsThe effect of climate change on natural food levels
The effect of climate change on natural food levelsAbd El-Rahman Khattaby
 
Microalgae culture
Microalgae cultureMicroalgae culture
Microalgae culturevarun mishra
 
Climate change and fisheries and aquaculture
Climate change and  fisheries and aquaculture Climate change and  fisheries and aquaculture
Climate change and fisheries and aquaculture New Food Innovation Ltd
 
Module 3 bio requirements
Module 3 bio requirementsModule 3 bio requirements
Module 3 bio requirementsAlfonso Ortiz
 
Water quality management in tilapia intensive farming
Water quality management in tilapia intensive farmingWater quality management in tilapia intensive farming
Water quality management in tilapia intensive farmingNitesh Kumar Yadav
 
FAO, One Health, Environmental Stewardship and Veterinary Medicine
FAO, One Health, Environmental Stewardship and Veterinary MedicineFAO, One Health, Environmental Stewardship and Veterinary Medicine
FAO, One Health, Environmental Stewardship and Veterinary MedicineÁrni Matthias Mathiesen
 
Lake water chemistry
Lake water chemistryLake water chemistry
Lake water chemistrySaroja Barik
 
Little Lagoon Oysters
Little Lagoon OystersLittle Lagoon Oysters
Little Lagoon Oystersmayrebecca
 
WATER AND SOIL QUALITY MANAGEMENT.pdf
WATER AND SOIL QUALITY MANAGEMENT.pdfWATER AND SOIL QUALITY MANAGEMENT.pdf
WATER AND SOIL QUALITY MANAGEMENT.pdfDr. Rohitash Yadav
 
Water monitoring presentation
Water monitoring presentationWater monitoring presentation
Water monitoring presentationMoliva9600
 
Standard water quality requirements and management strategies for fish farmin...
Standard water quality requirements and management strategies for fish farmin...Standard water quality requirements and management strategies for fish farmin...
Standard water quality requirements and management strategies for fish farmin...eSAT Journals
 
Impacts of Environmental Factors on Animal Health, Well-being and Survival
Impacts of Environmental Factors on Animal Health, Well-being and SurvivalImpacts of Environmental Factors on Animal Health, Well-being and Survival
Impacts of Environmental Factors on Animal Health, Well-being and SurvivalGarry D. Lasaga
 
Health card preparation guide of aquatic body
Health card preparation guide of aquatic bodyHealth card preparation guide of aquatic body
Health card preparation guide of aquatic bodyPulak Patra
 
National and international regulations of seafood quality and
National and international regulations of seafood quality andNational and international regulations of seafood quality and
National and international regulations of seafood quality andAbdulrahman Muhammad
 
Chapter 22 Ecology Lesson 3 - Water pollution_Conservation
Chapter 22 Ecology Lesson 3 - Water pollution_ConservationChapter 22 Ecology Lesson 3 - Water pollution_Conservation
Chapter 22 Ecology Lesson 3 - Water pollution_Conservationj3di79
 
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservation
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservationChapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservation
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservationj3di79
 
Water quality requirements & its management in aquaculture by asraful alam
Water quality requirements & its management in aquaculture by asraful alamWater quality requirements & its management in aquaculture by asraful alam
Water quality requirements & its management in aquaculture by asraful alamMD. Asraful Alam (Arif)
 

Similar to Aquaculture basics module 3 bio requirements (20)

The effect of climate change on natural food levels
The effect of climate change on natural food levelsThe effect of climate change on natural food levels
The effect of climate change on natural food levels
 
Microalgae culture
Microalgae cultureMicroalgae culture
Microalgae culture
 
Climate change and fisheries and aquaculture
Climate change and  fisheries and aquaculture Climate change and  fisheries and aquaculture
Climate change and fisheries and aquaculture
 
Module 3 bio requirements
Module 3 bio requirementsModule 3 bio requirements
Module 3 bio requirements
 
Water quality management in tilapia intensive farming
Water quality management in tilapia intensive farmingWater quality management in tilapia intensive farming
Water quality management in tilapia intensive farming
 
