SlideShare a Scribd company logo
1 of 31
Download to read offline
Ñëîæíîñòü ïðîïîçèöèîíàëüíûõ äîêàçàòåëüñòâ




            Ýäóàðä Àëåêñååâè÷ Ãèðø


       http://logic.pdmi.ras.ru/~hirsch

                   ÏÎÌÈ ÐÀÍ

              30 ñåíòÿáðÿ 2010 ã.




                                            1/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà     t ct yt ≥ c ,
                          ãäå ct , c ≥ 0, yt ∈ {0, 1}   yt = xt
                                                        (         èëè   yt = ¬xt ).




                                                                                2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà              t ct yt ≥ c ,
                               ãäå     ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt    ýòî   (Y0 , . . . , Yk ),
                                     ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.




                                                                                    2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà          t ct yt ≥ c ,
                           ãäå     ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt  ýòî (Y0 , . . . , Yk ),
                                 ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.
     íàäî âû÷èñëèòü ñóììó              t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c .




                                                                                2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà           t ct yt ≥ c ,
                               ãäå    ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt  ýòî (Y0 , . . . , Yk ),
                                 ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.
     íàäî âû÷èñëèòü ñóììó                  t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c .
     Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i =
                                             Fi ⊕ Gi ⊕         (Fj ∧ Gj ∧         (Fl ⊕ Gl )).
                                                        0≤j i            j l i




                                                                                           2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà           t ct yt ≥ c ,
                               ãäå    ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt  ýòî (Y0 , . . . , Yk ),
                                 ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.
     íàäî âû÷èñëèòü ñóììó                  t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c .
     Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i =
                                             Fi ⊕ Gi ⊕         (Fj ∧ Gj ∧         (Fl ⊕ Gl )).
                                                        0≤j i            j l i
     SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi .
     CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ).


                                                                                           2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà            t ct yt ≥ c ,
                               ãäå    ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt  ýòî (Y0 , . . . , Yk ),
                                  ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.
     íàäî âû÷èñëèòü ñóììó                  t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c .
     Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i =
                                             Fi ⊕ Gi ⊕         (Fj ∧ Gj ∧         (Fl ⊕ Gl )).
                                                        0≤j i            j l i
     SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi .
     CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ).
     SUM(c1 y1 , . . . , cn yn ): ñêëàäûâàåì SAdd, CAdd, ïîñëåäíèå  Add.


                                                                                           2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ

     ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè;
     íåðàâåíñòâà âèäà            t ct yt ≥ c ,
                               ãäå    ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ).
     ct · yt  ýòî (Y0 , . . . , Yk ),
                                  ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False.
     íàäî âû÷èñëèòü ñóììó                  t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c .
     Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i =
                                             Fi ⊕ Gi ⊕         (Fj ∧ Gj ∧         (Fl ⊕ Gl )).
                                                        0≤j i            j l i
     SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi .
     CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ).
     SUM(c1 y1 , . . . , cn yn ): ñêëàäûâàåì SAdd, CAdd, ïîñëåäíèå  Add.
     F  G ïðåäñòàâëÿåòñÿ êàê (Fi ∧ ¬Gi ∧ (Fj ≡ Gj )).
                                              i               j i
                                                                                           2/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì      ct yt ≥ c   è   dt yt ≥ d :




                                                     3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c    è     dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c       è           dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
               ðàâåíñòâî    Add(c y , d y )
                                    t   t   t   t   i   ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                                            t    t    i   t




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c       è           dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
               ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                    t   t   t   t   i       t    t    i   t

               y + ¬y  àíàëîãè÷íî.
                t       t




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c        è            dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
               ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                     t   t    t   t   i       t    t    i   t

               y + ¬y  àíàëîãè÷íî.
                t       t



         äîêàæåì     F ≥G        ∧           F ≥G             ⊃    Add(F , F ) ≥ Add(G , G ).




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c        è            dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
               ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                     t   t    t   t   i       t    t    i   t

               y + ¬y  àíàëîãè÷íî.
                t       t



         äîêàæåì     F ≥G        ∧           F ≥G             ⊃    Add(F , F ) ≥ Add(G , G ).

     óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . .




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì           ct yt ≥ c        è            dt yt ≥ d :
         äîêàæåì ïî èíäóêöèè, ÷òî
         Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
               ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                     t   t    t   t   i       t    t    i   t

               y + ¬y  àíàëîãè÷íî.
                t       t



         äîêàæåì     F ≥G        ∧           F ≥G             ⊃    Add(F , F ) ≥ Add(G , G ).

     óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . .
     îêðóãëåíèå
                                 (act )yt ≥ ac + r
                                                                            (r  a)
                                   ct yt ≥ c + 1




                                                                                                3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì            ct yt ≥ c        è            dt yt ≥ d :
          äîêàæåì ïî èíäóêöèè, ÷òî
          Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
                ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                      t   t    t   t   i       t    t    i   t

                y + ¬y  àíàëîãè÷íî.
                 t       t



          äîêàæåì     F ≥G        ∧           F ≥G             ⊃    Add(F , F ) ≥ Add(G , G )    .

     óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . .
     îêðóãëåíèå
                                  (act )yt ≥ ac + r
                                                                             (r  a)
                                    ct yt ≥ c + 1
      ðàçáîð ñëó÷àåâ (ò.å. äîê-âî îò ïðîòèâíîãî):

      SUM(. . . , ct yt , . . .) ≥ c + 1               ∨       ¬(SUM(. . . , ct yt , . . .) ≥ c + 1),
     èç âòîðîãî ñëåäóåò        ≤ c,       óìíîæèì îáðàòíî íà                     a. . . .

                                                                                                     3/6
Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå
Ìîäåëèðîâàíèå ïðàâèë

     ïðîñóììèðóåì            ct yt ≥ c        è            dt yt ≥ d :
          äîêàæåì ïî èíäóêöèè, ÷òî
          Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . .
                ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y  ðàçáîð ñëó÷àåâ.
                                      t   t    t   t   i         t      t   i   t

                y + ¬y  àíàëîãè÷íî.
                 t       t



          äîêàæåì     F ≥G        ∧           F ≥G               ⊃      Add(F , F ) ≥ Add(G , G )  .

     óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . .
     îêðóãëåíèå
                                  (act )yt ≥ ac + r
                                                                                (r  a)
                                    ct yt ≥ c + 1
      ðàçáîð ñëó÷àåâ (ò.å. äîê-âî îò ïðîòèâíîãî):

      SUM(. . . , ct yt , . . .) ≥ c + 1               ∨         ¬(SUM(. . . , ct yt , . . .) ≥ c + 1),
     èç âòîðîãî ñëåäóåò        ≤ c,       óìíîæèì îáðàòíî íà                        a. . . .
     ñâîéñòâà íóëÿ:      Add(F , 0)i ≡ Fi                  è 0    1.
     SUM(0y1 , . . . , 0yn ) ≥ 1, î÷åâèäíî, ëîæíî.
                                                                                                       3/6
Îïòèìàëüíûå ïîëóàëãîðèòìû


Îïðåäåëåíèå
A  îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒
äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L


                    timeA (x ) ≤ p(timeA (x ) + |x |).




                                                         4/6
Îïòèìàëüíûå ïîëóàëãîðèòìû


Îïðåäåëåíèå
A  îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒
äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L


                    timeA (x ) ≤ p(timeA (x ) + |x |).

Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà     SAT:
çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü
âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí  âûäàòü.




                                                                    4/6
Îïòèìàëüíûå ïîëóàëãîðèòìû


Îïðåäåëåíèå
A  îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒
äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L


                    timeA (x ) ≤ p(timeA (x ) + |x |).

Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà     SAT:
çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü
âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí  âûäàòü.

Çàìå÷àíèå
Ëåâèíñêèé àëãîðèòì íå äëÿ ÿçûêà     TAUT.




                                                                    4/6
Îïòèìàëüíûå ïîëóàëãîðèòìû


Îïðåäåëåíèå
A  îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒
äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L


                        timeA (x ) ≤ p(timeA (x ) + |x |).

Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà     SAT:
çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü
âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí  âûäàòü.

Çàìå÷àíèå
Ëåâèíñêèé àëãîðèòì íå äëÿ ÿçûêà         TAUT.
. . . è íå äëÿ ÿçûêà   SAT.



                                                                    4/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â   ⇐⇒
                              ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ   TAUT.




                                                                    5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â      ⇐⇒
                                 ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ   TAUT.
⇐=:




      Îïòèìàëüíîå äîê-âî ôîðìóëû       F    ðàçìåðà   n:
          Íîìåð ñèñòåìû   Π;

          Π-äîêàçàòåëüñòâî   ôîðìóëû   F.

                                                                       5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â   ⇐⇒
                              ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ   TAUT.
⇐=:
      Îïòèìàëüíûé ïîëóàëãîðèòì    O   ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ
      íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç    P.




                                                                      5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â      ⇐⇒
                                 ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ    TAUT.
⇐=:
      Îïòèìàëüíûé ïîëóàëãîðèòì       O   ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ
      íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç         P.
      Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ       Π,   ëåãêî (çà ïîëèíîìèàëüíîå
      âðåìÿ) çàïèñàòü òàâòîëîãèþ     ConΠ,n , îçíà÷àþùóþ  Π êîððåêòíà
      äëÿ ôîðìóë ðàçìåðà   n.




