SlideShare a Scribd company logo
1 of 113
Download to read offline
HARVARD
UNIVERSITY
Christopher Rogan
Kinematic variables for
Dark Matter at the LHC and Beyond
University of Chicago HEP Seminar – March 9, 2014
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ Weakly interacting particles at the LHC
▪ Why? How?
▪ Kinematic handles for studying them
▪ MET
▪ singularity variables
▪ Recursive Jigsaw Reconstruction
▪ ex. di-leptons (i.e. super-razor variables)
▪ ex. di-leptonic tops/stops (something sexier)
2
Talk Outline
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ Why are they interesting?
▪ Dark Matter
▪ It exists - but what is it? Would like to know if
we’re producing these particles at the LHC
▪ Electroweak bosons
▪ Decays of W and Z often produce neutrinos
▪ New symmetries
▪ Discrete symmetries (ex. R-parity) make
lightest new ‘charged’ particles stable
3
Weakly interacting particles @ LHC
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ How do we study them?
▪ Can infer their presence through missing transverse energy
▪ Hermetic design of LHC experiments allows us to infer
‘what’s missing’
4
Weakly interacting particles @ LHC
ATLAS Calorimeters
~Emiss
T =
cellsX
i
~ET
▪ full azimuthal coverage, up to
|Ƞ| of ~5
▪ stopping power of ~12-20
interaction lengths
▪ ECAL+HCAL components
with segmentation comparable
to lateral shower sizes
Christopher Rogan - University of Chicago HEP - March 9, 2015 5
CERN-LHCC-2006-021
Missing transverse energy [GeV]
Minimum bias data
∫ L dt = 11.7 nb-1
Missing transverse energy [GeV]
Figures from SUSY10 conference talk:
Missing transverse energy is a powerful observable for inferring the
presence of weakly interacting particles
But, it only tells us about their transverse momenta – often we can better
resolve quantities of interest by using additional information
Missing transverse energy
Christopher Rogan - University of Chicago HEP - March 9, 2015 6
Missing transverse energy
?
Missing transverse energy only tells us about the momentum of weakly
interacting particles in an event…
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015 7
Missing transverse energy
…not about the identity or mass of weakly interacting particles
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015 8
Missing transverse energy
…not about the identity or mass of weakly interacting particles
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015 9
Missing transverse energy
We can learn more by using other information in an event to
contextualize the missing transverse energy
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015 10
Resolving the invisible
electron
mT (`⌫) has kinematic edge at mW ⇠ 80 GeV
mT =
q
2pe
T p⌫
T (1 cos )
Missing transverse
momentum (MET)
Can use visible particles in events to contextualize missing transverse
energy and better resolve mass scales
W(e⌫)
Christopher Rogan - University of Chicago HEP - March 9, 2015 11
Missing transverse energy
We can learn more by using other information in an event to
contextualize the missing transverse energy ⇒
multiple weakly interacting particles?
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015
Open vs. closed final states
CLOSED
OPEN
Can calculate all masses,
momenta, angles
Can use masses for discovery, can use information
to measure spin, CP, etc.
Under-constrained system with multiple weakly interacting
particles – can’t calculate all the kinematic information
What useful information can we calculate?
What can we measure?
12
Christopher Rogan - University of Chicago HEP - March 9, 2015
Multiple weakly interacting particles?
S S
p
p
CM
visible
visible
invisible
invisible
Canonical open / topology
Can be single or
multiple decays
steps
Can be one or more
particles
Can be one or more
particles
Theory
SUSY
Little Higgs
UED
R-parity
T-parity
KK-parity
▪ Dark Matter
▪ Higgs quadratic
divergences
▪ ….
13
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
14
Experimental signature: di-leptons final states with
missing transverse momentum
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
15
Main background:
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
16
What quantities, if we could calculate them, could help us
distinguish between signal and background events?
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
17
What information are we missing?
We don’t observe the weakly interacting particles in the
event. We can’t measure their momentum or masses.
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
18
What do we know?
We can reconstruct the 4-vectors of the two leptons and the
transverse momentum in the event
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: slepton pair-production
p
p
CM
19
Can we calculate anything useful?
With a number of simplifying assumptions…
…we are still 4 d.o.f. short of reconstructing any masses of interest
~Emiss
T =
X
~p ˜0
T
m˜0 = 0
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ State-of-the-art for LHC Run I was to use
singularity variables as observables in searches
▪ Derive observables that bound a mass or
mass-splitting of interest by
▪ Assuming knowledge of event decay topology
▪ Extremizing over under-constrained kinematic
degrees of freedom associated with weakly
interacting particles
20
Singularity Variables
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity Variable Example: MT2
with:
From:
Generalization of transverse mass to two
weakly interacting particle events
21
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity Variable Example: MT2
with:
LSP ‘test mass’
From:
Generalization of transverse mass to two
weakly interacting particle events
22
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity Variable Example: MT2
with:
LSP ‘test mass’
From:
Extremization of unknown
degrees of freedom
Subject to constraints
Generalization of transverse mass to two
weakly interacting particle events
23
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity Variable Example: MT2
with:
LSP ‘test mass’
Constructed to have a kinematic endpoint
(with the right test mass) at:
From:
Extremization of unknown
degrees of freedom
Subject to constraints
Generalization of transverse mass to two
weakly interacting particle events
24
Mmax
T 2 (m ) = m˜` Mmax
T 2 (0) = M ⌘
m2
˜`
m2
˜
m˜`
Christopher Rogan - University of Chicago HEP - March 9, 2015
MT2 in practice
ATLAS-CONF-2013-049
Backgrounds with leptonic W
decays fall steeply once MT2
exceeds the W mass
Searches based on singularity
variables have sensitivity to
new physics signatures with
mass splittings larger than the
analogous SM ones
From:
25
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive Jigsaw Reconstruction
▪ The strategy is to transform observable momenta iteratively
reference-frame to reference-frame, traveling through each
of the reference frames relevant to the topology
▪ At each step, extremize only the relevant d.o.f. related to
that transformation
▪ Repeat procedure recursively, using only the momenta
encountered in each reference frame
▪ Rather than obtaining one observable, get a
complete basis of useful observables for each event
New approach to reconstructing final states with weakly
interacting particles: Recursive Jigsaw Reconstruction
26
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive rest-frame reconstruction
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
For two lepton case, these are the ‘super-razor variables’:
Begin with reconstructed lepton 4-vectors in lab frame
27
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive rest-frame reconstruction
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
Begin with reconstructed lepton 4-vectors in lab frame
Remove dependence on unknown
longitudinal boost by moving from
‘lab’ to ‘lab z’ frames
28
Lab
frame
~lab! lab z
Lab z
frame
For two lepton case, these are the ‘super-razor variables’:
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive rest-frame reconstruction
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
Determine boost from ‘lab z’ to ‘CM ( )’
frame by specifying Lorentz-invariant choice
for invisible system mass
29
Lab z
frame
di-slepton
CM frame
For two lepton case, these are the ‘super-razor variables’:
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive rest-frame reconstruction
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
Determine asymmetric boost from
CM to slepton rest frames by minimizing
lepton energies in those frames
30
di-slepton
CM frame
slepton frame
slepton frame
For two lepton case, these are the ‘super-razor variables’:
Christopher Rogan - University of Chicago HEP - March 9, 2015
Recursive rest-frame reconstruction
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
Begin with reconstructed lepton 4-vectors in lab frame
Remove dependence on unknown
longitudinal boost by moving from
‘lab’ to ‘lab z’ frames
Determine boost from ‘lab z’ to ‘CM ( )’
frame by specifying Lorentz-invariant choice
for invisible system mass
Determine asymmetric boost from
CM to slepton rest frames by minimizing
lepton energies in those frames
31
For two lepton case, these are the ‘super-razor variables’:
Christopher Rogan - University of Chicago HEP - March 9, 2015
Lab
frame
di-slepton
CM frame
1st transformation: extract variable
sensitive to invariant mass of total
event:
Resulting variable is ~invariant
under pT of di-slepton system
Recursive rest-frame reconstruction
32
∆Mdecay
γ/ 2Rs
0 0.5 1 1.5 2 2.5
a.u.
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
= 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
)νl)W(νlW(
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
s/Rs
0 0.5 1 1.5 2 2.5
[GeV]CM
T
p
0
100
200
300
400
500
600
a.u.
-5
10
-4
10
-3
10
-2
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 0 GeV
1
0
χ∼m
= 150 GeVl
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015 33
Resonant Higgs production
CMS Collaboration, Measurement of Higgs boson production and properties in
the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
From:
Using information from the two leptons,
and the missing transverse momentum, the
observable is directly sensitive to the
Higgs mass
Christopher Rogan - University of Chicago HEP - March 9, 2015
di-slepton
CM frame
slepton frame
slepton frame
2nd transformation(s): extract
variable sensitive to invariant mass
of squark:
Resulting variable has kinematic
endpoint at:
Recursive rest-frame reconstruction
34
[GeV]R
∆M
0 50 100 150 200 250
[GeV]CM
T
p
0
50
100
150
200
250
300
350
400
450
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS
ν±
l→±
; W-
W+
W→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015
Variable comparison
35
More details about variable
comparisons in PRD 89, 055020
(arXiv:1310.4827) and backup slides
∆/ MT2M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
a.u.
-5
10
-4
10
-3
10
-2
10
-1
10 = 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
∆/ MCTM
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
a.u.
-5
10
-4
10
-3
10
-2
10
-1
10
1
= 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
∆/ MR
∆M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
a.u.
0
0.01
0.02
0.03
0.04
0.05
0.06
= 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
)νl)W(νlW(
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
Three different singularity variables, all
attempting to measure the same thing
Christopher Rogan - University of Chicago HEP - March 9, 2015
But what else can we calculate?
With recursive scheme can
extract the two mass scales
and almost
completely independently
36
∆Mtrue
γ/ 2Rs
0 0.5 1 1.5 2 2.5
∆/MR
∆M
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 50 GeV
1
0
χ∼m
= 150 GeVl
~m
MR
Christopher Rogan - University of Chicago HEP - March 9, 2015
Angles, angles, angles…
Recursive scheme fully specifies approximate event
decay chain, also yielding angular observables
Two transformations mean at least two independent
angles of interest (essentially the decay angle of the
state whose rest-frame you are in)
Lab
frame
di-slepton
CM frame
di-slepton
CM frame
slepton frame
slepton frame
37
Christopher Rogan - University of Chicago HEP - March 9, 2015
Towards a kinematic basis
but
while
Underestimating the real mass means
over-estimating the boost magnitude:
From PRD 89, 055020 (2014)
38
s/Rs
0 0.5 1 1.5 2 2.5
∆/MR
∆M
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 0 GeV
1
0
χ∼m
= 150 GeVl
~m
s/Rs
0 0.5 1 1.5 2 2.5∆/MR
∆M 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 50 GeV
1
0
χ∼m
= 150 GeVl
~m
s/Rs
0 0.5 1 1.5 2 2.5
∆/MR
∆M
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-4
10
-3
10
-2
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 100 GeV
1
0
χ∼m
= 150 GeVl
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015
Towards a kinematic basis
but
while
Underestimating the real mass means
over-estimating the boost magnitude:
39
T
CM
β/R
β
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
a.u.
0
0.02
0.04
0.06
0.08
0.1
= 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
)νl)W(νlW(
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
From PRD 89, 055020 (2014)
s/Rs
0 0.5 1 1.5 2 2.5
∆/MR
∆M
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 0 GeV
1
0
χ∼m
= 150 GeVl
~m
s/Rs
0 0.5 1 1.5 2 2.5∆/MR
∆M 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 50 GeV
1
0
χ∼m
= 150 GeVl
~m
s/Rs
0 0.5 1 1.5 2 2.5
∆/MR
∆M
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-4
10
-3
10
-2
10
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 100 GeV
1
0
χ∼m
= 150 GeVl
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015
Angular Variables
Angle between
lab ➔ CM frame boost and
di-leptons in CM frame is
sensitive to
rather than
Incorrect boost magnitude
induces correlation
40
β
R
φ∆
0 0.5 1 1.5 2 2.5 3
a.u.
0.02
0.04
0.06
0.08
0.1 = 0 GeV0
1
χ∼m
= 70 GeV0
1
χ∼m
= 100 GeV0
1
χ∼m
= 120 GeV0
1
χ∼m
)νl)W(νlW(
)+jetsllZ(
=8 TeVs
MadGraph+PGS = 150 GeV
l
~; m
0
1
χ∼l→l
~
;l
~
l
~
→pp
~Uncorrelated with other super-
razor variables
Christopher Rogan - University of Chicago HEP - March 9, 2015
Angular Variables
In the approximate di-slepton rest frame,
reconstructed decay angle sensitive to particle
spin and production
41
|
R
θ| cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a.u.
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
= 0 GeV0
1
χ
∼m
= 70 GeV0
1
χ
∼m
= 100 GeV0
1
χ
∼m
= 120 GeV0
1
χ
∼m
)νl)W(νlW(
=8 TeVs
MadGraph+PGS
= 150 GeV
l
~; m
0
1
χ
∼
l→l
~
;l
~
l
~
→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015
Angular Variables
In the approximate slepton rest frames,
reconstructed slepton decay angle sensitive to
particle spin correlations
42
|R+1θ| cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
[GeV]R
∆M
0
20
40
60
80
100
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
=8 TeVs
MadGraph+PGS ν±
l→±
; W
-
W+
W→pp
|R+1θ| cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
[GeV]R
∆M
0
20
40
60
80
100
120
140
160
180
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 50 GeV
1
0
χ∼m
