SlideShare a Scribd company logo
1 of 2
Download to read offline
Solution
Week 37 (5/26/03)
Bouncing down a plane
Let us ignore the tilt of the plane for a moment and determine how the ωf and vf
after a bounce are related to the ωi and vi before the bounce (where v denotes the
velocity component parallel to the plane). Let the positive directions of velocity
and force be to the right along the plane, and let the positive direction of angular
velocity be counterclockwise. If we integrate the force and torque over the small
time of a bounce, we obtain
F =
dP
dt
=⇒ F dt = ∆P,
τ =
dL
dt
=⇒ τ dt = ∆L. (1)
But τ = RF. And since R is constant, we have
∆L = RF dt = R F dt = R∆P. (2)
Therefore,
I(ωf − ωi) = Rm(vf − vi). (3)
But conservation of energy gives
1
2
mv2
f +
1
2
Iω2
f =
1
2
mv2
i +
1
2
Iω2
i
=⇒ I(ω2
f − ω2
i ) = m(v2
i − v2
f ). (4)
Dividing this equation by eq. (3) gives1
R(ωf + ωi) = −(vf + vi). (5)
We can now combine this equation with eq. (3), which can be rewritten (using
I = (2/5)mR2) as
2
5
R(ωf − ωi) = vf − vi. (6)
Given vi and ωi, the previous two equations are two linear equations in the two
unknowns, vf and ωf . Solving for vf and ωf , and then writing the result in matrix
notation, gives
vf
Rωf
=
1
7
3 −4
−10 −3
vi
Rωi
≡ A
vi
Rωi
. (7)
1
We have divided out the trivial ωf = ωi and vf = vi solution, which corresponds to slipping
motion on a frictionless plane. The nontrivial solution we will find shortly is the non-slipping one.
Basically, to conserve energy, there must be no work done by friction. But since work is force
times distance, this means that either the plane is frictionless, or that there is no relative motion
between ball’s contact point and the plane. Since we are given that the plane has friction, the latter
(non-slipping) case must be the one we are concerned with.
1
Note that
A2
=
1
49
49 0
0 49
= I. (8)
Now let us consider the effects of the tilted plane. Since the ball’s speed perpen-
dicular to the plane is unchanged by each bounce, the ball spends the same amount of
time in the air between any two successive bounces. This time equals T = 2V/g cos θ,
because the component of gravity perpendicular to the plane is g cos θ. During this
time, the speed along the plane increases by (g sin θ)T = 2V tan θ ≡ V0.
Let Q denote the (v, Rω) vector at a given time (where v denotes the veloc-
ity component parallel to the plane). The ball is initially projected with Q = 0.
Therefore, right before the first bounce, we have Qbefore
1 = (V0, 0) ≡ V0. (We have
used the fact that ω doesn’t change while the ball is in the air.) Right after the
first bounce, we have Qafter
1 = AV0. We then have Qbefore
2 = AV0 + V0, and so
Qafter
2 = A(AV0 + V0). Continuing in this manner, we see that
Qbefore
n = (An−1
+ · · · + A + I)V0, and
Qafter
n = (An
+ · · · + A2
+ A)V0. (9)
However, A2 = I, so all the even powers of A equal I. The value of Q after the nth
bounce is therefore given by
n even =⇒ Qafter
n =
n
2
(A + I)V0.
n odd =⇒ Qafter
n =
1
2
(n + 1)A + (n − 1)I V0. (10)
Using the value of A defined in eq. (7), we find
n even =⇒
vn
Rωn
=
n
7
5 −2
−5 2
V0
0
.
n odd =⇒
vn
Rωn
=
1
7
5n − 2 −2n − 2
−5n − 5 2n − 5
V0
0
. (11)
Therefore, the speed along the plane after the nth bounce equals (using V0 ≡
2V tan θ)
vn =
10nV tan θ
7
(n even), and vn =
(10n − 4)V tan θ
7
(n odd). (12)
Remark: Note that after an even number of bounces, eq. (11) gives v = −Rω. This is
the “rolling” condition. That is, the angular speed exactly matches up with the translation
speed, so v and ω are unaffected by the bounce. (The vector (1, −1) is an eigenvector of
A.) At the instant that an even-n bounce occurs, the v and ω are the same as they would
be for a ball that simply rolls down the plane. At the instant after an odd-n bounce, the v
is smaller than it would be for the rolling ball, but the ω is larger. (Right before an odd-n
bounce, the v is larger but the ω is smaller.)
2

