SlideShare a Scribd company logo
1 of 34
KULIAH I
                            MEKANIKA TEKNIK TI
                              PENDAHULUAN




              OLEH:
        ALIEF WIKARTA, ST
JURUSAN TEKNIK MESIN, FTI – ITS
      SURABAYA, 2007
Apa itu Mekanika?
      Cabang ilmu fisika yang berbicara tentang
      keadaan diam atau geraknya benda-benda
      yang mengalami kerja atau aksi gaya

                                             Mechanics




           Rigid Bodies                  Deformable Bodies
                                                                                Fluids
(Things that do not change shape)   (Things that do change shape)



    Statics         Dynamics                                        Incompressible   Compressible
Buku apa yang dipakai?
• R. C. Hibbeler, Engineering Mechanics, 7 th - 10th
  Edition, Person Prentice-Hall
• F. P. Beer and E. R. Johnston Jr., Vector
  Mechanics for Engineers: Statics, SI Metric
  Edition, Mcgraw-hill, 3rd Edition
• R. C. Hibbeler, Mechanics of Material, 3th Edition,
  Person Prentice-Hall
• dll
Bagaimana evaluasinya ?
           • Tugas-Kuis : 25 %
           • UTS        : 30 %
           • UAS        : 45 %

Tidak mentolerir segala bentuk kecurangan
       Tapi tetap boleh cross check
Penjelasan TUGAS
• Dikerjakan pada kertas A4
• Tulis nama dan NRP di sebelah kanan atas,
  serta tanggal dan tugas ke berapa
• Silahkan mengerjakan soal apa saja yang
  berkaitan dengan materi yang disampaikan
• Silahkan mengerjakan berapa pun soal yang
  sanggup anda selesaikan
• Soal-soal harus dari buku yang disepakati
• Mencantumkan judul buku, pengarang, dan
  nomer soal yang dikerjakan, plus halaman buku
Apa saja yang dipelajari?
• Keseimbangan partikel
• Keseimbangan benda tegar
• Diagram gaya normal, diagram gaya
  geser, dan diagram momen
• Konsep tegangan
• Momen inersia dan momen polar
• Teori kegagalan statis
Apa pentingnya mekanika (statik) /
        keseimbangan ?
Apa perbedaan partikel dan benda tegar?

• Particle: A very small amount of matter which
  may be assumed to occupy a single point in
  space.
• Rigid body: A combination of a large number
  of particles occupying fixed position with
  respect to each other.
Apa perbedaan Partikel dan Benda Tegar ?

 Partikel:              Benda Tegar:
 Mempunyai suatu        Kombinasi sejumlah
 massa namun            partikel yang mana
 ukurannya dapat        semua partikel
 diabaikan, sehingga    berada pada suatu
 geometri benda tidak   jarak tetap terhadap
 akan terlibat dalam    satu dengan yang lain
 analisis masalah
Contoh Partikel
Contoh Benda Tegar
Review Sistem Satuan
• Four fundamental physical quantities. Length, Time, Mass, Force.
• We will work with two unit systems in static’s: SI & US Customary.




      Bagaimana konversi dari SI ke US atau sebaliknya ?
Apa yang harus dilakukan supaya
         Mekanika Teknik menjadi mudah ?
Banyak dan sering menyelesaikan soal-soal
Prosedur mengerjakan soal:
1. Baca soal dengan cermat
2. Buat free body diagram dan tabulasikan data soal
3. Tuliskan prinsip dasar / persamaan yang relevan dengan soal
4. Selesaikan persamaan sepraktis mungkin sehingga didapat
   hasil yang signifikan dan jangan lupa disertai sistem satuan
5. Pelajari jawaban dengan akal sehat, masuk akal atau tidak
6. Jika ada waktu, coba pikirkan cara lain untuk menyelesaikan
   soal tersebut.
THE WHAT, WHY AND HOW OF A
         FREE BODY DIAGRAM (FBD)

Free Body Diagrams are one of the most important things for
you to know how to draw and use.


What ? - It is a drawing that shows
all external forces acting on the
particle.

Why ? - It helps you write the
equations of equilibrium used to
solve for the unknowns (usually
forces or angles).
How ?
1. Imagine the particle to be isolated or cut free from its
   surroundings.
2. Show all the forces that act on the particle.
      Active forces: They want to move the particle.
      Reactive forces: They tend to resist the motion.
3. Identify each force and show all known magnitudes
   and directions. Show all unknown magnitudes and /
   or directions as variables .


