SlideShare a Scribd company logo
1 of 4
Download to read offline
>> Part a).
>> Pearlite :- Pearlite is a two-phased, lamellar (or layered) structure composed of alternating
layers of ferrite (88 wt%) and cementite (12 wt%) that occurs in some steels and cast irons. In
fact, the lamellar appearance is misleading since the individual lamellae within a colony are
connected in three dimensions; a single colony is therefore an interpenetrating bicrystal of ferrite
and cementite. In an iron-carbon alloy, during slow cooling pearlite forms by a eutectoid reaction
as austenite cools below 727 °C (1,341 °F) (the eutectoid temperature). Pearlite is a
microstructure occurring in many common grades of steels.
>> Cementite :- Cementite, also known as iron carbide, is an interstitial compound of iron and
carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By
weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard,
brittle material, normally classified as a ceramic in its pure form, though it is more important in
ferrous metallurgy. While iron carbide is present in most steels and cast irons, it is produced as a
raw material in the Iron Carbide process, which belongs to the family of alternative ironmaking
technologies.
>> Austenite :- Austenite, also known as gamma-phase iron (-Fe), is a metallic, non-magnetic
allotrope of iron or a solid solution of iron, with analloying element. In plain-carbon steel,
austenite exists above the critical eutectoid temperature of 1,000 K (1,340 °F; 730 °C); other
alloys of steel have different eutectoid temperatures. It is Face Centred Cubic Configuration
(FCC).
>> Eutectoid Phase :- When the solution above the transformation point is solid, rather than
liquid, an analogous eutectoid transformation can occur. For instance, in the iron-carbon system,
the austenite phase can undergo a eutectoidtransformation to produce ferrite and cementite, often
in lamellar structures such as pearlite and bainite.
>> Proeutectoid :- When a hot steel with carbon content very close to 0.8%, is cooled down
slowly, there is a temperature (723 deg C) at which a constant-temperature transformation takes
place. This is called eutectoid transformation. And this results in formation of alternate layers of
Ferrite and Iron-Carbide (Fe3C).
But if the carbon content in this hot steel is much less than 0.8%, and it is cooled down slowly,
then till the temperature reduces to 723 deg C, a part of Austenite (also called gamma iron) gets
transformed to Ferrite by rejecting carbon from the solution. This is not a constant-temperature
process and occurs over a range of temperature. The ferrite so formed is called Proeutectoid...At
723 deg C, all the remaining Austenite get converted to Pearlite at this constant temperature -
which is nothing but alternate layers of Ferrite and cementite
>> Martensite :- Martensite, most commonly refers to a very hard form of steel crystalline
structure, but it can also refer to any crystal structure that is formed by diffusionless
transformation. It includes a class of hard minerals occurring as lath- or plate-shaped crystal
grains. When viewed in cross section, the lenticular (lens-shaped) crystal grains are sometimes
incorrectly described as acicular (needle-shaped)
>> Bainite :-
Bainite is a plate-like microstructure or phase morphology (not an equilibrium phase) that forms
in steels at temperatures of 250–550 °C (depending on alloy content). It is one of the
decomposition products that may form when austenite (the face centered cubic crystal structure
of iron) is cooled past a critical temperature. This critical temperature is 1000K (727 °C, 1340
°F) in plain carbon steels. Davenport and Bain originally described the microstructure as being
similar in appearance to tempered martensite.
A fine non-lamellar structure, bainite commonly consists of cementite and dislocation-rich
ferrite. The high concentration of dislocations in the ferrite present in bainite makes this ferrite
harder than it normally would be.
Part b). Two major differences are:
1) atomic diffusion is necessary for the pearlitic transformation, whereas the martensitic
transformation is diffusionless; and
2) relative to transformation rate, the martensitic transformation is virtually instantaneous, while
the pearlitic transformation is time-dependent.
>> Part c).
A proeutectoid phase (ferrite or cementite) always forms along austenite grain boundaries
because associated with grain boundaries is an interfacial energy (i.e., grain boundary energy). A
lower net interfacial energy increase results when a proeutectoid phase forms along existing
austenite grain boundaries than when the proeutectoid phase forms within the interior of the
grains.
>>The main difference between martensite and bainite is how they form. When heated austenite
tends to cool, then in first case, if it make to cool at a particular rate, then diffusion of carbon
inside its gets lowerd and carbon granules just lie inside the cementite matrix. This is known as
Bainite.
Now, if cooling rate is too high, then it will be just hardened. Its strength will be too high . This
is martensite.
>> Now, as said above, Martensite is too hard to be used. So, to make it useful, martensite is
heated for a particular time to induce some softness into it. The product formed is known as