More Related Content

What's hot

Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)Sahil Raturi
 
Projectile motion
Projectile motionProjectile motion
Projectile motiongngr0810
 
Motion in two dimensions 28 03 2015
Motion in two dimensions  28 03 2015Motion in two dimensions  28 03 2015
Motion in two dimensions 28 03 2015Mphiriseni Khwanda
 
Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)Sahil Raturi
 
The gravitational N -body pro
The gravitational N -body proThe gravitational N -body pro
The gravitational N -body prosuitzero
 
Applied Calculus: Physical Meanings/Applications of Derivatives
Applied Calculus: Physical Meanings/Applications of DerivativesApplied Calculus: Physical Meanings/Applications of Derivatives
Applied Calculus: Physical Meanings/Applications of Derivativesbaetulilm
 
05 kinematics in two dimension
05 kinematics in two dimension05 kinematics in two dimension
05 kinematics in two dimensionIZZUDIN IBRAHIM
 
Projectile motion 2
Projectile motion 2Projectile motion 2
Projectile motion 2mattvijay
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsmkhwanda
 
Kinematics 2
Kinematics 2Kinematics 2
Kinematics 2yapshinn
 

What's hot (19)

Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Motion in two dimensions 28 03 2015
Motion in two dimensions  28 03 2015Motion in two dimensions  28 03 2015
Motion in two dimensions 28 03 2015
 
Kinematic equations
Kinematic equationsKinematic equations
Kinematic equations
 
Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)
 
The gravitational N -body pro
The gravitational N -body proThe gravitational N -body pro
The gravitational N -body pro
 
Applied Calculus: Physical Meanings/Applications of Derivatives
Applied Calculus: Physical Meanings/Applications of DerivativesApplied Calculus: Physical Meanings/Applications of Derivatives
Applied Calculus: Physical Meanings/Applications of Derivatives
 
Free fall
Free fallFree fall
Free fall
 
05 kinematics in two dimension
05 kinematics in two dimension05 kinematics in two dimension
05 kinematics in two dimension
 
2d and 3d motion
2d and 3d motion2d and 3d motion
2d and 3d motion
 
Projectile motion 2
Projectile motion 2Projectile motion 2
Projectile motion 2
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Projectile motion (2)
Projectile motion (2)Projectile motion (2)
Projectile motion (2)
 
PROJECTILE MOTION
PROJECTILE MOTIONPROJECTILE MOTION
PROJECTILE MOTION
 
Projectiles
ProjectilesProjectiles
Projectiles
 
Kinematics 2
Kinematics 2Kinematics 2
Kinematics 2
 
Projectile Motion
Projectile Motion Projectile Motion
Projectile Motion
 

Viewers also liked

Avaliação e melhoria de um protótipo de um Gerador de Código
Avaliação e melhoria de um protótipo de um Gerador de CódigoAvaliação e melhoria de um protótipo de um Gerador de Código
Avaliação e melhoria de um protótipo de um Gerador de CódigoJosé Alves
 
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...Noor Azizah
 
Analitica practica #4 determinacion del contenido basico de una muestra
Analitica practica #4 determinacion del contenido basico de una muestraAnalitica practica #4 determinacion del contenido basico de una muestra
Analitica practica #4 determinacion del contenido basico de una muestraiqinstrumentales3
 
Humor vitreo presentacion
Humor vitreo presentacionHumor vitreo presentacion
Humor vitreo presentacionMarleSuarez
 

Viewers also liked (9)

Sol32
Sol32Sol32
Sol32
 
Sol35
Sol35Sol35
Sol35
 
Avaliação e melhoria de um protótipo de um Gerador de Código
Avaliação e melhoria de um protótipo de um Gerador de CódigoAvaliação e melhoria de um protótipo de um Gerador de Código
Avaliação e melhoria de um protótipo de um Gerador de Código
 
Sol36
Sol36Sol36
Sol36
 
Sol31
Sol31Sol31
Sol31
 
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...
Pengenalan Wajah Dua Dimensi Menggunakan Multi-Layer Perceptron Berdasarkan N...
 