                                       A



      Note : Engine mass = 250 Kg       FBD at A
Fundamental Principles
• The parallelogram law for the addition of forces: Two
  forces acting on a particle can be replaced by a single
  force, called resultant, obtained by drawing the diagonal
  of the parallelogram which has sides equal to the given
  forces
                      f1+f2


  f2

               f1              • Parallelogram Law
Fundamental Principles (cont’)
• The principle of transmissibility: A force acting at a point
  of a rigid body can be replaced by a force of the the same
  magnitude and same direction, but acting on at a different
  point on the line of action


                              f2


       f1
f1 and f2 are equivalent if their   • Principle of Transmissibility
magnitudes are the same and the
object is rigid.
APPLICATION OF VECTOR
      ADDITION

            There are four
            concurrent cable forces
            acting on the bracket.
            How do you determine
            the resultant force
            acting on the bracket ?
Addition of Vectors
                • Trapezoid rule for vector addition

                • Triangle rule for vector addition

                • Law of cosines,
        C
B                  R 2 = P 2 + Q 2 − 2 PQ cos B
                     
            C      R = P+Q

                • Law of sines,
                   sin A sin B sin C
                        =       =
    B                Q      R     A

                • Vector addition is commutative,
                      
                   P+Q = Q+ P

                • Vector subtraction
Sample Problem


                                  SOLUTION:
                                  • Trigonometric solution - use the triangle
                                    rule for vector addition in conjunction
                                    with the law of cosines and law of sines
                                    to find the resultant.
The two forces act on a bolt at
A. Determine their resultant.
Sample Problem (cont’)
       • Trigonometric solution - Apply the triangle rule.
         From the Law of Cosines,
          R 2 = P 2 + Q 2 − 2 PQ cos B
              = ( 40 N ) 2 + ( 60 N ) 2 − 2( 40 N )( 60 N ) cos155°
            R = 97.73N

         From the Law of Sines,
          sin A sin B
               =
            Q     R
                          Q
          sin A = sin B
                          R
                               60 N
                = sin 155°
                              97.73N
             A = 15.04°
             α = 20° + A
             α = 35.04°
ADDITION OF SEVERAL VECTORS

            • Step 1 is to resolve each force
            into its components
            • Step 2 is to add all the x
            components together and add all
            the y components together. These
            two totals become the resultant
            vector.
            • Step 3 is to find the magnitude
              and angle of the resultant vector.
Example of this
   process,
You can also represent a 2-D vector with a
          magnitude and angle.
EXAMPLE
                               Given: Three concurrent forces
                                      acting on a bracket.
                               Find:   The magnitude and
                                       angle of the resultant
                                       force.


                               Plan:
a) Resolve the forces in their x-y components.
b) Add the respective components to get the resultant vector.
c) Find magnitude and angle from the resultant components.
EXAMPLE (continued)




F1 = { 15 sin 40° i + 15 cos 40° j } kN
   = { 9.642 i + 11.49 j } kN
F2 = { -(12/13)26 i + (5/13)26 j } kN
   = { -24 i + 10 j } kN
F3 = { 36 cos 30° i – 36 sin 30° j } kN
   = { 31.18 i – 18 j } kN
EXAMPLE (continued)

Summing up all the i and j components respectively, we get,
FR = { (9.642 – 24 + 31.18) i + (11.49 + 10 – 18) j } kN
   = { 16.82 i + 3.49 j } kN

                                             y
                                                           FR
FR = ((16.82)2 + (3.49)2)1/2 = 17.2 kN
φ = tan-1(3.49/16.82) = 11.7°                      φ
                                                                x
Sample Problem

                                       SOLUTION:
                                       • Resolve each force into rectangular
                                         components.
                                       • Determine the components of the
                                         resultant by adding the corresponding
                                         force components.