Tempered Martensite
Solution
>> Part a).
>> Pearlite :- Pearlite is a two-phased, lamellar (or layered) structure composed of alternating
layers of ferrite (88 wt%) and cementite (12 wt%) that occurs in some steels and cast irons. In
fact, the lamellar appearance is misleading since the individual lamellae within a colony are
connected in three dimensions; a single colony is therefore an interpenetrating bicrystal of ferrite
and cementite. In an iron-carbon alloy, during slow cooling pearlite forms by a eutectoid reaction
as austenite cools below 727 °C (1,341 °F) (the eutectoid temperature). Pearlite is a
microstructure occurring in many common grades of steels.
>> Cementite :- Cementite, also known as iron carbide, is an interstitial compound of iron and
carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By
weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard,
brittle material, normally classified as a ceramic in its pure form, though it is more important in
ferrous metallurgy. While iron carbide is present in most steels and cast irons, it is produced as a
raw material in the Iron Carbide process, which belongs to the family of alternative ironmaking
technologies.
>> Austenite :- Austenite, also known as gamma-phase iron (-Fe), is a metallic, non-magnetic
allotrope of iron or a solid solution of iron, with analloying element. In plain-carbon steel,
austenite exists above the critical eutectoid temperature of 1,000 K (1,340 °F; 730 °C); other
alloys of steel have different eutectoid temperatures. It is Face Centred Cubic Configuration
(FCC).
>> Eutectoid Phase :- When the solution above the transformation point is solid, rather than
liquid, an analogous eutectoid transformation can occur. For instance, in the iron-carbon system,
the austenite phase can undergo a eutectoidtransformation to produce ferrite and cementite, often
in lamellar structures such as pearlite and bainite.
>> Proeutectoid :- When a hot steel with carbon content very close to 0.8%, is cooled down
slowly, there is a temperature (723 deg C) at which a constant-temperature transformation takes
place. This is called eutectoid transformation. And this results in formation of alternate layers of
Ferrite and Iron-Carbide (Fe3C).
But if the carbon content in this hot steel is much less than 0.8%, and it is cooled down slowly,
then till the temperature reduces to 723 deg C, a part of Austenite (also called gamma iron) gets
transformed to Ferrite by rejecting carbon from the solution. This is not a constant-temperature
process and occurs over a range of temperature. The ferrite so formed is called Proeutectoid...At
723 deg C, all the remaining Austenite get converted to Pearlite at this constant temperature -
which is nothing but alternate layers of Ferrite and cementite
>> Martensite :- Martensite, most commonly refers to a very hard form of steel crystalline
structure, but it can also refer to any crystal structure that is formed by diffusionless
transformation. It includes a class of hard minerals occurring as lath- or plate-shaped crystal
grains. When viewed in cross section, the lenticular (lens-shaped) crystal grains are sometimes
incorrectly described as acicular (needle-shaped)
>> Bainite :-
Bainite is a plate-like microstructure or phase morphology (not an equilibrium phase) that forms
in steels at temperatures of 250–550 °C (depending on alloy content). It is one of the
decomposition products that may form when austenite (the face centered cubic crystal structure
of iron) is cooled past a critical temperature. This critical temperature is 1000K (727 °C, 1340
°F) in plain carbon steels. Davenport and Bain originally described the microstructure as being
similar in appearance to tempered martensite.
A fine non-lamellar structure, bainite commonly consists of cementite and dislocation-rich
ferrite. The high concentration of dislocations in the ferrite present in bainite makes this ferrite
harder than it normally would be.
Part b). Two major differences are:
1) atomic diffusion is necessary for the pearlitic transformation, whereas the martensitic
transformation is diffusionless; and
2) relative to transformation rate, the martensitic transformation is virtually instantaneous, while
the pearlitic transformation is time-dependent.
>> Part c).
A proeutectoid phase (ferrite or cementite) always forms along austenite grain boundaries
because associated with grain boundaries is an interfacial energy (i.e., grain boundary energy). A
lower net interfacial energy increase results when a proeutectoid phase forms along existing
austenite grain boundaries than when the proeutectoid phase forms within the interior of the
grains.
>>The main difference between martensite and bainite is how they form. When heated austenite
tends to cool, then in first case, if it make to cool at a particular rate, then diffusion of carbon
inside its gets lowerd and carbon granules just lie inside the cementite matrix. This is known as
Bainite.
Now, if cooling rate is too high, then it will be just hardened. Its strength will be too high . This
is martensite.
>> Now, as said above, Martensite is too hard to be used. So, to make it useful, martensite is
heated for a particular time to induce some softness into it. The product formed is known as
Tempered Martensite