= 150 GeVl
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015
Angular Variables
Also allows us to better resolve the kinematic
endpoint of interest
43
|R+1θ| cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
[GeV]R
∆M
0
20
40
60
80
100
120
140
160
180
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph+PGS 0
1
χ∼l→l
~
;l
~
l
~
→pp
= 50 GeV
1
0
χ∼m
= 150 GeVl
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015
Super-razor variable basis
Sensitive to mass of CM
Good for resonant production
of heavy parents
Mass-squared difference
resonant/non-resonant prod.
Sensitive to ratio of invisible
and visible masses
Spin correlations, better
resolution of mass edge
44
| cos ✓R| Spin and production
[GeV]0
χ∼m
0 50 100 150 200 250 300
σN
0
1
2
3
4
5
+ CMS selectionCTM
+ CMS selection∆
R
M
Rθcos×
β
R
φ∆×∆
R
M
0
χ∼l
0
χ∼l→Ll
~
Ll
~
= 350 GeV
L
l
~m
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. Can improve sensitivity while
removing MET cuts!
Can re-imagine a di-lepton analysis
in new basis of variables
Christopher Rogan - University of Chicago HEP - March 9, 2015 45
Generalizing further
Recursive Jigsaw approach can be generalized to arbitrarily
complex final states with weakly interacting particles
Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: the di-leptonic top basis
46
In more complicated decay topologies there can be
many masses/mass-splittings, spin-sensitive angles and
other observables of interest that can be used to
distinguish between the SM and SUSY signals
Christopher Rogan - University of Chicago HEP - March 9, 2015 47
Singularity Variables for Tops
Christopher Rogan - University of Chicago HEP - March 9, 2015
If there are multiple masses or mass splittings of interest in the
event, appearing at different points in the decay chains, then
singularity variables correspond to different extremizations of
missing d.o.f.
What are the correlations between the
different singularity variables estimating
different mass splittings? Can be large/
complicated when using MCT or MT2 in
this case
What if the two tops/stops are decaying differently
through different particles?
48
Singularity Variables for Tops
Polesello and Tovey,
JHEP, 1003:030, 2010
Christopher Rogan - University of Chicago HEP - March 9, 2015 49
Recursive Jigsaw reconstruction
Move through each reference frame of interest in the event,
specifying only d.o.f. relevant to each transformation:
lab frame di-top frame di-top frame
top frame
top frame
top frame W frame
b`b` b`b`
b`b`
b`
b`
` `
2b2l system treated as one visible object
Each bl system treated
as visible object
individual leptons resolved independently
2 X
Christopher Rogan - University of Chicago HEP - March 9, 2015 50
Recursive Jigsaw reconstruction
The scales can be extracted independently
Mtop [GeV]
MW /Mtop
Christopher Rogan - University of Chicago HEP - March 9, 2015 51
Recursive Jigsaw reconstruction
In fact the scales can be extracted independently for each top –
the reconstruction chains are decoupled
Mtop [GeV]
Mtop [GeV]
Christopher Rogan - University of Chicago HEP - March 9, 2015 52
b-tagged jet
The di-leptonic top basis
b-tagged jet
lepton lepton
MET
2 X
a b
T 1,T 2
T,W
Mt¯t, ~pt¯t, cos ✓T T
Etop frame
b , cos ✓T
EW frame
` , cos ✓W
Christopher Rogan - University of Chicago HEP - March 9, 2015 53
The di-leptonic top basis
largely independent
information about
five different masses
true
b
/ E
top-frame
b1
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
b
/E
top-frame
b2
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
b
/ E
top-frame
b
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
l
/ E
W-frame
1l
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
2l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
b
/E
top-frame
b
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015 54
Previous state-of-the-art
Mass-sensitive
singularity variables
are not necessarily
independent
) [GeV]
2
,b
1
(b
T2
M
0 20 40 60 80 100 120 140 160
)[GeV]
2
l,
1
l(
T2
M
0
20
40
60
80
100
a.u.
-4
10
-3
10
-2
10
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
) [GeV]
2
l
2
,b
1
l
1
(b
T2
M
0 20 40 60 80 100 120 140 160 180
)[GeV]
2
,b
1
(b
T2
M
0
20
40
60
80
100
120
140
160
a.u.
-4
10
-3
10
-2
10
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
) [GeV]
2
l
2
,b
1
l
1
(b
T2
M
0 20 40 60 80 100 120 140 160
)[GeV]
2
l,
1
l(
T2
M
0
10
20
30
40
50
60
70
80
90 a.u.
-4
10
-3
10
-2
10
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015 55
The di-leptonic top basis
largely independent information about decay angles
true
TT
θ-
TT
θ
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1
TT
θcos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
TT
θcos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
0.002
0.0022
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
Here, the decay angle of the top/anti-top system
Christopher Rogan - University of Chicago HEP - March 9, 2015 56
The di-leptonic top basis
Here, the decay angle of one of the top quarks
true
b
/ E
top-frame
b
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6T
θcos -1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
0.002
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
T
θ-
T
θ
-1 -0.5 0 0.5 1
T
θcos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
largely independent information about decay angles
Christopher Rogan - University of Chicago HEP - March 9, 2015 57
The di-leptonic top basis vs. signals
Different variables in the basis are useful for different signals
First, we consider resonant ttbar production through a graviton
v.s.
t¯t G
t(b`⌫) t(b`⌫) t(b`⌫) t(b`⌫)
Christopher Rogan - University of Chicago HEP - March 9, 2015 58
The di-leptonic top basis vs. gravitons
Distributions of top/W/neutrino mass-splitting-sensitive
observables are nearly identical since graviton signal and
non-resonant background both contain on-shell tops
[GeV]
top-frame
b
E
0 20 40 60 80 100
a.u.
0
0.2
0.4
0.6
0.8
1 )νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
[GeV]
W-frame
l
E
0 20 40 60 80 100
a.u.
0
0.2
0.4
0.6
0.8
1
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
Different variables in the basis are useful for different signals
Christopher Rogan - University of Chicago HEP - March 9, 2015 59
The di-leptonic top basis vs. gravitons
Instead, observables related to the production of the
two tops are sensitive to the intermediate resonance
[GeV]
tt
M
0 1000 2000 3000 4000 5000
a.u.
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
TT
θcos
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
a.u.
0.2
0.4
0.6
0.8
1
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
Different variables in the basis are useful for different signals
Christopher Rogan - University of Chicago HEP - March 9, 2015 60
The di-leptonic top basis vs. stops
SUSY stops decaying
through charginos
v.s.
t¯t ˜t˜t
t t ˜t ˜t
b b b b
W W ˜±
˜±
⌫ ⌫
˜0
˜0` ` W(`⌫) W(`⌫)
Christopher Rogan - University of Chicago HEP - March 9, 2015 61
The di-leptonic top basis vs. stops
Mass-splitting-sensitive observables can be used
to distinguish presence of signals
[GeV]
top-frame
b
E
0 50 100 150 200 250 300
a.u.
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
)νl)(bνl(b→tt
= 340 GeV
1
±
χ
∼m
= 500 GeV
1
±
χ
∼m
= 650 GeV
1
±
χ
∼m
=8 TeVs
MadGraph GEN
1
0
χ
∼
)νlW(→
1
±
χ
∼
;
1
±
χ
∼
b→t
~
;t
~
t
~
→pp
= 300 GeV
1
0
χ
∼m
= 700 GeV
t
~m
[GeV]
W-frame
l
E
0 20 40 60 80 100 120 140 160 180 200 220
a.u.
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
)νl)(bνl(b→tt
= 340 GeV
1
±
χ
∼m
= 500 GeV
1
±
χ
∼m
= 650 GeV
1
±
χ
∼m
=8 TeVs
MadGraph GEN
1
0
χ
∼
)νlW(→
1
±
χ
∼
;
1
±
χ
∼
b→t
~
;t
~
t
~
→pp
= 300 GeV
1
0
χ
∼m
= 700 GeV
t
~m
Christopher Rogan - University of Chicago HEP - March 9, 2015 62
The di-leptonic top basis vs. stops
m˜t = 700 GeV
m˜0 = 300 GeV
650
500
340
Here, the azimuthal
angle between the
the top and W decay
planes
and the angle
between the two top
decay planes
T 1,W 1
T 1,T 2T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.005
0.01
0.015
0.02
0.025
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(340);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(500);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(650);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
m˜± = GeV
Christopher Rogan - University of Chicago HEP - March 9, 2015
Summary
▪ The strategy of Recursive Jigsaw Reconstruction is to not only
develop ‘good’ mass estimator variables, but to decompose each
event into a basis of kinematic variables
▪ Through the recursive procedure, each variable is (as much as
possible) independent of the others
▪ The interpretation of variables is straightforward; they each
correspond to an actual, well-defined, quantity in the event
▪ Can be generalized to arbitrarily complex final states with many
weakly interacting particles
▪ Code package to be released imminently (RestFrames - see back-up)
▪ First papers nearing completion
(Recursive Jigsaw Reconstruction,
The Di-leptonic ttbar basis - with Paul Jackson)
63
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ Recursive Jigsaw Reconstruction is a systematic recipe for deriving a
kinematic basis for any open final state
▪ Mixed decay cases can now be treated in a sensible way
▪ Lots of potential applications – some I’m currently thinking about:
• Di-lepton searches and differential measurements
• stop / top-quark partner and resonant ttbar searches
• other signatures (SUSY, exotica)
• spin measurements
• …
64
vs.
vs.
vs.
Outlook
Christopher Rogan - University of Chicago HEP - March 9, 2015
BACKUP SLIDES
65
Christopher Rogan - University of Chicago HEP - March 9, 2015 66
RestFrames software library
RestFrames: Soon-to-be-public code that can be used to
calculate kinematic variables associated with any decay
chain and can implement “Recursive Jigsaw” rules
Example: Di-leptonic ttbar decays - how to use the code to
initialize a decay tree, implement a jigsaw rule for
determining the neutrino four-momenta, and analyze events
www.RestFrames.com
Christopher Rogan - University of Chicago HEP - March 9, 2015 67
initialize all your reference
frames of interest
connect them according to
the decay tree you want to
impose on the event
RestFrames software library
Christopher Rogan - University of Chicago HEP - March 9, 2015 68
…and you’ll see this
draw your decay tree…
lab
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
Lab State
Decay States
Visible States
Invisible States
RestFrames software library
Christopher Rogan - RestFrames - Jan 29, 2015 69
RestFrames example: di-leptonic top
Set the 4-vector input and
MET for an event
Get observables directly from decay tree
Christopher Rogan - RestFrames - Jan 29, 2015 70
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
Decay States
Visible States
Invisible States
a
t
a
b
a
W
a
l
a
ν
Decay States
Visible States
Invisible States
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 71
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 72
number of elements
that _have_ to go to
this frame from the
group each event exclusive (true) or
inclusive (false) counting
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 73
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 74
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
Decay States
Visible States
Invisible States
Invisible Jigsaw
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 75
event-by-event will choose
b-tag jet combinatoric
assignment that minimizes
the masses of these two
collections
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 76
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
tt
a
t
a
b
a
W
a
l
a
ν
b
t
b
b
b
W
b
l
b
ν
Decay States
Visible States
Invisible States
Invisible Jigsaw
Combinatoric Jigsaw
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 77
Invisible system mass Jigsaw
Invisible system rapidity Jigsaw
Contraboost invariant JigsawContraboost invariant Jigsaw
b
ν+
a
ν
b
ν+
a
ν
b
ν+
a
ν
a
ν
b
ν
Invisible Frame Jigsaws
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 78
's Jigsaw
lb
Minimize m 's Jigsaw
lb
Minimize m
b
+ b
a
b
a
b
b
b
B-tagged jet Jigsaws
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 79
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 80
some toy input
analyze the event
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015 81
tracking of combinatoric elements
RestFrames example: di-leptonic top
Christopher Rogan - RestFrames - Jan 29, 2015
▪ To make shared library ‘lib/libRestFrames.so’
▪ To set environmental variables
(ex. for running ROOT macros):
82
RestFrames setup
<$ make
<$ source setup.sh
Christopher Rogan - RestFrames - Jan 29, 2015
▪ To run ‘macros/TestDiLeptonicTop.C’ macro:
83
<$ root
root [0] .x macros/TestDiLeptonicTop.C
RestFrames example: di-leptonic top
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity variables
From:
84
Christopher Rogan - University of Chicago HEP - March 9, 2015
Singularity variables
From:
85
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: MCT
Constructed to have a
kinematic endpoint at:
From:
assuming ~mass-less leptons
86
Christopher Rogan - University of Chicago HEP - March 9, 2015
MCT in practice
Singularity variables (like MCT) can be sensitive to quantities that
can vary dramatically event-by-event
Kinematic endpoint
‘moves’ with nonzero
CM system pT
87
Christopher Rogan - University of Chicago HEP - March 9, 2015
The mass challenge
The invariant mass is invariant under coherent Lorentz
transformations of two particles
The Euclidean mass (or contra-variant mass) is invariant under anti-
symmetric Lorentz transformations of two particles
Even the simplest case requires variables with both properties!
Lab
frame
di-slepton
CM frame
di-slepton
CM frame
slepton frame
slepton frame
88
Christopher Rogan - University of Chicago HEP - March 9, 2015
Correcting for CM pT
▪ Want to boost from lab-frame to CM-frame
▪ We know the transverse momentum of the CM-
frame:
▪ But we don’t know the energy, or mass, of the CM-
frame:
89
Christopher Rogan - University of Chicago HEP - March 9, 2015
pT corrections for MCT
with:
Attempts have been made to mitigate this problem:
(i) ‘Guess’ the lab ➔ CM frame boost:
(ii) Only look at event along axis perpendicular to boost:
x – parallel to boost
y – perp. to boost
90
Christopher Rogan - University of Chicago HEP - March 9, 2015
MCTperp in practice
CMS-SUS-PAS-13-006
‘peak position’ of signal and
backgrounds due to other cuts (pT,
MET) and only weakly sensitive
to sparticle masses
From:
91
50 100 150 200 250 300
10 2
10 1
100
101
102
103
entries/10GeV
Data
Top
WW
WZ
ZZ
Rare SM
Z/g⇤
Non-prompt
m ˜c± = 500 GeV
m ˜c± = 300 GeV
50 100 150 200 250 300
MCT? (GeV)
0.6
0.8
1.0
1.2
1.4
ratio
CMS Preliminary
p
s = 8 TeV, Lint = 19.5 fb 1
Christopher Rogan - University of Chicago HEP - March 9, 2015
is a singularity variable – in fact it is essentially identical to MCT but
evaluated in a different reference frame. Boost procedure ensures that
