SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering and Technical Research (IJETR)
ISSN: 2321-0869, Volume-1, Issue-8, October 2013
62 www.erpublication.org
Abstract— For self-compacting concrete, the arrival of new
admixtures, but also of the colloidal agent and of various
cementitious additions have remarkably changed rheology
compared with standard concrete.
In order to exploit the potentials of concretes characterized
by a superior performance in the fresh state, such as
Self-Compacting Concrete (SCC), procedures for predicting its
flow behavior are needed in order to properly design casting, in
particular pumping.
This paper presents a study based on pumping parameters
proposed in the literature to quantify the plastic viscosity and
yield stress of fresh concrete. The experimental data reported in
this article were used to evaluate the possibility of predicting
these parameters in order to choose the most appropriate
formulation for any particular site and subsequently to develop
pumping pressure prediction equations suitable for any given
pumping circuit geometry and any given concrete from our
experimental results.
Index Terms—plastic viscosity, pumping, rheology,
self-compacting concrete, yield stress.
I. INTRODUCTION
Rheology is the science that studies the deformation and
flow of matter. It is generally accepted (Tattersall and Banfill,
1983) [1] that fresh concrete has a binghamian behavior. The
behavior law of a binghamian fluid writes:  = 0 + μ ý
Fig. 1: Physical interpretation of the Bingham model.
Manuscript received October 14, 2013
M. BENAICHA, Département Génie Civil, laboratoire IUSTI, Polytech’
Marseille – France, Laboratoire de Mécanique et Génie Civil, FST de Tanger
– Maroc
O. JALBAUD, Département Génie Civil, laboratoire IUSTI, Polytech’
Marseille – France
A. HAFIDI ALAOUI, Laboratoire de Mécanique et Génie Civil, FST de
Tanger – Maroc
Y. BURTSCHELL, Département Génie Civil, laboratoire IUSTI,
Polytech’ Marseille – France
From a physical point of view, the two parameters of
Bingham, yield stress τ0 and plastic viscosity μ was
interpreted [2] as follows (fig.1): the shear threshold is
explained as the macroscopic sum of all solid grain internal
frictioning it depends directly on the number and the nature
of contacts between the grains and therefore on the
compactness of the granular skeleton. Beyond the threshold,
the stress applied to the mixture causes the flow which
translates into relative motions between solid grains
(friction), and the circulation of the liquid phase between the
grains, due to inter-grain porosity.
It the latter that would cause the viscous dissipation in the
fluid flow and explain the second term μ y in the law of
Bingham. The more circulation is difficult, the more the
parameter μ is important.
Viscosity characterizes a fluid's resistance to sliding or
deformation. It is due to the fact that the layers of a fluid in
motion cannot slide freely and independently from one
another, giving rise to frictional forces that directly oppose
the flow. Viscosity is thus the inverse property of fluidity.
The most adopted approach to quantify the rheological
properties of fresh concrete is to experimentally measure the
shear stress relatively to the shear rate using a rheometer.
Other researchers have attempted to quantify the plastic
viscosity of fresh concrete from its composition, in particular
the works of Roshavelov [3], Ferrari and deLarrard [4] and
Kasami [5].
Initially, we decided not to take into account this
correlation between viscosity and rheological parameters,
and to concentrate on understanding the influence of a
concrete's composition on its pumping and later predict the
required pumping pressure depending on the characteristics
of the building site-essentially the geometry of the pumping
circuit. These results were eventually to be compared with
the rheological parameters, for validation.
II. SETTING THE CONTEXT
The flow of fresh concrete in a formwork is a
three-dimensional free surface flow generated by the gravity
of a threshold fluid within a network of obstacles consisting
of steel bars. An implementation flaw may have many causes.
It can be caused by the coarsest aggregates blocking the flow
along the frames or by behavior of the concrete itself when
the gravity- generated stress is not sufficient to keep the
concrete flowing and filling the formwork completely. In
Correlation between the pumping and the rheological
properties of self-compacting concrete: a practical
study
M. BENAICHA, O. JALBAUD, A. HAFIDI ALAOUI and Y. BURTSCHELL
Dissipation by
friction between
grains
Viscous
dissipation
in the liquid
Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study
63 www.erpublication.org
order to exploit the potentials of concretes characterized by a
superior performance in the fresh state, such as
Self-Compacting Concrete (SCC), procedures for predicting
its flow behavior are needed in order to properly design
casting, in particular pumping.
For several years, pumping has been the most used
technique to cast fresh concrete [6, 7]. The concrete is placed
in a pump that delivers it to the desired location through
flexible or rigid hoses, made of rubber or steel.
But this technique requires a so-called "pumpable"
concrete, i.e. a concrete that can more under pressure in a
confined space while keeping its initial properties (Beaupré,
1994 [8], Gray, 1962 [9]). To try and avoid blocking
problems, new admixtures, colloidal agent and various
cementitious products have been thus added that have
remarkably changed the rheology of fresh concrete.
More recently, Kaplan, 2000 [10] has shown that it is
necessary, in addition to rheological measurement, to use the
tribological measure to establish a prediction model of the
pumping pressure.
Tribology is the science that studies the phenomena that
may occur between two material systems in contact be they
immobile or animated by relative movements. In the case of
fresh concrete and more specifically in the case of fresh
concrete pumping, tribology is the study of the interface
between the fresh concrete and the wall of the hose (or one
other mobile used to make a tribological test [11]). See figure
2.
Fig. 2: Schematic of the tribometer test
III. INFLUENCE OF COMPOSITION ON PUMPING
All factors in the composition of concrete affect its
pumpability [12]. All the authors having published on the
subject deal with this issue, but in different ways. Concrete is
a granular mixture having a voids volume of about 7 to 10%
at the mixer's output (before vibration). The shape and size of
the particles must therefore be taken into consideration since
these factors greatly influence the volume of inter-grains
voids (Kempster, 1969 [13]).
The friction between the particles, or between the coarse
grains and the walls of circuit pumping, increases pressure up
to sometimes create a blockage [14, 15]. Neville 1995 [16],
shows that a certain volume of cement is necessary to fill the
space between the grains otherwise the pumping is difficult
or impossible. Also, segregation problems may occur if the
amount of fine particles in the mixture is insufficient or if the
compactness of the granular skeleton is low (Browne &
Bamforth [17]). In these cases, a separation of the coarse
aggregates and the cement paste can occur and cause a
blockage. On the other hand, the problem of excessive
friction may occur in the case of concrete mixtures having a
very compact granular skeleton and a high content of binder.
In this situation, it appears that the available paste is absorbed
by the fine particles to fluidify the mixture, which causes
solid friction contacts between the grains and sometimes
blocks the concrete's flow. Therefore, the role of cement
paste is to fill the gaps left between the grains of sand and
gravel. An reduction in volume of the cement paste is
possible only by reducing the volume of the voids between
the granular particles (Goltermann et al. 1997 [18]).
The amount of water added to the concrete mix greatly
influences its rheology (decrease in plastic viscosity and
yield stress [1]) but also causes a risk of segregation. It is thus
the most important factor to control. Ede, 1957 [19] studied
the pumpability of concrete mixtures with different W / C
ratios but constant cement content. He observed that the
concrete mix should contain just enough water to saturate the
voids between the aggregates otherwise the pressure required
to pumping increased significantly [20].
Figure 3 shows the three identified areas. When the
concrete does not contain enough water and the voids
between the aggregates are not filled, there is a flow by solid
friction. The concrete behaves as a granular material and
consequently, its mobility of concrete is greatly reduced [21,
22]. Indeed, Ede (1957) explains that the flow resistance
appears to be function of pumping pressure (figure 4. b). This
corresponds to the first area on the figure 3, after which an
abrupt change in mobility occurs, referred to as the
"transition zone" where the amount of water is sufficient to
fill the voids. Finally, when the amount of water exceeds a
certain ration, we enter a third zone where the flow is of
hydraulic type. In this case, the pumping pressure is
transmitted to all constituents by water that fills all voids of
the granular skeleton. Moreover, there appears to be
formation of a lubrication layer at the periphery of the flow,
which promotes the mobility by preventing friction of solid
particles against the pipe's wall [23](figure 4. a).
Fig. 3: Effect of W / C ratio on the mobility of concrete when
pumping (Ede, 1957)
International Journal of Engineering and Technical Research (IJETR)
ISSN: 2321-0869, Volume-1, Issue-8, October 2013
64 www.erpublication.org
a) Flow by solid friction b) Hydraulic flow
Fig.4: Representation of the two types of flow (Loadwick,
1970) [24].
IV. APPLICATION: PUMPING
Generally, SCC is significantly less constraining to use
than vibration-implemented concrete, thanks to its ease of
casting over long distances and large heights.
The flow properties of SCC have given rise to the
establishment of new procedures to fill the formworks, as the
characteristics of SCC allow for important horizontal paths.
On a site with difficult access, it is thus now possible to
implement the concrete by pumping- with mobility as an
essential condition: the concrete must indeed oppose the least
possible resistance to its displacement in the pumping pipes
so as to develop the lowest possible pumping pressure.
P (in Pa) is the pressure applied at the level of the pump.
The concrete then flows in bulk by sliding. Its flow is slowed
by friction constraints τf(x) exerted at the interface between
the concrete and the pipe, as shown in figure 5.
τf(x)
p(x) p(x)+dp(x)
τf(x)
Fig. 5: Equilibrium of a concrete element in the pipe
By writing the equilibrium of a section unit of concrete, the
derivative of the pressure dp(x)/dx (in Pa / m) as a function of
τf (x) and R is written (2):
(x).dx2.+dp(x)].R+[p(x)=p(x).R f
(x)/R-2=dp(x)/dx f
For a given flow, dp(x)/dx is constant, therefore the
frictional stress τf does not depend on the pressure. On the
other hand dp(x)/dx evolves when the flow rate of concrete
increases, therefore τf depends on the sliding velocity
 f (x) = f, constant for a given flow rate.
Moreover, the boundary conditions are written (see figure
6) : p(L)=0 et p(0)=P
Fig. 6. Pumping circuit
Pumping pressure becomes: /R2L=P f
There is a way to evaluate in the laboratory the friction of
concrete with a pipe using a tribometer with coaxial
cylinders. The behavior of the concrete-steel interface is
described by the following model:  = 0i + Vg, where τ is
the stress of the interface (in Pa), τ0i the threshold of the
interface (in Pa), η the interface viscous constant (in Pa.s/m)
and Vg the relative velocity of sliding (in m/s).
Assuming that the concrete remains motionless in the tank
during the test, the pressure at the pump P (in Pa) for a given
flow, depending on the stress of friction f and the geometry
of the circuit is (4):
)RQ/+(2L/R=)Vg+(2L/R=P 2
0i0i 
where Q is the pumping flow rate (in m3
/s)
.VgR=S.Vg=Q 2