Sol34
Sol34Sol34
Sol34
 
Analitica practica #4 determinacion del contenido basico de una muestra
Analitica practica #4 determinacion del contenido basico de una muestraAnalitica practica #4 determinacion del contenido basico de una muestra
Analitica practica #4 determinacion del contenido basico de una muestra
 
Humor vitreo presentacion
Humor vitreo presentacionHumor vitreo presentacion
Humor vitreo presentacion
 

Similar to Sol37 (20)

Solution baupc 2003
Solution baupc 2003Solution baupc 2003
Solution baupc 2003
 
Problem baupc 2003
Problem baupc 2003Problem baupc 2003
Problem baupc 2003
 
Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2Engineering Mechanics Presentation correction 2
Engineering Mechanics Presentation correction 2
 
Solution baupc 2002
Solution baupc 2002Solution baupc 2002
Solution baupc 2002
 
formula sheet.pdf
formula sheet.pdfformula sheet.pdf
formula sheet.pdf
 
Sol51
Sol51Sol51
Sol51
 
Sol51
Sol51Sol51
Sol51
 
Problem and solution i ph o 22
Problem and solution i ph o 22Problem and solution i ph o 22
Problem and solution i ph o 22
 
4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdf4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdf
 
Solution baupc 2004
Solution baupc 2004Solution baupc 2004
Solution baupc 2004
 
Chapter 5 gyroscope
Chapter 5 gyroscopeChapter 5 gyroscope
Chapter 5 gyroscope
 
Lecture Ch 07
Lecture Ch 07Lecture Ch 07
Lecture Ch 07
 
Relative motion and relative speed
Relative motion and relative speedRelative motion and relative speed
Relative motion and relative speed
 
pdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdfpdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdf
 
6 dof.pdf
6 dof.pdf6 dof.pdf
6 dof.pdf
 
Gravitational Fields
Gravitational FieldsGravitational Fields
Gravitational Fields
 
Sol33
Sol33Sol33
Sol33
 
First semester diploma Engineering physics i
First semester diploma Engineering physics  iFirst semester diploma Engineering physics  i
First semester diploma Engineering physics i
 
v2chap2.pdf
v2chap2.pdfv2chap2.pdf
v2chap2.pdf
 
Ap review total
Ap review totalAp review total
Ap review total
 

More from eli priyatna laidan

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2eli priyatna laidan
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5eli priyatna laidan
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4eli priyatna laidan
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3eli priyatna laidan
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2eli priyatna laidan
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1eli priyatna laidan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)eli priyatna laidan
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikeli priyatna laidan
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017eli priyatna laidan
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2eli priyatna laidan
 

More from eli priyatna laidan (20)

Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2Up ppg daljab latihan soal-pgsd-set-2
Up ppg daljab latihan soal-pgsd-set-2
 
Soal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.netSoal utn plus kunci gurusd.net
Soal utn plus kunci gurusd.net
 
Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5Soal up sosial kepribadian pendidik 5
Soal up sosial kepribadian pendidik 5
 
Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4Soal up sosial kepribadian pendidik 4
Soal up sosial kepribadian pendidik 4
 
Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3Soal up sosial kepribadian pendidik 3
Soal up sosial kepribadian pendidik 3
 
Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2Soal up sosial kepribadian pendidik 2
Soal up sosial kepribadian pendidik 2
 
Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1Soal up sosial kepribadian pendidik 1
Soal up sosial kepribadian pendidik 1
 
Soal up akmal
Soal up akmalSoal up akmal
Soal up akmal
 
Soal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannyaSoal tkp serta kunci jawabannya
Soal tkp serta kunci jawabannya
 
Soal tes wawasan kebangsaan
Soal tes wawasan kebangsaanSoal tes wawasan kebangsaan
Soal tes wawasan kebangsaan
 
Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)Soal sospri ukm ulang i 2017 1 (1)
Soal sospri ukm ulang i 2017 1 (1)
 
Soal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didikSoal perkembangan kognitif peserta didik
Soal perkembangan kognitif peserta didik
 
Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017Soal latihan utn pedagogik plpg 2017
Soal latihan utn pedagogik plpg 2017
 
Rekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogiRekap soal kompetensi pedagogi
Rekap soal kompetensi pedagogi
 
Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2Bank soal pedagogik terbaru 175 soal-v2
Bank soal pedagogik terbaru 175 soal-v2
 