                                                                            5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â        ⇐⇒
                                   ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ    TAUT.
⇐=:
      Îïòèìàëüíûé ïîëóàëãîðèòì         O   ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ
      íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç           P.
      Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ         Π,   ëåãêî (çà ïîëèíîìèàëüíîå
      âðåìÿ) çàïèñàòü òàâòîëîãèþ       ConΠ,n , îçíà÷àþùóþ  Π êîððåêòíà
      äëÿ ôîðìóë ðàçìåðà     n.
      Çíà÷èò,   O   ïîëèíîìèàëåí íà    CΠ = {ConΠ,n }n∈N .




                                                                              5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â           ⇐⇒
                                      ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ      TAUT.
⇐=:
      Îïòèìàëüíûé ïîëóàëãîðèòì            O   ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ
      íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç                P.
      Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ              Π,   ëåãêî (çà ïîëèíîìèàëüíîå
      âðåìÿ) çàïèñàòü òàâòîëîãèþ          ConΠ,n , îçíà÷àþùóþ  Π êîððåêòíà
      äëÿ ôîðìóë ðàçìåðà     n.
      Çíà÷èò,   O   ïîëèíîìèàëåí íà       CΠ = {ConΠ,n }n∈N .
      Îïòèìàëüíîå äîê-âî ôîðìóëû            F ðàçìåðà n:
          Íîìåð ñèñòåìû    Π;
          Ïðîòîêîë ðàáîòû    O   íà   ConΠ,n   ;

          Π-äîêàçàòåëüñòâî   ôîðìóëû       F.

                                                                                   5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â        ⇐⇒
                                   ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ   TAUT.
=⇒:
      Ïóñòü   Π      p-îïòèìàëüíàÿ.




                                                                         5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â         ⇐⇒
                                    ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ    TAUT.
=⇒:
      Ïóñòü   Π      p-îïòèìàëüíàÿ.
      Îïòèìàëüíûé ïîëóàëãîðèòì: ïàðàëëåëüíûé çàïóñê âñåõ       Oi ,
      ïðåòåíäóþùèõ íà âûäà÷ó       Π-äîêàçàòåëüñòâ.
      Âûäàííîå    Oi                       Π;
                        äîê-âî ïðîâåðÿåòñÿ
      åñëè ïðàâèëüíîå  âåðíóòü 1.




                                                                           5/6
Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ


Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA
             %§        —
∃   p-îïòèìàëüíàÿ ñèñòåìà äîê-â         ⇐⇒
                                    ∃   îïòèìàëüíûé ïîëóàëãîðèòì äëÿ         TAUT.
=⇒:
      Ïóñòü   Π      p-îïòèìàëüíàÿ.
      Îïòèìàëüíûé ïîëóàëãîðèòì: ïàðàëëåëüíûé çàïóñê âñåõ            Oi ,
      ïðåòåíäóþùèõ íà âûäà÷ó        Π-äîêàçàòåëüñòâ.
      Âûäàííîå    Oi    äîê-âî ïðîâåðÿåòñÿΠ;
      åñëè ïðàâèëüíîå  âåðíóòü 1.


      Ïî   p-îïòèìàëüíîñòè Π äëÿ ëþáîãî àëãîðèòìà A åãî ïðîòîêîë
      ìîæåò áûòü çà ïîëèíîìèàëüíîå âðåìÿ ïðåîáðàçîâàí â             Π-äîê-âî
      íåêîòîðûì       f . Êîìïîçèöèÿ A è f   èìååòñÿ â   {Oi }i .


                                                                                5/6
p -Optimal     proof system from optimal acceptor

for any paddable language [Messner, 99]


he(nition
L is paddable if there is an injective non-length-decreasing polynomial-time
padding function   padL : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is polynomial-time
invertible on its image and such that ∀x , w (x ∈ L ⇐⇒ padL (x , w ) ∈ L).


Optimal proof:

    description of proof system      Π;
    Π-proof π of F ;
     t
    1 (for how long    can we work?).

Verication:

    run optimal acceptor on     padL (x , π);
    for a correct proof, it accepts in a polynomial time because for a
    correct system   Π,   the set   {padL (x , π) | x ∈ L, Π(x , π) = 1} ⊆ L   can
    be accepted in a polynomial time.
                                                                                 6/6

More Related Content

What's hot

Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм Бухбергера
Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм БухбергераИван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм Бухбергера
Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм БухбергераYandex
 
Гидротаран Марухина_Основные формулы
Гидротаран Марухина_Основные формулыГидротаран Марухина_Основные формулы
Гидротаран Марухина_Основные формулыVõ Hồng Quý
 
PhD_Presentation.25.12.14 final yellow
PhD_Presentation.25.12.14 final yellowPhD_Presentation.25.12.14 final yellow
PhD_Presentation.25.12.14 final yellowJovan Stosic
 
20080309 cryptography hirsch_lecture04
20080309 cryptography hirsch_lecture0420080309 cryptography hirsch_lecture04
20080309 cryptography hirsch_lecture04Computer Science Club
 
