SlideShare a Scribd company logo
1 of 2
Download to read offline
Solution
Week 57 (10/13/03)
Throwing a beach ball
On both the way up and the way down, the total force on the ball is
F = −mg − mαv. (1)
On the way up, v is positive, so the drag force points downward, as it should. And
on the way down, v is negative, so the drag force points upward.
Our strategy for finding vf will be to produce two different expressions for the
maximum height, h, and then equate them. We’ll find these two expressions by
considering the upward and then the downward motion of the ball. In doing so, we
will need to write the acceleration of the ball as
a =
dv
dt
=
dy
dt
dv
dy
= v
dv
dy
. (2)
For the upward motion, F = ma gives
−mg − mαv = mv
dv
dy
=⇒
h
0
dy = −
0
v0
v dv
g + αv
. (3)
where we have taken advantage of the fact that we know that the speed of the ball
at the top is zero. Writing v/(g + αv) as [1 − g/(g + αv)]/α, we may evaluate the
integral to obtain
h =
v0
α
−
g
α2
ln 1 +
αv0
g
. (4)
Now let us consider the downward motion. Let vf be the final speed, which is
a positive quantity. The final velocity is then the negative quantity, −vf . Using
F = ma, we similarly obtain
0
h
dy = −
−vf
0
v dv
g + αv
. (5)
Performing the integration (or just replacing the v0 in eq. (4) with −vf ) gives
h = −
vf
α
−
g
α2
ln 1 −
αvf
g
. (6)
Equating the expressions for h in eqs. (4) and (6) gives an implicit equation for vf
in terms of v0,
v0 + vf =
g
α
ln
g + αv0
g − αvf
. (7)
Remarks: In the limit of small α (more precisely, in the limit αv0/g 1), we can use
ln(1+x) = x−x2
/2+· · · to obtain approximate values for h in eqs. (4) and (6). The results
are, as expected,
h ≈
v2
0
2g
, and h ≈
v2
f
2g
. (8)
1
We can also make approximations for large α (or large αv0/g). In this limit, the log
term in eq. (4) is negligible, so we obtain h ≈ v0/α. And eq. (6) gives vf ≈ g/α, because
the argument of the log must be very small in order to give a very large negative number,
which is needed to produce a positive h on the left-hand side. There is no way to relate vf
and h is this limit, because the ball quickly reaches the terminal velocity of −g/α (which is
the velocity that makes the net force equal to zero), independent of h.
Let’s now find the times it takes for the ball to go up and to go down. We’ll present
two methods for doing this.
First method: Let T1 be the time for the upward path. If we write the acceleration
of the ball as a = dv/dt, then F = ma gives
−mg − mαv = m
dv
dt
=⇒
T1
0
dt = −
0
v0
dv
g + αv
. (9)
T1 =
1
α
ln 1 +
αv0
g
. (10)
In a similar manner, we find that the time T2 for the downward path is
T2 = −
1
α
ln 1 −
αvf
g
. (11)
Therefore,
T1 + T2 =
1
α
ln
g + αv0
g − αvf
. (12)
Using eq. (7), we have
T1 + T2 =
v0 + vf
g
. (13)
This is shorter than the time in vacuum (namely 2v0/g) because vf < v0.
Second method: The very simple form of eq. (13) suggests that there is a cleaner
way to calculate the total time of flight. And indeed, if we integrate m dv/dt =
−mg − mαv with respect to time on the way up, we obtain −v0 = −gT1 − αh
(because v dt = h). Likewise, if we integrate m dv/dt = −mg − mαv with respect
to time on the way down, we obtain −vf = −gT2 + αh (because v dt = −h).
Adding these two results gives eq. (13). This procedure only works, of course,
because the drag force is proportional to v.
Remarks: The fact that the time here is shorter than the time in vacuum isn’t obvious. On
one hand, the ball doesn’t travel as high in air as it would in vacuum (so you might think
that T1 + T2 < 2v0/g). But on the other hand, the ball moves slower in air (so you might
think that T1 + T2 > 2v0/g). It isn’t obvious which effect wins, without doing a calculation.
For any α, you can use eq. (10) to show that T1 < v0/g. But T2 is harder to get a
handle on, because it is given in terms of vf . But in the limit of large α, the ball quickly
reaches terminal velocity, so we have T2 ≈ h/vf ≈ (v0/α)/(g/α) = v0/g. Interestingly, this
is the same as the downward (and upward) time for a ball thrown in vacuum.
2

More Related Content

What's hot

Public string sacar
Public string sacarPublic string sacar
Public string sacaronlyhenry
 