Knowing that the average concrete has a density ρ, if the
pipe is no longer horizontal but its output is at a height H (in
m) above the pump, the expression of the pressure becomes
(5):
.g.H)RQ/+(2L/RP 2
0i  
where g is the gravity (in m/s²) and  is the density of
concrete.
During pumping, and when the velocity of sliding between
the pipe and the concrete becomes important, the frictional
stress τf becomes large enough that a shear spreads in
concrete.
Beyond this velocity, the total flow rate (described by the
Buckingam-Reiner equation) is the sum of a flow rate by
sliding and a flow rate by shear:
where
τ0 yield stress (in Pa)
µ plastic viscosity (in Pa.s)
dp/dx pressure gradient (Pa/m)
From (3) we have :
Direction of flow
(1)
(2)
(3)
(4)
(5)













Rxdp
dx
dx
xdpR
R
V
Q g 0
4
2
2
)(3
4
1
)(
8




(6)










4
34
3
2
0
3
0
3
R
R
RR
Q
V
i
g



Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study
65 www.erpublication.org
The pressure at the pump for a given flow becomes (7):
V. EXPERIMENTAL STUDY
We created a building site for which the implementation of
concrete was done by pumping. The pumping circuit was as
following: pipe diameter 130 mm, height of pumping 200 m,
horizontal distance 100 m.
Our laboratory has in its catalogue four formulations of
self-compacting concrete. Table 1 presents the figures
concerning the rheological properties for all mixtures
manufactured during this research project.
Table 1: Properties of self-compacting concretes available
Formulations SCC 1 SCC 2 SCC3 SCC 4
Constituents (Kg/m3
)
Cement 30.5.5 350 350 283.8
Total water 167.4 177.4 179.7 192.2
Superplasticizer 5.88 6.5 6.38 5.00
Limestone filler 164.5 170 100 116.1
Gravel 5/10 900 830 790 900
Sand 0/2 870 830 990 900
Mechanical and
rheological
characteristics
Mass density (Kg/m3
) 2446 2440 2428 2429
Compressive strength
(MPa) at 28d
49.8 56.0 53.0 49.5
Air content
(%)
1.2 2.8 2.4 1.8
Slump flow (mm) 650 720 725 670
Flow threshold (Pa) 24.8 19.4 12.4 30.5
Plastic viscosity (Pa.s) 290.3 92.6 109.5 115.3
Tribology data
Threshold of the
interface 0i (Pa) 50 60 70 50
Viscous interface
constant (Pa.s/m) 900 1400 1700 980
This table indicates that the most fluid mixtures (high
slump flow) have the lostest shear thresholds. The air content
is another parameter that influences the plastic viscosity of
concrete. The more a mixture contains a large air volume, the
less it is viscous because the volume of available paste to
fluidify a mixture is also a function of the air content [6].
For example, the concrete SCC2 that contains 2.8% of air is
very viscous compared to other mixtures.
Finally, the concrete selected for our building site was
SCC2, because of its lower plastic viscosity that allowed it to
rub less and thus require a lower pumping pressure.
Regarding the mechanical characteristics, the SCC2 has a
compressive strength of about 56 MPa.
After a few days of casting without problem, the concrete
suddenly become more difficult to pump. To understand what
was happening, the pump operator then made measurements
of pressure for two pumping rates. These are given in table 2.
The pump used on the building site was a piston pump with a
volume of 60 litres.
Figure 7 below shows an example with two pistons working
by filling one while emptying the other via a valve shifting
opening towards the feeder and shutting towards the pipe.
Fig. 7: Piston pump with valve letting concrete in from hopper to
one piston and out to tube from the other piston alternating with the
strokes of the two pistons (Putzmeister make)
A pump operator can follow the pumping rate by counting
the number of piston strokes per minute. He can also read the
pressure on a pressure gauge in the hydraulic circuit of the
pump. This hydraulic pressure is equal to 1.8 times the
pressure on concrete at the outlet of the pump.
Table 2: pumping data
Measure N° 1 2
Pumping rate (Strock /min) 6.0 8
Hydraulic pressure-Pressure gauge(bars) 225 270
From (5) we have:
.g.H)R/Q+(2L/RP 2
10i1  
.g.H)R/Q+(2L/RP 2
20i2  


