Toan pt.de036.2011
Toan pt.de036.2011Toan pt.de036.2011
Toan pt.de036.2011BẢO Hí
 
20080413 machine learning_nikolenko_lecture09
20080413 machine learning_nikolenko_lecture0920080413 machine learning_nikolenko_lecture09
20080413 machine learning_nikolenko_lecture09Computer Science Club
 
20090315 hardnessvsrandomness itsykson_lecture03
20090315 hardnessvsrandomness itsykson_lecture0320090315 hardnessvsrandomness itsykson_lecture03
20090315 hardnessvsrandomness itsykson_lecture03Computer Science Club
 
20071014 introductory course_itsykson_lecture04
20071014 introductory course_itsykson_lecture0420071014 introductory course_itsykson_lecture04
20071014 introductory course_itsykson_lecture04Computer Science Club
 
20080420 machine learning_nikolenko_lecture10
20080420 machine learning_nikolenko_lecture1020080420 machine learning_nikolenko_lecture10
20080420 machine learning_nikolenko_lecture10Computer Science Club
 
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdf
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdfbai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdf
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdfTrần Thân
 
Д. М. Ицыксон. Вводный курс. Лекция 1
Д. М. Ицыксон. Вводный курс. Лекция 1Д. М. Ицыксон. Вводный курс. Лекция 1
Д. М. Ицыксон. Вводный курс. Лекция 1Computer Science Club
 
Bogdanovych mat p_4.ua_(035-14)_s
Bogdanovych mat p_4.ua_(035-14)_sBogdanovych mat p_4.ua_(035-14)_s
Bogdanovych mat p_4.ua_(035-14)_sdella street
 
4 klas-matematyka-lyshenko-2021-2
4 klas-matematyka-lyshenko-2021-24 klas-matematyka-lyshenko-2021-2
4 klas-matematyka-lyshenko-2021-2cgf gfgfg
 

What's hot (18)

Biedaalt
BiedaaltBiedaalt
Biedaalt
 
Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм Бухбергера
Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм БухбергераИван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм Бухбергера
Иван Аржанцев - Системы уравнений, базисы Грёбнера и алгоритм Бухбергера
 
Гидротаран Марухина_Основные формулы
Гидротаран Марухина_Основные формулыГидротаран Марухина_Основные формулы
Гидротаран Марухина_Основные формулы
 
PhD_Presentation.25.12.14 final yellow
PhD_Presentation.25.12.14 final yellowPhD_Presentation.25.12.14 final yellow
PhD_Presentation.25.12.14 final yellow
 
20080309 cryptography hirsch_lecture04
20080309 cryptography hirsch_lecture0420080309 cryptography hirsch_lecture04
20080309 cryptography hirsch_lecture04
 
Chuong11
Chuong11Chuong11
Chuong11
 
Toan pt.de036.2011
Toan pt.de036.2011Toan pt.de036.2011
Toan pt.de036.2011
 
20080413 machine learning_nikolenko_lecture09
20080413 machine learning_nikolenko_lecture0920080413 machine learning_nikolenko_lecture09
20080413 machine learning_nikolenko_lecture09
 
20090315 hardnessvsrandomness itsykson_lecture03
20090315 hardnessvsrandomness itsykson_lecture0320090315 hardnessvsrandomness itsykson_lecture03
20090315 hardnessvsrandomness itsykson_lecture03
 
20071014 introductory course_itsykson_lecture04
20071014 introductory course_itsykson_lecture0420071014 introductory course_itsykson_lecture04
20071014 introductory course_itsykson_lecture04
 
Ορόσημο Φροντιστήριο (Αθήνα). Βοήθημα μαθηματικών Α' λυκείου 2015 |
Ορόσημο Φροντιστήριο (Αθήνα). Βοήθημα μαθηματικών Α' λυκείου 2015 |Ορόσημο Φροντιστήριο (Αθήνα). Βοήθημα μαθηματικών Α' λυκείου 2015 |
Ορόσημο Φροντιστήριο (Αθήνα). Βοήθημα μαθηματικών Α' λυκείου 2015 |
 
20080420 machine learning_nikolenko_lecture10
20080420 machine learning_nikolenko_lecture1020080420 machine learning_nikolenko_lecture10
20080420 machine learning_nikolenko_lecture10
 
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdf
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdfbai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdf
bai-tap-lon-ly-thuyet-dieu-khien-tu-dong-pdf
 
2013 03 17_computer_science_seminar
2013 03 17_computer_science_seminar2013 03 17_computer_science_seminar
2013 03 17_computer_science_seminar
 
Д. М. Ицыксон. Вводный курс. Лекция 1
Д. М. Ицыксон. Вводный курс. Лекция 1Д. М. Ицыксон. Вводный курс. Лекция 1
Д. М. Ицыксон. Вводный курс. Лекция 1
 
