SlideShare a Scribd company logo
1 of 27
Download to read offline
Bacteriological
measurement and its physical
characteristics
Presented by :
satabdy Jena
t14ee003
Mtech
Power and energy systeMs
nIt Meghalaya
Contents
2
Introduction
3
Binary fission
4
Fig1.Binary fission
5
• Baeocyte production in the
cyanobacterium Stanieria
• It starts out as a small, spherical cell approximately 1
to 2 µm in diameter. This cell is referred to as a
baeocyte (which literally means "small cell"). The
baeocyte begins to grow, eventually forming a
vegetative cell up to 30 µm in diameter. As it grows,
the cellular DNA is replicated over and over, and the
cell produces a thick extracellular matrix. The
vegetative cell eventually transitions into a
reproductive phase where it undergoes a rapid
succession of cytoplasmic fissions to produce dozens
or even hundreds of baeocytes. The extracellular
matrix eventually tears open, releasing the
baeocytes. Other members of the Pleurocapsales (an
Order of Cyanobacteria) use unusual patterns of
division in their reproduction .
6
7
Fig 2. Baeocyte production
• Budding in bacteria
• Budding has been observed in some members of
the Planctomycetes, Cyanobacteria, Firmicutes
(a.k.a. the Low G+C Gram-Positive Bacteria) and
the prosthecate Proteobacteria. Although
budding has been extensively studied in the
eukaryotic yeast Saccharomyces cerevisiae, the
molecular mechanisms of bud formation in
bacteria are not known.
8
9
Fig 3.Budding
• Intracellular offspring production by
some Firmicutes
• Epulopiscium spp., Metabacterium
polyspora and the Segmented Filamentous
Bacteria (SFB) form multiple intracellular
offspring. For some of these bacteria, this
process appears to be the only way to
reproduce. Intracellular offspring development
in these bacteria shares characteristics with
endospore formation in Bacillus subtilis.
10
11
Fig 4.Intracellular offspring production
12
• Four characteristic phases of the growth
cycle are recognized as :
• Lag phase
• Exponential(log) phase
• Stationary phase
• Death phase
13
14
Fig 5.Bacterial growth curve
15
• Methods for Measurement of Cell Mass
• Methods for measurement of the cell mass involve both direct and
indirect techniques.
1. Direct physical measurement of dry weight, wet weight, or volume of
cells after centrifugation.
2. Direct chemical measurement of some chemical component of the cells
such as total N, total protein, or total DNA content.
3. Indirect measurement of chemical activity such as rate of O2 production
or consumption, CO2 production or consumption, etc.
4. Turbidity measurements employ a variety of instruments to determine
the amount of light scattered by a suspension of cells. Particulate objects
such as bacteria scatter light in proportion to their numbers. The turbidity
or optical density of a suspension of cells is directly related to cell mass or
cell number, after construction and calibration of a standard curve. The
method is simple and nondestructive, but the sensitivity is limited to about
107 cells per ml for most bacteria.
16
17
Fig 6. Filtration
18
Fig 7.Turbidity measurement
• Methods for Measurement of Cell Numbers
• 1. Direct microscopic counts are possible using
special slides known as counting chambers. Dead
cells cannot be distinguished from living ones. Only
dense suspensions can be counted (>107 cells per
ml), but samples can be concentrated by
centrifugation or filtration to increase sensitivity.
• A variation of the direct microscopic count has been
used to observe and measure growth of bacteria in
natural environments. In order to detect and prove
that thermophilic bacteria were growing in boiling
hot springs, T.D. Brock immersed microscope slides
in the springs and withdrew them periodically for
microscopic observation. The bacteria in the boiling
water attached to the glass slides naturally and grew
as microcolonies on the surface.
19
20
21
Fig 8. Direct measurement of microbial growth
22
Fig 9.Plate method
23
24
25
• [1]Physical factors affecting microbial growth,
Wikipedia
• [2]The growth of bacterial population, Kenneth
Todar
• [3]Theory and measurement of bacterial growth,
Fredrich Widdel, Universitat Bremen
• [4]The growth of bacterial cultures
• [5] Factors Affecting Bacterial Growth, Shayna
Goodman
26
27

More Related Content

Similar to bacteriologicalmeasurementanditsphysicalcharacteristics-141113183908-conversion-gate02.pdf

Reproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by TanzirReproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by Tanzir
Tanzir Ahmed
 
Biol500 Cell Growth & Kinetics
Biol500 Cell Growth & KineticsBiol500 Cell Growth & Kinetics
Biol500 Cell Growth & Kinetics
Faryn
 

Similar to bacteriologicalmeasurementanditsphysicalcharacteristics-141113183908-conversion-gate02.pdf (20)

