MAT225 TEST3A Name:
Show all work algebraically if possible.
RVF (Question 1) s(t), v(t), a(t) 
 
(1) A bullet is shot upward from the surface of the Moon such that 
 
(t) 60t .8ty = 1 − 0 2
 
[y] = meters, [t] = seconds, t≥0. 
 
(1a) Find y‘(t) 
(1b) Calculate y‘(0) 
(1c) Solve for t when y’(t) = 0. 
(1d) What is the maximum height? 
(1e) How fast is the bullet moving when it hits the ground? 
 
 
   
TEST3A page: 1
MAT225 TEST3A Name:
Show all work algebraically if possible.
 
   
TEST3A page: 2
MAT225 TEST3A Name:
Show all work algebraically if possible.
RVG (Question 2) a(t), v(t), s(t) 
 
(2) Find f(x) such that f(x) is a function defined for all with these properties:−x > 5  
 
(i) f ”(x) =​
1
3√x+5
 
(ii) tangent line to the graph of f at (4,2) makes a 45° angle with the x-axis. 
 
   
TEST3A page: 3
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 4
MAT225 TEST3A Name:
Show all work algebraically if possible.
(1) Dot Products 
 
Given the triangle ABC, A(1,1), B(4,1) and C(4,4): 
 
(1a) Find the components of the vectors ​AB​ and ​AC​. 
(1b) Calculate the magnitudes of the vectors ​AB​ and ​AC​. 
(1c) Use the Dot Product of ​AB​ and ​AC​ to find the measure of angle A. 
(1d) What is the area of ABC?Δ  
(1e) Let​ , does​ equal the triangle area?s = 2
a+b+c
√s(s )(s )(s )− a − b − c  
 
   
TEST3A page: 5
MAT225 TEST3A Name:
Show all work algebraically if possible.
TEST3A page: 6
MAT225 TEST3A Name:
Show all work algebraically if possible.
(2) Cross Products 
 
Given the triangle ABC, A(1,1), B(4,1) and C(4,4): 
 
(2a) Find the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​. 
(2b) Sum the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​. 
(2c) What is the magnitude of the sum of these Cross Products? 
(2d) Is there a relationship between this magnitude and the triangle area? 
 
   
TEST3A page: 7
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 8
MAT225 TEST3A Name:
Show all work algebraically if possible.
(3) Determinants 
 
Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>: 
 
(3a) Find ​u​ • (​v​ x ​w​). 
(3b) What does this value measure? 
   
TEST3A page: 9
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 10
MAT225 TEST3A Name:
Show all work algebraically if possible.
(4) Determinants 
 
Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>: 
 
(4a) Find det(​u​,​v​,​w​). 
(4b) What does this value measure? 
   
TEST3A page: 11
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 12
MAT225 TEST3A Name:
Show all work algebraically if possible.
(5) Iterated Integrals 
 
Consider the area in the xy-plane bounded by: ,− √4 − y2 ≤ x ≤ √4 − y2 .0 ≤ y ≤ 2  
 
ydxA = ∫
2
−2
∫
√4−x2
0
d  
 
(5a) Draw this region labeling a vertical Riemann Rectangle with thickness dx. 
(5b) Explain how to setup this integral in terms of dydx to calculate the area. 
(5c) Evaluate your integral in terms of dydx. 
   
TEST3A page: 13
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 14
MAT225 TEST3A Name:
Show all work algebraically if possible.
(5) Iterated Integrals 
 
Consider the area in the xy-plane bounded by: ,− √4 − y2 ≤ x ≤ √4 − y2 .0 ≤ y ≤ 2  
 
ydxA = ∫
2
−2
∫
√4−x2
0
d  
 
(5d) ReWrite this integral in terms of dxdy to calculate the area. 
(5e) ReEvaluate your integral in terms of dxdy. 
 
(5f) ReWrite this integral in terms of to calculate the area.drdθr  
(5g) ReEvaluate your integral in terms of​ drdθ.r    
TEST3A page: 15
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 16
MAT225 TEST3A Name:
Show all work algebraically if possible.
(6) Iterated Integrals 
 
Find the volume of the solid bounded by the surface f(x,y)=1-xy above the 
triangle bounded by y=x, y=1 and x=0. 
 