                                       • Calculate the magnitude and direction
Four forces act on bolt A as shown.      of the resultant.
Determine the resultant of the force
on the bolt.
Sample Problem (cont’)
        SOLUTION:
        • Resolve each force into rectangular
            force mag
           components.        x − comp    y − comp
                
               F1 150           + 129.9      + 75.0
               
               F2     80         − 27.4      + 75.2
               
               F3 110                 0     − 110.0
               
               F4 100            + 96.6      − 25.9
                           R x = +199.1 R y = +14.3
        • Determine the components of the resultant by
           adding the corresponding force components.
        • Calculate the magnitude and direction.
               R y 14.3 N
       tan α =     =         α = 4.1° α = 4.1°
               Rx 199.1 N
             14.3 N
        R=          = 199.6 N
              sin α
READING QUIZ

1. The subject of mechanics deals with what happens to a body
   when ______ is / are applied to it.
  A) magnetic field   B) heat     C) forces
  D) neutrons         E) lasers


2. ________________ still remains the basis of most of today’s
  engineering sciences.
 A) Newtonian Mechanics      B) Relativistic Mechanics
 C) Euclidean Mechanics      C) Greek Mechanics
READING QUIZ
3. Which one of the following is a scalar quantity?
    A) Force B) Position C) Mass D) Velocity


4. For vector addition you have to use ______ law.
 A) Newton’s Second
 B) the arithmetic
 C) Pascal’s
 D) the parallelogram
CONCEPT QUIZ

5. Can you resolve a 2-D vector along two directions, which
   are not at 90° to each other?
   A) Yes, but not uniquely.
   B) No.
   C) Yes, uniquely.


6. Can you resolve a 2-D vector along three directions (say
   at 0, 60, and 120°)?
   A) Yes, but not uniquely.
   B) No.
   C) Yes, uniquely.
ATTENTION QUIZ
7. Resolve F along x and y axes and write it in
   vector form. F = { ___________ } N
                                              y
  A) 80 cos (30°) i - 80 sin (30°) j                          x
 B) 80 sin (30°) i + 80 cos (30°) j
 C) 80 sin (30°) i - 80 cos (30°) j          30°
                                                        F = 80 N
 D) 80 cos (30°) i + 80 sin (30°) j
8. Determine the magnitude of the resultant (F1 + F2)
   force in N when F1 = { 10 i + 20 j } N and F2 =
   { 20 i + 20 j } N .
 A) 30 N             B) 40 N           C) 50 N
 D) 60 N             E) 70 N
Mekanika Teknik Pendahuluan

More Related Content

What's hot

Engineering Mechanics Pdf
Engineering Mechanics PdfEngineering Mechanics Pdf
Engineering Mechanics PdfEkeeda
 
moments couples and force couple systems by ahmad khan
moments couples and force couple systems by ahmad khanmoments couples and force couple systems by ahmad khan
moments couples and force couple systems by ahmad khanSelf-employed
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...Salehkhanovic
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Methodaapx
 
Base Excited Systems
Base Excited SystemsBase Excited Systems
Base Excited SystemsTeja Ande
 
Dynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthanDynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthanMurugananthan K
 
Ground Excited Systems
Ground Excited SystemsGround Excited Systems
Ground Excited SystemsTeja Ande
 
Introduction to Vectors
Introduction to VectorsIntroduction to Vectors
Introduction to VectorsM.T.H Group
 
MECHANICS ENGINEERING - Equilibrium
MECHANICS ENGINEERING - EquilibriumMECHANICS ENGINEERING - Equilibrium
MECHANICS ENGINEERING - EquilibriumCik Aisyahfitrah
 
Mechanics Statics (system of force)
Mechanics Statics (system of force)Mechanics Statics (system of force)
Mechanics Statics (system of force)Kum Visal
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
 
Structure Design-I (Moments)
Structure Design-I (Moments)Structure Design-I (Moments)
Structure Design-I (Moments)Simran Vats
 

What's hot (19)

Lecture 5 (46)
Lecture 5 (46)Lecture 5 (46)
Lecture 5 (46)
 
Engineering Mechanics Pdf
Engineering Mechanics PdfEngineering Mechanics Pdf
Engineering Mechanics Pdf
 
moments couples and force couple systems by ahmad khan
moments couples and force couple systems by ahmad khanmoments couples and force couple systems by ahmad khan
moments couples and force couple systems by ahmad khan
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
 
Base Excited Systems
Base Excited SystemsBase Excited Systems
Base Excited Systems
 
Ce 255 handout
Ce 255 handoutCe 255 handout
Ce 255 handout
 
Dynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthanDynamics of particles , Enginnering mechanics , murugananthan
Dynamics of particles , Enginnering mechanics , murugananthan
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ground Excited Systems
Ground Excited SystemsGround Excited Systems
Ground Excited Systems
 