new variable is invariant under the previous transformations
Recursive rest-frame reconstruction
92
[GeV]R
∆M
0 50 100 150 200 250
[GeV]CM
T
p
0
50
100
150
200
250
300
350
400
450
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS
ν±
l→±
; W-
W+
W→pp
[GeV]CTM
0 50 100 150 200 250
[GeV]CM
T
p
0
50
100
150
200
250
300
350
400
450
a.u.
-5
10
-4
10
-3
10
=8 TeVs
MadGraph+PGS
ν±
l→±
; W-
W+
W→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015 93
Resonant Higgs production
CMS Collaboration, Measurement of Higgs boson production and properties in
the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
From:
The between the leptons is evaluated in the R-frame, removing dependence
on the pT of the Higgs and correlation with
CMS uses 2D fit of variables to measure Higgs mass in this channel
Christopher Rogan - University of Chicago HEP - March 9, 2015 94
Resonant Higgs production
CMS Collaboration, Measurement of Higgs boson production and properties in
the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
From:
The shape of the distribution, for the Higgs signal and backgrounds, is used
to extract both the Higgs mass and signal strength – even while information is lost
with the two escaping neutrinos
Christopher Rogan - University of Chicago HEP - March 9, 2015
What other info can we extract?
Mass and Spin Measurement with M(T2) and MAOS Momentum - Cho, Won Sang et al.
Nucl.Phys.Proc.Suppl. 200-202 (2010) 103-112 arXiv:0909.4853 [hep-ph]
From:
Ex. MT2 extremization assigns values to
missing degrees of freedom – if one takes
these assignments literally, can we
calculate other useful variables?
When we assign unconstrained d.o.f. by extremizing one
quantity, what are the general properties of other variables we
calculate? What are the correlations among them?
95
Christopher Rogan - University of Chicago HEP - March 9, 2015
Example: the di-leptonic top basis
96
[GeV]
top-frame
b
E
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
a.u.
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
)νl)(bνl(b→tt
= 340 GeV
1
±
χ
∼m
= 500 GeV
1
±
χ
∼m
= 650 GeV
1
±
χ
∼m
=8 TeVs
MadGraph GEN
1
0
χ
∼
)νlW(→
1
±
χ
∼
;
1
±
χ
∼
b→t
~
;t
~
t
~
→pp
= 300 GeV
1
0
χ
∼m
= 700 GeV
t
~m
[GeV]
tt
M
0 1000 2000 3000 4000 5000
a.u.
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
TT
θcos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
0.002
0.0022
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
A rich basis of useful Recursive Jigsaw observables can be
calculated, each with largely independent information
true
b
/ E
top-frame
b
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
b
/ E
top-frame
b1
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
b
/E
top-frame
b2
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
b
/E
top-frame
b
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
tt
/ M
tt
M
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
true
l
/ E
W-frame
1l
E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
true
l
/E
W-frame
2l
E
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
a.u.
0
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015 97
The di-leptonic top basis vs. stops
Observables sensitive to intermediate resonances cannot
distinguish between non-resonant signals and background
T
γ
1 2 3 4 5 6 7 8
a.u.
-4
10
-3
10
-2
10
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
T
γ
1 2 3 4 5 6
a.u.
-3
10
-2
10
-1
10
)νl)(bνl(b→tt
= 340 GeV
1
±
χ
∼m
= 500 GeV
1
±
χ
∼m
= 650 GeV
1
±
χ
∼m
=8 TeVs
MadGraph GEN
1
0
χ
∼
)νlW(→
1
±
χ
∼
;
1
±
χ
∼
b→t
~
;t
~
t
~
→pp
= 300 GeV
1
0
χ
∼m
= 700 GeV
t
~m
Mtt = 2 T Mt
Christopher Rogan - University of Chicago HEP - March 9, 2015
vs.
Multi-dimensionalbump-hunting
98
MW/MtopMW/Mtop
Mtop [GeV]
Mtop [GeV] Mtop [GeV]
Mtop [GeV]
MW/MtopMW/Mtop
Christopher Rogan - University of Chicago HEP - March 9, 2015 99
The di-leptonic top basis vs. stops
Decay angles are also sensitive to differences
between stop signals and ttbar background
[GeV]
top-frame
b
E
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
a.u.
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
)νl)(bνl(b→tt
= 340 GeV
1
±
χ
∼m
= 500 GeV
1
±
χ
∼m
= 650 GeV
1
±
χ
∼m
=8 TeVs
MadGraph GEN
1
0
χ
∼
)νlW(→
1
±
χ
∼
;
1
±
χ
∼
b→t
~
;t
~
t
~
→pp
= 300 GeV
1
0
χ
∼m
= 700 GeV
t
~m
TT
θcos
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
a.u.
0.2
0.4
0.6
0.8
1
)νl)(bνl(b→tt
= 1 TeV
G
m
= 2 TeV
G
m
= 3 TeV
G
m
=8 TeVs
MadGraph GEN
νlb→; ttt→G→pp
Christopher Rogan - University of Chicago HEP - March 9, 2015 100
The di-leptonic top basis vs. stops
m˜t = 700 GeV
m˜0 = 300 GeV
650
500
340
Decay angles are
also sensitive to
differences
between stop
signals and ttbar
background
T1
θcos
-1 -0.5 0 0.5 1
T2
θcos
-1
-0.5
0
0.5
1
a.u.
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(340);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1
θcos
-1 -0.5 0 0.5 1
T2
θcos
-1
-0.5
0
0.5
1
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(500);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1
θcos
-1 -0.5 0 0.5 1
T2
θcos
-1
-0.5
0
0.5
1
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(650);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1
θcos
-1 -0.5 0 0.5 1
T2
θcos
-1
-0.5
0
0.5
1
a.u.
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
m˜± = GeV
Christopher Rogan - University of Chicago HEP - March 9, 2015 101
The di-leptonic top basis vs. stops
m˜t = 700 GeV
m˜0 = 300 GeV
650
500
340
Decay angles are
also sensitive to
differences
between stop
signals and ttbar
background
W1
θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1
W2
θcos
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
a.u.
-4
10
-3
10
-2
10
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(340);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
W1
θcos
-1 -0.5 0 0.5 1
W2
θcos
-1
-0.5
0
0.5
1
a.u.
-3
10
-2
10
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(500);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
W1
θcos
-1 -0.5 0 0.5 1
W2
θcos
-1
-0.5
0
0.5
1
a.u.
-3
10
-2
10
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(650);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
W1
θcos
-1 -0.5 0 0.5 1
W2
θcos
-1
-0.5
0
0.5
1
a.u.
-3
10
-2
10
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
m˜± = GeV
Christopher Rogan - University of Chicago HEP - March 9, 2015 102
The di-leptonic top basis vs. stops
m˜t = 700 GeV
m˜0 = 300 GeV
650
500
340
Here, the azimuthal
angle between the
the top and W decay
planes ,
for each of the two
decay chains
T 1,W 1
T1,W1
φ∆
0 1 2 3 4 5 6
T2,W2
φ∆
0
1
2
3
4
5
6
a.u.
0.001
0.002
0.003
0.004
0.005
0.006
0.007
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(340);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,W1
φ∆
0 1 2 3 4 5 6
T2,W2
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(500);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,W1
φ∆
0 1 2 3 4 5 6
T2,W2
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(650);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,W1
φ∆
0 1 2 3 4 5 6
T2,W2
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
m˜± = GeV
Christopher Rogan - University of Chicago HEP - March 9, 2015 103
The di-leptonic top basis vs. stops
m˜t = 700 GeV
m˜0 = 300 GeV
650
500
340
Here, the azimuthal
angle between the
the top and W decay
planes
and the angle
between the two top
decay planes
T 1,W 1
T 1,T 2T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.005
0.01
0.015
0.02
0.025
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(340);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(500);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
=8 TeVs
MadGraph GEN
(300)
1
0
χ
∼
)νlW(→
1
±
χ
∼
(650);
1
±
χ
∼
b→t
~
(700);t
~
t
~
→pp
T1,T2
φ∆
0 1 2 3 4 5 6
T1,W1
φ∆
0
1
2
3
4
5
6
a.u.
0.0005
0.001
0.0015
0.002
0.0025
=8 TeVs
MadGraph GEN
νlb→; ttt→pp
m˜± = GeV
Christopher Rogan - University of Chicago HEP - March 9, 2015
Razor kinematic variables
mega-jet
invisible?
▪ Assign every reconstructed object to one of two mega-jets
▪ Analyze the event as a ‘canonical’ open final state:
• two variables: MR (mass scale) , R (scale-less event imbalance)
▪ An inclusive approach to searching for a large class of new
physics possibilities with open final states
invisible?
mega-jet
PRD 85, 012004 (2012)
EPJC 73, 2362 (2013)
PRL 111, 081802 (2013)
CMS-PAS-SUS-13-004
arXiv:1006.2727v1 [hep-ph]Razor variables
CMS+ATLAS
analyses
104Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015
Razor kinematic variables
mega-jet
invisible?
▪ Assign every reconstructed object to one of two mega-jets
▪ Analyze the event as a ‘canonical’ open final state:
• two variables: MR (mass scale) , R (scale-less event imbalance)
▪ An inclusive approach to searching for a large class of new
physics possibilities with open final states
invisible?
mega-jet
Two distinct mass scales in event
Two pieces of complementary information
105Christopher Rogan - University of Chicago HEP - March 9, 2015
Christopher Rogan - University of Chicago HEP - March 9, 2015
▪ Baseline Selection
• Exactly two opposite sign leptons with
pT > 20 GeV/c and |η| < 2.5
• If same flavor, m(l l) > 15 GeV/c2
• ΔR between leptons and any jet (see below) > 0.4
• veto event if b-tagged jet with pT > 25 GeV/c and |η| < 2.5
▪ Kinematic Selection
ATLAS-CONF-2013-049CMS-PAS-SUS-12-022
‘CMS selection’ ‘ATLAS selection’
A Monte Carlo analysis to compare
From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
106
Christopher Rogan - University of Chicago HEP - March 9, 2015
1D Shape Analysis
▪ Analysis Categories
• Consider final 9 different final states according to lepton flavor
and jet multiplicity – simultaneous binned fit includes both high
S/B and low S/B categories
Fit to kinematic distributions (in this case, MΔ
R, MT2 or MCTperp in 10 GeV
bins), over all categories for , and yields
Other jet
multiplicity and
lepton flavor
categories
+
107
[GeV]CTM
20 40 60 80 100 120 140 160 180 200 220
Events/10GeV
-1
10
1
10
2
10
3
10
4
10 TOTAL BKG
WW/WZ
+jetstt
*+jetsγZ/
= 100 GeV0
χ∼
= 350, m±
L
e~m
= 100 GeV0
χ∼
= 250, m±
L
e~m
-1
= 20 fbL dt∫= 8 TeVs Madgraph+PGS
= 0jetNee
CMS selection
[GeV]CTM
20 40 60 80 100 120 140 160 180 200
Events/10GeV
-1
10
1
10
2
10
3
10
4
10
TOTAL BKG
WW/WZ
+jetstt
*+jetsγZ/
= 100 GeV0
χ∼
= 350, m±
L
e~m
= 100 GeV0
χ∼
= 250, m±
L
e~m
-1
= 20 fbL dt∫= 8 TeVs Madgraph+PGS
= 1jet
Nee
CMS selection
+
From PRD 89, 055020
Christopher Rogan - University of Chicago HEP - March 9, 2015
Systematic uncertainties
▪ 2% lepton ID (correlated btw bkgs, uncorrelated between
lepton categories)
▪ 10% jet counting (per jet) (uncorrelated between all processes)
▪ 10% x-section uncertainty for backgrounds (uncorrelated) +
theoretical x-section uncertainty for signal (small)
▪ ‘shape’ uncertainty derived by propagating effect of 10% jet
energy scale shift up/down to MET and recalculating shapes
templates of kinematic variables
▪ Uncertainties are introduced into toy pseudo-experiments
through marginalization (pdfs fixed in likelihood evaluation
but systematically varied in shape and normalization in toy
pseudo-experiment generation)
108
From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
Christopher Rogan - University of Chicago HEP - March 9, 2015
Compared to Reality
(GeV)
l
~m
100 150 200 250 300 350 400 450
(GeV)0
1
χ∼m
0
50
100
150
200
250
300
95%C.L.upperlimitoncrosssection(fb)
1
10
2
10
= 8 TeVs,-1
= 19.5 fb
int
CMS Preliminary L
95% C.L. CLs NLO Exclusions
theory
σ1±Observed
experiment
σ1±Expected
L
µ∼
L
µ∼,L
e~
L
e~→pp
) = 1
0
1
χ∼l→L
l
~
(Br
CMS-PAS-SUS-12-022
109
From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
Christopher Rogan - University of Chicago HEP - March 9, 2015
Expected Limit Comparison
110
[GeV]
Ll
~m
100 150 200 250 300 350 400 450
[GeV]0
χ∼m
0
50
100
150
200
250
300
350
400
σN
0
1
2
3
4
50
χ∼l
0
χ∼l→Ll
~
Ll
~
+ ATLAS selection∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
=
m
Ll
~
m
[GeV]
Ll
~m
100 150 200 250 300 350 400 450
[GeV]0
χ∼m
0
50
100
150
200
250
300
350
400
σN0
1
2
3
4
50
χ∼l
0
χ∼l→Ll
~
Ll
~
+ ATLAS selectionT2M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
=
m
Ll
~
m
[GeV]
Ll
~m
100 150 200 250 300 350 400 450
[GeV]0
χ∼m
0
50
100
150
200
250
300
350
400
σN
0
1
2
3
4
50
χ∼l
0
χ∼l→Ll
~
Ll
~
+ CMS selectionCTM
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
=
m
Ll
~
m
[GeV]
Ll
~m
100 150 200 250 300 350 400 450
[GeV]0
χ∼m
0
50
100
150
200
250
300
350
400
σN
0
1
2
3
4
50
χ∼l
0
χ∼l→Ll
~
Ll
~
+ CMS selection∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
=
m
Ll
~
m
FromPRD89,055020(arXiv:1310.4827)
Christopher Rogan - University of Chicago HEP - March 9, 2015
Charginos
111
[GeV]±
χ∼m
100 150 200 250 300 350
[GeV]0
χ∼m
0
50
100
150
200
250
300
σN
0
1
2
3
4
5
]
0
χ∼)νlW(
0
χ∼)νl[W(→
±
χ∼±
χ∼
+ ATLAS selection∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
= m
±
χ∼
m
[GeV]±
χ∼m
100 150 200 250 300 350
[GeV]0
χ∼m
0
50
100
150
200
250
300
σN0
1
2
3
4
5
]
0
χ∼)νlW(
0
χ∼)νl[W(→
±
χ∼±
χ∼
+ ATLAS selectionT2M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
= m
±
χ∼
m
[GeV]±
χ∼m
100 150 200 250 300 350
[GeV]0
χ∼m
0
50
100
150
200
250
300
σN
0
1
2
3
4
5
]
0
χ∼)νlW(
0
χ∼)νl[W(→
±
χ∼±
χ∼
+ CMS selectionCTM
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
= m
±
χ∼
m
[GeV]±
χ∼m
100 150 200 250 300 350
[GeV]0
χ∼m
0
50
100
150
200
250
300
σN
0
1
2
3
4
5
]
0
χ∼)νlW(
0
χ∼)νl[W(→
±
χ∼±
χ∼
+ CMS selection∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
= m
±
χ∼
m
FromPRD89,055020(arXiv:1310.4827)
Christopher Rogan - University of Chicago HEP - March 9, 2015
Super-Razor Basis Selection
112
[GeV]±
χ∼m
100 150 200 250 300 350
[GeV]0
χ∼m
0
50
100
150
200
250
300
σN
0
1
2
3
4
5
]
0
χ∼)νlW(
0
χ∼)νl[W(→
±
χ∼±
χ∼
+ Razor selection
Rθcos×
β
R
φ∆×∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
= m
±
χ∼
m
[GeV]
Ll
~m
100 150 200 250 300 350 400 450
[GeV]0
χ∼m
0
50
100
150
200
250
300
350
400
σN
0
1
2
3
4
50
χ∼l
0
χ∼l→Ll
~
Ll
~
+ Razor selection
Rθcos×
β
R
φ∆×∆
R
M
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L. excl
0
χ∼
=
m
Ll
~
m
From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
Christopher Rogan - University of Chicago HEP - March 9, 2015 113
Comparisons
[GeV]±
χ∼m
150 200 250 300 350
σN
0
1
2
3
4
5 + ATLAS selectionT2M
+ ATLAS selection∆
R
M
Rθcos×
β
R
φ∆×∆
R
M
]
0
χ∼)νl[W(×2→
±
χ∼±
χ∼
= 100 GeV0
χ∼m
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L.
[GeV]±
χ∼m
150 200 250 300 350
σN
0
1
2
3
4
5 + CMS selectionCTM
+ CMS selection∆
R
M
Rθcos×
β
R
φ∆×∆
R
M
]
0
χ∼)νl[W(×2→
±
χ∼±
χ∼
= 100 GeV0
χ∼m
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L.
[GeV]0
χ∼m
0 50 100 150 200
σN
0
1
2
3
4
5
6
7 + CMS selectionCTM
+ CMS selection∆
R
M
Rθcos×
β
R
φ∆×∆
R
M
]
0
χ∼)νl[W(×2→
±
χ∼±
χ∼
= 250 GeV±
χ∼m
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L.
[GeV]0
χ∼m
0 50 100 150 200
σN
0
1
2
3
4
5
6
7 + ATLAS selectionT2M
+ ATLAS selection∆
R
M
Rθcos×
β
R
φ∆×∆
R
M
]
0
χ∼)νl[W(×2→
±
χ∼±
χ∼
= 250 GeV±
χ∼m
-1
= 20 fbL dt∫= 8 TeVs MadGraph+PGS
95% C.L.
FromPRD89,055020(arXiv:1310.4827)