20091004 mfcs itsykson_lecture04
20091004 mfcs itsykson_lecture0420091004 mfcs itsykson_lecture04
20091004 mfcs itsykson_lecture04
 
Bogdanovych mat p_4.ua_(035-14)_s
Bogdanovych mat p_4.ua_(035-14)_sBogdanovych mat p_4.ua_(035-14)_s
Bogdanovych mat p_4.ua_(035-14)_s
 
4 klas-matematyka-lyshenko-2021-2
4 klas-matematyka-lyshenko-2021-24 klas-matematyka-lyshenko-2021-2
4 klas-matematyka-lyshenko-2021-2
 

Viewers also liked

20071111 efficientalgorithms kulikov_lecture05
20071111 efficientalgorithms kulikov_lecture0520071111 efficientalgorithms kulikov_lecture05
20071111 efficientalgorithms kulikov_lecture05Computer Science Club
 
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...Computer Science Club
 
20080330 machine learning_nikolenko_lecture07
20080330 machine learning_nikolenko_lecture0720080330 machine learning_nikolenko_lecture07
20080330 machine learning_nikolenko_lecture07Computer Science Club
 
20080330 efficientalgorithms kulikov_lecture20
20080330 efficientalgorithms kulikov_lecture2020080330 efficientalgorithms kulikov_lecture20
20080330 efficientalgorithms kulikov_lecture20Computer Science Club
 
Д. М. Ицыксон. Вводный курс. Лекция 3
Д. М. Ицыксон. Вводный курс. Лекция 3Д. М. Ицыксон. Вводный курс. Лекция 3
Д. М. Ицыксон. Вводный курс. Лекция 3Computer Science Club
 
20101007 proof complexity_hirsch_lecture04
20101007 proof complexity_hirsch_lecture0420101007 proof complexity_hirsch_lecture04
20101007 proof complexity_hirsch_lecture04Computer Science Club
 
20110224 systems of_typed_lambda_calculi_moskvin_lecture02
20110224 systems of_typed_lambda_calculi_moskvin_lecture0220110224 systems of_typed_lambda_calculi_moskvin_lecture02
20110224 systems of_typed_lambda_calculi_moskvin_lecture02Computer Science Club
 
20110224 systems of_typed_lambda_calculi_moskvin_lecture01
20110224 systems of_typed_lambda_calculi_moskvin_lecture0120110224 systems of_typed_lambda_calculi_moskvin_lecture01
20110224 systems of_typed_lambda_calculi_moskvin_lecture01Computer Science Club
 
20110515 csseminar velder_otsenki dlini slov
20110515 csseminar velder_otsenki dlini slov20110515 csseminar velder_otsenki dlini slov
20110515 csseminar velder_otsenki dlini slovComputer Science Club
 
20110515 systems of typed lambda_calculi_moskvin_lecture10
20110515 systems of typed lambda_calculi_moskvin_lecture1020110515 systems of typed lambda_calculi_moskvin_lecture10
20110515 systems of typed lambda_calculi_moskvin_lecture10Computer Science Club
 
20110409 quantum algorithms_vyali_lecture09
20110409 quantum algorithms_vyali_lecture0920110409 quantum algorithms_vyali_lecture09
20110409 quantum algorithms_vyali_lecture09Computer Science Club
 

Viewers also liked (15)

20071111 efficientalgorithms kulikov_lecture05
20071111 efficientalgorithms kulikov_lecture0520071111 efficientalgorithms kulikov_lecture05
20071111 efficientalgorithms kulikov_lecture05
 
20100822 computervision veksler
20100822 computervision veksler20100822 computervision veksler
20100822 computervision veksler
 
20101209 dnaseq pevzner
20101209 dnaseq pevzner20101209 dnaseq pevzner
20101209 dnaseq pevzner
 
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
Юрий Владимирович Матиясевич. Десятая проблема Гильберта. Решение и применени...
 
20080330 machine learning_nikolenko_lecture07
20080330 machine learning_nikolenko_lecture0720080330 machine learning_nikolenko_lecture07
20080330 machine learning_nikolenko_lecture07
 
20091206 mfcs itsykson_lecture08
20091206 mfcs itsykson_lecture0820091206 mfcs itsykson_lecture08
20091206 mfcs itsykson_lecture08
 
20080330 efficientalgorithms kulikov_lecture20
20080330 efficientalgorithms kulikov_lecture2020080330 efficientalgorithms kulikov_lecture20
20080330 efficientalgorithms kulikov_lecture20
 
Д. М. Ицыксон. Вводный курс. Лекция 3
Д. М. Ицыксон. Вводный курс. Лекция 3Д. М. Ицыксон. Вводный курс. Лекция 3
Д. М. Ицыксон. Вводный курс. Лекция 3
 
20101007 proof complexity_hirsch_lecture04
20101007 proof complexity_hirsch_lecture0420101007 proof complexity_hirsch_lecture04
20101007 proof complexity_hirsch_lecture04
 