More Related Content

Similar to Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf

Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materialsDivagar S
 
Iron carbon diagram presentation
Iron carbon diagram presentationIron carbon diagram presentation
Iron carbon diagram presentationSURESH M. PATEL
 
Iron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramIron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramGulfam Hussain
 
Iron iron carbon dia
Iron iron carbon diaIron iron carbon dia
Iron iron carbon diaKeval Patil
 
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.pptPart-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.pptBiranchiBiswal3
 
Iron carbide-Fe3C
Iron carbide-Fe3CIron carbide-Fe3C
Iron carbide-Fe3Cthiru1mech
 
material science & engineering.ppt
material science & engineering.pptmaterial science & engineering.ppt
material science & engineering.pptAwadMElAraby1
 
Phase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsPhase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsExplosion Cladding
 
Phasediagramheattreatmentofmetals
PhasediagramheattreatmentofmetalsPhasediagramheattreatmentofmetals
Phasediagramheattreatmentofmetalsmarimuthu_mech
 
Iron carbon system
Iron carbon systemIron carbon system
Iron carbon systemMuthukumar V
 
Iron carbon system
Iron carbon systemIron carbon system
Iron carbon systemMEGANATHANJ3
 
iron carbon system
iron  carbon systemiron  carbon system
iron carbon systemMohanKirthik
 

Similar to Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf (20)

IRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.pptIRON- IRON CARBIDE DIAGRAM.ppt
IRON- IRON CARBIDE DIAGRAM.ppt
 
Ironcarbondia
IroncarbondiaIroncarbondia
Ironcarbondia
 
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENTIRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
 
Iron carbon diagram presentation
Iron carbon diagram presentationIron carbon diagram presentation
Iron carbon diagram presentation
 
Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materials
 
Iron carbon diagram presentation
Iron carbon diagram presentationIron carbon diagram presentation
Iron carbon diagram presentation
 
Iron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gramIron iron carbide equilibrium phase dia gram
Iron iron carbide equilibrium phase dia gram
 
Iron iron carbon dia
Iron iron carbon diaIron iron carbon dia
Iron iron carbon dia
 
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.pptPart-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
Part-2 Leaning to plot Fe-c diagram-BNB-audio.ppt
 
Iron carbide-Fe3C
Iron carbide-Fe3CIron carbide-Fe3C
Iron carbide-Fe3C
 
Fe-C Diagram.pdf
Fe-C Diagram.pdfFe-C Diagram.pdf
Fe-C Diagram.pdf
 
Harsh radadiya
Harsh radadiyaHarsh radadiya
Harsh radadiya
 
material science & engineering.ppt
material science & engineering.pptmaterial science & engineering.ppt
material science & engineering.ppt
 