More Related Content

Similar to Kinematic Variables for Dark Matter at the LHC and Beyond

PH600 Project report
PH600 Project reportPH600 Project report
PH600 Project report
Luke Moore
 
JMoscatello-APS-2015-Final2
JMoscatello-APS-2015-Final2JMoscatello-APS-2015-Final2
JMoscatello-APS-2015-Final2
Jason Moscatello
 
Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collider
anoop kp
 
Dongwook Astronum 2012
Dongwook  Astronum 2012Dongwook  Astronum 2012
Dongwook Astronum 2012
dongwook159
 

Similar to Kinematic Variables for Dark Matter at the LHC and Beyond (20)

Probes of small-x QCD from HERA to the LHC
Probes of small-x QCD from HERA to the LHCProbes of small-x QCD from HERA to the LHC
Probes of small-x QCD from HERA to the LHC
 
Curriculum Vitae
Curriculum VitaeCurriculum Vitae
Curriculum Vitae
 
Lattice Energy LLC - LENRs in condensed matter mimic results of Big Bang nucl...
Lattice Energy LLC - LENRs in condensed matter mimic results of Big Bang nucl...Lattice Energy LLC - LENRs in condensed matter mimic results of Big Bang nucl...
Lattice Energy LLC - LENRs in condensed matter mimic results of Big Bang nucl...
 
PH600 Project report
PH600 Project reportPH600 Project report
PH600 Project report
 
Science Hack Day: SF 2015
Science Hack Day: SF 2015Science Hack Day: SF 2015
Science Hack Day: SF 2015
 
JMoscatello-APS-2015-Final2
JMoscatello-APS-2015-Final2JMoscatello-APS-2015-Final2
JMoscatello-APS-2015-Final2
 
Light Mediators to Dark Sectors
Light Mediators to Dark SectorsLight Mediators to Dark Sectors
Light Mediators to Dark Sectors
 
Kent_2007
Kent_2007Kent_2007
Kent_2007
 
Aps 2020-denver
Aps 2020-denverAps 2020-denver
Aps 2020-denver
 
Insight from energy surfaces: structure prediction by lattice energy explora...
Insight from energy surfaces:  structure prediction by lattice energy explora...Insight from energy surfaces:  structure prediction by lattice energy explora...
Insight from energy surfaces: structure prediction by lattice energy explora...
 
Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collider
 
Parton distributions from high-precision collider data
Parton distributions from high-precision collider dataParton distributions from high-precision collider data
Parton distributions from high-precision collider data
 
Opportunities for students
Opportunities for students Opportunities for students
Opportunities for students
 
Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)Deep Variational Bayes Filters (2017)
Deep Variational Bayes Filters (2017)
 
Dongwook Astronum 2012
Dongwook  Astronum 2012Dongwook  Astronum 2012
Dongwook Astronum 2012
 
CV_Amal
CV_AmalCV_Amal
CV_Amal
 
L1 Introduction and molar balances.pptx
L1 Introduction and molar balances.pptxL1 Introduction and molar balances.pptx
L1 Introduction and molar balances.pptx
 
Device approach to biology and engineering
Device approach to biology and engineeringDevice approach to biology and engineering
Device approach to biology and engineering
 
Detector Simulation for HEP
Detector Simulation for HEPDetector Simulation for HEP
Detector Simulation for HEP
 
Talk at CPOD2016
Talk at CPOD2016 Talk at CPOD2016
Talk at CPOD2016
 

Recently uploaded

HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
ssusera4ec7b
 

Recently uploaded (20)

Classification of Kerogen, Perspective on palynofacies in depositional envi...
Classification of Kerogen,  Perspective on palynofacies in depositional  envi...Classification of Kerogen,  Perspective on palynofacies in depositional  envi...
Classification of Kerogen, Perspective on palynofacies in depositional envi...
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Heads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdfHeads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdf
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einstein
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENSANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptxANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
 
PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th sem
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
 