20110224 systems of_typed_lambda_calculi_moskvin_lecture02
20110224 systems of_typed_lambda_calculi_moskvin_lecture0220110224 systems of_typed_lambda_calculi_moskvin_lecture02
20110224 systems of_typed_lambda_calculi_moskvin_lecture02
 
20110224 systems of_typed_lambda_calculi_moskvin_lecture01
20110224 systems of_typed_lambda_calculi_moskvin_lecture0120110224 systems of_typed_lambda_calculi_moskvin_lecture01
20110224 systems of_typed_lambda_calculi_moskvin_lecture01
 
20110227 csseminar alvor_breslav
20110227 csseminar alvor_breslav20110227 csseminar alvor_breslav
20110227 csseminar alvor_breslav
 
20110515 csseminar velder_otsenki dlini slov
20110515 csseminar velder_otsenki dlini slov20110515 csseminar velder_otsenki dlini slov
20110515 csseminar velder_otsenki dlini slov
 
20110515 systems of typed lambda_calculi_moskvin_lecture10
20110515 systems of typed lambda_calculi_moskvin_lecture1020110515 systems of typed lambda_calculi_moskvin_lecture10
20110515 systems of typed lambda_calculi_moskvin_lecture10
 
20110409 quantum algorithms_vyali_lecture09
20110409 quantum algorithms_vyali_lecture0920110409 quantum algorithms_vyali_lecture09
20110409 quantum algorithms_vyali_lecture09
 

More from Computer Science Club

20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugsComputer Science Club
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12Computer Science Club
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11Computer Science Club
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10Computer Science Club
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09Computer Science Club
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02Computer Science Club
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01Computer Science Club
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04Computer Science Club
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01Computer Science Club
 

More from Computer Science Club (20)

20141223 kuznetsov distributed
20141223 kuznetsov distributed20141223 kuznetsov distributed
20141223 kuznetsov distributed
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04
 
20140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-0320140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-03
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01
 