4
34
2 3
2
0
3
0
3
0
R
R
RR
Q
R
L
P
i
i
International Journal of Engineering and Technical Research (IJETR)
ISSN: 2321-0869, Volume-1, Issue-8, October 2013
66 www.erpublication.org
Therefore 3
12
12
)(2
)(
R
QQL
PP




2
1
10 )..(
2 R
Q
HgP
L
R
i

 
Numerical applications:
R=0.065 m
P1=225/1,8 105= 125.105 Pa
P2=270/1,8 105= 150.105 Pa
Q1=6*60/60/1000=0.006 m3
/s
Q2=8*60/60/1000=0.008 m3
/s
We find:  = 1796 Pa.s/m and 0i = 74.29 Pa
The cheking of formulation by tribometer tests provides an
estimate of the value of the interface viscous constant (η) and
threshold (τ0i). These results are similar to the formula SCC3,
so we can say that there was a problem during transport of the
material. Otherwise there was probably confusion in
formulation at the concrete plant.
VI. CONCLUSION
This article is a practical example to confirm the choice of a
formulation based on the calculation of pumping rate and the
hydraulic pressure as the well as rheological characteristics
of the mixture.
The pumpability of concrete is basically connected to its
mixer output rheology. In addition, the stability of the
rheology must be guaranteed throughout implementation,
knowing that, in a real life situation of on-site construction,
technical and mechanical constraints related to the choice of
equipment are not 100% controllable. Therefore, the
pumpability is a feature that should depend only on the
properties of the fresh concrete and remain independent of
equipment or pumping conditions. It can be claimed that the
factors that determine the pumpability of concrete remain
linked to its composition.
It during pumping a decrease in the workability of the
concrete often occurs. It is therefore important to ensure that
the rheology after pumping is sufficient for the final
implementation.
One of the issues raised in this work was the identification
of the most appropriate parameter to validate the formulation
proposed by the laboratory. It appears that the pumping
pressure and viscous constant of the interface are best
parameters to validate the choice of this formulation.
The relationships obtained from studied analytical methods
allow to establish the degree of pumpability of concrete
mixes. Therefore, it is possible by knowing the
characteristics of a pumping circuit (length and diameter) to
calculate the maximum pressure required to achieve the
concrete pumping.
For each application, the required characteristics are
different. Finishing needs, implementation, pumpability,
segregation resistance etc.. define if a concrete has good
properties when fresh. In the light of the results obtained
during this project, it appears that the optimum rheology for
pumping is the one where the shear threshold of concrete is
low so as to obtain a minimum resistance to flow.
REFERENCES
[1] Tattersall, G.H. & Banfill, P.F.G. (1983) The Rheology of Fresh
Concrete , London, Pitman, 1983, 356 p.
[2] de Larrard F., 2000, « Structures granulaires et formulation des bétons
», Etudes et Recherches des Laboratoires des Ponts et Chaussées,
OA34, Paris.
[3] ROSHAVELOV T.T. “Concrete mixture proportioning with optimal
dry packing”. In Proceeding of the First International RILEM
Symposium of Self-Compacting Concrete. RILEM, 19.
[4] Ferraris, C., De Larrard, F. (1998), Testing and modelling of fresh
concrete rheology , National Institute of Standards and Technology,
NISTR 6094, Gaithersburg, MD, February, 61 p.
[5] Kasami H., Ikeda T. and Yamane S (1979) On Workability and
pumpability of superplasticized concrete, Proc. 1st CANMET/ACI
Conf on Superplasticizers in Concrete, Ottawa, V.M.Malhotra Ed.,
ACI SP62, 67-86.
[6] Johansson, A., Tuutti, K. (1976), Pumped concrete and pumping
concrete, CBI Research Reports, 10:76 (Swedish Cement and Concrete
Inst.).
[7] Sakuta, M., Yamane, S., Kasami, H., Sakamoto, A (1979) Pumpability
and Rheological Properties of Fresh Concrete, Proceedings of
Conference on Quality Control of Concrete Structures, vol.2, Swedish
Cement and Concrete Research Institute, Stockholm, june 17-19,
pp.125-132.
[8] Beaupré, D. (1994) Rheology of High Performance Shotcrete , Ph.D.
Thesis of the University of British Columbia, Canada, 249 p.
[9] Gray, J. (1962) Laboratory procedure for comparing pumpability of
concrete mixtures , presented at the sixty-fifth annual meeting of the
society, National Crushed Stone Assn., Washington, D.C., June 24-29,
pp. 964-971
[10] Kaplan, D. (2000) Pompage des bétons , Thèse de doctorat de l’École
Nationale des Ponts et Chaussées, 225 p.
[11] Chapdelaine, F. (2006). Étude fondamentale et pratique sur le pompage
du béton. Département de génie civil, Université Laval, Canada. Thèse,
200 pages.
[12] CHOPIN D., DE LARRARD F., CAZACLIU B., « Why do HPC and
SCC require a longer mixing time? », Cement and Concrete Research,
vol. 34, n°12, p. 2237-2243, 2004
[13] Kempster, E. (1969), Pumpable Concrete , Current Paper No. 29/69,
Building Research Station, Garston, aug. 1969.
[14] Murata, J. (1984) Flow and deformation of fresh concrete, Materials
and Structures, vol.17, no.98, march-apr, pp. 117-129.
[15] Kaplan D, deLarrard, F., Sedran T.(2005) Avoidance of Blockages in
Concrete Pumping Process, ACI Materials Journal, 102 (3) 183-191
[16] Neville, A.M. (1995) Properties of Concrete, Fourth Edition, Longman
Group Limited, London, 844 p.
[17] Morinaga, M. (1973), Pumpability of concrete and pumping pressure
in pipelines, Fresh. Concrete : Important Properties and heir
Measurement, Proceeding of a RILEM Seminar Held March, Leeds,
vol. 7, pp.7.3-1 à 7.3-39.
[18] Goltermann, Packing of aggregates: an alternative tool to determine the
optimal aggregate mix. ACI Materials Journal. V94, No 5, Sept/Oct
1997, pp 435–43.
[19] Ede, A.N. (1957), The resistance of concrete pumped through
pipelines , Magazine of Concrete research, vol 9, no. 27, nov, 1957, pp.
129-140
[20] Tattersall, G.H. (1973) Lubrification Layer in Concrete Pumping – A
Written Contribution to Discussion Topic Number 7, Fresh Concrete:
Important Properties and Their Measurement – Proceedings of a
RILEM Seminar Held on 22nd – 24th March 1973 in Leeds England,
vol.3, University of Leeds, Leeds, England, pp. 7.D1-1 – 7.D1-5
[21] BROWNE, R.D., BAMFORTH, P.B. (1977). Tests to Establish
Concrete Pumpability, ACI Journal, Vol. 74, No. 5, May, pp. 193-207.
[22] Weber, R. (1963) The transport of concrete by pipeline, Cement and
Concrete Association Library Translation No. 129, Cement and
Concrete Association, Londres, 1963, 85 p.
[23] Yingling, J, Mullings, G.M., Gaynor, R.D. (1992) Loss of air in
Pumped Concrete, Concrete International, vol.11, no.10, oct., pp.
57-61.
[24] Loadwick, F. (1970) Some Factors Affecting the Flow of Concrete
Through Pipelines , Proceeding of the First International Conference
on Hydraulic Transport of Solids in Pipes, British Hydromechanics
Association, Bedford, pp. D1-1 – D1-31.
Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study
67 www.erpublication.org
Mouhcine Benaicha, PhD student and monitor at Polytech 'Marseille.
Holder of a Master's degree in Civil Engineering at the Faculty of Science
and Technology of Tangier.
Olivier Jalbaud, technical Director of Polytech’ Marseille Civil
Engineering Laboratory.
Adil Hafidi Alaoui, academic Professor and Researcher in the Department
of Civil Engineering, Faculty of Sciences and Technical of Tangier (FST).
Holder of a PhD in mechanics and a PhD in materials science. Director of
materials and civil engineering laboratory in Tangier.
Yves Burtschell, academic Professor and Researcher. Holder of a PhD in
mechanical fluids. Director of Polytech’ Marseille Civil Engineering
Department. Yves Burtschell .