Kinematic Variables for Dark Matter at the LHC and Beyond

  • 1. HARVARD UNIVERSITY Christopher Rogan Kinematic variables for Dark Matter at the LHC and Beyond University of Chicago HEP Seminar – March 9, 2014
  • 2. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ Weakly interacting particles at the LHC ▪ Why? How? ▪ Kinematic handles for studying them ▪ MET ▪ singularity variables ▪ Recursive Jigsaw Reconstruction ▪ ex. di-leptons (i.e. super-razor variables) ▪ ex. di-leptonic tops/stops (something sexier) 2 Talk Outline
  • 3. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ Why are they interesting? ▪ Dark Matter ▪ It exists - but what is it? Would like to know if we’re producing these particles at the LHC ▪ Electroweak bosons ▪ Decays of W and Z often produce neutrinos ▪ New symmetries ▪ Discrete symmetries (ex. R-parity) make lightest new ‘charged’ particles stable 3 Weakly interacting particles @ LHC
  • 4. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ How do we study them? ▪ Can infer their presence through missing transverse energy ▪ Hermetic design of LHC experiments allows us to infer ‘what’s missing’ 4 Weakly interacting particles @ LHC ATLAS Calorimeters ~Emiss T = cellsX i ~ET ▪ full azimuthal coverage, up to |Ƞ| of ~5 ▪ stopping power of ~12-20 interaction lengths ▪ ECAL+HCAL components with segmentation comparable to lateral shower sizes
  • 5. Christopher Rogan - University of Chicago HEP - March 9, 2015 5 CERN-LHCC-2006-021 Missing transverse energy [GeV] Minimum bias data ∫ L dt = 11.7 nb-1 Missing transverse energy [GeV] Figures from SUSY10 conference talk: Missing transverse energy is a powerful observable for inferring the presence of weakly interacting particles But, it only tells us about their transverse momenta – often we can better resolve quantities of interest by using additional information Missing transverse energy
  • 6. Christopher Rogan - University of Chicago HEP - March 9, 2015 6 Missing transverse energy ? Missing transverse energy only tells us about the momentum of weakly interacting particles in an event… Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 7. Christopher Rogan - University of Chicago HEP - March 9, 2015 7 Missing transverse energy …not about the identity or mass of weakly interacting particles Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 8. Christopher Rogan - University of Chicago HEP - March 9, 2015 8 Missing transverse energy …not about the identity or mass of weakly interacting particles Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 9. Christopher Rogan - University of Chicago HEP - March 9, 2015 9 Missing transverse energy We can learn more by using other information in an event to contextualize the missing transverse energy Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 10. Christopher Rogan - University of Chicago HEP - March 9, 2015 10 Resolving the invisible electron mT (`⌫) has kinematic edge at mW ⇠ 80 GeV mT = q 2pe T p⌫ T (1 cos ) Missing transverse momentum (MET) Can use visible particles in events to contextualize missing transverse energy and better resolve mass scales W(e⌫)
  • 11. Christopher Rogan - University of Chicago HEP - March 9, 2015 11 Missing transverse energy We can learn more by using other information in an event to contextualize the missing transverse energy ⇒ multiple weakly interacting particles? Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 12. Christopher Rogan - University of Chicago HEP - March 9, 2015 Open vs. closed final states CLOSED OPEN Can calculate all masses, momenta, angles Can use masses for discovery, can use information to measure spin, CP, etc. Under-constrained system with multiple weakly interacting particles – can’t calculate all the kinematic information What useful information can we calculate? What can we measure? 12
  • 13. Christopher Rogan - University of Chicago HEP - March 9, 2015 Multiple weakly interacting particles? S S p p CM visible visible invisible invisible Canonical open / topology Can be single or multiple decays steps Can be one or more particles Can be one or more particles Theory SUSY Little Higgs UED R-parity T-parity KK-parity ▪ Dark Matter ▪ Higgs quadratic divergences ▪ …. 13
  • 14. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 14 Experimental signature: di-leptons final states with missing transverse momentum
  • 15. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 15 Main background:
  • 16. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 16 What quantities, if we could calculate them, could help us distinguish between signal and background events?
  • 17. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 17 What information are we missing? We don’t observe the weakly interacting particles in the event. We can’t measure their momentum or masses.
  • 18. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 18 What do we know? We can reconstruct the 4-vectors of the two leptons and the transverse momentum in the event
  • 19. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: slepton pair-production p p CM 19 Can we calculate anything useful? With a number of simplifying assumptions… …we are still 4 d.o.f. short of reconstructing any masses of interest ~Emiss T = X ~p ˜0 T m˜0 = 0
  • 20. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ State-of-the-art for LHC Run I was to use singularity variables as observables in searches ▪ Derive observables that bound a mass or mass-splitting of interest by ▪ Assuming knowledge of event decay topology ▪ Extremizing over under-constrained kinematic degrees of freedom associated with weakly interacting particles 20 Singularity Variables
  • 21. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity Variable Example: MT2 with: From: Generalization of transverse mass to two weakly interacting particle events 21
  • 22. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity Variable Example: MT2 with: LSP ‘test mass’ From: Generalization of transverse mass to two weakly interacting particle events 22
  • 23. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity Variable Example: MT2 with: LSP ‘test mass’ From: Extremization of unknown degrees of freedom Subject to constraints Generalization of transverse mass to two weakly interacting particle events 23
  • 24. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity Variable Example: MT2 with: LSP ‘test mass’ Constructed to have a kinematic endpoint (with the right test mass) at: From: Extremization of unknown degrees of freedom Subject to constraints Generalization of transverse mass to two weakly interacting particle events 24 Mmax T 2 (m ) = m˜` Mmax T 2 (0) = M ⌘ m2 ˜` m2 ˜ m˜`
  • 25. Christopher Rogan - University of Chicago HEP - March 9, 2015 MT2 in practice ATLAS-CONF-2013-049 Backgrounds with leptonic W decays fall steeply once MT2 exceeds the W mass Searches based on singularity variables have sensitivity to new physics signatures with mass splittings larger than the analogous SM ones From: 25
  • 26. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive Jigsaw Reconstruction ▪ The strategy is to transform observable momenta iteratively reference-frame to reference-frame, traveling through each of the reference frames relevant to the topology ▪ At each step, extremize only the relevant d.o.f. related to that transformation ▪ Repeat procedure recursively, using only the momenta encountered in each reference frame ▪ Rather than obtaining one observable, get a complete basis of useful observables for each event New approach to reconstructing final states with weakly interacting particles: Recursive Jigsaw Reconstruction 26
  • 27. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive rest-frame reconstruction M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014) For two lepton case, these are the ‘super-razor variables’: Begin with reconstructed lepton 4-vectors in lab frame 27
  • 28. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive rest-frame reconstruction M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014) Begin with reconstructed lepton 4-vectors in lab frame Remove dependence on unknown longitudinal boost by moving from ‘lab’ to ‘lab z’ frames 28 Lab frame ~lab! lab z Lab z frame For two lepton case, these are the ‘super-razor variables’:
  • 29. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive rest-frame reconstruction M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014) Determine boost from ‘lab z’ to ‘CM ( )’ frame by specifying Lorentz-invariant choice for invisible system mass 29 Lab z frame di-slepton CM frame For two lepton case, these are the ‘super-razor variables’:
  • 30. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive rest-frame reconstruction M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014) Determine asymmetric boost from CM to slepton rest frames by minimizing lepton energies in those frames 30 di-slepton CM frame slepton frame slepton frame For two lepton case, these are the ‘super-razor variables’:
  • 31. Christopher Rogan - University of Chicago HEP - March 9, 2015 Recursive rest-frame reconstruction M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014) Begin with reconstructed lepton 4-vectors in lab frame Remove dependence on unknown longitudinal boost by moving from ‘lab’ to ‘lab z’ frames Determine boost from ‘lab z’ to ‘CM ( )’ frame by specifying Lorentz-invariant choice for invisible system mass Determine asymmetric boost from CM to slepton rest frames by minimizing lepton energies in those frames 31 For two lepton case, these are the ‘super-razor variables’:
  • 32. Christopher Rogan - University of Chicago HEP - March 9, 2015 Lab frame di-slepton CM frame 1st transformation: extract variable sensitive to invariant mass of total event: Resulting variable is ~invariant under pT of di-slepton system Recursive rest-frame reconstruction 32 ∆Mdecay γ/ 2Rs 0 0.5 1 1.5 2 2.5 a.u. 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m )νl)W(νlW( =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp s/Rs 0 0.5 1 1.5 2 2.5 [GeV]CM T p 0 100 200 300 400 500 600 a.u. -5 10 -4 10 -3 10 -2 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 0 GeV 1 0 χ∼m = 150 GeVl ~m
  • 33. Christopher Rogan - University of Chicago HEP - March 9, 2015 33 Resonant Higgs production CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex] From: Using information from the two leptons, and the missing transverse momentum, the observable is directly sensitive to the Higgs mass
  • 34. Christopher Rogan - University of Chicago HEP - March 9, 2015 di-slepton CM frame slepton frame slepton frame 2nd transformation(s): extract variable sensitive to invariant mass of squark: Resulting variable has kinematic endpoint at: Recursive rest-frame reconstruction 34 [GeV]R ∆M 0 50 100 150 200 250 [GeV]CM T p 0 50 100 150 200 250 300 350 400 450 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS ν± l→± ; W- W+ W→pp
  • 35. Christopher Rogan - University of Chicago HEP - March 9, 2015 Variable comparison 35 More details about variable comparisons in PRD 89, 055020 (arXiv:1310.4827) and backup slides ∆/ MT2M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 -2 10 -1 10 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp ∆/ MCTM 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 -2 10 -1 10 1 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp ∆/ MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 a.u. 0 0.01 0.02 0.03 0.04 0.05 0.06 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m )νl)W(νlW( =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp Three different singularity variables, all attempting to measure the same thing
  • 36. Christopher Rogan - University of Chicago HEP - March 9, 2015 But what else can we calculate? With recursive scheme can extract the two mass scales and almost completely independently 36 ∆Mtrue γ/ 2Rs 0 0.5 1 1.5 2 2.5 ∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 50 GeV 1 0 χ∼m = 150 GeVl ~m MR
  • 37. Christopher Rogan - University of Chicago HEP - March 9, 2015 Angles, angles, angles… Recursive scheme fully specifies approximate event decay chain, also yielding angular observables Two transformations mean at least two independent angles of interest (essentially the decay angle of the state whose rest-frame you are in) Lab frame di-slepton CM frame di-slepton CM frame slepton frame slepton frame 37
  • 38. Christopher Rogan - University of Chicago HEP - March 9, 2015 Towards a kinematic basis but while Underestimating the real mass means over-estimating the boost magnitude: From PRD 89, 055020 (2014) 38 s/Rs 0 0.5 1 1.5 2 2.5 ∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 0 GeV 1 0 χ∼m = 150 GeVl ~m s/Rs 0 0.5 1 1.5 2 2.5∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 50 GeV 1 0 χ∼m = 150 GeVl ~m s/Rs 0 0.5 1 1.5 2 2.5 ∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -4 10 -3 10 -2 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 100 GeV 1 0 χ∼m = 150 GeVl ~m
  • 39. Christopher Rogan - University of Chicago HEP - March 9, 2015 Towards a kinematic basis but while Underestimating the real mass means over-estimating the boost magnitude: 39 T CM β/R β 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 a.u. 0 0.02 0.04 0.06 0.08 0.1 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m )νl)W(νlW( =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp From PRD 89, 055020 (2014) s/Rs 0 0.5 1 1.5 2 2.5 ∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 0 GeV 1 0 χ∼m = 150 GeVl ~m s/Rs 0 0.5 1 1.5 2 2.5∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 50 GeV 1 0 χ∼m = 150 GeVl ~m s/Rs 0 0.5 1 1.5 2 2.5 ∆/MR ∆M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -4 10 -3 10 -2 10 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 100 GeV 1 0 χ∼m = 150 GeVl ~m
  • 40. Christopher Rogan - University of Chicago HEP - March 9, 2015 Angular Variables Angle between lab ➔ CM frame boost and di-leptons in CM frame is sensitive to rather than Incorrect boost magnitude induces correlation 40 β R φ∆ 0 0.5 1 1.5 2 2.5 3 a.u. 0.02 0.04 0.06 0.08 0.1 = 0 GeV0 1 χ∼m = 70 GeV0 1 χ∼m = 100 GeV0 1 χ∼m = 120 GeV0 1 χ∼m )νl)W(νlW( )+jetsllZ( =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ∼l→l ~ ;l ~ l ~ →pp ~Uncorrelated with other super- razor variables
  • 41. Christopher Rogan - University of Chicago HEP - March 9, 2015 Angular Variables In the approximate di-slepton rest frame, reconstructed decay angle sensitive to particle spin and production 41 | R θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 a.u. 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 = 0 GeV0 1 χ ∼m = 70 GeV0 1 χ ∼m = 100 GeV0 1 χ ∼m = 120 GeV0 1 χ ∼m )νl)W(νlW( =8 TeVs MadGraph+PGS = 150 GeV l ~; m 0 1 χ ∼ l→l ~ ;l ~ l ~ →pp
  • 42. Christopher Rogan - University of Chicago HEP - March 9, 2015 Angular Variables In the approximate slepton rest frames, reconstructed slepton decay angle sensitive to particle spin correlations 42 |R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [GeV]R ∆M 0 20 40 60 80 100 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 =8 TeVs MadGraph+PGS ν± l→± ; W - W+ W→pp |R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [GeV]R ∆M 0 20 40 60 80 100 120 140 160 180 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 50 GeV 1 0 χ∼m = 150 GeVl ~m