Bank soal ppg
Bank soal ppgBank soal ppg
Bank soal ppg
 
Soal cpns-paket-17
Soal cpns-paket-17Soal cpns-paket-17
Soal cpns-paket-17
 
Soal cpns-paket-14
Soal cpns-paket-14Soal cpns-paket-14
Soal cpns-paket-14
 
Soal cpns-paket-13
Soal cpns-paket-13Soal cpns-paket-13
Soal cpns-paket-13
 
Soal cpns-paket-12
Soal cpns-paket-12Soal cpns-paket-12
Soal cpns-paket-12
 

Sol37

  • 1. Solution Week 37 (5/26/03) Bouncing down a plane Let us ignore the tilt of the plane for a moment and determine how the ωf and vf after a bounce are related to the ωi and vi before the bounce (where v denotes the velocity component parallel to the plane). Let the positive directions of velocity and force be to the right along the plane, and let the positive direction of angular velocity be counterclockwise. If we integrate the force and torque over the small time of a bounce, we obtain F = dP dt =⇒ F dt = ∆P, τ = dL dt =⇒ τ dt = ∆L. (1) But τ = RF. And since R is constant, we have ∆L = RF dt = R F dt = R∆P. (2) Therefore, I(ωf − ωi) = Rm(vf − vi). (3) But conservation of energy gives 1 2 mv2 f + 1 2 Iω2 f = 1 2 mv2 i + 1 2 Iω2 i =⇒ I(ω2 f − ω2 i ) = m(v2 i − v2 f ). (4) Dividing this equation by eq. (3) gives1 R(ωf + ωi) = −(vf + vi). (5) We can now combine this equation with eq. (3), which can be rewritten (using I = (2/5)mR2) as 2 5 R(ωf − ωi) = vf − vi. (6) Given vi and ωi, the previous two equations are two linear equations in the two unknowns, vf and ωf . Solving for vf and ωf , and then writing the result in matrix notation, gives vf Rωf = 1 7 3 −4 −10 −3 vi Rωi ≡ A vi Rωi . (7) 1 We have divided out the trivial ωf = ωi and vf = vi solution, which corresponds to slipping motion on a frictionless plane. The nontrivial solution we will find shortly is the non-slipping one. Basically, to conserve energy, there must be no work done by friction. But since work is force times distance, this means that either the plane is frictionless, or that there is no relative motion between ball’s contact point and the plane. Since we are given that the plane has friction, the latter (non-slipping) case must be the one we are concerned with. 1
  • 2. Note that A2 = 1 49 49 0 0 49 = I. (8) Now let us consider the effects of the tilted plane. Since the ball’s speed perpen- dicular to the plane is unchanged by each bounce, the ball spends the same amount of time in the air between any two successive bounces. This time equals T = 2V/g cos θ, because the component of gravity perpendicular to the plane is g cos θ. During this time, the speed along the plane increases by (g sin θ)T = 2V tan θ ≡ V0. Let Q denote the (v, Rω) vector at a given time (where v denotes the veloc- ity component parallel to the plane). The ball is initially projected with Q = 0. Therefore, right before the first bounce, we have Qbefore 1 = (V0, 0) ≡ V0. (We have used the fact that ω doesn’t change while the ball is in the air.) Right after the first bounce, we have Qafter 1 = AV0. We then have Qbefore 2 = AV0 + V0, and so Qafter 2 = A(AV0 + V0). Continuing in this manner, we see that Qbefore n = (An−1 + · · · + A + I)V0, and Qafter n = (An + · · · + A2 + A)V0. (9) However, A2 = I, so all the even powers of A equal I. The value of Q after the nth bounce is therefore given by n even =⇒ Qafter n = n 2 (A + I)V0. n odd =⇒ Qafter n = 1 2 (n + 1)A + (n − 1)I V0. (10) Using the value of A defined in eq. (7), we find n even =⇒ vn Rωn = n 7 5 −2 −5 2 V0 0 . n odd =⇒ vn Rωn = 1 7 5n − 2 −2n − 2 −5n − 5 2n − 5 V0 0 . (11) Therefore, the speed along the plane after the nth bounce equals (using V0 ≡ 2V tan θ) vn = 10nV tan θ 7 (n even), and vn = (10n − 4)V tan θ 7 (n odd). (12) Remark: Note that after an even number of bounces, eq. (11) gives v = −Rω. This is the “rolling” condition. That is, the angular speed exactly matches up with the translation speed, so v and ω are unaffected by the bounce. (The vector (1, −1) is an eigenvector of A.) At the instant that an even-n bounce occurs, the v and ω are the same as they would be for a ball that simply rolls down the plane. At the instant after an odd-n bounce, the v is smaller than it would be for the rolling ball, but the ω is larger. (Right before an odd-n bounce, the v is larger but the ω is smaller.) 2