Linked list int_data_fdata
Linked list int_data_fdataLinked list int_data_fdata
Linked list int_data_fdataSamsil Arefin
 
Ford Fulkerson Algorithm
Ford Fulkerson AlgorithmFord Fulkerson Algorithm
Ford Fulkerson AlgorithmAdarsh Rotte
 
Trabajo de física de dragonbound 2
Trabajo de física de dragonbound 2Trabajo de física de dragonbound 2
Trabajo de física de dragonbound 2utpeducacin
 
Algorithm Design and Complexity - Course 12
Algorithm Design and Complexity - Course 12Algorithm Design and Complexity - Course 12
Algorithm Design and Complexity - Course 12Traian Rebedea
 
Nautilus, DNA, and snowflakes
Nautilus, DNA, and snowflakesNautilus, DNA, and snowflakes
Nautilus, DNA, and snowflakesRaul Duque
 
Applications of the vertex formula
Applications of the vertex formulaApplications of the vertex formula
Applications of the vertex formulasnewgas
 
強化学習勉強会の資料(3回目)
強化学習勉強会の資料(3回目)強化学習勉強会の資料(3回目)
強化学習勉強会の資料(3回目)Yuji Okamoto
 
SUEC 高中 Adv Maths (Trigo Function Part 2)
SUEC 高中 Adv Maths (Trigo Function Part 2)SUEC 高中 Adv Maths (Trigo Function Part 2)
SUEC 高中 Adv Maths (Trigo Function Part 2)tungwc
 
разбор задач
разбор задачразбор задач
разбор задачliz_f
 
Bayesian networks tutorial with genie
Bayesian networks tutorial with genieBayesian networks tutorial with genie
Bayesian networks tutorial with geniearif6008
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelAmro Elfeki
 
Control and Guidance law for Guided Bomb
Control and Guidance law for Guided BombControl and Guidance law for Guided Bomb
Control and Guidance law for Guided BombMohammed Osman
 
Applications of the vertex formula edit
Applications of the vertex formula editApplications of the vertex formula edit
Applications of the vertex formula editsnewgas
 

What's hot (19)

Public string sacar
Public string sacarPublic string sacar
Public string sacar
 
Linked list int_data_fdata
Linked list int_data_fdataLinked list int_data_fdata
Linked list int_data_fdata
 
Ford Fulkerson Algorithm
Ford Fulkerson AlgorithmFord Fulkerson Algorithm
Ford Fulkerson Algorithm
 
Trabajo de física de dragonbound 2
Trabajo de física de dragonbound 2Trabajo de física de dragonbound 2
Trabajo de física de dragonbound 2
 
T0
T0T0
T0
 
Pdfcode
PdfcodePdfcode
Pdfcode
 
Actividad 2 - Fisica
Actividad 2 - FisicaActividad 2 - Fisica
Actividad 2 - Fisica
 
Script jantung copy
Script jantung   copyScript jantung   copy
Script jantung copy
 
Algorithm Design and Complexity - Course 12
Algorithm Design and Complexity - Course 12Algorithm Design and Complexity - Course 12
Algorithm Design and Complexity - Course 12
 
Nautilus, DNA, and snowflakes
Nautilus, DNA, and snowflakesNautilus, DNA, and snowflakes
Nautilus, DNA, and snowflakes
 
Applications of the vertex formula
Applications of the vertex formulaApplications of the vertex formula
Applications of the vertex formula
 
Suelos 2 (maximo)
Suelos 2 (maximo)Suelos 2 (maximo)
Suelos 2 (maximo)
 
強化学習勉強会の資料(3回目)
強化学習勉強会の資料(3回目)強化学習勉強会の資料(3回目)
強化学習勉強会の資料(3回目)
 
SUEC 高中 Adv Maths (Trigo Function Part 2)
SUEC 高中 Adv Maths (Trigo Function Part 2)SUEC 高中 Adv Maths (Trigo Function Part 2)
SUEC 高中 Adv Maths (Trigo Function Part 2)
 
разбор задач
разбор задачразбор задач
разбор задач
 
Bayesian networks tutorial with genie
Bayesian networks tutorial with genieBayesian networks tutorial with genie
Bayesian networks tutorial with genie
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Control and Guidance law for Guided Bomb
Control and Guidance law for Guided BombControl and Guidance law for Guided Bomb
Control and Guidance law for Guided Bomb
 
Applications of the vertex formula edit
Applications of the vertex formula editApplications of the vertex formula edit
Applications of the vertex formula edit
 