More Related Content

What's hot

paper_237_theme7_haug&mukherjee
paper_237_theme7_haug&mukherjeepaper_237_theme7_haug&mukherjee
paper_237_theme7_haug&mukherjeeRahul Mukherjee
 
Predicting the Workability of Fresh Concrete Using Simple Pull-out Test
Predicting the Workability of Fresh Concrete Using Simple Pull-out TestPredicting the Workability of Fresh Concrete Using Simple Pull-out Test
Predicting the Workability of Fresh Concrete Using Simple Pull-out TestIJRESJOURNAL
 
Mathematical Relationships between the Compressive Strength and Some Other St...
Mathematical Relationships between the Compressive Strength and Some Other St...Mathematical Relationships between the Compressive Strength and Some Other St...
Mathematical Relationships between the Compressive Strength and Some Other St...IOSR Journals
 
Influence of Construction Parameters on Performance of Dense Graded Bituminou...
Influence of Construction Parameters on Performance of Dense Graded Bituminou...Influence of Construction Parameters on Performance of Dense Graded Bituminou...
Influence of Construction Parameters on Performance of Dense Graded Bituminou...IOSR Journals
 
Selfconcrete
SelfconcreteSelfconcrete
Selfconcretemascatur
 
Test on fresh concrete and harden concrete
Test on fresh concrete and harden concreteTest on fresh concrete and harden concrete
Test on fresh concrete and harden concreteMOHAMMED JIRUWALA
 
S11527 008-9358-x
S11527 008-9358-xS11527 008-9358-x
S11527 008-9358-xdrbasharakm
 
Testing of dry/hardened concrete
Testing of dry/hardened concreteTesting of dry/hardened concrete
Testing of dry/hardened concreteE. O. Ochieng'
 
Experimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirsExperimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirsIJRES Journal
 
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...Renee Heldman
 
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...civej
 
CONCRETE MIX DESIGN
CONCRETE MIX DESIGNCONCRETE MIX DESIGN
CONCRETE MIX DESIGNNikul Gopani
 
Mix design procedure road note 4
Mix design procedure road note  4Mix design procedure road note  4
Mix design procedure road note 4shruthiv19
 
Hardened concrete 1
Hardened concrete 1Hardened concrete 1
Hardened concrete 1Nagi Polu
 
Ce8611 Highway Engineering Laboratory Manual
Ce8611 Highway Engineering Laboratory ManualCe8611 Highway Engineering Laboratory Manual
Ce8611 Highway Engineering Laboratory ManualLokesh Kalliz
 
Experimental Investigation of High – Strength Characteristics of Self Curing ...
Experimental Investigation of High – Strength Characteristics of Self Curing ...Experimental Investigation of High – Strength Characteristics of Self Curing ...
Experimental Investigation of High – Strength Characteristics of Self Curing ...IJMTST Journal
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Characteristic study on pervious concrete
Characteristic study on pervious concreteCharacteristic study on pervious concrete
Characteristic study on pervious concreteIAEME Publication
 
Concrete testing
Concrete testingConcrete testing
Concrete testingAvish singh
 

What's hot (20)

paper_237_theme7_haug&mukherjee
paper_237_theme7_haug&mukherjeepaper_237_theme7_haug&mukherjee
paper_237_theme7_haug&mukherjee
 
Predicting the Workability of Fresh Concrete Using Simple Pull-out Test
Predicting the Workability of Fresh Concrete Using Simple Pull-out TestPredicting the Workability of Fresh Concrete Using Simple Pull-out Test
Predicting the Workability of Fresh Concrete Using Simple Pull-out Test
 
Mathematical Relationships between the Compressive Strength and Some Other St...
Mathematical Relationships between the Compressive Strength and Some Other St...Mathematical Relationships between the Compressive Strength and Some Other St...
Mathematical Relationships between the Compressive Strength and Some Other St...
 
Influence of Construction Parameters on Performance of Dense Graded Bituminou...
Influence of Construction Parameters on Performance of Dense Graded Bituminou...Influence of Construction Parameters on Performance of Dense Graded Bituminou...
Influence of Construction Parameters on Performance of Dense Graded Bituminou...
 
Selfconcrete
SelfconcreteSelfconcrete
Selfconcrete
 
Test on fresh concrete and harden concrete
Test on fresh concrete and harden concreteTest on fresh concrete and harden concrete
Test on fresh concrete and harden concrete
 
S11527 008-9358-x
S11527 008-9358-xS11527 008-9358-x
S11527 008-9358-x
 
Testing of dry/hardened concrete
Testing of dry/hardened concreteTesting of dry/hardened concrete
Testing of dry/hardened concrete
 
Experimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirsExperimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirs
 
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...
Understanding Permeability of Hydraulic Fracture Networks A Sandbox Analog Mo...
 
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...
Evaluation of the Superplasticizer Effect on the Concrete Compressive Strengt...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
CONCRETE MIX DESIGN
CONCRETE MIX DESIGNCONCRETE MIX DESIGN
CONCRETE MIX DESIGN
 
Mix design procedure road note 4
Mix design procedure road note  4Mix design procedure road note  4
Mix design procedure road note 4
 
Hardened concrete 1
Hardened concrete 1Hardened concrete 1
Hardened concrete 1
 
Ce8611 Highway Engineering Laboratory Manual
Ce8611 Highway Engineering Laboratory ManualCe8611 Highway Engineering Laboratory Manual
Ce8611 Highway Engineering Laboratory Manual
 
Experimental Investigation of High – Strength Characteristics of Self Curing ...
Experimental Investigation of High – Strength Characteristics of Self Curing ...Experimental Investigation of High – Strength Characteristics of Self Curing ...
Experimental Investigation of High – Strength Characteristics of Self Curing ...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Characteristic study on pervious concrete
Characteristic study on pervious concreteCharacteristic study on pervious concrete
Characteristic study on pervious concrete
 
Concrete testing
Concrete testingConcrete testing
Concrete testing
 

Viewers also liked (20)