Assignment no 1
Assignment no 1Assignment no 1
Assignment no 1
 
Introduction to Vectors
Introduction to VectorsIntroduction to Vectors
Introduction to Vectors
 
MECHANICS ENGINEERING - Equilibrium
MECHANICS ENGINEERING - EquilibriumMECHANICS ENGINEERING - Equilibrium
MECHANICS ENGINEERING - Equilibrium
 
Elastic beams
Elastic beams Elastic beams
Elastic beams
 
Mechanics Statics (system of force)
Mechanics Statics (system of force)Mechanics Statics (system of force)
Mechanics Statics (system of force)
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
 
Structure Design-I (Moments)
Structure Design-I (Moments)Structure Design-I (Moments)
Structure Design-I (Moments)
 
Resultant of forces
Resultant of forcesResultant of forces
Resultant of forces
 
Soal latihan1mekanika
Soal latihan1mekanikaSoal latihan1mekanika
Soal latihan1mekanika
 

Viewers also liked

Modul 1- mekanika teknik, statika dan mekanika dasar
Modul 1-  mekanika teknik, statika dan mekanika dasarModul 1-  mekanika teknik, statika dan mekanika dasar
Modul 1- mekanika teknik, statika dan mekanika dasarMOSES HADUN
 
PPT Kesetimbangan Benda Tegar dan Dinamika Rotasi
PPT Kesetimbangan Benda Tegar dan Dinamika RotasiPPT Kesetimbangan Benda Tegar dan Dinamika Rotasi
PPT Kesetimbangan Benda Tegar dan Dinamika RotasiNariaki Adachi
 
Modul mekanika teknik 1
Modul mekanika teknik 1Modul mekanika teknik 1
Modul mekanika teknik 1Ibrahim Husain
 

Viewers also liked (6)

Fisika X (BSE) KTSP
Fisika X (BSE) KTSPFisika X (BSE) KTSP
Fisika X (BSE) KTSP
 
Modul 1- mekanika teknik, statika dan mekanika dasar
Modul 1-  mekanika teknik, statika dan mekanika dasarModul 1-  mekanika teknik, statika dan mekanika dasar
Modul 1- mekanika teknik, statika dan mekanika dasar
 
Kesetimbangan kimia itp unhas klp.8
Kesetimbangan kimia itp unhas klp.8Kesetimbangan kimia itp unhas klp.8
Kesetimbangan kimia itp unhas klp.8
 
PPT Kesetimbangan Benda Tegar dan Dinamika Rotasi
PPT Kesetimbangan Benda Tegar dan Dinamika RotasiPPT Kesetimbangan Benda Tegar dan Dinamika Rotasi
PPT Kesetimbangan Benda Tegar dan Dinamika Rotasi
 
Mekanika teknik
Mekanika teknikMekanika teknik
Mekanika teknik
 
Modul mekanika teknik 1
Modul mekanika teknik 1Modul mekanika teknik 1
Modul mekanika teknik 1
 

Similar to Mekanika Teknik Pendahuluan

Mekanika Teknik Kuliah perdana nomor 1.ppt
Mekanika Teknik Kuliah perdana nomor 1.pptMekanika Teknik Kuliah perdana nomor 1.ppt
Mekanika Teknik Kuliah perdana nomor 1.pptDelfianMasrura
 
Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01frans2014
 
Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdfanbh30
 
Ch-02 Statics of Particles.ppt
Ch-02 Statics of Particles.pptCh-02 Statics of Particles.ppt
Ch-02 Statics of Particles.pptSamirsinh Parmar
 
force-vectors-1.ppt
force-vectors-1.pptforce-vectors-1.ppt
force-vectors-1.pptMrPKJadhav
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid BodyAhmadHajasad2
 
Engg Mechanic Lecture 1.pptx
Engg Mechanic Lecture 1.pptxEngg Mechanic Lecture 1.pptx
Engg Mechanic Lecture 1.pptxameer408074
 
Chapter 12 kinematics of a particle part-i
Chapter 12 kinematics of a particle   part-iChapter 12 kinematics of a particle   part-i
Chapter 12 kinematics of a particle part-iSajid Yasin
 
Principle of Virtual Work in structural analysis
Principle of Virtual Work in structural analysisPrinciple of Virtual Work in structural analysis
Principle of Virtual Work in structural analysisMahdi Damghani
 