Phase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsPhase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of Metals
 
Phasediagramheattreatmentofmetals
PhasediagramheattreatmentofmetalsPhasediagramheattreatmentofmetals
Phasediagramheattreatmentofmetals
 
Phase diagram
Phase diagramPhase diagram
Phase diagram
 
Iron carbon system
Iron carbon systemIron carbon system
Iron carbon system
 
Iron carbon system
Iron carbon systemIron carbon system
Iron carbon system
 
iron carbon system
iron  carbon systemiron  carbon system
iron carbon system
 
EMM lecture.ppt
EMM lecture.pptEMM lecture.ppt
EMM lecture.ppt
 

More from annaelctronics

two singals are expected. one is for CH3, the oth.pdf
                     two singals are expected. one is for CH3, the oth.pdf                     two singals are expected. one is for CH3, the oth.pdf
two singals are expected. one is for CH3, the oth.pdfannaelctronics
 
There is in fact a stronger problem, namely 2p C .pdf
                     There is in fact a stronger problem, namely 2p C .pdf                     There is in fact a stronger problem, namely 2p C .pdf
There is in fact a stronger problem, namely 2p C .pdfannaelctronics
 
The term Lewis acid refers to a definition of aci.pdf
                     The term Lewis acid refers to a definition of aci.pdf                     The term Lewis acid refers to a definition of aci.pdf
The term Lewis acid refers to a definition of aci.pdfannaelctronics
 
NHC(=O)CH3 NH2 OH .pdf
                     NHC(=O)CH3    NH2    OH                        .pdf                     NHC(=O)CH3    NH2    OH                        .pdf
NHC(=O)CH3 NH2 OH .pdfannaelctronics
 
MnO2 may act as a catalyst.in the other reaction .pdf
                     MnO2 may act as a catalyst.in the other reaction .pdf                     MnO2 may act as a catalyst.in the other reaction .pdf
MnO2 may act as a catalyst.in the other reaction .pdfannaelctronics
 
What are P and R hereSolutionWhat are P and R here.pdf
What are P and R hereSolutionWhat are P and R here.pdfWhat are P and R hereSolutionWhat are P and R here.pdf
What are P and R hereSolutionWhat are P and R here.pdfannaelctronics
 
Intermolecular attractions are attractions betwee.pdf
                     Intermolecular attractions are attractions betwee.pdf                     Intermolecular attractions are attractions betwee.pdf
Intermolecular attractions are attractions betwee.pdfannaelctronics
 
It is insoluble in water. .pdf
                     It is insoluble in water.                        .pdf                     It is insoluble in water.                        .pdf
It is insoluble in water. .pdfannaelctronics
 
Write it using the ^ symbol. For example 1.34 10^6Solutio.pdf
Write it using the ^ symbol. For example 1.34  10^6Solutio.pdfWrite it using the ^ symbol. For example 1.34  10^6Solutio.pdf
Write it using the ^ symbol. For example 1.34 10^6Solutio.pdfannaelctronics
 
Xenodiagnosis is the method used to document presesnce of a microorg.pdf
Xenodiagnosis is the method used to document presesnce of a microorg.pdfXenodiagnosis is the method used to document presesnce of a microorg.pdf
Xenodiagnosis is the method used to document presesnce of a microorg.pdfannaelctronics
 
u(x)= ( -4x)Solutionu(x)= ( -4x).pdf
u(x)= ( -4x)Solutionu(x)= ( -4x).pdfu(x)= ( -4x)Solutionu(x)= ( -4x).pdf
u(x)= ( -4x)Solutionu(x)= ( -4x).pdfannaelctronics
 
There are many more conditions than just the norms of the culture th.pdf
There are many more conditions than just the norms of the culture th.pdfThere are many more conditions than just the norms of the culture th.pdf
There are many more conditions than just the norms of the culture th.pdfannaelctronics
 