Ijetr012013
Ijetr012013Ijetr012013
Ijetr012013
 
Ijetr011823
Ijetr011823Ijetr011823
Ijetr011823
 
Ijetr012005
Ijetr012005Ijetr012005
Ijetr012005
 
Ijetr012016
Ijetr012016Ijetr012016
Ijetr012016
 
Ijetr011837
Ijetr011837Ijetr011837
Ijetr011837
 
Ijetr011950
Ijetr011950Ijetr011950
Ijetr011950
 
Ijetr011961
Ijetr011961Ijetr011961
Ijetr011961
 
Ijetr011834
Ijetr011834Ijetr011834
Ijetr011834
 
Ijetr011743
Ijetr011743Ijetr011743
Ijetr011743
 
Ijetr012001
Ijetr012001Ijetr012001
Ijetr012001
 
Ijetr011842
Ijetr011842Ijetr011842
Ijetr011842
 
Ijetr011847
Ijetr011847Ijetr011847
Ijetr011847
 
Ijetr011959
Ijetr011959Ijetr011959
Ijetr011959
 
Ijetr012011
Ijetr012011Ijetr012011
Ijetr012011
 
Ijetr011937
Ijetr011937Ijetr011937
Ijetr011937
 
Ijetr011822
Ijetr011822Ijetr011822
Ijetr011822
 
Ijetr011915
Ijetr011915Ijetr011915
Ijetr011915
 
Ijetr011815
Ijetr011815Ijetr011815
Ijetr011815
 
Ijetr011939
Ijetr011939Ijetr011939
Ijetr011939
 
Ijetr011954
Ijetr011954Ijetr011954
Ijetr011954
 

Similar to Ijetr011836

IRJET- Environmental -Sustainable Solution of Pervious Concrete for Pavement
IRJET-  	  Environmental -Sustainable Solution of Pervious Concrete for PavementIRJET-  	  Environmental -Sustainable Solution of Pervious Concrete for Pavement
IRJET- Environmental -Sustainable Solution of Pervious Concrete for PavementIRJET Journal
 
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...ijtsrd
 
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...IRJESJOURNAL
 
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...s_p2000
 
A Review on Self Healing Concrete
A Review on Self Healing ConcreteA Review on Self Healing Concrete
A Review on Self Healing ConcreteShofiurRahman3
 
On causes, prevention and repairing measures of concrete cracks
On causes, prevention and repairing measures of concrete cracksOn causes, prevention and repairing measures of concrete cracks
On causes, prevention and repairing measures of concrete cracksIJERA Editor
 
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSE
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSESpeckle, SAR, denoising, ridgelet, radon, PSNR, MSE
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSEIJERA Editor
 
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...IRJET Journal
 
IRJET - Effectiveness of Concrete Ingredients on Isat in DCC Cubes
IRJET -  	  Effectiveness of Concrete Ingredients on Isat in DCC CubesIRJET -  	  Effectiveness of Concrete Ingredients on Isat in DCC Cubes
IRJET - Effectiveness of Concrete Ingredients on Isat in DCC CubesIRJET Journal
 
IRJET - Variation of Cumulative Water Absorption in Concrete Cubes
IRJET -  	  Variation of Cumulative Water Absorption in Concrete CubesIRJET -  	  Variation of Cumulative Water Absorption in Concrete Cubes
IRJET - Variation of Cumulative Water Absorption in Concrete CubesIRJET Journal
 
Concrete abrasion-Adam Baba Abdulai-report
Concrete abrasion-Adam Baba Abdulai-reportConcrete abrasion-Adam Baba Abdulai-report
Concrete abrasion-Adam Baba Abdulai-reportAdam Baba Abdulai
 
case study on terzaghi’s theory
case study on terzaghi’s theorycase study on terzaghi’s theory
case study on terzaghi’s theoryAbhishek Mangukiya
 
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...IRJET Journal
 
Geo textile for soil stabilization
Geo textile for soil stabilizationGeo textile for soil stabilization
Geo textile for soil stabilizationJamilur Rahman Efaz
 
146902 1403-2727-ijcee-ijens
146902 1403-2727-ijcee-ijens146902 1403-2727-ijcee-ijens
146902 1403-2727-ijcee-ijensBarto Freitas
 

Similar to Ijetr011836 (20)

IRJET- Environmental -Sustainable Solution of Pervious Concrete for Pavement
IRJET-  	  Environmental -Sustainable Solution of Pervious Concrete for PavementIRJET-  	  Environmental -Sustainable Solution of Pervious Concrete for Pavement
IRJET- Environmental -Sustainable Solution of Pervious Concrete for Pavement
 
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...
Study of Boundary Value Analysis in Structural Engineering and Fluid Mechanic...
 
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...
Influence of Water Cement Ratio and The Size of Aggregate on The Properties O...
 
Scccc
SccccScccc
Scccc
 
Bleeding in concrete
Bleeding in concreteBleeding in concrete
Bleeding in concrete
 
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...
kwanjai_yuk,+6.อ.อรวรรณ-Relationship+between+Porosity+&+Compressive+Strength+...
 
Fresh concrete
Fresh concreteFresh concrete
Fresh concrete
 
A Review on Self Healing Concrete
A Review on Self Healing ConcreteA Review on Self Healing Concrete
A Review on Self Healing Concrete
 
On causes, prevention and repairing measures of concrete cracks
On causes, prevention and repairing measures of concrete cracksOn causes, prevention and repairing measures of concrete cracks
On causes, prevention and repairing measures of concrete cracks
 
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSE
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSESpeckle, SAR, denoising, ridgelet, radon, PSNR, MSE
Speckle, SAR, denoising, ridgelet, radon, PSNR, MSE
 
Vacuum concrete
Vacuum concreteVacuum concrete
Vacuum concrete
 
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...
IRJET - Prolonged Transitional Zone Effectiveness in Pre-Conditioned SCC Cube...
 
IRJET - Effectiveness of Concrete Ingredients on Isat in DCC Cubes
IRJET -  	  Effectiveness of Concrete Ingredients on Isat in DCC CubesIRJET -  	  Effectiveness of Concrete Ingredients on Isat in DCC Cubes
IRJET - Effectiveness of Concrete Ingredients on Isat in DCC Cubes
 
IRJET - Variation of Cumulative Water Absorption in Concrete Cubes
IRJET -  	  Variation of Cumulative Water Absorption in Concrete CubesIRJET -  	  Variation of Cumulative Water Absorption in Concrete Cubes
IRJET - Variation of Cumulative Water Absorption in Concrete Cubes
 
Concrete abrasion-Adam Baba Abdulai-report
Concrete abrasion-Adam Baba Abdulai-reportConcrete abrasion-Adam Baba Abdulai-report
Concrete abrasion-Adam Baba Abdulai-report
 
case study on terzaghi’s theory
case study on terzaghi’s theorycase study on terzaghi’s theory
case study on terzaghi’s theory
 
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...
Evaluation of Saturated Conditioned Concrete Cubes by Initial Surface Absorpt...
 
Geo textile for soil stabilization
Geo textile for soil stabilizationGeo textile for soil stabilization
Geo textile for soil stabilization
 
20320130406008 2
20320130406008 220320130406008 2
20320130406008 2
 
146902 1403-2727-ijcee-ijens
146902 1403-2727-ijcee-ijens146902 1403-2727-ijcee-ijens
146902 1403-2727-ijcee-ijens
 

More from ER Publication.org (20)

