Use	
  Cases	
  of	
  Cyber-­‐Physical	
  Data	
  Cloud	
  
Compu8ng	
Kyoungsook	
  Kim	
  
(ksookim@nict.go.jp)	
  
Infor...
Cyber-­‐Physical	
  Data	
  Cloud	
  Compu8ng	
(C)	
  NICT	
 2	
	
 
CYBER SPACE	
 
PYSICAL/SOCIAL SPACE	
	
 
Sensors	
Smar...
Goals	
•  Real-­‐world	
  Awareness	
  Compu8ng	
  
–  Intelligent	
  cloud	
  compu8ng	
  to	
  autonomously	
  support	
...
Cyber-­‐Physical	
  Social	
  Data	
  Cloud	
  Infrastructure
•  NIST	
  &	
  NICT	
  Collabora8on	
  Project	
  
R&D	
  o...
Cyber-­‐Physical	
  Data	
  Cloud	
  Applica8ons	
•  Topics	
  
–  Smarter	
  Healthcare	
  
–  Smarter	
  Disaster	
  Inf...
Use	
  Cases	
  (1)	
•  	
  Healthcare	
  data	
  publishing	
  &	
  sharing	
  
(C)	
  NICT	
 6	
disaster	
No	
  health	
...
Use	
  Cases	
  (2)	
•  Awarable	
  Loca8on-­‐based	
  Service	
(C)	
  NICT	
 7	
Now,	
  I	
  have	
  no	
  
idea	
  which...
Use	
  Cases	
  (2)	
•  Globally	
  monitoring	
  and	
  locally	
  fencing	
  (safe	
  and	
  rapid	
  evacua8on)	
(C)	
 ...
Upcoming SlideShare
Loading in …5
×

Cyber physical-data-cloud-computing-use-cases--kyoungsook kim-20120315

990 views

Published on

Use cases of cyber-physical data clouds - healthcare and disaster management

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
990
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
30
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Cyber physical-data-cloud-computing-use-cases--kyoungsook kim-20120315

  1. 1. Use  Cases  of  Cyber-­‐Physical  Data  Cloud   Compu8ng Kyoungsook  Kim   (ksookim@nict.go.jp)   Informa8on  Services  Pla>orm  Laboratory   Universal  Communica8on  Research  Ins8tute   Na8onal  Ins8tute  of  Informa8on  and  Communica8ons    
  2. 2. Cyber-­‐Physical  Data  Cloud  Compu8ng (C)  NICT 2 CYBER SPACE PYSICAL/SOCIAL SPACE Sensors Smart phones Digital signage Sensing data   Actionable information Physical sensing Social sensing Ubiquitous Internet Web Cloud collection, archive, organization, manipulation, sharing  
  3. 3. Goals •  Real-­‐world  Awareness  Compu8ng   –  Intelligent  cloud  compu8ng  to  autonomously  support  useful  (data/ informa8on/knowledge)  services  by  being  aware  of  rela8onships  between   elements(objects,  events,  situa8ons)  in  the  real  world   –  (Near)  real-­‐8me  interac8ng  with  the  physical  world   •  Observa8on:  to  monitor  processes  in  physical  world   •  Percep8on:  to  analysis  informa8on/situa8on   •  Communica8on:  to  share  informa8on/situa8on   •  Ac8on:  to  control  physical  elements  directly  or  indirectly   (C)  NICT 3   Observa8on   (Monitoring)                        Ac8on   (Controlling)   Percep8on   (Processing)         Data  Cloud   Physical  world   Cyber  world  Awareness   Communica8on   (Networking)  
  4. 4. Cyber-­‐Physical  Social  Data  Cloud  Infrastructure •  NIST  &  NICT  Collabora8on  Project   R&D  of  a  cloud  pla>orm  specialized  for  collec8ng,  archiving,  organizing,   manipula8ng,  and  sharing  very  large  (big)  cyber-­‐physical  social  data   Standardiza8on Testbed =  Cloud  node join Cyber-­‐Physical  Social  Data  Cloud     Infrastructure   Applica8on Architecture   Security  &  Privacy   Data  Management   Networking  
  5. 5. Cyber-­‐Physical  Data  Cloud  Applica8ons •  Topics   –  Smarter  Healthcare   –  Smarter  Disaster  Informa8on   –  Smart  City   –  Social  Life  Networks   •  Passim  Situa8on-­‐aware  Applica8ons   –  De-­‐centralized   –  Ad-­‐hoc   –  Rela8onship-­‐based   –  Level  of  measurement   –  Autonomous  
  6. 6. Use  Cases  (1) •   Healthcare  data  publishing  &  sharing   (C)  NICT 6 disaster No  health  record   :  cannot  con8nue  treatment  quickly Cloud move If  two  hospital  share  their  data  each  other,   doctors  can  restart  the  treatment     without  overlapping  examina8on  pa8ent   cloud     consumer   cloud     consumer   A  pa8ent  gives  hospital(doctor)   the  authority  to  par8ally     access(read/write/copy/…)  his/ her  cloud  data.   Data  is  dynamically  integrated(virtualized)  by  the  pa8ent   Rela8onships     between  pa8ents  and  data   <Problems>   1)  Reserved  sharing   2)  Global  schema   3)  Sta8c  systems   4)  Private-­‐Public  data  control   De-­‐centralized   Ad-­‐hoc   Rela8onship-­‐based   Level  of  measurement   Autonomous  
  7. 7. Use  Cases  (2) •  Awarable  Loca8on-­‐based  Service (C)  NICT 7 Now,  I  have  no   idea  which  area   will  be  dangerous Danger! Where  is   my  family   or  friend   now? I’m   here! How  can  I  escape   from  the  dangerous   situa8on? Geo-­‐Fencing   Geo-­‐Advising   Geo-­‐Q&A   <Problems>   1)  Monitoring  users’  loca8on   2)  Request/Response  ac8vity   3)  New  data(service)  adapta8on   4)  Manually  publish/share  data   5)  Private-­‐Public  data  control   Ex)     -­‐  Automa8cally  "check-­‐in"  subscribers   when  they  enter  a  (disaster  approaching/ event/favorite)  place.  No  ac8on  outside   of  the  place.       -­‐  Automa8cally  and  par8ally  “share”  my   loca8on   -­‐  Autonomous  service  discovery  and   composi8on  depending  on  the  situa8ons
  8. 8. Use  Cases  (2) •  Globally  monitoring  and  locally  fencing  (safe  and  rapid  evacua8on) (C)  NICT 8 advisory   message GIS TsunamiAlert   Event IncreaseAlert   Loca8onEvent Alert   (broadcas8ng) High  level  of  dangerous   report     geoloca8on     WarningEvent HighLevelEvent It  starts  to  compute  risk  areas   using  relevant  data   and  generates  “alert”  event.   Alert   Peer-­‐to-­‐peer(Ad-­‐hoc)     communica8on   ShelterNaviga8on   Event Shelter  Informa8on   (mul8cas8ng)   It  starts  to  search  shelters  using     relevant  data  and  generates  “naviga8on”  event.   *Japan  experience:  the  shelter  assessment  system  was  up  and  running  two  weeks  aler  the  disaster.   coast     watch Shelter Aid  informa8on ShelterMonitoring   Event Social  networks Remote  diagnosis Pa8entSitua8on AidSitua8on <Considera8on>   1.  Physical  monitoring   2.  Rela8onships  between  en88es   3.  Real-­‐8me  data  aggrega8on   4.  Situa8on  analysis   5.  …  

×