The three layers of smooth muscle that includes mucosa. innermost tu.pdf
The three layers of smooth muscle that includes mucosa. innermost tu.pdfThe three layers of smooth muscle that includes mucosa. innermost tu.pdf
The three layers of smooth muscle that includes mucosa. innermost tu.pdfannaelctronics
 
The independent variable is the one which changes in each plant. Thi.pdf
The independent variable is the one which changes in each plant. Thi.pdfThe independent variable is the one which changes in each plant. Thi.pdf
The independent variable is the one which changes in each plant. Thi.pdfannaelctronics
 
Species diversity is more in near island as rate of immigration is m.pdf
Species diversity is more in near island as rate of immigration is m.pdfSpecies diversity is more in near island as rate of immigration is m.pdf
Species diversity is more in near island as rate of immigration is m.pdfannaelctronics
 
Solution Flies do not have teeth for chewing food.So,like human f.pdf
Solution Flies do not have teeth for chewing food.So,like human f.pdfSolution Flies do not have teeth for chewing food.So,like human f.pdf
Solution Flies do not have teeth for chewing food.So,like human f.pdfannaelctronics
 
Program To change this license header, choose License Heade.pdf
Program  To change this license header, choose License Heade.pdfProgram  To change this license header, choose License Heade.pdf
Program To change this license header, choose License Heade.pdfannaelctronics
 
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdf
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdfplexusFormed from anterioe rani o these spinal nervesMajor nerve.pdf
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdfannaelctronics
 
Ok, so the number of double bond equivalents in the compound is [C4H.pdf
Ok, so the number of double bond equivalents in the compound is [C4H.pdfOk, so the number of double bond equivalents in the compound is [C4H.pdf
Ok, so the number of double bond equivalents in the compound is [C4H.pdfannaelctronics
 
order of overlap of atomic orbitals from highest extent of overlap t.pdf
order of overlap of atomic orbitals from highest extent of overlap t.pdforder of overlap of atomic orbitals from highest extent of overlap t.pdf
order of overlap of atomic orbitals from highest extent of overlap t.pdfannaelctronics
 

More from annaelctronics (20)

two singals are expected. one is for CH3, the oth.pdf
                     two singals are expected. one is for CH3, the oth.pdf                     two singals are expected. one is for CH3, the oth.pdf
two singals are expected. one is for CH3, the oth.pdf
 
There is in fact a stronger problem, namely 2p C .pdf
                     There is in fact a stronger problem, namely 2p C .pdf                     There is in fact a stronger problem, namely 2p C .pdf
There is in fact a stronger problem, namely 2p C .pdf
 
The term Lewis acid refers to a definition of aci.pdf
                     The term Lewis acid refers to a definition of aci.pdf                     The term Lewis acid refers to a definition of aci.pdf
The term Lewis acid refers to a definition of aci.pdf
 
NHC(=O)CH3 NH2 OH .pdf
                     NHC(=O)CH3    NH2    OH                        .pdf                     NHC(=O)CH3    NH2    OH                        .pdf
NHC(=O)CH3 NH2 OH .pdf
 
MnO2 may act as a catalyst.in the other reaction .pdf
                     MnO2 may act as a catalyst.in the other reaction .pdf                     MnO2 may act as a catalyst.in the other reaction .pdf
MnO2 may act as a catalyst.in the other reaction .pdf
 
What are P and R hereSolutionWhat are P and R here.pdf
What are P and R hereSolutionWhat are P and R here.pdfWhat are P and R hereSolutionWhat are P and R here.pdf
What are P and R hereSolutionWhat are P and R here.pdf
 
Intermolecular attractions are attractions betwee.pdf
                     Intermolecular attractions are attractions betwee.pdf                     Intermolecular attractions are attractions betwee.pdf
Intermolecular attractions are attractions betwee.pdf
 