Cape physics unit 1st edition
Cape physics  unit 1st editionCape physics  unit 1st edition
Cape physics unit 1st editionRasheda Pickett
 
SPHA021 Notes-Classical Mechanics-2020.docx
SPHA021 Notes-Classical Mechanics-2020.docxSPHA021 Notes-Classical Mechanics-2020.docx
SPHA021 Notes-Classical Mechanics-2020.docxlekago
 
Engg-Mechanics-ppt-by-ujjval.pptx
Engg-Mechanics-ppt-by-ujjval.pptxEngg-Mechanics-ppt-by-ujjval.pptx
Engg-Mechanics-ppt-by-ujjval.pptxPallaviDeotale2
 
2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt2-vector operation and force analysis.ppt
2-vector operation and force analysis.pptRanaUmair74
 

Similar to Mekanika Teknik Pendahuluan (20)

Mekanika Teknik Kuliah perdana nomor 1.ppt
Mekanika Teknik Kuliah perdana nomor 1.pptMekanika Teknik Kuliah perdana nomor 1.ppt
Mekanika Teknik Kuliah perdana nomor 1.ppt
 
Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01
 
Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdf
 
Ch-02 Statics of Particles.ppt
Ch-02 Statics of Particles.pptCh-02 Statics of Particles.ppt
Ch-02 Statics of Particles.ppt
 
force-vectors-1.ppt
force-vectors-1.pptforce-vectors-1.ppt
force-vectors-1.ppt
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
 
FEM
FEMFEM
FEM
 
Engg Mechanic Lecture 1.pptx
Engg Mechanic Lecture 1.pptxEngg Mechanic Lecture 1.pptx
Engg Mechanic Lecture 1.pptx
 
Chapter 12 kinematics of a particle part-i
Chapter 12 kinematics of a particle   part-iChapter 12 kinematics of a particle   part-i
Chapter 12 kinematics of a particle part-i
 
Principle of Virtual Work in structural analysis
Principle of Virtual Work in structural analysisPrinciple of Virtual Work in structural analysis
Principle of Virtual Work in structural analysis
 
Zeal_Engineering Mechanics.pptx
Zeal_Engineering Mechanics.pptxZeal_Engineering Mechanics.pptx
Zeal_Engineering Mechanics.pptx
 
Cape physics unit 1st edition
Cape physics  unit 1st editionCape physics  unit 1st edition
Cape physics unit 1st edition
 
Ch02
Ch02Ch02
Ch02
 
Lecture 1 (40)
Lecture 1 (40)Lecture 1 (40)
Lecture 1 (40)
 
Ch06 ssm
Ch06 ssmCh06 ssm
Ch06 ssm
 
SPHA021 Notes-Classical Mechanics-2020.docx
SPHA021 Notes-Classical Mechanics-2020.docxSPHA021 Notes-Classical Mechanics-2020.docx
SPHA021 Notes-Classical Mechanics-2020.docx
 
Engg-Mechanics-ppt-by-ujjval.pptx
Engg-Mechanics-ppt-by-ujjval.pptxEngg-Mechanics-ppt-by-ujjval.pptx
Engg-Mechanics-ppt-by-ujjval.pptx
 