20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 

20100930 proof complexity_hirsch_lecture03

  • 1. Ñëîæíîñòü ïðîïîçèöèîíàëüíûõ äîêàçàòåëüñòâ Ýäóàðä Àëåêñååâè÷ Ãèðø http://logic.pdmi.ras.ru/~hirsch ÏÎÌÈ ÐÀÍ 30 ñåíòÿáðÿ 2010 ã. 1/6
  • 2. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} yt = xt ( èëè yt = ¬xt ). 2/6
  • 3. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. 2/6
  • 4. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. íàäî âû÷èñëèòü ñóììó t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c . 2/6
  • 5. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. íàäî âû÷èñëèòü ñóììó t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c . Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i = Fi ⊕ Gi ⊕ (Fj ∧ Gj ∧ (Fl ⊕ Gl )). 0≤j i j l i 2/6
  • 6. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. íàäî âû÷èñëèòü ñóììó t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c . Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i = Fi ⊕ Gi ⊕ (Fj ∧ Gj ∧ (Fl ⊕ Gl )). 0≤j i j l i SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi . CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ). 2/6
  • 7. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. íàäî âû÷èñëèòü ñóììó t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c . Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i = Fi ⊕ Gi ⊕ (Fj ∧ Gj ∧ (Fl ⊕ Gl )). 0≤j i j l i SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi . CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ). SUM(c1 y1 , . . . , cn yn ): ñêëàäûâàåì SAdd, CAdd, ïîñëåäíèå Add. 2/6
  • 8. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ïðåäñòàâëåíèå ëèíåéíûõ íåðàâåíñòâ ïîáèòíîå êîäèðîâàíèå ÷èñåë ôîðìóëàìè; íåðàâåíñòâà âèäà t ct yt ≥ c , ãäå ct , c ≥ 0, yt ∈ {0, 1} (yt = xt èëè yt = ¬xt ). ct · yt ýòî (Y0 , . . . , Yk ), ãäå Yi = yt , åñëè (ct )i = 1; èíà÷å Yi = False. íàäî âû÷èñëèòü ñóììó t ct yt äëÿ yt ∈ {0, 1} è ñðàâíèòü ñ c . Add((F0 , . . . , Fk ), (G0 , . . . , Gk ))i = Fi ⊕ Gi ⊕ (Fj ∧ Gj ∧ (Fl ⊕ Gl )). 0≤j i j l i SAdd(F , G , H )i = Fi ⊕ Gi ⊕ Hi . CAdd(F , G , H )i +1 = (Fi ∧ Gi ) ∨ (Fi ∧ Hi ) ∨ (Gi ∧ Hi ). SUM(c1 y1 , . . . , cn yn ): ñêëàäûâàåì SAdd, CAdd, ïîñëåäíèå Add. F G ïðåäñòàâëÿåòñÿ êàê (Fi ∧ ¬Gi ∧ (Fj ≡ Gj )). i j i 2/6
  • 9. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : 3/6
  • 10. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . 3/6
  • 11. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) t t t t i ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t i t 3/6
  • 12. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t 3/6
  • 13. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t äîêàæåì F ≥G ∧ F ≥G ⊃ Add(F , F ) ≥ Add(G , G ). 3/6
  • 14. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t äîêàæåì F ≥G ∧ F ≥G ⊃ Add(F , F ) ≥ Add(G , G ). óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . . 3/6
  • 15. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t äîêàæåì F ≥G ∧ F ≥G ⊃ Add(F , F ) ≥ Add(G , G ). óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . . îêðóãëåíèå (act )yt ≥ ac + r (r a) ct yt ≥ c + 1 3/6
  • 16. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t äîêàæåì F ≥G ∧ F ≥G ⊃ Add(F , F ) ≥ Add(G , G ) . óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . . îêðóãëåíèå (act )yt ≥ ac + r (r a) ct yt ≥ c + 1 ðàçáîð ñëó÷àåâ (ò.å. äîê-âî îò ïðîòèâíîãî): SUM(. . . , ct yt , . . .) ≥ c + 1 ∨ ¬(SUM(. . . , ct yt , . . .) ≥ c + 1), èç âòîðîãî ñëåäóåò ≤ c, óìíîæèì îáðàòíî íà a. . . . 3/6
  • 17. Ìîäåëèðîâàíèå ñåêóùèõ ïëîñêîñòåé â ñèñòåìàõ Ôðåãå Ìîäåëèðîâàíèå ïðàâèë ïðîñóììèðóåì ct yt ≥ c è dt yt ≥ d : äîêàæåì ïî èíäóêöèè, ÷òî Add(SUM(. . . , ct yt , . . .), SUM(. . . , dt yt , . . .)) ≡ SUM(. . . , (ct + dt )yt , . . . ðàâåíñòâî Add(c y , d y ) ≡ (c + d ) y ðàçáîð ñëó÷àåâ. t t t t i t t i t y + ¬y àíàëîãè÷íî. t t äîêàæåì F ≥G ∧ F ≥G ⊃ Add(F , F ) ≥ Add(G , G ) . óìíîæåíèå (äåëåíèå) íà êîíñòàíòó. . . îêðóãëåíèå (act )yt ≥ ac + r (r a) ct yt ≥ c + 1 ðàçáîð ñëó÷àåâ (ò.å. äîê-âî îò ïðîòèâíîãî): SUM(. . . , ct yt , . . .) ≥ c + 1 ∨ ¬(SUM(. . . , ct yt , . . .) ≥ c + 1), èç âòîðîãî ñëåäóåò ≤ c, óìíîæèì îáðàòíî íà a. . . . ñâîéñòâà íóëÿ: Add(F , 0)i ≡ Fi è 0 1. SUM(0y1 , . . . , 0yn ) ≥ 1, î÷åâèäíî, ëîæíî. 3/6