(1 y) dxdyV = ∫
1
0
∫
y
0
− x  
 
(6a) Explain how to set up an integral to calculate this volume in terms of dxdy. 
(6b) Evaluate your double integral. 
 
(6c) ReWrite the integral terms of dydx. 
(6d) Evaluate your double integral. 
    
TEST3A page: 17
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 18
MAT225 TEST3A Name:
Show all work algebraically if possible.
(7) Line Integrals 
 
Calculate a line integral to find the mass of a wire given density and the path C:ρ   
 
Density Function (x, ) yρ = F y = x  
Along the path C: r(t)=<4t, 3t> such that 0 ≤ t ≤ 1  
 
(7a) Find ds=|r’(t)|dt 
(7b) Write the line integral in terms of t.ds∫
C
F  
(7c) Evaluate your integral. 
 
 
   
TEST3A page: 19
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 20
MAT225 TEST3A Name:
Show all work algebraically if possible.
(8) Work Done By A Conservative Field 
 
Given the Vector Field​ (x, ) < x y , 2x xyF y = a 2
+ y3
+ 1 3
+ b 2
+ 2 >  
 
(8a) Find the values of and b for which F is conservative. 
(8b) Using these values of a and b, find f(x,y) such that F = gradient(f). 
(8c) Find the work done through ​F​,​ along the curve C:dr,∫F   
 
(t) cos(t), y(t) sin(t), 0x = et
= et
≤ t ≤ π  
   
TEST3A page: 21
MAT225 TEST3A Name:
Show all work algebraically if possible.
 
   
TEST3A page: 22
MAT225 TEST3A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold! 
 
Power Functions: 
x nxd
dx
n
= n−1
 
 
Trig Functions: 
sin(x) os(x)d
dx = c cos(x) in(x)d
dx = − s  
tan(x) (x)d
dx = sec2
cot(x) (x)d
dx = − csc2
 
sec(x) ec(x) tan(x)d
dx = s csc(x) sc(x) cot(x)d
dx = − c  
 
Transcendental Functions: 
ed
dx
x
= ex a n(a) ad
dx
x
= l x
 
ln(x)d
dx = x
1
log (x)d
dx a = 1
ln(a) x
1
 
 
Inverse Trig Functions: 
sin (x)d
dx
−1
= 1
√1−x2
cos (x)d
dx
−1
= −1
√1−x2
 
tan (x)d
dx
−1
= 1
1+x2 cot (x)d
dx
−1
= −1
1+x2  
 
Product Rule: 
f(x) g(x) (x) g (x) (x) f (x)d
dx = f ′ + g ′  
 
Quotient Rule: 
d
dx
f(x)
g(x) = g (x)2
g(x) f (x) − f(x) g (x)′ ′
 
 
Chain Rule: 
f(g(x)) (g(x)) g (x)d
dx = f′ ′  
 
Difference Quotient: 
f’(x) =​ lim
h→0
h
f(x+h) − f(x)
   
TEST3A page: 23
MAT225 TEST3A Name:
Show all work algebraically if possible.
Reference Sheet: Anti-Derivatives You Should Know Cold! 
 
Power Functions: 
dx x∫xn
= n n−1
 
 
Trig Functions: 
os(x)dx in(x)∫c = s + C in(x)dx os(x)∫s = − c + C  
ec (x)dx an(x)∫s 2
= t + C sc (x)dx ot(x)∫c 2
= − c + C  
ec(x)tan(x)dx ec(x)∫s = s + C sc(x)cos(x)dx sc(x)∫c = − c + C  
 
 
Transcendental Functions: 
dx e∫ex
= x
+ C dx∫ax
= ax
ln(a)
+ C  
dx n(x)∫ x
1
= l + C dx log (x)∫ 1
ln(a) x
1
= a + C  
 
Inverse Trig Functions: 
dx sin (x)∫ 1
√1−x2
= −1
+ C dx cos(x)∫ −1
√1−x2
= + C  
dx tan (x)∫ 1
1+x2 = −1
+ C dx cot (x)∫ −1
1+x2 = −1
+ C  
 