2. statics.pdf
2. statics.pdf2. statics.pdf
2. statics.pdf
 
2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt
 
Statics
StaticsStatics
Statics
 

Mekanika Teknik Pendahuluan

  • 1. KULIAH I MEKANIKA TEKNIK TI PENDAHULUAN OLEH: ALIEF WIKARTA, ST JURUSAN TEKNIK MESIN, FTI – ITS SURABAYA, 2007
  • 2. Apa itu Mekanika? Cabang ilmu fisika yang berbicara tentang keadaan diam atau geraknya benda-benda yang mengalami kerja atau aksi gaya Mechanics Rigid Bodies Deformable Bodies Fluids (Things that do not change shape) (Things that do change shape) Statics Dynamics Incompressible Compressible
  • 3. Buku apa yang dipakai? • R. C. Hibbeler, Engineering Mechanics, 7 th - 10th Edition, Person Prentice-Hall • F. P. Beer and E. R. Johnston Jr., Vector Mechanics for Engineers: Statics, SI Metric Edition, Mcgraw-hill, 3rd Edition • R. C. Hibbeler, Mechanics of Material, 3th Edition, Person Prentice-Hall • dll
  • 4. Bagaimana evaluasinya ? • Tugas-Kuis : 25 % • UTS : 30 % • UAS : 45 % Tidak mentolerir segala bentuk kecurangan Tapi tetap boleh cross check
  • 5. Penjelasan TUGAS • Dikerjakan pada kertas A4 • Tulis nama dan NRP di sebelah kanan atas, serta tanggal dan tugas ke berapa • Silahkan mengerjakan soal apa saja yang berkaitan dengan materi yang disampaikan • Silahkan mengerjakan berapa pun soal yang sanggup anda selesaikan • Soal-soal harus dari buku yang disepakati • Mencantumkan judul buku, pengarang, dan nomer soal yang dikerjakan, plus halaman buku
  • 6. Apa saja yang dipelajari? • Keseimbangan partikel • Keseimbangan benda tegar • Diagram gaya normal, diagram gaya geser, dan diagram momen • Konsep tegangan • Momen inersia dan momen polar • Teori kegagalan statis
  • 7. Apa pentingnya mekanika (statik) / keseimbangan ?
  • 8. Apa perbedaan partikel dan benda tegar? • Particle: A very small amount of matter which may be assumed to occupy a single point in space. • Rigid body: A combination of a large number of particles occupying fixed position with respect to each other.
  • 9. Apa perbedaan Partikel dan Benda Tegar ? Partikel: Benda Tegar: Mempunyai suatu Kombinasi sejumlah massa namun partikel yang mana ukurannya dapat semua partikel diabaikan, sehingga berada pada suatu geometri benda tidak jarak tetap terhadap akan terlibat dalam satu dengan yang lain analisis masalah
  • 12. Review Sistem Satuan • Four fundamental physical quantities. Length, Time, Mass, Force. • We will work with two unit systems in static’s: SI & US Customary. Bagaimana konversi dari SI ke US atau sebaliknya ?
  • 13. Apa yang harus dilakukan supaya Mekanika Teknik menjadi mudah ? Banyak dan sering menyelesaikan soal-soal Prosedur mengerjakan soal: 1. Baca soal dengan cermat 2. Buat free body diagram dan tabulasikan data soal 3. Tuliskan prinsip dasar / persamaan yang relevan dengan soal 4. Selesaikan persamaan sepraktis mungkin sehingga didapat hasil yang signifikan dan jangan lupa disertai sistem satuan 5. Pelajari jawaban dengan akal sehat, masuk akal atau tidak 6. Jika ada waktu, coba pikirkan cara lain untuk menyelesaikan soal tersebut.
  • 14. THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD) Free Body Diagrams are one of the most important things for you to know how to draw and use. What ? - It is a drawing that shows all external forces acting on the particle. Why ? - It helps you write the equations of equilibrium used to solve for the unknowns (usually forces or angles).
  • 15. How ? 1. Imagine the particle to be isolated or cut free from its surroundings. 2. Show all the forces that act on the particle. Active forces: They want to move the particle. Reactive forces: They tend to resist the motion. 3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables . A Note : Engine mass = 250 Kg FBD at A
  • 16. Fundamental Principles • The parallelogram law for the addition of forces: Two forces acting on a particle can be replaced by a single force, called resultant, obtained by drawing the diagonal of the parallelogram which has sides equal to the given forces f1+f2 f2 f1 • Parallelogram Law
  • 17. Fundamental Principles (cont’) • The principle of transmissibility: A force acting at a point of a rigid body can be replaced by a force of the the same magnitude and same direction, but acting on at a different point on the line of action f2 f1 f1 and f2 are equivalent if their • Principle of Transmissibility magnitudes are the same and the object is rigid.