FAO, One Health, Environmental Stewardship and Veterinary Medicine
FAO, One Health, Environmental Stewardship and Veterinary MedicineFAO, One Health, Environmental Stewardship and Veterinary Medicine
FAO, One Health, Environmental Stewardship and Veterinary Medicine
 
Lake water chemistry
Lake water chemistryLake water chemistry
Lake water chemistry
 
Little Lagoon Oysters
Little Lagoon OystersLittle Lagoon Oysters
Little Lagoon Oysters
 
WATER AND SOIL QUALITY MANAGEMENT.pdf
WATER AND SOIL QUALITY MANAGEMENT.pdfWATER AND SOIL QUALITY MANAGEMENT.pdf
WATER AND SOIL QUALITY MANAGEMENT.pdf
 
Water monitoring presentation
Water monitoring presentationWater monitoring presentation
Water monitoring presentation
 
4 seafood
4   seafood4   seafood
4 seafood
 
Standard water quality requirements and management strategies for fish farmin...
Standard water quality requirements and management strategies for fish farmin...Standard water quality requirements and management strategies for fish farmin...
Standard water quality requirements and management strategies for fish farmin...
 
Economics of Fish Industry
Economics of Fish IndustryEconomics of Fish Industry
Economics of Fish Industry
 
Water Pollution
Water PollutionWater Pollution
Water Pollution
 
Impacts of Environmental Factors on Animal Health, Well-being and Survival
Impacts of Environmental Factors on Animal Health, Well-being and SurvivalImpacts of Environmental Factors on Animal Health, Well-being and Survival
Impacts of Environmental Factors on Animal Health, Well-being and Survival
 
Health card preparation guide of aquatic body
Health card preparation guide of aquatic bodyHealth card preparation guide of aquatic body
Health card preparation guide of aquatic body
 
National and international regulations of seafood quality and
National and international regulations of seafood quality andNational and international regulations of seafood quality and
National and international regulations of seafood quality and
 
Chapter 22 Ecology Lesson 3 - Water pollution_Conservation
Chapter 22 Ecology Lesson 3 - Water pollution_ConservationChapter 22 Ecology Lesson 3 - Water pollution_Conservation
Chapter 22 Ecology Lesson 3 - Water pollution_Conservation
 
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservation
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservationChapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservation
Chapter 22 Our Impact on the Ecosystem Lesson 3 water pollution conservation
 
Water quality requirements & its management in aquaculture by asraful alam
Water quality requirements & its management in aquaculture by asraful alamWater quality requirements & its management in aquaculture by asraful alam
Water quality requirements & its management in aquaculture by asraful alam
 

Recently uploaded

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 

Recently uploaded (20)

INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 

Aquaculture basics module 3 bio requirements

  • 2. Basic Biological Requirements All living organisms have basic biological requirements for growth, reproduction and survival. These requirements will vary with species, and may even change throughout the life of the organism. In aquaculture, in order to obtain the best growth and survival in these animals it is important to concentrate on optimising several special requirements: ● Water temperature (affects metabolic rate); ● Water flow; ● Water quality (salinity, oxygen, pH, etc); ● Protection from Pests, Predators, Pathogens and Competitors ● Food (quantity and quality); ● Stocking densities (numbers of other livestock or other competitors for food, etc); ● Types of culture unit; ● Protection from elements (sun, wind, rough weather, etc); ● Genetics (selectively bred from a hatchery or wild caught); ● Stress which can be caused by a number of different factors, most of which are discussed later in this presentation.
  • 3. Most Important Factors Temperature and food availability (quantity and quality) are usually the two factors having the greatest influence on stock growth and survival. If these factors are not optimised then the growth and survival of any species is likely to be compromised and suboptimal. Most aquaculture production systems are designed and operated to optimise these in an economical manner. These are discussed in the following slides but (the former is discussed in detail in Session 11, feeding is discussed in detail in Session 12).
  • 4. Water Temperature All fish, molluscs and crustaceans are cold-blooded or Poikilotherms. They have limited ability to manage their body temperatures which means it is determined by the surrounding waters ambient temperature. Therefore, temperature is a key requirement as it effects the metabolic rate, and thus growth rates. The terms tropical or warmwater species generally refers to those that originate from tropical climates with water temperatures over 20OC, whereas coldwater or temperate species normally live in water below 20OC.
  • 5. Water Temperature However, the optimal temperature range varies with species - eg in Rainbow Trout the optimal oC is around 14-16 oC, whereas in Tilapia it is around 24-32 oC. Higher temperatures above this range make the livestock more prone to stress, which can lead to disease infections, and even death. Any lower temperatures below this range can lead to slowing of growth, with very low temperatures causing stress, disease or death. Therefore for any species there is an optimal, upper limit and lower limit temperature – some examples for temperature profiles of different species are given on the following slides
  • 6. Temperature Tolerances of Marine Species (Figures relate to adults) Temperature (o C) Southern Bluefin Tuna Mussels Abalone Ocean Trout Atlantic Salmon No growth (death) >22 >24 >24 >22 >22 Optimal growth 12 - 13 17 – 21 16 – 20 17 – 19 16 – 19 Slow or no growth <10 <13 <13 <10 <11 Temperatures in the sea are usually fairly constant. Seasonal variations can result in changes of 2 to 5o C but usually these occur over several months. In contained waters (such as ponds, tanks, raceways), temperatures can vary by several degrees over a 24 hour period. In shallow bays the temperature can vary with the tides!
  • 7. Temperature (o C) Pacific Oysters Sydney rock Oysters Marine Finfish (Snapper) Barramund i Prawn s No growth (death) >26 >30 >26 >33 >30 Optimal growth 18 - 20 22 - 26 18 – 24 26 – 30 27 – 28 Slow or no growth <13 <16 <16 <24 <20 Temperatures in the sea are usually fairly constant. Seasonal variations can result in changes of 2 to 5o C but usually these occur over several months. In contained waters (such as ponds, tanks, raceways), temperatures can vary by several degrees over a 24 hour period. In shallow bays the temperature can vary with the tides! Temperature Tolerances of Marine Species (Figures relate to adults)
  • 8. Temperature Tolerances of FW Species To obtain a rough estimate of water temperatures, calculate the halfway point between the average monthly maximum and minimum air temperatures (Meteorological Bureau). This is only useful for ponds less than 2m deep. Low temperature = low growth = loss of production. Temperature (oC) Barramundi Murray Cod Other Native Finfish Yabby Red claw No growth (death) >33 >30 >28 >33 >32 Optimal growth 26 - 30 23 - 28 21 - 26 22 – 28 26 - 30 Slow or no growth <24 <17 – 18 <15 – 17 <15 <20 Figures relate to adults
  • 9. Temperature Tolerances of FW Species To obtain a rough estimate of water temperatures, calculate the halfway point between the average monthly maximum and minimum air temperatures (Meteorological Bureau). This is only useful for ponds less than 2m deep. Low temperature = low growth = loss of production. Temperature (oC) Ornamentals Marron Silver Perch Rainbow Trout Eels No growth (death) >24 >30 >30 >24 >28 Optimal growth 18 - 22 20 – 25 19-21 15 – 18 18 - 22 Slow or no growth <14 – 15 <12 – 14 <15 <10 <12 Figures relate to adults