Bacterial growth measurement-1556u90515054532.pptx
Bacterial growth measurement-1556u90515054532.pptxBacterial growth measurement-1556u90515054532.pptx
Bacterial growth measurement-1556u90515054532.pptx
 
MEASURMENTS OF BACTERIAL GROWTH
MEASURMENTS OF BACTERIAL GROWTHMEASURMENTS OF BACTERIAL GROWTH
MEASURMENTS OF BACTERIAL GROWTH
 
Microbial growth presentation
Microbial growth presentationMicrobial growth presentation
Microbial growth presentation
 
Reproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by TanzirReproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by Tanzir
 
Reproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by TanzirReproduction and growth of bacteria by Tanzir
Reproduction and growth of bacteria by Tanzir
 
Microbial growth
Microbial growth Microbial growth
Microbial growth
 
Growth of bacteria
Growth of bacteriaGrowth of bacteria
Growth of bacteria
 
PHMD202-Growth-of-Bacteria_144413.pptx
PHMD202-Growth-of-Bacteria_144413.pptxPHMD202-Growth-of-Bacteria_144413.pptx
PHMD202-Growth-of-Bacteria_144413.pptx
 
Lecture 2&3.pptx
Lecture 2&3.pptxLecture 2&3.pptx
Lecture 2&3.pptx
 
MICROBIOLOGY-1-1.pptx
MICROBIOLOGY-1-1.pptxMICROBIOLOGY-1-1.pptx
MICROBIOLOGY-1-1.pptx
 
Biol500 Cell Growth & Kinetics
Biol500 Cell Growth & KineticsBiol500 Cell Growth & Kinetics
Biol500 Cell Growth & Kinetics
 
Growth of microbes in batch culture
Growth of microbes in batch cultureGrowth of microbes in batch culture
Growth of microbes in batch culture
 
Growth curve and Measurement of algal growth
Growth curve and Measurement of algal growthGrowth curve and Measurement of algal growth
Growth curve and Measurement of algal growth
 
Measurement of microbial growth
Measurement of microbial growthMeasurement of microbial growth
Measurement of microbial growth
 
Cultivation and growth of bacteria
Cultivation and growth of bacteriaCultivation and growth of bacteria
Cultivation and growth of bacteria
 
Microbiology
MicrobiologyMicrobiology
Microbiology
 
Chapter 3 Microbial growth
Chapter 3 Microbial growthChapter 3 Microbial growth
Chapter 3 Microbial growth
 
Bacterial Cells Enumeration
Bacterial Cells EnumerationBacterial Cells Enumeration
Bacterial Cells Enumeration
 
Microbial Growth and Nutrition, and Clones, Enzymes and Informative Hybridiza...
Microbial Growth and Nutrition, and Clones, Enzymes and Informative Hybridiza...Microbial Growth and Nutrition, and Clones, Enzymes and Informative Hybridiza...
Microbial Growth and Nutrition, and Clones, Enzymes and Informative Hybridiza...
 
Estimation of microbial cell mass
Estimation of microbial cell massEstimation of microbial cell mass
Estimation of microbial cell mass
 

More from dawitg2

unit1_practical-applications-of-biotechnology.ppt
unit1_practical-applications-of-biotechnology.pptunit1_practical-applications-of-biotechnology.ppt
unit1_practical-applications-of-biotechnology.ppt
dawitg2
 
fertilizers-150111082613-conversion-gate01.pdf
fertilizers-150111082613-conversion-gate01.pdffertilizers-150111082613-conversion-gate01.pdf
fertilizers-150111082613-conversion-gate01.pdf
dawitg2
 
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdfsac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
dawitg2
 
davindergill 135021014 -170426133338.pdf
davindergill 135021014 -170426133338.pdfdavindergill 135021014 -170426133338.pdf
davindergill 135021014 -170426133338.pdf
dawitg2
 
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdfpreparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
dawitg2
 
-pre-cautions--on--seed-storage--1-.pptx
-pre-cautions--on--seed-storage--1-.pptx-pre-cautions--on--seed-storage--1-.pptx
-pre-cautions--on--seed-storage--1-.pptx
dawitg2
 