  • 18. APPLICATION OF VECTOR ADDITION There are four concurrent cable forces acting on the bracket. How do you determine the resultant force acting on the bracket ?
  • 19. Addition of Vectors • Trapezoid rule for vector addition • Triangle rule for vector addition • Law of cosines, C B R 2 = P 2 + Q 2 − 2 PQ cos B    C R = P+Q • Law of sines, sin A sin B sin C = = B Q R A • Vector addition is commutative,     P+Q = Q+ P • Vector subtraction
  • 20. Sample Problem SOLUTION: • Trigonometric solution - use the triangle rule for vector addition in conjunction with the law of cosines and law of sines to find the resultant. The two forces act on a bolt at A. Determine their resultant.
  • 21. Sample Problem (cont’) • Trigonometric solution - Apply the triangle rule. From the Law of Cosines, R 2 = P 2 + Q 2 − 2 PQ cos B = ( 40 N ) 2 + ( 60 N ) 2 − 2( 40 N )( 60 N ) cos155° R = 97.73N From the Law of Sines, sin A sin B = Q R Q sin A = sin B R 60 N = sin 155° 97.73N A = 15.04° α = 20° + A α = 35.04°
  • 22. ADDITION OF SEVERAL VECTORS • Step 1 is to resolve each force into its components • Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector. • Step 3 is to find the magnitude and angle of the resultant vector.
  • 23. Example of this process,
  • 24. You can also represent a 2-D vector with a magnitude and angle.
  • 25. EXAMPLE Given: Three concurrent forces acting on a bracket. Find: The magnitude and angle of the resultant force. Plan: a) Resolve the forces in their x-y components. b) Add the respective components to get the resultant vector. c) Find magnitude and angle from the resultant components.
  • 26. EXAMPLE (continued) F1 = { 15 sin 40° i + 15 cos 40° j } kN = { 9.642 i + 11.49 j } kN F2 = { -(12/13)26 i + (5/13)26 j } kN = { -24 i + 10 j } kN F3 = { 36 cos 30° i – 36 sin 30° j } kN = { 31.18 i – 18 j } kN
  • 27. EXAMPLE (continued) Summing up all the i and j components respectively, we get, FR = { (9.642 – 24 + 31.18) i + (11.49 + 10 – 18) j } kN = { 16.82 i + 3.49 j } kN y FR FR = ((16.82)2 + (3.49)2)1/2 = 17.2 kN φ = tan-1(3.49/16.82) = 11.7° φ x
  • 28. Sample Problem SOLUTION: • Resolve each force into rectangular components. • Determine the components of the resultant by adding the corresponding force components. • Calculate the magnitude and direction Four forces act on bolt A as shown. of the resultant. Determine the resultant of the force on the bolt.
  • 29. Sample Problem (cont’) SOLUTION: • Resolve each force into rectangular force mag components. x − comp y − comp  F1 150 + 129.9 + 75.0  F2 80 − 27.4 + 75.2  F3 110 0 − 110.0  F4 100 + 96.6 − 25.9 R x = +199.1 R y = +14.3 • Determine the components of the resultant by adding the corresponding force components. • Calculate the magnitude and direction. R y 14.3 N tan α = = α = 4.1° α = 4.1° Rx 199.1 N 14.3 N R= = 199.6 N sin α
  • 30. READING QUIZ 1. The subject of mechanics deals with what happens to a body when ______ is / are applied to it. A) magnetic field B) heat C) forces D) neutrons E) lasers 2. ________________ still remains the basis of most of today’s engineering sciences. A) Newtonian Mechanics B) Relativistic Mechanics C) Euclidean Mechanics C) Greek Mechanics
  • 31. READING QUIZ 3. Which one of the following is a scalar quantity? A) Force B) Position C) Mass D) Velocity 4. For vector addition you have to use ______ law. A) Newton’s Second B) the arithmetic C) Pascal’s D) the parallelogram
  • 32. CONCEPT QUIZ 5. Can you resolve a 2-D vector along two directions, which are not at 90° to each other? A) Yes, but not uniquely. B) No. C) Yes, uniquely. 6. Can you resolve a 2-D vector along three directions (say at 0, 60, and 120°)? A) Yes, but not uniquely. B) No. C) Yes, uniquely.
  • 33. ATTENTION QUIZ 7. Resolve F along x and y axes and write it in vector form. F = { ___________ } N y A) 80 cos (30°) i - 80 sin (30°) j x B) 80 sin (30°) i + 80 cos (30°) j C) 80 sin (30°) i - 80 cos (30°) j 30° F = 80 N D) 80 cos (30°) i + 80 sin (30°) j 8. Determine the magnitude of the resultant (F1 + F2) force in N when F1 = { 10 i + 20 j } N and F2 = { 20 i + 20 j } N . A) 30 N B) 40 N C) 50 N D) 60 N E) 70 N

Editor's Notes

  1. Mainly explain the three steps using the example .
  2. Answers: 1.C 2.A
  3. Answers: 1. C 2. D
  4. Answers: 1. C 2. A
  5. Answers: 1. C 2. C