  • 43. Christopher Rogan - University of Chicago HEP - March 9, 2015 Angular Variables Also allows us to better resolve the kinematic endpoint of interest 43 |R+1θ| cos 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [GeV]R ∆M 0 20 40 60 80 100 120 140 160 180 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph+PGS 0 1 χ∼l→l ~ ;l ~ l ~ →pp = 50 GeV 1 0 χ∼m = 150 GeVl ~m
  • 44. Christopher Rogan - University of Chicago HEP - March 9, 2015 Super-razor variable basis Sensitive to mass of CM Good for resonant production of heavy parents Mass-squared difference resonant/non-resonant prod. Sensitive to ratio of invisible and visible masses Spin correlations, better resolution of mass edge 44 | cos ✓R| Spin and production [GeV]0 χ∼m 0 50 100 150 200 250 300 σN 0 1 2 3 4 5 + CMS selectionCTM + CMS selection∆ R M Rθcos× β R φ∆×∆ R M 0 χ∼l 0 χ∼l→Ll ~ Ll ~ = 350 GeV L l ~m -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. Can improve sensitivity while removing MET cuts! Can re-imagine a di-lepton analysis in new basis of variables
  • 45. Christopher Rogan - University of Chicago HEP - March 9, 2015 45 Generalizing further Recursive Jigsaw approach can be generalized to arbitrarily complex final states with weakly interacting particles Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 46. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: the di-leptonic top basis 46 In more complicated decay topologies there can be many masses/mass-splittings, spin-sensitive angles and other observables of interest that can be used to distinguish between the SM and SUSY signals
  • 47. Christopher Rogan - University of Chicago HEP - March 9, 2015 47 Singularity Variables for Tops
  • 48. Christopher Rogan - University of Chicago HEP - March 9, 2015 If there are multiple masses or mass splittings of interest in the event, appearing at different points in the decay chains, then singularity variables correspond to different extremizations of missing d.o.f. What are the correlations between the different singularity variables estimating different mass splittings? Can be large/ complicated when using MCT or MT2 in this case What if the two tops/stops are decaying differently through different particles? 48 Singularity Variables for Tops Polesello and Tovey, JHEP, 1003:030, 2010
  • 49. Christopher Rogan - University of Chicago HEP - March 9, 2015 49 Recursive Jigsaw reconstruction Move through each reference frame of interest in the event, specifying only d.o.f. relevant to each transformation: lab frame di-top frame di-top frame top frame top frame top frame W frame b`b` b`b` b`b` b` b` ` ` 2b2l system treated as one visible object Each bl system treated as visible object individual leptons resolved independently 2 X
  • 50. Christopher Rogan - University of Chicago HEP - March 9, 2015 50 Recursive Jigsaw reconstruction The scales can be extracted independently Mtop [GeV] MW /Mtop
  • 51. Christopher Rogan - University of Chicago HEP - March 9, 2015 51 Recursive Jigsaw reconstruction In fact the scales can be extracted independently for each top – the reconstruction chains are decoupled Mtop [GeV] Mtop [GeV]
  • 52. Christopher Rogan - University of Chicago HEP - March 9, 2015 52 b-tagged jet The di-leptonic top basis b-tagged jet lepton lepton MET 2 X a b T 1,T 2 T,W Mt¯t, ~pt¯t, cos ✓T T Etop frame b , cos ✓T EW frame ` , cos ✓W
  • 53. Christopher Rogan - University of Chicago HEP - March 9, 2015 53 The di-leptonic top basis largely independent information about five different masses true b / E top-frame b1 E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true b /E top-frame b2 E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 =8 TeVs MadGraph GEN νlb→; ttt→pp true b / E top-frame b E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 =8 TeVs MadGraph GEN νlb→; ttt→pp true l / E W-frame 1l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame 2l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN νlb→; ttt→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true b /E top-frame b E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 =8 TeVs MadGraph GEN νlb→; ttt→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 =8 TeVs MadGraph GEN νlb→; ttt→pp
  • 54. Christopher Rogan - University of Chicago HEP - March 9, 2015 54 Previous state-of-the-art Mass-sensitive singularity variables are not necessarily independent ) [GeV] 2 ,b 1 (b T2 M 0 20 40 60 80 100 120 140 160 )[GeV] 2 l, 1 l( T2 M 0 20 40 60 80 100 a.u. -4 10 -3 10 -2 10 =8 TeVs MadGraph GEN νlb→; ttt→pp ) [GeV] 2 l 2 ,b 1 l 1 (b T2 M 0 20 40 60 80 100 120 140 160 180 )[GeV] 2 ,b 1 (b T2 M 0 20 40 60 80 100 120 140 160 a.u. -4 10 -3 10 -2 10 =8 TeVs MadGraph GEN νlb→; ttt→pp ) [GeV] 2 l 2 ,b 1 l 1 (b T2 M 0 20 40 60 80 100 120 140 160 )[GeV] 2 l, 1 l( T2 M 0 10 20 30 40 50 60 70 80 90 a.u. -4 10 -3 10 -2 10 =8 TeVs MadGraph GEN νlb→; ttt→pp
  • 55. Christopher Rogan - University of Chicago HEP - March 9, 2015 55 The di-leptonic top basis largely independent information about decay angles true TT θ- TT θ -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 TT θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u.0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 =8 TeVs MadGraph GEN νlb→; ttt→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 TT θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 =8 TeVs MadGraph GEN νlb→; ttt→pp Here, the decay angle of the top/anti-top system
  • 56. Christopher Rogan - University of Chicago HEP - March 9, 2015 56 The di-leptonic top basis Here, the decay angle of one of the top quarks true b / E top-frame b E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6T θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 =8 TeVs MadGraph GEN νlb→; ttt→pp true T θ- T θ -1 -0.5 0 0.5 1 T θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 =8 TeVs MadGraph GEN νlb→; ttt→pp largely independent information about decay angles
  • 57. Christopher Rogan - University of Chicago HEP - March 9, 2015 57 The di-leptonic top basis vs. signals Different variables in the basis are useful for different signals First, we consider resonant ttbar production through a graviton v.s. t¯t G t(b`⌫) t(b`⌫) t(b`⌫) t(b`⌫)
  • 58. Christopher Rogan - University of Chicago HEP - March 9, 2015 58 The di-leptonic top basis vs. gravitons Distributions of top/W/neutrino mass-splitting-sensitive observables are nearly identical since graviton signal and non-resonant background both contain on-shell tops [GeV] top-frame b E 0 20 40 60 80 100 a.u. 0 0.2 0.4 0.6 0.8 1 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp [GeV] W-frame l E 0 20 40 60 80 100 a.u. 0 0.2 0.4 0.6 0.8 1 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp Different variables in the basis are useful for different signals
  • 59. Christopher Rogan - University of Chicago HEP - March 9, 2015 59 The di-leptonic top basis vs. gravitons Instead, observables related to the production of the two tops are sensitive to the intermediate resonance [GeV] tt M 0 1000 2000 3000 4000 5000 a.u. 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp TT θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0.2 0.4 0.6 0.8 1 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp Different variables in the basis are useful for different signals
  • 60. Christopher Rogan - University of Chicago HEP - March 9, 2015 60 The di-leptonic top basis vs. stops SUSY stops decaying through charginos v.s. t¯t ˜t˜t t t ˜t ˜t b b b b W W ˜± ˜± ⌫ ⌫ ˜0 ˜0` ` W(`⌫) W(`⌫)
  • 61. Christopher Rogan - University of Chicago HEP - March 9, 2015 61 The di-leptonic top basis vs. stops Mass-splitting-sensitive observables can be used to distinguish presence of signals [GeV] top-frame b E 0 50 100 150 200 250 300 a.u. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 )νl)(bνl(b→tt = 340 GeV 1 ± χ ∼m = 500 GeV 1 ± χ ∼m = 650 GeV 1 ± χ ∼m =8 TeVs MadGraph GEN 1 0 χ ∼ )νlW(→ 1 ± χ ∼ ; 1 ± χ ∼ b→t ~ ;t ~ t ~ →pp = 300 GeV 1 0 χ ∼m = 700 GeV t ~m [GeV] W-frame l E 0 20 40 60 80 100 120 140 160 180 200 220 a.u. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 )νl)(bνl(b→tt = 340 GeV 1 ± χ ∼m = 500 GeV 1 ± χ ∼m = 650 GeV 1 ± χ ∼m =8 TeVs MadGraph GEN 1 0 χ ∼ )νlW(→ 1 ± χ ∼ ; 1 ± χ ∼ b→t ~ ;t ~ t ~ →pp = 300 GeV 1 0 χ ∼m = 700 GeV t ~m
  • 62. Christopher Rogan - University of Chicago HEP - March 9, 2015 62 The di-leptonic top basis vs. stops m˜t = 700 GeV m˜0 = 300 GeV 650 500 340 Here, the azimuthal angle between the the top and W decay planes and the angle between the two top decay planes T 1,W 1 T 1,T 2T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.005 0.01 0.015 0.02 0.025 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (340); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (500); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (650); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN νlb→; ttt→pp m˜± = GeV
  • 63. Christopher Rogan - University of Chicago HEP - March 9, 2015 Summary ▪ The strategy of Recursive Jigsaw Reconstruction is to not only develop ‘good’ mass estimator variables, but to decompose each event into a basis of kinematic variables ▪ Through the recursive procedure, each variable is (as much as possible) independent of the others ▪ The interpretation of variables is straightforward; they each correspond to an actual, well-defined, quantity in the event ▪ Can be generalized to arbitrarily complex final states with many weakly interacting particles ▪ Code package to be released imminently (RestFrames - see back-up) ▪ First papers nearing completion (Recursive Jigsaw Reconstruction, The Di-leptonic ttbar basis - with Paul Jackson) 63
  • 64. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ Recursive Jigsaw Reconstruction is a systematic recipe for deriving a kinematic basis for any open final state ▪ Mixed decay cases can now be treated in a sensible way ▪ Lots of potential applications – some I’m currently thinking about: • Di-lepton searches and differential measurements • stop / top-quark partner and resonant ttbar searches • other signatures (SUSY, exotica) • spin measurements • … 64 vs. vs. vs. Outlook
  • 65. Christopher Rogan - University of Chicago HEP - March 9, 2015 BACKUP SLIDES 65
  • 66. Christopher Rogan - University of Chicago HEP - March 9, 2015 66 RestFrames software library RestFrames: Soon-to-be-public code that can be used to calculate kinematic variables associated with any decay chain and can implement “Recursive Jigsaw” rules Example: Di-leptonic ttbar decays - how to use the code to initialize a decay tree, implement a jigsaw rule for determining the neutrino four-momenta, and analyze events www.RestFrames.com
  • 67. Christopher Rogan - University of Chicago HEP - March 9, 2015 67 initialize all your reference frames of interest connect them according to the decay tree you want to impose on the event RestFrames software library
  • 68. Christopher Rogan - University of Chicago HEP - March 9, 2015 68 …and you’ll see this draw your decay tree… lab tt a t a b a W a l a ν b t b b b W b l b ν Lab State Decay States Visible States Invisible States RestFrames software library
  • 69. Christopher Rogan - RestFrames - Jan 29, 2015 69 RestFrames example: di-leptonic top Set the 4-vector input and MET for an event Get observables directly from decay tree
  • 70. Christopher Rogan - RestFrames - Jan 29, 2015 70 tt a t a b a W a l a ν b t b b b W b l b ν Decay States Visible States Invisible States a t a b a W a l a ν Decay States Visible States Invisible States RestFrames example: di-leptonic top
  • 71. Christopher Rogan - RestFrames - Jan 29, 2015 71 RestFrames example: di-leptonic top
  • 72. Christopher Rogan - RestFrames - Jan 29, 2015 72 number of elements that _have_ to go to this frame from the group each event exclusive (true) or inclusive (false) counting RestFrames example: di-leptonic top
  • 73. Christopher Rogan - RestFrames - Jan 29, 2015 73 RestFrames example: di-leptonic top
  • 74. Christopher Rogan - RestFrames - Jan 29, 2015 74 tt a t a b a W a l a ν b t b b b W b l b ν tt a t a b a W a l a ν b t b b b W b l b ν Decay States Visible States Invisible States Invisible Jigsaw RestFrames example: di-leptonic top
  • 75. Christopher Rogan - RestFrames - Jan 29, 2015 75 event-by-event will choose b-tag jet combinatoric assignment that minimizes the masses of these two collections RestFrames example: di-leptonic top
  • 76. Christopher Rogan - RestFrames - Jan 29, 2015 76 tt a t a b a W a l a ν b t b b b W b l b ν tt a t a b a W a l a ν b t b b b W b l b ν Decay States Visible States Invisible States Invisible Jigsaw Combinatoric Jigsaw RestFrames example: di-leptonic top
  • 77. Christopher Rogan - RestFrames - Jan 29, 2015 77 Invisible system mass Jigsaw Invisible system rapidity Jigsaw Contraboost invariant JigsawContraboost invariant Jigsaw b ν+ a ν b ν+ a ν b ν+ a ν a ν b ν Invisible Frame Jigsaws RestFrames example: di-leptonic top
  • 78. Christopher Rogan - RestFrames - Jan 29, 2015 78 's Jigsaw lb Minimize m 's Jigsaw lb Minimize m b + b a b a b b b B-tagged jet Jigsaws RestFrames example: di-leptonic top
  • 79. Christopher Rogan - RestFrames - Jan 29, 2015 79 RestFrames example: di-leptonic top
  • 80. Christopher Rogan - RestFrames - Jan 29, 2015 80 some toy input analyze the event RestFrames example: di-leptonic top
  • 81. Christopher Rogan - RestFrames - Jan 29, 2015 81 tracking of combinatoric elements RestFrames example: di-leptonic top
  • 82. Christopher Rogan - RestFrames - Jan 29, 2015 ▪ To make shared library ‘lib/libRestFrames.so’ ▪ To set environmental variables (ex. for running ROOT macros): 82 RestFrames setup <$ make <$ source setup.sh
  • 83. Christopher Rogan - RestFrames - Jan 29, 2015 ▪ To run ‘macros/TestDiLeptonicTop.C’ macro: 83 <$ root root [0] .x macros/TestDiLeptonicTop.C RestFrames example: di-leptonic top
  • 84. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity variables From: 84
  • 85. Christopher Rogan - University of Chicago HEP - March 9, 2015 Singularity variables From: 85
  • 86. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: MCT Constructed to have a kinematic endpoint at: From: assuming ~mass-less leptons 86
  • 87. Christopher Rogan - University of Chicago HEP - March 9, 2015 MCT in practice Singularity variables (like MCT) can be sensitive to quantities that can vary dramatically event-by-event Kinematic endpoint ‘moves’ with nonzero CM system pT 87
  • 88. Christopher Rogan - University of Chicago HEP - March 9, 2015 The mass challenge The invariant mass is invariant under coherent Lorentz transformations of two particles The Euclidean mass (or contra-variant mass) is invariant under anti- symmetric Lorentz transformations of two particles Even the simplest case requires variables with both properties! Lab frame di-slepton CM frame di-slepton CM frame slepton frame slepton frame 88
  • 89. Christopher Rogan - University of Chicago HEP - March 9, 2015 Correcting for CM pT ▪ Want to boost from lab-frame to CM-frame ▪ We know the transverse momentum of the CM- frame: ▪ But we don’t know the energy, or mass, of the CM- frame: 89
  • 90. Christopher Rogan - University of Chicago HEP - March 9, 2015 pT corrections for MCT with: Attempts have been made to mitigate this problem: (i) ‘Guess’ the lab ➔ CM frame boost: (ii) Only look at event along axis perpendicular to boost: x – parallel to boost y – perp. to boost 90
  • 91. Christopher Rogan - University of Chicago HEP - March 9, 2015 MCTperp in practice CMS-SUS-PAS-13-006 ‘peak position’ of signal and backgrounds due to other cuts (pT, MET) and only weakly sensitive to sparticle masses From: 91 50 100 150 200 250 300 10 2 10 1 100 101 102 103 entries/10GeV Data Top WW WZ ZZ Rare SM Z/g⇤ Non-prompt m ˜c± = 500 GeV m ˜c± = 300 GeV 50 100 150 200 250 300 MCT? (GeV) 0.6 0.8 1.0 1.2 1.4 ratio CMS Preliminary p s = 8 TeV, Lint = 19.5 fb 1