  • 10. Water Flow Water flow serves a variety of functions, and ensuring adequate water flow in aquaculture production systems is critical to successful farming. Some of the key functions of water flow for fish and crustaceans include: ● Replenishes oxygen in the water. ● Bring in food (suspended zooplankton, small Finfish, shrimp, etc), however, these usually represent a small proportion of the food requirements of the Finfish or Crustaceans. ● Removes wastes (faeces, uneaten food, carbon dioxide, nitrogenous products). ● Will also bring in pests (eg net or tank fouling organisms), competitors, predators and diseases. ● Too much flow can also damage the Finfish or Crustaceans often won’t be able to feed properly leading to emancipation and maybe death.
  • 11. Water Flow - Molluscs Water flow is also important for Molluscan species to replenish oxygen in the water. It can also bring in food for the culture organism (Bivalves eat suspended phytoplankton, abalone and other Gastropods mostly eat drift algae [seaweeds] or algal scum on surfaces). The water flow replenishes food supply or nutrients for seaweed / algal growth and, removes wastes (faeces, uneaten food, pseudo-faeces, carbon dioxide, nitrogenous products). It will also bring in pests (eg fouling organisms), competitors, predators and diseases, therefore appropriate exclusion measures must be taken. Too much water flow can also damage the Molluscs being grown or the culture structures.
  • 12. Water Quality As well as the amount of water flow, the quality of the water is also important. There are many different parameters of water quality, with the most important including pH, dissolved oxygen, salinity and nitrogenous wastes. Levels of pollution such as sewage, heavy metals, petroleum products, etc) and contaminants such as sewage can effect food safety, as well as growth and health of livestock. Suspended solids or sediments (eg clay or silt) can block gills and smother the livestock which reduces feeding rates and growth. It must be recognised that water quality will vary daily, weekly and seasonally across the year.
  • 13. Reflection question What are the main water quality requirements of your holding or culture stock? If you have several species, do you know the requirements for all? Species name: ________________ Temperature (oC) ________________ Dissolved oxygen (mg/L) ________________ Salinity (g/L) ________________ pH ________________ NH3 or NO2 ________________ Water flow (cm/sec) ________________ Turbidity (secchi disc cm) ________________ Other (________________)
  • 14. Predators, Pathogens & Competitors - Fish A wide range of organisms can reduce the health or even kill the Finfish or Crustaceans. They can be divided into the following groups: ● Pests can cause fouling which can be a major issue with seacages or pump ashore tanks of Crustaceans or Finfish. ● Predators and pathogens are often difficult to control in open water systems such as cages, better control is possible in on-land systems such as tanks and ponds. ● Competitors can be for space, food or oxygen. Individuals from the same species can be competitors (larger, faster growing individuals can out compete smaller animals).
  • 15. Predators, Pathogens & Competitors - Molluscs A wide range of organisms can also reduce the health of, or even kill Molluscs. Pests in terms of fouling organisms can be a major issue with Bivalve culture and often one of the major work tasks on mollusc farms is removing this fouling. Predators and pathogens are often difficult to control in open water systems, and better control is possible in on-land systems. Competition can also effect Molluscs in terms of space, food or oxygen. Individuals from the same species can be competitors (larger, faster growing individuals can out compete smaller animals).
  • 16. Food for Finfish & Crustaceans All Finfish and Crustaceans require food to grow, in terms of quality (protein, carbohydrates, fats, vitamins etc.) and quantity of feeds. Naturally occurring live foods are important for fry and juveniles however for growout most species are fed formulated (artificial) diets such as crumbles and pellets. The quality, quantity, availability and timing of feeding will influence the growth and survival. Therefore, feed management is often closely managed to ensure it is not wasted – feed costs can be as high as 50 to 60% of total production costs. This is easy to control in on-land systems (easy access), however, site selection is very important for open water (cage) culture systems (weather conditions can delay feedings).
  • 17. Food for Finfish & Crustaceans Phytoplankton or algae can be eaten by some herbivorous species – in this case there needs to be nutrients and light for photosynthesis (nutrients can come from land-based sources, usually washed down rivers or waterways, or from upwellings or current flow). This is sometimes referred to as ‘greenwater’ culture. However, the majority of juveniles eat zooplankton (need to be small enough for the animal to ingest). They may also eat small insects, worms, Finfish, Crustaceans and so on. Organic matter, either suspended or benthic (detritus) can be eaten by some scavenger species (eg catfish).
  • 18. Food for Finfish & Crustaceans Nearly all modern Finfish and Crustacean farms utilise man-made pelleted diets formulated for specific species requirements of the adults. They occasionally may be given live feeds or other wet foods. However this is more common in the Ornamental sector and on Tuna farms. This is discussed in detail in Session 12 Foods and Feeding of Stock.