Viewers also liked (20)

Sol45
Sol45Sol45
Sol45
 
Sol56
Sol56Sol56
Sol56
 
Cert82093621427
Cert82093621427Cert82093621427
Cert82093621427
 
Barangolások a baltikumban észtország tallinn városháza, kadriorg park
Barangolások a baltikumban észtország tallinn városháza, kadriorg parkBarangolások a baltikumban észtország tallinn városháza, kadriorg park
Barangolások a baltikumban észtország tallinn városháza, kadriorg park
 
Sol48
Sol48Sol48
Sol48
 
Tugas matematika 1 (semester 2) @Polman Babel
Tugas matematika 1 (semester 2) @Polman BabelTugas matematika 1 (semester 2) @Polman Babel
Tugas matematika 1 (semester 2) @Polman Babel
 
Sol64
Sol64Sol64
Sol64
 
Sol47
Sol47Sol47
Sol47
 
Sol51
Sol51Sol51
Sol51
 
Jurnal ilmiah hapalan shalat delisa
Jurnal ilmiah hapalan shalat delisaJurnal ilmiah hapalan shalat delisa
Jurnal ilmiah hapalan shalat delisa
 
Green Dentistry
Green DentistryGreen Dentistry
Green Dentistry
 
Sol58
Sol58Sol58
Sol58
 
Sol55
Sol55Sol55
Sol55
 
resume_A Busel 3_23_15
resume_A Busel 3_23_15resume_A Busel 3_23_15
resume_A Busel 3_23_15
 
Sol41
Sol41Sol41
Sol41
 
Sol65
Sol65Sol65
Sol65
 
Sol67
Sol67Sol67
Sol67
 
Sol66
Sol66Sol66
Sol66
 
Sol49
Sol49Sol49
Sol49
 
Sol46
Sol46Sol46
Sol46
 

Similar to Find Final Speed Beach Ball Air Drag (20)

Solution baupc 2002
Solution baupc 2002Solution baupc 2002
Solution baupc 2002
 
Sol23
Sol23Sol23
Sol23
 
Sol23
Sol23Sol23
Sol23
 
Sol51
Sol51Sol51
Sol51
 
Grade 11, U1C-L4A, Vertical PM, MaCS Class
Grade 11, U1C-L4A, Vertical PM, MaCS ClassGrade 11, U1C-L4A, Vertical PM, MaCS Class
Grade 11, U1C-L4A, Vertical PM, MaCS Class
 
Solution baupc 2003
Solution baupc 2003Solution baupc 2003
Solution baupc 2003
 
Problem baupc 2003
Problem baupc 2003Problem baupc 2003
Problem baupc 2003
 
Sol37
Sol37Sol37
Sol37
 
Sol37
Sol37Sol37
Sol37
 
Motion 2 d
Motion  2 dMotion  2 d
Motion 2 d
 
Network flows
Network flowsNetwork flows
Network flows
 
Projectile motion (2)
Projectile motion (2)Projectile motion (2)
Projectile motion (2)
 
Daa chpater14
Daa chpater14Daa chpater14
Daa chpater14
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
1
11
1
 
Pp104 freefall
Pp104 freefallPp104 freefall
Pp104 freefall
 
Chapter 2 ppt
Chapter 2  pptChapter 2  ppt
Chapter 2 ppt
 
Computer Network Homework Help
Computer Network Homework HelpComputer Network Homework Help
Computer Network Homework Help
 
Relative motion and relative speed
Relative motion and relative speedRelative motion and relative speed
Relative motion and relative speed
 

More from eli priyatna laidan

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2eli priyatna laidan
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5eli priyatna laidan
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4eli priyatna laidan
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3eli priyatna laidan
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2eli priyatna laidan
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1eli priyatna laidan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)eli priyatna laidan
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikeli priyatna laidan
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017eli priyatna laidan
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2eli priyatna laidan
 

More from eli priyatna laidan (20)

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2
 
Soal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.netSoal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.net
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1
 
Soal up akmal
Soal up akmalSoal up akmal
Soal up akmal
 
Soal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannyaSoal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannya
 
Soal tes wawasan kebangsaan
Soal tes wawasan kebangsaanSoal tes wawasan kebangsaan
Soal tes wawasan kebangsaan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didik
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017
 
Rekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogiRekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogi
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2
 