It is insoluble in water. .pdf
                     It is insoluble in water.                        .pdf                     It is insoluble in water.                        .pdf
It is insoluble in water. .pdf
 
Write it using the ^ symbol. For example 1.34 10^6Solutio.pdf
Write it using the ^ symbol. For example 1.34  10^6Solutio.pdfWrite it using the ^ symbol. For example 1.34  10^6Solutio.pdf
Write it using the ^ symbol. For example 1.34 10^6Solutio.pdf
 
Xenodiagnosis is the method used to document presesnce of a microorg.pdf
Xenodiagnosis is the method used to document presesnce of a microorg.pdfXenodiagnosis is the method used to document presesnce of a microorg.pdf
Xenodiagnosis is the method used to document presesnce of a microorg.pdf
 
u(x)= ( -4x)Solutionu(x)= ( -4x).pdf
u(x)= ( -4x)Solutionu(x)= ( -4x).pdfu(x)= ( -4x)Solutionu(x)= ( -4x).pdf
u(x)= ( -4x)Solutionu(x)= ( -4x).pdf
 
There are many more conditions than just the norms of the culture th.pdf
There are many more conditions than just the norms of the culture th.pdfThere are many more conditions than just the norms of the culture th.pdf
There are many more conditions than just the norms of the culture th.pdf
 
The three layers of smooth muscle that includes mucosa. innermost tu.pdf
The three layers of smooth muscle that includes mucosa. innermost tu.pdfThe three layers of smooth muscle that includes mucosa. innermost tu.pdf
The three layers of smooth muscle that includes mucosa. innermost tu.pdf
 
The independent variable is the one which changes in each plant. Thi.pdf
The independent variable is the one which changes in each plant. Thi.pdfThe independent variable is the one which changes in each plant. Thi.pdf
The independent variable is the one which changes in each plant. Thi.pdf
 
Species diversity is more in near island as rate of immigration is m.pdf
Species diversity is more in near island as rate of immigration is m.pdfSpecies diversity is more in near island as rate of immigration is m.pdf
Species diversity is more in near island as rate of immigration is m.pdf
 
Solution Flies do not have teeth for chewing food.So,like human f.pdf
Solution Flies do not have teeth for chewing food.So,like human f.pdfSolution Flies do not have teeth for chewing food.So,like human f.pdf
Solution Flies do not have teeth for chewing food.So,like human f.pdf
 
Program To change this license header, choose License Heade.pdf
Program  To change this license header, choose License Heade.pdfProgram  To change this license header, choose License Heade.pdf
Program To change this license header, choose License Heade.pdf
 
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdf
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdfplexusFormed from anterioe rani o these spinal nervesMajor nerve.pdf
plexusFormed from anterioe rani o these spinal nervesMajor nerve.pdf
 
Ok, so the number of double bond equivalents in the compound is [C4H.pdf
Ok, so the number of double bond equivalents in the compound is [C4H.pdfOk, so the number of double bond equivalents in the compound is [C4H.pdf
Ok, so the number of double bond equivalents in the compound is [C4H.pdf
 
order of overlap of atomic orbitals from highest extent of overlap t.pdf
order of overlap of atomic orbitals from highest extent of overlap t.pdforder of overlap of atomic orbitals from highest extent of overlap t.pdf
order of overlap of atomic orbitals from highest extent of overlap t.pdf
 

Recently uploaded

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 

Recently uploaded (20)