  • 19. Food for Molluscs All Molluscs also require food to grow. Naturally occurring foods such as algae and seaweeds or formulated (artificial) diets such as abalone pellets are required. The quality, quantity, availability and timing of feeding will influence growth and survival. This is easy to control in on-land systems, however, site selection is very important for open water culture systems which rely on naturally occurring feed organisms for feeding Bivalve stock. When choosing a site for mollusc farms, it is important to choose one that has good concentrations of suitable microalgal species
  • 20. Competition for Food - Fish ‘Competition’ can occur between individuals when there are too many animals in the one area which results in increased competition for food. Larger more aggressive Finfish or Crustaceans will tend to dominate the feeding, and feeding hierarchies can be established. This is overcome by ensuring sufficient feeding levels and the spreading of feed around the pond. This is overcome by regular size grading – see Session 15 Handling and Harvesting Stock for more information. Careful observation is needed to ensure that all stocks are feeding.
  • 21. Competition for Food - Mollusc ‘Shading’ can occur when there are too many filter feeders (Bivalves) in the one area which results in increased competition on the lease for food. Food needs can vary between species, eg oysters and razorfish (a type of clam) are okay together as the razorfish eat more benthic materials (detritus). However, the situation is not so good for oysters and mussels, as mussels filter at a much higher rate and would out compete the oysters for food. The layout of shellfish leases in an area need to take this into account to maximise the production of the area.
  • 22. Stocking Densities - Fish Stocking density is a measure of how many fish are stocked per unit – this can be measured or expressed in many ways e.g. ● Kg of fish per cubic metre of water ● Number of fish per tank ● Number of fish per litre ● Number of fish per square metre of floor space Appropriate stocking densities are critical and they can provide a method to manage or slow growth rates due to the level of competition between stock (mainly in tanks). However, we need to ensure that Finfish are not damaging each other at high densities, eg. fin nipping, spiking, scale loss. Understocking can be just as big a problem as overstocking, eg. some species need a critical mass of animals to initiate appropriate feeding behaviour such as Finfish feeding schools. This is also discussed in Session 15.
  • 23. Stocking Densities - Crustacean Appropriate stocking densities are critical for good, even growth rates of Crustaceans. Excessive levels result in slow growth rates due to the level of competition (space, feed, oxygen) between stock. Damage to legs and antennae can also occur at high densities with elevated stress offering an opening to disease. Cannibalism can also increase with stocking density, with increased cannibalism occurring during moulting. As most crustaceans are benthic or live on the floor of the culture system, stocking density is generally expressed in quantity per square metre. This is also discussed in Session 15 Handling and Harvesting Stock.
  • 24. Stocking Densities - Mollusc Appropriate stocking densities are critical and they provide a method to control growth rates (fast or slow) due to the level of competition between Molluscs. Understocking can be just as big a problem as overstocking, eg not enough oysters in a basket can lead to excessive rumbling which damages the growing margin of the shell. Stocking densities should take into account numbers of other filter feeders that would compete with Molluscs for food. This is also discussed in Session 15 Handling and Harvesting Stock.
  • 25. Type of Culture or Holding Unit - Fish The overall traits of the species to be cultured or held must be taken into account when selecting the type of unit or structure. The type of culture system can influence a wide range of factors including: • Access to food and oxygen; • Culture unit fouling levels; • Stocking densities; • Ease of handling, stocking, harvesting. ith most species there is often a range of technologies that can be chosen, eg both Rainbow Trout and Barramundi are grown in freshwater ponds, raceways and cages, seawater cages, recirculating tanks and flow-through tanks and raceways, whilst Yabbies are mainly grown in earthen ponds. The type of system will depend on the biological needs of the culture species and the economics of providing this in a way that generates a profit for the farmer.
  • 26. Type of Culture or Holding Unit - Mollusc The types of culture units can influence a wide range of factors including: ● Access to food and oxygen; ● Rumbling or fouling levels; ● Stocking densities; ● Ease of handling, stocking, harvesting. Single seed or individual Bivalves can utilise a range of different culture units, whilst attached Bivalves are usually only on sticks or a similar substrate. Abalone need a substrate to move around on, either cages, tanks or raceways.