Bank soal ppg
Bank soal ppgBank soal ppg
Bank soal ppg
 
Soal cpns-paket-17
Soal cpns-paket-17Soal cpns-paket-17
Soal cpns-paket-17
 
Soal cpns-paket-14
Soal cpns-paket-14Soal cpns-paket-14
Soal cpns-paket-14
 
Soal cpns-paket-13
Soal cpns-paket-13Soal cpns-paket-13
Soal cpns-paket-13
 
Soal cpns-paket-12
Soal cpns-paket-12Soal cpns-paket-12
Soal cpns-paket-12
 

Find Final Speed Beach Ball Air Drag

  • 1. Solution Week 57 (10/13/03) Throwing a beach ball On both the way up and the way down, the total force on the ball is F = −mg − mαv. (1) On the way up, v is positive, so the drag force points downward, as it should. And on the way down, v is negative, so the drag force points upward. Our strategy for finding vf will be to produce two different expressions for the maximum height, h, and then equate them. We’ll find these two expressions by considering the upward and then the downward motion of the ball. In doing so, we will need to write the acceleration of the ball as a = dv dt = dy dt dv dy = v dv dy . (2) For the upward motion, F = ma gives −mg − mαv = mv dv dy =⇒ h 0 dy = − 0 v0 v dv g + αv . (3) where we have taken advantage of the fact that we know that the speed of the ball at the top is zero. Writing v/(g + αv) as [1 − g/(g + αv)]/α, we may evaluate the integral to obtain h = v0 α − g α2 ln 1 + αv0 g . (4) Now let us consider the downward motion. Let vf be the final speed, which is a positive quantity. The final velocity is then the negative quantity, −vf . Using F = ma, we similarly obtain 0 h dy = − −vf 0 v dv g + αv . (5) Performing the integration (or just replacing the v0 in eq. (4) with −vf ) gives h = − vf α − g α2 ln 1 − αvf g . (6) Equating the expressions for h in eqs. (4) and (6) gives an implicit equation for vf in terms of v0, v0 + vf = g α ln g + αv0 g − αvf . (7) Remarks: In the limit of small α (more precisely, in the limit αv0/g 1), we can use ln(1+x) = x−x2 /2+· · · to obtain approximate values for h in eqs. (4) and (6). The results are, as expected, h ≈ v2 0 2g , and h ≈ v2 f 2g . (8) 1
  • 2. We can also make approximations for large α (or large αv0/g). In this limit, the log term in eq. (4) is negligible, so we obtain h ≈ v0/α. And eq. (6) gives vf ≈ g/α, because the argument of the log must be very small in order to give a very large negative number, which is needed to produce a positive h on the left-hand side. There is no way to relate vf and h is this limit, because the ball quickly reaches the terminal velocity of −g/α (which is the velocity that makes the net force equal to zero), independent of h. Let’s now find the times it takes for the ball to go up and to go down. We’ll present two methods for doing this. First method: Let T1 be the time for the upward path. If we write the acceleration of the ball as a = dv/dt, then F = ma gives −mg − mαv = m dv dt =⇒ T1 0 dt = − 0 v0 dv g + αv . (9) T1 = 1 α ln 1 + αv0 g . (10) In a similar manner, we find that the time T2 for the downward path is T2 = − 1 α ln 1 − αvf g . (11) Therefore, T1 + T2 = 1 α ln g + αv0 g − αvf . (12) Using eq. (7), we have T1 + T2 = v0 + vf g . (13) This is shorter than the time in vacuum (namely 2v0/g) because vf < v0. Second method: The very simple form of eq. (13) suggests that there is a cleaner way to calculate the total time of flight. And indeed, if we integrate m dv/dt = −mg − mαv with respect to time on the way up, we obtain −v0 = −gT1 − αh (because v dt = h). Likewise, if we integrate m dv/dt = −mg − mαv with respect to time on the way down, we obtain −vf = −gT2 + αh (because v dt = −h). Adding these two results gives eq. (13). This procedure only works, of course, because the drag force is proportional to v. Remarks: The fact that the time here is shorter than the time in vacuum isn’t obvious. On one hand, the ball doesn’t travel as high in air as it would in vacuum (so you might think that T1 + T2 < 2v0/g). But on the other hand, the ball moves slower in air (so you might think that T1 + T2 > 2v0/g). It isn’t obvious which effect wins, without doing a calculation. For any α, you can use eq. (10) to show that T1 < v0/g. But T2 is harder to get a handle on, because it is given in terms of vf . But in the limit of large α, the ball quickly reaches terminal velocity, so we have T2 ≈ h/vf ≈ (v0/α)/(g/α) = v0/g. Interestingly, this is the same as the downward (and upward) time for a ball thrown in vacuum. 2