Intgrated pest management 02 _ 06_05.pdf
Intgrated pest management 02 _ 06_05.pdfIntgrated pest management 02 _ 06_05.pdf
Intgrated pest management 02 _ 06_05.pdf
dawitg2
 
pesticide formulation pp602lec1to2-211207073233.pdf
pesticide formulation pp602lec1to2-211207073233.pdfpesticide formulation pp602lec1to2-211207073233.pdf
pesticide formulation pp602lec1to2-211207073233.pdf
dawitg2
 
diseasespests-2013-130708184617-phpapp02.pptx
diseasespests-2013-130708184617-phpapp02.pptxdiseasespests-2013-130708184617-phpapp02.pptx
diseasespests-2013-130708184617-phpapp02.pptx
dawitg2
 
agricultaraly important agrochemicals.ppt
agricultaraly important agrochemicals.pptagricultaraly important agrochemicals.ppt
agricultaraly important agrochemicals.ppt
dawitg2
 
agri pesticide chemistry-180722174627.pdf
agri pesticide chemistry-180722174627.pdfagri pesticide chemistry-180722174627.pdf
agri pesticide chemistry-180722174627.pdf
dawitg2
 
372922285 -important Fungal-Nutrition.ppt
372922285 -important Fungal-Nutrition.ppt372922285 -important Fungal-Nutrition.ppt
372922285 -important Fungal-Nutrition.ppt
dawitg2
 
disease development and pathogenesis-201118142432.pptx
disease development and pathogenesis-201118142432.pptxdisease development and pathogenesis-201118142432.pptx
disease development and pathogenesis-201118142432.pptx
dawitg2
 

More from dawitg2 (20)

bacterial plant pathogen jeyarajesh-190413122916.pptx
bacterial plant pathogen jeyarajesh-190413122916.pptxbacterial plant pathogen jeyarajesh-190413122916.pptx
bacterial plant pathogen jeyarajesh-190413122916.pptx
 
unit1_practical-applications-of-biotechnology.ppt
unit1_practical-applications-of-biotechnology.pptunit1_practical-applications-of-biotechnology.ppt
unit1_practical-applications-of-biotechnology.ppt
 
Introduction-to-Plant-Cell-Culture-lec1.ppt
Introduction-to-Plant-Cell-Culture-lec1.pptIntroduction-to-Plant-Cell-Culture-lec1.ppt
Introduction-to-Plant-Cell-Culture-lec1.ppt
 
fertilizers-150111082613-conversion-gate01.pdf
fertilizers-150111082613-conversion-gate01.pdffertilizers-150111082613-conversion-gate01.pdf
fertilizers-150111082613-conversion-gate01.pdf
 
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdfsac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
sac-301-manuresfertilizersandsoilfertilitymanagement-210105122952.pdf
 
davindergill 135021014 -170426133338.pdf
davindergill 135021014 -170426133338.pdfdavindergill 135021014 -170426133338.pdf
davindergill 135021014 -170426133338.pdf
 
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdfpreparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
preparationofdifferentagro-chemicaldosesforfield-140203005533-phpapp02.pdf
 
pesticide stoeage storage ppwscript.ppt
pesticide stoeage storage  ppwscript.pptpesticide stoeage storage  ppwscript.ppt
pesticide stoeage storage ppwscript.ppt
 
-pre-cautions--on--seed-storage--1-.pptx
-pre-cautions--on--seed-storage--1-.pptx-pre-cautions--on--seed-storage--1-.pptx
-pre-cautions--on--seed-storage--1-.pptx
 
Intgrated pest management 02 _ 06_05.pdf
Intgrated pest management 02 _ 06_05.pdfIntgrated pest management 02 _ 06_05.pdf
Intgrated pest management 02 _ 06_05.pdf
 
major potato and tomato disease in ethiopia .pptx
major potato and tomato disease in ethiopia .pptxmajor potato and tomato disease in ethiopia .pptx
major potato and tomato disease in ethiopia .pptx
 
pesticide formulation pp602lec1to2-211207073233.pdf
pesticide formulation pp602lec1to2-211207073233.pdfpesticide formulation pp602lec1to2-211207073233.pdf
pesticide formulation pp602lec1to2-211207073233.pdf
 
diseasespests-2013-130708184617-phpapp02.pptx
diseasespests-2013-130708184617-phpapp02.pptxdiseasespests-2013-130708184617-phpapp02.pptx
diseasespests-2013-130708184617-phpapp02.pptx
 
pesticide pp602lec1to2-211207073233.pptx
pesticide pp602lec1to2-211207073233.pptxpesticide pp602lec1to2-211207073233.pptx
pesticide pp602lec1to2-211207073233.pptx
 
agricultaraly important agrochemicals.ppt
agricultaraly important agrochemicals.pptagricultaraly important agrochemicals.ppt
agricultaraly important agrochemicals.ppt
 
agri pesticide chemistry-180722174627.pdf
agri pesticide chemistry-180722174627.pdfagri pesticide chemistry-180722174627.pdf
agri pesticide chemistry-180722174627.pdf
 