Ijetr011101
Ijetr011101Ijetr011101
Ijetr011101
 
Ijetr021232
Ijetr021232Ijetr021232
Ijetr021232
 
Ijetr021229
Ijetr021229Ijetr021229
Ijetr021229
 
Ijetr021228
Ijetr021228Ijetr021228
Ijetr021228
 
Ijetr021226
Ijetr021226Ijetr021226
Ijetr021226
 
Ijetr021224
Ijetr021224Ijetr021224
Ijetr021224
 
Ijetr021221
Ijetr021221Ijetr021221
Ijetr021221
 
Ijetr021220
Ijetr021220Ijetr021220
Ijetr021220
 
Ijetr021215
Ijetr021215Ijetr021215
Ijetr021215
 
Ijetr021211
Ijetr021211Ijetr021211
Ijetr021211
 
Ijetr021210
Ijetr021210Ijetr021210
Ijetr021210
 
Ijetr021207
Ijetr021207Ijetr021207
Ijetr021207
 
Ijetr021146
Ijetr021146Ijetr021146
Ijetr021146
 
Ijetr021145
Ijetr021145Ijetr021145
Ijetr021145
 
Ijetr021144
Ijetr021144Ijetr021144
Ijetr021144
 
Ijetr021143
Ijetr021143Ijetr021143
Ijetr021143
 
Ijetr021140
Ijetr021140Ijetr021140
Ijetr021140
 
Ijetr021139
Ijetr021139Ijetr021139
Ijetr021139
 
Ijetr021138
Ijetr021138Ijetr021138
Ijetr021138
 
Ijetr021135
Ijetr021135Ijetr021135
Ijetr021135
 

Recently uploaded

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 

Recently uploaded (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 

Ijetr011836

  • 1. International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-1, Issue-8, October 2013 62 www.erpublication.org Abstract— For self-compacting concrete, the arrival of new admixtures, but also of the colloidal agent and of various cementitious additions have remarkably changed rheology compared with standard concrete. In order to exploit the potentials of concretes characterized by a superior performance in the fresh state, such as Self-Compacting Concrete (SCC), procedures for predicting its flow behavior are needed in order to properly design casting, in particular pumping. This paper presents a study based on pumping parameters proposed in the literature to quantify the plastic viscosity and yield stress of fresh concrete. The experimental data reported in this article were used to evaluate the possibility of predicting these parameters in order to choose the most appropriate formulation for any particular site and subsequently to develop pumping pressure prediction equations suitable for any given pumping circuit geometry and any given concrete from our experimental results. Index Terms—plastic viscosity, pumping, rheology, self-compacting concrete, yield stress. I. INTRODUCTION Rheology is the science that studies the deformation and flow of matter. It is generally accepted (Tattersall and Banfill, 1983) [1] that fresh concrete has a binghamian behavior. The behavior law of a binghamian fluid writes:  = 0 + μ ý Fig. 1: Physical interpretation of the Bingham model. Manuscript received October 14, 2013 M. BENAICHA, Département Génie Civil, laboratoire IUSTI, Polytech’ Marseille – France, Laboratoire de Mécanique et Génie Civil, FST de Tanger – Maroc O. JALBAUD, Département Génie Civil, laboratoire IUSTI, Polytech’ Marseille – France A. HAFIDI ALAOUI, Laboratoire de Mécanique et Génie Civil, FST de Tanger – Maroc Y. BURTSCHELL, Département Génie Civil, laboratoire IUSTI, Polytech’ Marseille – France From a physical point of view, the two parameters of Bingham, yield stress τ0 and plastic viscosity μ was interpreted [2] as follows (fig.1): the shear threshold is explained as the macroscopic sum of all solid grain internal frictioning it depends directly on the number and the nature of contacts between the grains and therefore on the compactness of the granular skeleton. Beyond the threshold, the stress applied to the mixture causes the flow which translates into relative motions between solid grains (friction), and the circulation of the liquid phase between the grains, due to inter-grain porosity. It the latter that would cause the viscous dissipation in the fluid flow and explain the second term μ y in the law of Bingham. The more circulation is difficult, the more the parameter μ is important. Viscosity characterizes a fluid's resistance to sliding or deformation. It is due to the fact that the layers of a fluid in motion cannot slide freely and independently from one another, giving rise to frictional forces that directly oppose the flow. Viscosity is thus the inverse property of fluidity. The most adopted approach to quantify the rheological properties of fresh concrete is to experimentally measure the shear stress relatively to the shear rate using a rheometer. Other researchers have attempted to quantify the plastic viscosity of fresh concrete from its composition, in particular the works of Roshavelov [3], Ferrari and deLarrard [4] and Kasami [5]. Initially, we decided not to take into account this correlation between viscosity and rheological parameters, and to concentrate on understanding the influence of a concrete's composition on its pumping and later predict the required pumping pressure depending on the characteristics of the building site-essentially the geometry of the pumping circuit. These results were eventually to be compared with the rheological parameters, for validation. II. SETTING THE CONTEXT The flow of fresh concrete in a formwork is a three-dimensional free surface flow generated by the gravity of a threshold fluid within a network of obstacles consisting of steel bars. An implementation flaw may have many causes. It can be caused by the coarsest aggregates blocking the flow along the frames or by behavior of the concrete itself when the gravity- generated stress is not sufficient to keep the concrete flowing and filling the formwork completely. In Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study M. BENAICHA, O. JALBAUD, A. HAFIDI ALAOUI and Y. BURTSCHELL Dissipation by friction between grains Viscous dissipation in the liquid
  • 2. Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study 63 www.erpublication.org order to exploit the potentials of concretes characterized by a superior performance in the fresh state, such as Self-Compacting Concrete (SCC), procedures for predicting its flow behavior are needed in order to properly design casting, in particular pumping. For several years, pumping has been the most used technique to cast fresh concrete [6, 7]. The concrete is placed in a pump that delivers it to the desired location through flexible or rigid hoses, made of rubber or steel. But this technique requires a so-called "pumpable" concrete, i.e. a concrete that can more under pressure in a confined space while keeping its initial properties (Beaupré, 1994 [8], Gray, 1962 [9]). To try and avoid blocking problems, new admixtures, colloidal agent and various cementitious products have been thus added that have remarkably changed the rheology of fresh concrete. More recently, Kaplan, 2000 [10] has shown that it is necessary, in addition to rheological measurement, to use the tribological measure to establish a prediction model of the pumping pressure. Tribology is the science that studies the phenomena that may occur between two material systems in contact be they immobile or animated by relative movements. In the case of fresh concrete and more specifically in the case of fresh concrete pumping, tribology is the study of the interface between the fresh concrete and the wall of the hose (or one other mobile used to make a tribological test [11]). See figure 2. Fig. 2: Schematic of the tribometer test III. INFLUENCE OF COMPOSITION ON PUMPING All factors in the composition of concrete affect its pumpability [12]. All the authors having published on the subject deal with this issue, but in different ways. Concrete is a granular mixture having a voids volume of about 7 to 10% at the mixer's output (before vibration). The shape and size of the particles must therefore be taken into consideration since these factors greatly influence the volume of inter-grains voids (Kempster, 1969 [13]). The friction between the particles, or between the coarse grains and the walls of circuit pumping, increases pressure up to sometimes create a blockage [14, 15]. Neville 1995 [16], shows that a certain volume of cement is necessary to fill the space between the grains otherwise the pumping is difficult or impossible. Also, segregation problems may occur if the amount of fine particles in the mixture is insufficient or if the compactness of the granular skeleton is low (Browne & Bamforth [17]). In these cases, a separation