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 

Part a). Pearlite - Pearlite is a two-phased, lamellar (or l.pdf

  • 1. >> Part a). >> Pearlite :- Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (88 wt%) and cementite (12 wt%) that occurs in some steels and cast irons. In fact, the lamellar appearance is misleading since the individual lamellae within a colony are connected in three dimensions; a single colony is therefore an interpenetrating bicrystal of ferrite and cementite. In an iron-carbon alloy, during slow cooling pearlite forms by a eutectoid reaction as austenite cools below 727 °C (1,341 °F) (the eutectoid temperature). Pearlite is a microstructure occurring in many common grades of steels. >> Cementite :- Cementite, also known as iron carbide, is an interstitial compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, though it is more important in ferrous metallurgy. While iron carbide is present in most steels and cast irons, it is produced as a raw material in the Iron Carbide process, which belongs to the family of alternative ironmaking technologies. >> Austenite :- Austenite, also known as gamma-phase iron (-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron, with analloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1,000 K (1,340 °F; 730 °C); other alloys of steel have different eutectoid temperatures. It is Face Centred Cubic Configuration (FCC). >> Eutectoid Phase :- When the solution above the transformation point is solid, rather than liquid, an analogous eutectoid transformation can occur. For instance, in the iron-carbon system, the austenite phase can undergo a eutectoidtransformation to produce ferrite and cementite, often in lamellar structures such as pearlite and bainite. >> Proeutectoid :- When a hot steel with carbon content very close to 0.8%, is cooled down slowly, there is a temperature (723 deg C) at which a constant-temperature transformation takes place. This is called eutectoid transformation. And this results in formation of alternate layers of Ferrite and Iron-Carbide (Fe3C). But if the carbon content in this hot steel is much less than 0.8%, and it is cooled down slowly, then till the temperature reduces to 723 deg C, a part of Austenite (also called gamma iron) gets transformed to Ferrite by rejecting carbon from the solution. This is not a constant-temperature process and occurs over a range of temperature. The ferrite so formed is called Proeutectoid...At 723 deg C, all the remaining Austenite get converted to Pearlite at this constant temperature - which is nothing but alternate layers of Ferrite and cementite
  • 2. >> Martensite :- Martensite, most commonly refers to a very hard form of steel crystalline structure, but it can also refer to any crystal structure that is formed by diffusionless transformation. It includes a class of hard minerals occurring as lath- or plate-shaped crystal grains. When viewed in cross section, the lenticular (lens-shaped) crystal grains are sometimes incorrectly described as acicular (needle-shaped) >> Bainite :- Bainite is a plate-like microstructure or phase morphology (not an equilibrium phase) that forms in steels at temperatures of 250–550 °C (depending on alloy content). It is one of the decomposition products that may form when austenite (the face centered cubic crystal structure of iron) is cooled past a critical temperature. This critical temperature is 1000K (727 °C, 1340 °F) in plain carbon steels. Davenport and Bain originally described the microstructure as being similar in appearance to tempered martensite. A fine non-lamellar structure, bainite commonly consists of cementite and dislocation-rich ferrite. The high concentration of dislocations in the ferrite present in bainite makes this ferrite harder than it normally would be. Part b). Two major differences are: 1) atomic diffusion is necessary for the pearlitic transformation, whereas the martensitic transformation is diffusionless; and 2) relative to transformation rate, the martensitic transformation is virtually instantaneous, while the pearlitic transformation is time-dependent. >> Part c). A proeutectoid phase (ferrite or cementite) always forms along austenite grain boundaries because associated with grain boundaries is an interfacial energy (i.e., grain boundary energy). A lower net interfacial energy increase results when a proeutectoid phase forms along existing austenite grain boundaries than when the proeutectoid phase forms within the interior of the grains. >>The main difference between martensite and bainite is how they form. When heated austenite tends to cool, then in first case, if it make to cool at a particular rate, then diffusion of carbon inside its gets lowerd and carbon granules just lie inside the cementite matrix. This is known as Bainite. Now, if cooling rate is too high, then it will be just hardened. Its strength will be too high . This is martensite. >> Now, as said above, Martensite is too hard to be used. So, to make it useful, martensite is heated for a particular time to induce some softness into it. The product formed is known as Tempered Martensite