372922285 -important Fungal-Nutrition.ppt
372922285 -important Fungal-Nutrition.ppt372922285 -important Fungal-Nutrition.ppt
372922285 -important Fungal-Nutrition.ppt
 
disease development and pathogenesis-201118142432.pptx
disease development and pathogenesis-201118142432.pptxdisease development and pathogenesis-201118142432.pptx
disease development and pathogenesis-201118142432.pptx
 
ppp211lecture8-221211055228-824cf9da.pptx
ppp211lecture8-221211055228-824cf9da.pptxppp211lecture8-221211055228-824cf9da.pptx
ppp211lecture8-221211055228-824cf9da.pptx
 
defensemechanismsinplants-180308104711.pptx
defensemechanismsinplants-180308104711.pptxdefensemechanismsinplants-180308104711.pptx
defensemechanismsinplants-180308104711.pptx
 

Recently uploaded

Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 

Recently uploaded (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 

bacteriologicalmeasurementanditsphysicalcharacteristics-141113183908-conversion-gate02.pdf

  • 1. Bacteriological measurement and its physical characteristics Presented by : satabdy Jena t14ee003 Mtech Power and energy systeMs nIt Meghalaya
  • 6. • Baeocyte production in the cyanobacterium Stanieria • It starts out as a small, spherical cell approximately 1 to 2 µm in diameter. This cell is referred to as a baeocyte (which literally means "small cell"). The baeocyte begins to grow, eventually forming a vegetative cell up to 30 µm in diameter. As it grows, the cellular DNA is replicated over and over, and the cell produces a thick extracellular matrix. The vegetative cell eventually transitions into a reproductive phase where it undergoes a rapid succession of cytoplasmic fissions to produce dozens or even hundreds of baeocytes. The extracellular matrix eventually tears open, releasing the baeocytes. Other members of the Pleurocapsales (an Order of Cyanobacteria) use unusual patterns of division in their reproduction . 6
  • 7. 7 Fig 2. Baeocyte production
  • 8. • Budding in bacteria • Budding has been observed in some members of the Planctomycetes, Cyanobacteria, Firmicutes (a.k.a. the Low G+C Gram-Positive Bacteria) and the prosthecate Proteobacteria. Although budding has been extensively studied in the eukaryotic yeast Saccharomyces cerevisiae, the molecular mechanisms of bud formation in bacteria are not known. 8
  • 10. • Intracellular offspring production by some Firmicutes • Epulopiscium spp., Metabacterium polyspora and the Segmented Filamentous Bacteria (SFB) form multiple intracellular offspring. For some of these bacteria, this process appears to be the only way to reproduce. Intracellular offspring development in these bacteria shares characteristics with endospore formation in Bacillus subtilis. 10
  • 12. 12
  • 13. • Four characteristic phases of the growth cycle are recognized as : • Lag phase • Exponential(log) phase • Stationary phase • Death phase 13
  • 15. 15
  • 16. • Methods for Measurement of Cell Mass • Methods for measurement of the cell mass involve both direct and indirect techniques. 1. Direct physical measurement of dry weight, wet weight, or volume of cells after centrifugation. 2. Direct chemical measurement of some chemical component of the cells such as total N, total protein, or total DNA content. 3. Indirect measurement of chemical activity such as rate of O2 production or consumption, CO2 production or consumption, etc. 4. Turbidity measurements employ a variety of instruments to determine the amount of light scattered by a suspension of cells. Particulate objects such as bacteria scatter light in proportion to their numbers. The turbidity or optical density of a suspension of cells is directly related to cell mass or cell number, after construction and calibration of a standard curve. The method is simple and nondestructive, but the sensitivity is limited to about 107 cells per ml for most bacteria. 16
  • 19. • Methods for Measurement of Cell Numbers • 1. Direct microscopic counts are possible using special slides known as counting chambers. Dead cells cannot be distinguished from living ones. Only dense suspensions can be counted (>107 cells per ml), but samples can be concentrated by centrifugation or filtration to increase sensitivity. • A variation of the direct microscopic count has been used to observe and measure growth of bacteria in natural environments. In order to detect and prove that thermophilic bacteria were growing in boiling hot springs, T.D. Brock immersed microscope slides in the springs and withdrew them periodically for microscopic observation. The bacteria in the boiling water attached to the glass slides naturally and grew as microcolonies on the surface. 19
  • 20. 20
  • 21. 21 Fig 8. Direct measurement of microbial growth
  • 23. 23
  • 24. 24
  • 25. 25
  • 26. • [1]Physical factors affecting microbial growth, Wikipedia • [2]The growth of bacterial population, Kenneth Todar • [3]Theory and measurement of bacterial growth, Fredrich Widdel, Universitat Bremen • [4]The growth of bacterial cultures • [5] Factors Affecting Bacterial Growth, Shayna Goodman 26
  • 27. 27