of the coarse aggregates and the cement paste can occur and cause a blockage. On the other hand, the problem of excessive friction may occur in the case of concrete mixtures having a very compact granular skeleton and a high content of binder. In this situation, it appears that the available paste is absorbed by the fine particles to fluidify the mixture, which causes solid friction contacts between the grains and sometimes blocks the concrete's flow. Therefore, the role of cement paste is to fill the gaps left between the grains of sand and gravel. An reduction in volume of the cement paste is possible only by reducing the volume of the voids between the granular particles (Goltermann et al. 1997 [18]). The amount of water added to the concrete mix greatly influences its rheology (decrease in plastic viscosity and yield stress [1]) but also causes a risk of segregation. It is thus the most important factor to control. Ede, 1957 [19] studied the pumpability of concrete mixtures with different W / C ratios but constant cement content. He observed that the concrete mix should contain just enough water to saturate the voids between the aggregates otherwise the pressure required to pumping increased significantly [20]. Figure 3 shows the three identified areas. When the concrete does not contain enough water and the voids between the aggregates are not filled, there is a flow by solid friction. The concrete behaves as a granular material and consequently, its mobility of concrete is greatly reduced [21, 22]. Indeed, Ede (1957) explains that the flow resistance appears to be function of pumping pressure (figure 4. b). This corresponds to the first area on the figure 3, after which an abrupt change in mobility occurs, referred to as the "transition zone" where the amount of water is sufficient to fill the voids. Finally, when the amount of water exceeds a certain ration, we enter a third zone where the flow is of hydraulic type. In this case, the pumping pressure is transmitted to all constituents by water that fills all voids of the granular skeleton. Moreover, there appears to be formation of a lubrication layer at the periphery of the flow, which promotes the mobility by preventing friction of solid particles against the pipe's wall [23](figure 4. a). Fig. 3: Effect of W / C ratio on the mobility of concrete when pumping (Ede, 1957)
  • 3. International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-1, Issue-8, October 2013 64 www.erpublication.org a) Flow by solid friction b) Hydraulic flow Fig.4: Representation of the two types of flow (Loadwick, 1970) [24]. IV. APPLICATION: PUMPING Generally, SCC is significantly less constraining to use than vibration-implemented concrete, thanks to its ease of casting over long distances and large heights. The flow properties of SCC have given rise to the establishment of new procedures to fill the formworks, as the characteristics of SCC allow for important horizontal paths. On a site with difficult access, it is thus now possible to implement the concrete by pumping- with mobility as an essential condition: the concrete must indeed oppose the least possible resistance to its displacement in the pumping pipes so as to develop the lowest possible pumping pressure. P (in Pa) is the pressure applied at the level of the pump. The concrete then flows in bulk by sliding. Its flow is slowed by friction constraints τf(x) exerted at the interface between the concrete and the pipe, as shown in figure 5. τf(x) p(x) p(x)+dp(x) τf(x) Fig. 5: Equilibrium of a concrete element in the pipe By writing the equilibrium of a section unit of concrete, the derivative of the pressure dp(x)/dx (in Pa / m) as a function of τf (x) and R is written (2): (x).dx2.+dp(x)].R+[p(x)=p(x).R f (x)/R-2=dp(x)/dx f For a given flow, dp(x)/dx is constant, therefore the frictional stress τf does not depend on the pressure. On the other hand dp(x)/dx evolves when the flow rate of concrete increases, therefore τf depends on the sliding velocity  f (x) = f, constant for a given flow rate. Moreover, the boundary conditions are written (see figure 6) : p(L)=0 et p(0)=P Fig. 6. Pumping circuit Pumping pressure becomes: /R2L=P f There is a way to evaluate in the laboratory the friction of concrete with a pipe using a tribometer with coaxial cylinders. The behavior of the concrete-steel interface is described by the following model:  = 0i + Vg, where τ is the stress of the interface (in Pa), τ0i the threshold of the interface (in Pa), η the interface viscous constant (in Pa.s/m) and Vg the relative velocity of sliding (in m/s). Assuming that the concrete remains motionless in the tank during the test, the pressure at the pump P (in Pa) for a given flow, depending on the stress of friction f and the geometry of the circuit is (4): )RQ/+(2L/R=)Vg+(2L/R=P 2 0i0i  where Q is the pumping flow rate (in m3 /s) .VgR=S.Vg=Q 2  Knowing that the average concrete has a density ρ, if the pipe is no longer horizontal but its output is at a height H (in m) above the pump, the expression of the pressure becomes (5): .g.H)RQ/+(2L/RP 2 0i   where g is the gravity (in m/s²) and  is the density of concrete. During pumping, and when the velocity of sliding between the pipe and the concrete becomes important, the frictional stress τf becomes large enough that a shear spreads in concrete. Beyond this velocity, the total flow rate (described by the Buckingam-Reiner equation) is the sum of a flow rate by sliding and a flow rate by shear: where τ0 yield stress (in Pa) µ plastic viscosity (in Pa.s) dp/dx pressure gradient (Pa/m) From (3) we have : Direction of flow (1) (2) (3) (4) (5)              Rxdp dx dx xdpR R V Q g 0 4 2 2 )(3 4 1 )( 8     (6)           4 34 3 2 0 3 0 3 R R RR Q V i g   
  • 4. Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study 65 www.erpublication.org The pressure at the pump for a given flow becomes (7): V. EXPERIMENTAL STUDY We created a building site for which the implementation of concrete was done by pumping. The pumping circuit was as following: pipe diameter 130 mm, height of pumping 200 m, horizontal distance 100 m. Our laboratory has in its catalogue four formulations of self-compacting concrete. Table 1 presents the figures concerning the rheological properties for all mixtures manufactured during this research project. Table 1: Properties of self-compacting concretes available Formulations SCC 1 SCC 2 SCC3 SCC 4 Constituents (Kg/m3 ) Cement 30.5.5 350 350 283.8 Total water 167.4 177.4 179.7 192.2 Superplasticizer 5.88 6.5 6.38 5.00 Limestone filler 164.5 170 100 116.1 Gravel 5/10 900 830 790 900 Sand 0/2 870 830 990 900 Mechanical and rheological characteristics Mass density (Kg/m3 ) 2446 2440 2428 2429 Compressive strength (MPa) at 28d 49.8 56.0 53.0 49.5 Air content (%) 1.2 2.8 2.4 1.8 Slump flow (mm) 650 720 725 670 Flow threshold (Pa) 24.8 19.4 12.4 30.5 Plastic viscosity (Pa.s) 290.3 92.6 109.5 115.3 Tribology data Threshold of the interface 0i (Pa) 50 60 70 50 Viscous interface constant (Pa.s/m) 900 1400 1700 980 This table indicates that the most fluid mixtures (high slump flow) have the lostest shear thresholds. The air content is another parameter that influences the plastic viscosity of concrete. The more a mixture contains a large air volume, the less it is viscous because the volume of available paste to fluidify a mixture is also a function of the air content [6]. For example, the concrete SCC2 that contains 2.8% of air is very viscous compared to other mixtures. Finally, the concrete selected for our building site was SCC2, because of its lower plastic viscosity that allowed it to rub less and thus require a lower pumping pressure. Regarding the mechanical characteristics, the SCC2 has a compressive strength of about 56 MPa. After a few days of casting without problem, the concrete suddenly become more difficult to pump. To understand what was happening, the pump operator then made measurements of pressure for two pumping rates. These are given in table 2. The pump used on the building site was a piston pump with a volume of 60 litres. Figure 7 below shows an example with two pistons working by filling one while emptying the other via a valve shifting opening towards the feeder and shutting towards the pipe. Fig. 7: Piston pump with valve letting concrete in from hopper to one piston and out to tube from the other piston alternating with the strokes of the two pistons (Putzmeister make) A pump operator can follow the pumping rate by counting the number of piston strokes per minute. He can also read the pressure on a pressure gauge in the hydraulic circuit of the pump. This hydraulic pressure is equal to 1.8 times the pressure on concrete at the outlet of the pump. Table 2: pumping data Measure N° 1 2 Pumping rate (Strock /min) 6.0 8 Hydraulic pressure-Pressure gauge(bars) 225 270 From (5) we have: .g.H)R/Q+(2L/RP 2 10i1   .g.H)R/Q+(2L/RP 2 20i2                             4 34 2 3 2 0 3 0 3 0 R R RR Q R L P i i