Integration By Parts (Product Rule): 
dv uv du∫u = −∫v + C  
 
Integration By Partial Fractions Example (Quotient Rule): 
∫ dx
x(x+1) = ∫ x
Adx
+∫ x+1
Bdx
TEST3A page: 24

2020 preTEST3A

  • 1.
    MAT225 TEST3A Name: Showall work algebraically if possible. RVF (Question 1) s(t), v(t), a(t)    (1) A bullet is shot upward from the surface of the Moon such that    (t) 60t .8ty = 1 − 0 2   [y] = meters, [t] = seconds, t≥0.    (1a) Find y‘(t)  (1b) Calculate y‘(0)  (1c) Solve for t when y’(t) = 0.  (1d) What is the maximum height?  (1e) How fast is the bullet moving when it hits the ground?          TEST3A page: 1
  • 2.
    MAT225 TEST3A Name: Showall work algebraically if possible.       TEST3A page: 2
  • 3.
    MAT225 TEST3A Name: Showall work algebraically if possible. RVG (Question 2) a(t), v(t), s(t)    (2) Find f(x) such that f(x) is a function defined for all with these properties:−x > 5     (i) f ”(x) =​ 1 3√x+5   (ii) tangent line to the graph of f at (4,2) makes a 45° angle with the x-axis.        TEST3A page: 3
  • 4.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 4
  • 5.
    MAT225 TEST3A Name: Showall work algebraically if possible. (1) Dot Products    Given the triangle ABC, A(1,1), B(4,1) and C(4,4):    (1a) Find the components of the vectors ​AB​ and ​AC​.  (1b) Calculate the magnitudes of the vectors ​AB​ and ​AC​.  (1c) Use the Dot Product of ​AB​ and ​AC​ to find the measure of angle A.  (1d) What is the area of ABC?Δ   (1e) Let​ , does​ equal the triangle area?s = 2 a+b+c √s(s )(s )(s )− a − b − c         TEST3A page: 5
  • 6.
    MAT225 TEST3A Name: Showall work algebraically if possible. TEST3A page: 6
  • 7.
    MAT225 TEST3A Name: Showall work algebraically if possible. (2) Cross Products    Given the triangle ABC, A(1,1), B(4,1) and C(4,4):    (2a) Find the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​.  (2b) Sum the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​.  (2c) What is the magnitude of the sum of these Cross Products?  (2d) Is there a relationship between this magnitude and the triangle area?        TEST3A page: 7
  • 8.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 8
  • 9.
    MAT225 TEST3A Name: Showall work algebraically if possible. (3) Determinants    Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>:    (3a) Find ​u​ • (​v​ x ​w​).  (3b) What does this value measure?      TEST3A page: 9
  • 10.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 10
  • 11.
    MAT225 TEST3A Name: Showall work algebraically if possible. (4) Determinants    Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>:    (4a) Find det(​u​,​v​,​w​).  (4b) What does this value measure?      TEST3A page: 11
  • 12.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 12
  • 13.
    MAT225 TEST3A Name: Showall work algebraically if possible. (5) Iterated Integrals    Consider the area in the xy-plane bounded by: ,− √4 − y2 ≤ x ≤ √4 − y2 .0 ≤ y ≤ 2     ydxA = ∫ 2 −2 ∫ √4−x2 0 d     (5a) Draw this region labeling a vertical Riemann Rectangle with thickness dx.  (5b) Explain how to setup this integral in terms of dydx to calculate the area.  (5c) Evaluate your integral in terms of dydx.      TEST3A page: 13
  • 14.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 14
  • 15.