  • 18. Îïòèìàëüíûå ïîëóàëãîðèòìû Îïðåäåëåíèå A îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒ äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L timeA (x ) ≤ p(timeA (x ) + |x |). 4/6
  • 19. Îïòèìàëüíûå ïîëóàëãîðèòìû Îïðåäåëåíèå A îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒ äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L timeA (x ) ≤ p(timeA (x ) + |x |). Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà SAT: çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí âûäàòü. 4/6
  • 20. Îïòèìàëüíûå ïîëóàëãîðèòìû Îïðåäåëåíèå A îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒ äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L timeA (x ) ≤ p(timeA (x ) + |x |). Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà SAT: çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí âûäàòü. Çàìå÷àíèå Ëåâèíñêèé àëãîðèòì íå äëÿ ÿçûêà TAUT. 4/6
  • 21. Îïòèìàëüíûå ïîëóàëãîðèòìû Îïðåäåëåíèå A îïòèìàëüíûé ïîëóàëãîðèòì äëÿ L ⇐⇒ äëÿ âñÿêîãî A èìååòñÿ ïîëèíîì p , ò.÷. ∀x ∈ L timeA (x ) ≤ p(timeA (x ) + |x |). Ëåâèíñêèé îïòèìàëüíûé àëãîðèòì äëÿ ðåøåíèÿ çàäà÷è ïîèñêà SAT: çàïóñòèòü ïàðàëëåëüíî âñå âîçìîæíûå àëãîðèòìû, ïðîâåðèòü âûäàííûé âûïîëíÿþùèé íàáîð, åñëè âåðåí âûäàòü. Çàìå÷àíèå Ëåâèíñêèé àëãîðèòì íå äëÿ ÿçûêà TAUT. . . . è íå äëÿ ÿçûêà SAT. 4/6
  • 22. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. 5/6
  • 23. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. ⇐=: Îïòèìàëüíîå äîê-âî ôîðìóëû F ðàçìåðà n: Íîìåð ñèñòåìû Π; Π-äîêàçàòåëüñòâî ôîðìóëû F. 5/6
  • 24. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. ⇐=: Îïòèìàëüíûé ïîëóàëãîðèòì O ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç P. 5/6
  • 25. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. ⇐=: Îïòèìàëüíûé ïîëóàëãîðèòì O ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç P. Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ Π, ëåãêî (çà ïîëèíîìèàëüíîå âðåìÿ) çàïèñàòü òàâòîëîãèþ ConΠ,n , îçíà÷àþùóþ Π êîððåêòíà äëÿ ôîðìóë ðàçìåðà n. 5/6
  • 26. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. ⇐=: Îïòèìàëüíûé ïîëóàëãîðèòì O ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç P. Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ Π, ëåãêî (çà ïîëèíîìèàëüíîå âðåìÿ) çàïèñàòü òàâòîëîãèþ ConΠ,n , îçíà÷àþùóþ Π êîððåêòíà äëÿ ôîðìóë ðàçìåðà n. Çíà÷èò, O ïîëèíîìèàëåí íà CΠ = {ConΠ,n }n∈N . 5/6
  • 27. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. ⇐=: Îïòèìàëüíûé ïîëóàëãîðèòì O ðàáîòàåò ïîëèíîìèàëüíîå âðåìÿ íà ëþáîì ïîäìíîæåñòâå òàâòîëîãèé èç P. Äëÿ ëþáîé ñèñòåìû äîêàçàòåëüñòâ Π, ëåãêî (çà ïîëèíîìèàëüíîå âðåìÿ) çàïèñàòü òàâòîëîãèþ ConΠ,n , îçíà÷àþùóþ Π êîððåêòíà äëÿ ôîðìóë ðàçìåðà n. Çíà÷èò, O ïîëèíîìèàëåí íà CΠ = {ConΠ,n }n∈N . Îïòèìàëüíîå äîê-âî ôîðìóëû F ðàçìåðà n: Íîìåð ñèñòåìû Π; Ïðîòîêîë ðàáîòû O íà ConΠ,n ; Π-äîêàçàòåëüñòâî ôîðìóëû F. 5/6
  • 28. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. =⇒: Ïóñòü Π p-îïòèìàëüíàÿ. 5/6
  • 29. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. =⇒: Ïóñòü Π p-îïòèìàëüíàÿ. Îïòèìàëüíûé ïîëóàëãîðèòì: ïàðàëëåëüíûé çàïóñê âñåõ Oi , ïðåòåíäóþùèõ íà âûäà÷ó Π-äîêàçàòåëüñòâ. Âûäàííîå Oi Π; äîê-âî ïðîâåðÿåòñÿ åñëè ïðàâèëüíîå âåðíóòü 1. 5/6
  • 30. Îïòèìàëüíûå ïîëóàëãîðèòìû vs ñèñòåìû äîêàçàòåëüñòâ Òåîðåìà @ur—j¡™ekD €udl¡kD IWVWA %§ — ∃ p-îïòèìàëüíàÿ ñèñòåìà äîê-â ⇐⇒ ∃ îïòèìàëüíûé ïîëóàëãîðèòì äëÿ TAUT. =⇒: Ïóñòü Π p-îïòèìàëüíàÿ. Îïòèìàëüíûé ïîëóàëãîðèòì: ïàðàëëåëüíûé çàïóñê âñåõ Oi , ïðåòåíäóþùèõ íà âûäà÷ó Π-äîêàçàòåëüñòâ. Âûäàííîå Oi äîê-âî ïðîâåðÿåòñÿΠ; åñëè ïðàâèëüíîå âåðíóòü 1. Ïî p-îïòèìàëüíîñòè Π äëÿ ëþáîãî àëãîðèòìà A åãî ïðîòîêîë ìîæåò áûòü çà ïîëèíîìèàëüíîå âðåìÿ ïðåîáðàçîâàí â Π-äîê-âî íåêîòîðûì f . Êîìïîçèöèÿ A è f èìååòñÿ â {Oi }i . 5/6
  • 31. p -Optimal proof system from optimal acceptor for any paddable language [Messner, 99] he(nition L is paddable if there is an injective non-length-decreasing polynomial-time padding function padL : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is polynomial-time invertible on its image and such that ∀x , w (x ∈ L ⇐⇒ padL (x , w ) ∈ L). Optimal proof: description of proof system Π; Π-proof π of F ; t 1 (for how long can we work?). Verication: run optimal acceptor on padL (x , π); for a correct proof, it accepts in a polynomial time because for a correct system Π, the set {padL (x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can be accepted in a polynomial time. 6/6