  • 5. International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-1, Issue-8, October 2013 66 www.erpublication.org Therefore 3 12 12 )(2 )( R QQL PP     2 1 10 )..( 2 R Q HgP L R i    Numerical applications: R=0.065 m P1=225/1,8 105= 125.105 Pa P2=270/1,8 105= 150.105 Pa Q1=6*60/60/1000=0.006 m3 /s Q2=8*60/60/1000=0.008 m3 /s We find:  = 1796 Pa.s/m and 0i = 74.29 Pa The cheking of formulation by tribometer tests provides an estimate of the value of the interface viscous constant (η) and threshold (τ0i). These results are similar to the formula SCC3, so we can say that there was a problem during transport of the material. Otherwise there was probably confusion in formulation at the concrete plant. VI. CONCLUSION This article is a practical example to confirm the choice of a formulation based on the calculation of pumping rate and the hydraulic pressure as the well as rheological characteristics of the mixture. The pumpability of concrete is basically connected to its mixer output rheology. In addition, the stability of the rheology must be guaranteed throughout implementation, knowing that, in a real life situation of on-site construction, technical and mechanical constraints related to the choice of equipment are not 100% controllable. Therefore, the pumpability is a feature that should depend only on the properties of the fresh concrete and remain independent of equipment or pumping conditions. It can be claimed that the factors that determine the pumpability of concrete remain linked to its composition. It during pumping a decrease in the workability of the concrete often occurs. It is therefore important to ensure that the rheology after pumping is sufficient for the final implementation. One of the issues raised in this work was the identification of the most appropriate parameter to validate the formulation proposed by the laboratory. It appears that the pumping pressure and viscous constant of the interface are best parameters to validate the choice of this formulation. The relationships obtained from studied analytical methods allow to establish the degree of pumpability of concrete mixes. Therefore, it is possible by knowing the characteristics of a pumping circuit (length and diameter) to calculate the maximum pressure required to achieve the concrete pumping. For each application, the required characteristics are different. Finishing needs, implementation, pumpability, segregation resistance etc.. define if a concrete has good properties when fresh. In the light of the results obtained during this project, it appears that the optimum rheology for pumping is the one where the shear threshold of concrete is low so as to obtain a minimum resistance to flow. REFERENCES [1] Tattersall, G.H. & Banfill, P.F.G. (1983) The Rheology of Fresh Concrete , London, Pitman, 1983, 356 p. [2] de Larrard F., 2000, « Structures granulaires et formulation des bétons », Etudes et Recherches des Laboratoires des Ponts et Chaussées, OA34, Paris. [3] ROSHAVELOV T.T. “Concrete mixture proportioning with optimal dry packing”. In Proceeding of the First International RILEM Symposium of Self-Compacting Concrete. RILEM, 19. [4] Ferraris, C., De Larrard, F. (1998), Testing and modelling of fresh concrete rheology , National Institute of Standards and Technology, NISTR 6094, Gaithersburg, MD, February, 61 p. [5] Kasami H., Ikeda T. and Yamane S (1979) On Workability and pumpability of superplasticized concrete, Proc. 1st CANMET/ACI Conf on Superplasticizers in Concrete, Ottawa, V.M.Malhotra Ed., ACI SP62, 67-86. [6] Johansson, A., Tuutti, K. (1976), Pumped concrete and pumping concrete, CBI Research Reports, 10:76 (Swedish Cement and Concrete Inst.). [7] Sakuta, M., Yamane, S., Kasami, H., Sakamoto, A (1979) Pumpability and Rheological Properties of Fresh Concrete, Proceedings of Conference on Quality Control of Concrete Structures, vol.2, Swedish Cement and Concrete Research Institute, Stockholm, june 17-19, pp.125-132. [8] Beaupré, D. (1994) Rheology of High Performance Shotcrete , Ph.D. Thesis of the University of British Columbia, Canada, 249 p. [9] Gray, J. (1962) Laboratory procedure for comparing pumpability of concrete mixtures , presented at the sixty-fifth annual meeting of the society, National Crushed Stone Assn., Washington, D.C., June 24-29, pp. 964-971 [10] Kaplan, D. (2000) Pompage des bétons , Thèse de doctorat de l’École Nationale des Ponts et Chaussées, 225 p. [11] Chapdelaine, F. (2006). Étude fondamentale et pratique sur le pompage du béton. Département de génie civil, Université Laval, Canada. Thèse, 200 pages. [12] CHOPIN D., DE LARRARD F., CAZACLIU B., « Why do HPC and SCC require a longer mixing time? », Cement and Concrete Research, vol. 34, n°12, p. 2237-2243, 2004 [13] Kempster, E. (1969), Pumpable Concrete , Current Paper No. 29/69, Building Research Station, Garston, aug. 1969. [14] Murata, J. (1984) Flow and deformation of fresh concrete, Materials and Structures, vol.17, no.98, march-apr, pp. 117-129. [15] Kaplan D, deLarrard, F., Sedran T.(2005) Avoidance of Blockages in Concrete Pumping Process, ACI Materials Journal, 102 (3) 183-191 [16] Neville, A.M. (1995) Properties of Concrete, Fourth Edition, Longman Group Limited, London, 844 p. [17] Morinaga, M. (1973), Pumpability of concrete and pumping pressure in pipelines, Fresh. Concrete : Important Properties and heir Measurement, Proceeding of a RILEM Seminar Held March, Leeds, vol. 7, pp.7.3-1 à 7.3-39. [18] Goltermann, Packing of aggregates: an alternative tool to determine the optimal aggregate mix. ACI Materials Journal. V94, No 5, Sept/Oct 1997, pp 435–43. [19] Ede, A.N. (1957), The resistance of concrete pumped through pipelines , Magazine of Concrete research, vol 9, no. 27, nov, 1957, pp. 129-140 [20] Tattersall, G.H. (1973) Lubrification Layer in Concrete Pumping – A Written Contribution to Discussion Topic Number 7, Fresh Concrete: Important Properties and Their Measurement – Proceedings of a RILEM Seminar Held on 22nd – 24th March 1973 in Leeds England, vol.3, University of Leeds, Leeds, England, pp. 7.D1-1 – 7.D1-5 [21] BROWNE, R.D., BAMFORTH, P.B. (1977). Tests to Establish Concrete Pumpability, ACI Journal, Vol. 74, No. 5, May, pp. 193-207. [22] Weber, R. (1963) The transport of concrete by pipeline, Cement and Concrete Association Library Translation No. 129, Cement and Concrete Association, Londres, 1963, 85 p. [23] Yingling, J, Mullings, G.M., Gaynor, R.D. (1992) Loss of air in Pumped Concrete, Concrete International, vol.11, no.10, oct., pp. 57-61. [24] Loadwick, F. (1970) Some Factors Affecting the Flow of Concrete Through Pipelines , Proceeding of the First International Conference on Hydraulic Transport of Solids in Pipes, British Hydromechanics Association, Bedford, pp. D1-1 – D1-31.
  • 6. Correlation between the pumping and the rheological properties of self-compacting concrete: a practical study 67 www.erpublication.org Mouhcine Benaicha, PhD student and monitor at Polytech 'Marseille. Holder of a Master's degree in Civil Engineering at the Faculty of Science and Technology of Tangier. Olivier Jalbaud, technical Director of Polytech’ Marseille Civil Engineering Laboratory. Adil Hafidi Alaoui, academic Professor and Researcher in the Department of Civil Engineering, Faculty of Sciences and Technical of Tangier (FST). Holder of a PhD in mechanics and a PhD in materials science. Director of materials and civil engineering laboratory in Tangier. Yves Burtschell, academic Professor and Researcher. Holder of a PhD in mechanical fluids. Director of Polytech’ Marseille Civil Engineering Department. Yves Burtschell .