  • 92. Christopher Rogan - University of Chicago HEP - March 9, 2015 is a singularity variable – in fact it is essentially identical to MCT but evaluated in a different reference frame. Boost procedure ensures that new variable is invariant under the previous transformations Recursive rest-frame reconstruction 92 [GeV]R ∆M 0 50 100 150 200 250 [GeV]CM T p 0 50 100 150 200 250 300 350 400 450 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS ν± l→± ; W- W+ W→pp [GeV]CTM 0 50 100 150 200 250 [GeV]CM T p 0 50 100 150 200 250 300 350 400 450 a.u. -5 10 -4 10 -3 10 =8 TeVs MadGraph+PGS ν± l→± ; W- W+ W→pp
  • 93. Christopher Rogan - University of Chicago HEP - March 9, 2015 93 Resonant Higgs production CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex] From: The between the leptons is evaluated in the R-frame, removing dependence on the pT of the Higgs and correlation with CMS uses 2D fit of variables to measure Higgs mass in this channel
  • 94. Christopher Rogan - University of Chicago HEP - March 9, 2015 94 Resonant Higgs production CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex] From: The shape of the distribution, for the Higgs signal and backgrounds, is used to extract both the Higgs mass and signal strength – even while information is lost with the two escaping neutrinos
  • 95. Christopher Rogan - University of Chicago HEP - March 9, 2015 What other info can we extract? Mass and Spin Measurement with M(T2) and MAOS Momentum - Cho, Won Sang et al. Nucl.Phys.Proc.Suppl. 200-202 (2010) 103-112 arXiv:0909.4853 [hep-ph] From: Ex. MT2 extremization assigns values to missing degrees of freedom – if one takes these assignments literally, can we calculate other useful variables? When we assign unconstrained d.o.f. by extremizing one quantity, what are the general properties of other variables we calculate? What are the correlations among them? 95
  • 96. Christopher Rogan - University of Chicago HEP - March 9, 2015 Example: the di-leptonic top basis 96 [GeV] top-frame b E -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 )νl)(bνl(b→tt = 340 GeV 1 ± χ ∼m = 500 GeV 1 ± χ ∼m = 650 GeV 1 ± χ ∼m =8 TeVs MadGraph GEN 1 0 χ ∼ )νlW(→ 1 ± χ ∼ ; 1 ± χ ∼ b→t ~ ;t ~ t ~ →pp = 300 GeV 1 0 χ ∼m = 700 GeV t ~m [GeV] tt M 0 1000 2000 3000 4000 5000 a.u. 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 TT θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 =8 TeVs MadGraph GEN νlb→; ttt→pp A rich basis of useful Recursive Jigsaw observables can be calculated, each with largely independent information true b / E top-frame b E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 =8 TeVs MadGraph GEN νlb→; ttt→pp true b / E top-frame b1 E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true b /E top-frame b2 E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 =8 TeVs MadGraph GEN νlb→; ttt→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true b /E top-frame b E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 =8 TeVs MadGraph GEN νlb→; ttt→pp true tt / M tt M 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 =8 TeVs MadGraph GEN νlb→; ttt→pp true l / E W-frame 1l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 true l /E W-frame 2l E 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 a.u. 0 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN νlb→; ttt→pp
  • 97. Christopher Rogan - University of Chicago HEP - March 9, 2015 97 The di-leptonic top basis vs. stops Observables sensitive to intermediate resonances cannot distinguish between non-resonant signals and background T γ 1 2 3 4 5 6 7 8 a.u. -4 10 -3 10 -2 10 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp T γ 1 2 3 4 5 6 a.u. -3 10 -2 10 -1 10 )νl)(bνl(b→tt = 340 GeV 1 ± χ ∼m = 500 GeV 1 ± χ ∼m = 650 GeV 1 ± χ ∼m =8 TeVs MadGraph GEN 1 0 χ ∼ )νlW(→ 1 ± χ ∼ ; 1 ± χ ∼ b→t ~ ;t ~ t ~ →pp = 300 GeV 1 0 χ ∼m = 700 GeV t ~m Mtt = 2 T Mt
  • 98. Christopher Rogan - University of Chicago HEP - March 9, 2015 vs. Multi-dimensionalbump-hunting 98 MW/MtopMW/Mtop Mtop [GeV] Mtop [GeV] Mtop [GeV] Mtop [GeV] MW/MtopMW/Mtop
  • 99. Christopher Rogan - University of Chicago HEP - March 9, 2015 99 The di-leptonic top basis vs. stops Decay angles are also sensitive to differences between stop signals and ttbar background [GeV] top-frame b E -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 )νl)(bνl(b→tt = 340 GeV 1 ± χ ∼m = 500 GeV 1 ± χ ∼m = 650 GeV 1 ± χ ∼m =8 TeVs MadGraph GEN 1 0 χ ∼ )νlW(→ 1 ± χ ∼ ; 1 ± χ ∼ b→t ~ ;t ~ t ~ →pp = 300 GeV 1 0 χ ∼m = 700 GeV t ~m TT θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. 0.2 0.4 0.6 0.8 1 )νl)(bνl(b→tt = 1 TeV G m = 2 TeV G m = 3 TeV G m =8 TeVs MadGraph GEN νlb→; ttt→G→pp
  • 100. Christopher Rogan - University of Chicago HEP - March 9, 2015 100 The di-leptonic top basis vs. stops m˜t = 700 GeV m˜0 = 300 GeV 650 500 340 Decay angles are also sensitive to differences between stop signals and ttbar background T1 θcos -1 -0.5 0 0.5 1 T2 θcos -1 -0.5 0 0.5 1 a.u. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (340); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1 θcos -1 -0.5 0 0.5 1 T2 θcos -1 -0.5 0 0.5 1 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (500); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1 θcos -1 -0.5 0 0.5 1 T2 θcos -1 -0.5 0 0.5 1 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (650); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1 θcos -1 -0.5 0 0.5 1 T2 θcos -1 -0.5 0 0.5 1 a.u. 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN νlb→; ttt→pp m˜± = GeV
  • 101. Christopher Rogan - University of Chicago HEP - March 9, 2015 101 The di-leptonic top basis vs. stops m˜t = 700 GeV m˜0 = 300 GeV 650 500 340 Decay angles are also sensitive to differences between stop signals and ttbar background W1 θcos -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 W2 θcos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 a.u. -4 10 -3 10 -2 10 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (340); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp W1 θcos -1 -0.5 0 0.5 1 W2 θcos -1 -0.5 0 0.5 1 a.u. -3 10 -2 10 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (500); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp W1 θcos -1 -0.5 0 0.5 1 W2 θcos -1 -0.5 0 0.5 1 a.u. -3 10 -2 10 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (650); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp W1 θcos -1 -0.5 0 0.5 1 W2 θcos -1 -0.5 0 0.5 1 a.u. -3 10 -2 10 =8 TeVs MadGraph GEN νlb→; ttt→pp m˜± = GeV
  • 102. Christopher Rogan - University of Chicago HEP - March 9, 2015 102 The di-leptonic top basis vs. stops m˜t = 700 GeV m˜0 = 300 GeV 650 500 340 Here, the azimuthal angle between the the top and W decay planes , for each of the two decay chains T 1,W 1 T1,W1 φ∆ 0 1 2 3 4 5 6 T2,W2 φ∆ 0 1 2 3 4 5 6 a.u. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (340); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,W1 φ∆ 0 1 2 3 4 5 6 T2,W2 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (500); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,W1 φ∆ 0 1 2 3 4 5 6 T2,W2 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (650); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,W1 φ∆ 0 1 2 3 4 5 6 T2,W2 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 =8 TeVs MadGraph GEN νlb→; ttt→pp m˜± = GeV
  • 103. Christopher Rogan - University of Chicago HEP - March 9, 2015 103 The di-leptonic top basis vs. stops m˜t = 700 GeV m˜0 = 300 GeV 650 500 340 Here, the azimuthal angle between the the top and W decay planes and the angle between the two top decay planes T 1,W 1 T 1,T 2T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.005 0.01 0.015 0.02 0.025 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (340); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (500); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 =8 TeVs MadGraph GEN (300) 1 0 χ ∼ )νlW(→ 1 ± χ ∼ (650); 1 ± χ ∼ b→t ~ (700);t ~ t ~ →pp T1,T2 φ∆ 0 1 2 3 4 5 6 T1,W1 φ∆ 0 1 2 3 4 5 6 a.u. 0.0005 0.001 0.0015 0.002 0.0025 =8 TeVs MadGraph GEN νlb→; ttt→pp m˜± = GeV
  • 104. Christopher Rogan - University of Chicago HEP - March 9, 2015 Razor kinematic variables mega-jet invisible? ▪ Assign every reconstructed object to one of two mega-jets ▪ Analyze the event as a ‘canonical’ open final state: • two variables: MR (mass scale) , R (scale-less event imbalance) ▪ An inclusive approach to searching for a large class of new physics possibilities with open final states invisible? mega-jet PRD 85, 012004 (2012) EPJC 73, 2362 (2013) PRL 111, 081802 (2013) CMS-PAS-SUS-13-004 arXiv:1006.2727v1 [hep-ph]Razor variables CMS+ATLAS analyses 104Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 105. Christopher Rogan - University of Chicago HEP - March 9, 2015 Razor kinematic variables mega-jet invisible? ▪ Assign every reconstructed object to one of two mega-jets ▪ Analyze the event as a ‘canonical’ open final state: • two variables: MR (mass scale) , R (scale-less event imbalance) ▪ An inclusive approach to searching for a large class of new physics possibilities with open final states invisible? mega-jet Two distinct mass scales in event Two pieces of complementary information 105Christopher Rogan - University of Chicago HEP - March 9, 2015
  • 106. Christopher Rogan - University of Chicago HEP - March 9, 2015 ▪ Baseline Selection • Exactly two opposite sign leptons with pT > 20 GeV/c and |η| < 2.5 • If same flavor, m(l l) > 15 GeV/c2 • ΔR between leptons and any jet (see below) > 0.4 • veto event if b-tagged jet with pT > 25 GeV/c and |η| < 2.5 ▪ Kinematic Selection ATLAS-CONF-2013-049CMS-PAS-SUS-12-022 ‘CMS selection’ ‘ATLAS selection’ A Monte Carlo analysis to compare From PRD 89, 055020 (arXiv:1310.4827 [hep-ph]) 106
  • 107. Christopher Rogan - University of Chicago HEP - March 9, 2015 1D Shape Analysis ▪ Analysis Categories • Consider final 9 different final states according to lepton flavor and jet multiplicity – simultaneous binned fit includes both high S/B and low S/B categories Fit to kinematic distributions (in this case, MΔ R, MT2 or MCTperp in 10 GeV bins), over all categories for , and yields Other jet multiplicity and lepton flavor categories + 107 [GeV]CTM 20 40 60 80 100 120 140 160 180 200 220 Events/10GeV -1 10 1 10 2 10 3 10 4 10 TOTAL BKG WW/WZ +jetstt *+jetsγZ/ = 100 GeV0 χ∼ = 350, m± L e~m = 100 GeV0 χ∼ = 250, m± L e~m -1 = 20 fbL dt∫= 8 TeVs Madgraph+PGS = 0jetNee CMS selection [GeV]CTM 20 40 60 80 100 120 140 160 180 200 Events/10GeV -1 10 1 10 2 10 3 10 4 10 TOTAL BKG WW/WZ +jetstt *+jetsγZ/ = 100 GeV0 χ∼ = 350, m± L e~m = 100 GeV0 χ∼ = 250, m± L e~m -1 = 20 fbL dt∫= 8 TeVs Madgraph+PGS = 1jet Nee CMS selection + From PRD 89, 055020
  • 108. Christopher Rogan - University of Chicago HEP - March 9, 2015 Systematic uncertainties ▪ 2% lepton ID (correlated btw bkgs, uncorrelated between lepton categories) ▪ 10% jet counting (per jet) (uncorrelated between all processes) ▪ 10% x-section uncertainty for backgrounds (uncorrelated) + theoretical x-section uncertainty for signal (small) ▪ ‘shape’ uncertainty derived by propagating effect of 10% jet energy scale shift up/down to MET and recalculating shapes templates of kinematic variables ▪ Uncertainties are introduced into toy pseudo-experiments through marginalization (pdfs fixed in likelihood evaluation but systematically varied in shape and normalization in toy pseudo-experiment generation) 108 From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
  • 109. Christopher Rogan - University of Chicago HEP - March 9, 2015 Compared to Reality (GeV) l ~m 100 150 200 250 300 350 400 450 (GeV)0 1 χ∼m 0 50 100 150 200 250 300 95%C.L.upperlimitoncrosssection(fb) 1 10 2 10 = 8 TeVs,-1 = 19.5 fb int CMS Preliminary L 95% C.L. CLs NLO Exclusions theory σ1±Observed experiment σ1±Expected L µ∼ L µ∼,L e~ L e~→pp ) = 1 0 1 χ∼l→L l ~ (Br CMS-PAS-SUS-12-022 109 From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
  • 110. Christopher Rogan - University of Chicago HEP - March 9, 2015 Expected Limit Comparison 110 [GeV] Ll ~m 100 150 200 250 300 350 400 450 [GeV]0 χ∼m 0 50 100 150 200 250 300 350 400 σN 0 1 2 3 4 50 χ∼l 0 χ∼l→Ll ~ Ll ~ + ATLAS selection∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m Ll ~ m [GeV] Ll ~m 100 150 200 250 300 350 400 450 [GeV]0 χ∼m 0 50 100 150 200 250 300 350 400 σN0 1 2 3 4 50 χ∼l 0 χ∼l→Ll ~ Ll ~ + ATLAS selectionT2M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m Ll ~ m [GeV] Ll ~m 100 150 200 250 300 350 400 450 [GeV]0 χ∼m 0 50 100 150 200 250 300 350 400 σN 0 1 2 3 4 50 χ∼l 0 χ∼l→Ll ~ Ll ~ + CMS selectionCTM -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m Ll ~ m [GeV] Ll ~m 100 150 200 250 300 350 400 450 [GeV]0 χ∼m 0 50 100 150 200 250 300 350 400 σN 0 1 2 3 4 50 χ∼l 0 χ∼l→Ll ~ Ll ~ + CMS selection∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m Ll ~ m FromPRD89,055020(arXiv:1310.4827)
  • 111. Christopher Rogan - University of Chicago HEP - March 9, 2015 Charginos 111 [GeV]± χ∼m 100 150 200 250 300 350 [GeV]0 χ∼m 0 50 100 150 200 250 300 σN 0 1 2 3 4 5 ] 0 χ∼)νlW( 0 χ∼)νl[W(→ ± χ∼± χ∼ + ATLAS selection∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m ± χ∼ m [GeV]± χ∼m 100 150 200 250 300 350 [GeV]0 χ∼m 0 50 100 150 200 250 300 σN0 1 2 3 4 5 ] 0 χ∼)νlW( 0 χ∼)νl[W(→ ± χ∼± χ∼ + ATLAS selectionT2M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m ± χ∼ m [GeV]± χ∼m 100 150 200 250 300 350 [GeV]0 χ∼m 0 50 100 150 200 250 300 σN 0 1 2 3 4 5 ] 0 χ∼)νlW( 0 χ∼)νl[W(→ ± χ∼± χ∼ + CMS selectionCTM -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m ± χ∼ m [GeV]± χ∼m 100 150 200 250 300 350 [GeV]0 χ∼m 0 50 100 150 200 250 300 σN 0 1 2 3 4 5 ] 0 χ∼)νlW( 0 χ∼)νl[W(→ ± χ∼± χ∼ + CMS selection∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m ± χ∼ m FromPRD89,055020(arXiv:1310.4827)
  • 112. Christopher Rogan - University of Chicago HEP - March 9, 2015 Super-Razor Basis Selection 112 [GeV]± χ∼m 100 150 200 250 300 350 [GeV]0 χ∼m 0 50 100 150 200 250 300 σN 0 1 2 3 4 5 ] 0 χ∼)νlW( 0 χ∼)νl[W(→ ± χ∼± χ∼ + Razor selection Rθcos× β R φ∆×∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m ± χ∼ m [GeV] Ll ~m 100 150 200 250 300 350 400 450 [GeV]0 χ∼m 0 50 100 150 200 250 300 350 400 σN 0 1 2 3 4 50 χ∼l 0 χ∼l→Ll ~ Ll ~ + Razor selection Rθcos× β R φ∆×∆ R M -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. excl 0 χ∼ = m Ll ~ m From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
  • 113. Christopher Rogan - University of Chicago HEP - March 9, 2015 113 Comparisons [GeV]± χ∼m 150 200 250 300 350 σN 0 1 2 3 4 5 + ATLAS selectionT2M + ATLAS selection∆ R M Rθcos× β R φ∆×∆ R M ] 0 χ∼)νl[W(×2→ ± χ∼± χ∼ = 100 GeV0 χ∼m -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. [GeV]± χ∼m 150 200 250 300 350 σN 0 1 2 3 4 5 + CMS selectionCTM + CMS selection∆ R M Rθcos× β R φ∆×∆ R M ] 0 χ∼)νl[W(×2→ ± χ∼± χ∼ = 100 GeV0 χ∼m -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. [GeV]0 χ∼m 0 50 100 150 200 σN 0 1 2 3 4 5 6 7 + CMS selectionCTM + CMS selection∆ R M Rθcos× β R φ∆×∆ R M ] 0 χ∼)νl[W(×2→ ± χ∼± χ∼ = 250 GeV± χ∼m -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. [GeV]0 χ∼m 0 50 100 150 200 σN 0 1 2 3 4 5 6 7 + ATLAS selectionT2M + ATLAS selection∆ R M Rθcos× β R φ∆×∆ R M ] 0 χ∼)νl[W(×2→ ± χ∼± χ∼ = 250 GeV± χ∼m -1 = 20 fbL dt∫= 8 TeVs MadGraph+PGS 95% C.L. FromPRD89,055020(arXiv:1310.4827)