  • 27. Type of Culture or Holding Unit We have already discussed Extensive Production systems, these are generally Farm ponds and dams and are similar to natural conditions. ● Stocking densities are low (close to natural levels) ● Little or no water quality maintenance. ● Stock uses naturally occurring feed. ● Cost of production is low but so are yields. ● Usually hobby ventures or small scale production in non-specialised waterways such as irrigation ditches, gully dams, natural soaks etc. Limited food and control over the environment limit productivity and can lead to stress and compromises growth and survival on the culture species in extensive production systems.
  • 28. Types of Culture Unit Semi-intensive – commercial ponds & dams is usually undertaken in specially constructed ponds, tanks, dams or areas of enclosed water. ● Stocking densities are moderate to high ● Moderate to high water quality maintenance (aeration & exchange) ● Stock uses naturally occuring and supplemented feed. ● Cost of production is raised but so are yields. ● Ponds can be used for controlled breeding, commercial growout, holding and stock manipulation The ability to have some control over critical factors such as oxygen levels and other environmental factors, along with provision of artificial feeds improves the stress management of the culture species and increases growth and survival on the culture species in semi- intensive production systems.
  • 29. Type of Culture or Holding Unit Intensive – Battery culture generally occurs in indoor tanks, raceways or ponds. These are often highly engineered systems with the capacity to precisely control the culture environment. ● Stocking densities are high to very high. ● Rigid control of water quality parameters and maintenance. ● Specially formulated feed for maximum growth rates and water quality control. ● Cost of production is high due to capital (equipment) and operating costs (labour, power, feed etc) but results in very high productivity. ● System often used to fatten or purge stocks before market and in the manipulation of brood stock. The ability to precisely control the environment ensure the culture species receives the conditions for good growth and survival meaning productivity is highest in intensive culture systems.
  • 30. Protection from Elements - Fish The local climatic conditions can impact fish and the sun, wind and rough weather are the main considerations for Finfish. The sun can dry out skin and lead to sunburn if the culture unit is too shallow, this can lead to stress or death. Wind can cause jerking of the cages which causes stress to fish and wears equipment or lead to erosion in earthen ponds. In a previous training module, we discussed the issue of climate change and increased extreme weather events which needs to be considered - farms in cyclone prone areas need to be constructed appropriately.
  • 31. Environmental Elements - Crustaceans The local climatic conditions can impact fish and the sun, wind, lunar cycles and rain are the main considerations. Sunlight can influence algal blooms and water temperature. Wind can cause surface turbulence in the pond waters assisting in aeration and mixing. Lunar cycles coincide with moulting, and may play a role in reproduction. Rainfall and runoff may lower pond salinity also affecting moulting cycles.
  • 32. Protection from Elements - Molluscs The local climatic conditions can impact fish and the sun, wind and rough weather are the main considerations. Sun can dry out fouling and other external pests, but too much can lead to stress or death of the Mollusc being grown. Wind can hasten the drying process and can be a major problem in warm climates. Rough weather can lead to increased rumbling within the culture units or stripping or losses of Molluscs from the culture units.
  • 33. Genetics Genetics plays a major role in the performance of all living animals. Agriculture and increasingly aquaculture relies heavily on selective breeding of varieties of animals that grow faster, have higher yields, better survival or disease resistance. With wild caught seedstock (eg Mussels, Tuna) the grower doesn’t know much about the genetic stock they came from, and has no capacity to choose stock that will perform better under culture conditions. With hatchery bred and reared seedstock, the grower has much better control over the genetics, eg can undertake selective breeding to enhance particular traits such as fast growth, disease resistance and so on. Selective breeding programs are already being undertaken by many organisations to improve productivity, this along with Genetic Modification will play a major role in the future of aquaculture
  • 34. Stress Stress is a major issue with production of any living organism. In aquaculture, stress can be caused by a number of different factors, including: ● Poor handling ● Overstocking ● Suboptimal environment (water quality) ● Suboptimal feeds ● Presence of pests, predators, competitors. Stress is discussed in more detail in the next section.
  • 35. Additional Information Optimising growth and survival by manipulating the livestock and the culture or holding environment is discussed in detail in Session Eleven.