  • 3. Solution >> Part a). >> Pearlite :- Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (88 wt%) and cementite (12 wt%) that occurs in some steels and cast irons. In fact, the lamellar appearance is misleading since the individual lamellae within a colony are connected in three dimensions; a single colony is therefore an interpenetrating bicrystal of ferrite and cementite. In an iron-carbon alloy, during slow cooling pearlite forms by a eutectoid reaction as austenite cools below 727 °C (1,341 °F) (the eutectoid temperature). Pearlite is a microstructure occurring in many common grades of steels. >> Cementite :- Cementite, also known as iron carbide, is an interstitial compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, though it is more important in ferrous metallurgy. While iron carbide is present in most steels and cast irons, it is produced as a raw material in the Iron Carbide process, which belongs to the family of alternative ironmaking technologies. >> Austenite :- Austenite, also known as gamma-phase iron (-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron, with analloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1,000 K (1,340 °F; 730 °C); other alloys of steel have different eutectoid temperatures. It is Face Centred Cubic Configuration (FCC). >> Eutectoid Phase :- When the solution above the transformation point is solid, rather than liquid, an analogous eutectoid transformation can occur. For instance, in the iron-carbon system, the austenite phase can undergo a eutectoidtransformation to produce ferrite and cementite, often in lamellar structures such as pearlite and bainite. >> Proeutectoid :- When a hot steel with carbon content very close to 0.8%, is cooled down slowly, there is a temperature (723 deg C) at which a constant-temperature transformation takes place. This is called eutectoid transformation. And this results in formation of alternate layers of Ferrite and Iron-Carbide (Fe3C). But if the carbon content in this hot steel is much less than 0.8%, and it is cooled down slowly, then till the temperature reduces to 723 deg C, a part of Austenite (also called gamma iron) gets transformed to Ferrite by rejecting carbon from the solution. This is not a constant-temperature process and occurs over a range of temperature. The ferrite so formed is called Proeutectoid...At 723 deg C, all the remaining Austenite get converted to Pearlite at this constant temperature -
  • 4. which is nothing but alternate layers of Ferrite and cementite >> Martensite :- Martensite, most commonly refers to a very hard form of steel crystalline structure, but it can also refer to any crystal structure that is formed by diffusionless transformation. It includes a class of hard minerals occurring as lath- or plate-shaped crystal grains. When viewed in cross section, the lenticular (lens-shaped) crystal grains are sometimes incorrectly described as acicular (needle-shaped) >> Bainite :- Bainite is a plate-like microstructure or phase morphology (not an equilibrium phase) that forms in steels at temperatures of 250–550 °C (depending on alloy content). It is one of the decomposition products that may form when austenite (the face centered cubic crystal structure of iron) is cooled past a critical temperature. This critical temperature is 1000K (727 °C, 1340 °F) in plain carbon steels. Davenport and Bain originally described the microstructure as being similar in appearance to tempered martensite. A fine non-lamellar structure, bainite commonly consists of cementite and dislocation-rich ferrite. The high concentration of dislocations in the ferrite present in bainite makes this ferrite harder than it normally would be. Part b). Two major differences are: 1) atomic diffusion is necessary for the pearlitic transformation, whereas the martensitic transformation is diffusionless; and 2) relative to transformation rate, the martensitic transformation is virtually instantaneous, while the pearlitic transformation is time-dependent. >> Part c). A proeutectoid phase (ferrite or cementite) always forms along austenite grain boundaries because associated with grain boundaries is an interfacial energy (i.e., grain boundary energy). A lower net interfacial energy increase results when a proeutectoid phase forms along existing austenite grain boundaries than when the proeutectoid phase forms within the interior of the grains. >>The main difference between martensite and bainite is how they form. When heated austenite tends to cool, then in first case, if it make to cool at a particular rate, then diffusion of carbon inside its gets lowerd and carbon granules just lie inside the cementite matrix. This is known as Bainite. Now, if cooling rate is too high, then it will be just hardened. Its strength will be too high . This is martensite. >> Now, as said above, Martensite is too hard to be used. So, to make it useful, martensite is heated for a particular time to induce some softness into it. The product formed is known as Tempered Martensite