    MAT225 TEST3A Name: Showall work algebraically if possible. (5) Iterated Integrals    Consider the area in the xy-plane bounded by: ,− √4 − y2 ≤ x ≤ √4 − y2 .0 ≤ y ≤ 2     ydxA = ∫ 2 −2 ∫ √4−x2 0 d     (5d) ReWrite this integral in terms of dxdy to calculate the area.  (5e) ReEvaluate your integral in terms of dxdy.    (5f) ReWrite this integral in terms of to calculate the area.drdθr   (5g) ReEvaluate your integral in terms of​ drdθ.r     TEST3A page: 15
  • 16.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 16
  • 17.
    MAT225 TEST3A Name: Showall work algebraically if possible. (6) Iterated Integrals    Find the volume of the solid bounded by the surface f(x,y)=1-xy above the  triangle bounded by y=x, y=1 and x=0.    (1 y) dxdyV = ∫ 1 0 ∫ y 0 − x     (6a) Explain how to set up an integral to calculate this volume in terms of dxdy.  (6b) Evaluate your double integral.    (6c) ReWrite the integral terms of dydx.  (6d) Evaluate your double integral.       TEST3A page: 17
  • 18.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 18
  • 19.
    MAT225 TEST3A Name: Showall work algebraically if possible. (7) Line Integrals    Calculate a line integral to find the mass of a wire given density and the path C:ρ      Density Function (x, ) yρ = F y = x   Along the path C: r(t)=<4t, 3t> such that 0 ≤ t ≤ 1     (7a) Find ds=|r’(t)|dt  (7b) Write the line integral in terms of t.ds∫ C F   (7c) Evaluate your integral.          TEST3A page: 19
  • 20.
    MAT225 TEST3A Name: Showall work algebraically if possible.     TEST3A page: 20
  • 21.
    MAT225 TEST3A Name: Showall work algebraically if possible. (8) Work Done By A Conservative Field    Given the Vector Field​ (x, ) < x y , 2x xyF y = a 2 + y3 + 1 3 + b 2 + 2 >     (8a) Find the values of and b for which F is conservative.  (8b) Using these values of a and b, find f(x,y) such that F = gradient(f).  (8c) Find the work done through ​F​,​ along the curve C:dr,∫F      (t) cos(t), y(t) sin(t), 0x = et = et ≤ t ≤ π       TEST3A page: 21
  • 22.
    MAT225 TEST3A Name: Showall work algebraically if possible.       TEST3A page: 22
  • 23.
    MAT225 TEST3A Name: Showall work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold!    Power Functions:  x nxd dx n = n−1     Trig Functions:  sin(x) os(x)d dx = c cos(x) in(x)d dx = − s   tan(x) (x)d dx = sec2 cot(x) (x)d dx = − csc2   sec(x) ec(x) tan(x)d dx = s csc(x) sc(x) cot(x)d dx = − c     Transcendental Functions:  ed dx x = ex a n(a) ad dx x = l x   ln(x)d dx = x 1 log (x)d dx a = 1 ln(a) x 1     Inverse Trig Functions:  sin (x)d dx −1 = 1 √1−x2 cos (x)d dx −1 = −1 √1−x2   tan (x)d dx −1 = 1 1+x2 cot (x)d dx −1 = −1 1+x2     Product Rule:  f(x) g(x) (x) g (x) (x) f (x)d dx = f ′ + g ′     Quotient Rule:  d dx f(x) g(x) = g (x)2 g(x) f (x) − f(x) g (x)′ ′     Chain Rule:  f(g(x)) (g(x)) g (x)d dx = f′ ′     Difference Quotient:  f’(x) =​ lim h→0 h f(x+h) − f(x)     TEST3A page: 23
  • 24.
    MAT225 TEST3A Name: Showall work algebraically if possible. Reference Sheet: Anti-Derivatives You Should Know Cold!    Power Functions:  dx x∫xn = n n−1     Trig Functions:  os(x)dx in(x)∫c = s + C in(x)dx os(x)∫s = − c + C   ec (x)dx an(x)∫s 2 = t + C sc (x)dx ot(x)∫c 2 = − c + C   ec(x)tan(x)dx ec(x)∫s = s + C sc(x)cos(x)dx sc(x)∫c = − c + C       Transcendental Functions:  dx e∫ex = x + C dx∫ax = ax ln(a) + C   dx n(x)∫ x 1 = l + C dx log (x)∫ 1 ln(a) x 1 = a + C     Inverse Trig Functions:  dx sin (x)∫ 1 √1−x2 = −1 + C dx cos(x)∫ −1 √1−x2 = + C   dx tan (x)∫ 1 1+x2 = −1 + C dx cot (x)∫ −1 1+x2 = −1 + C     Integration By Parts (Product Rule):  dv uv du∫u = −∫v + C     Integration By Partial Fractions Example (Quotient Rule):  ∫ dx x(x+1) = ∫ x Adx +∫ x+1 Bdx TEST3A page: 24