SlideShare a Scribd company logo
1 of 14
Download to read offline
21.notebook                                                                          October 24, 2012



              21. Functions, Domain and Range, Types of Functions, Tests for Functions

               1. If f(x) = x2 + x ­ 10, find f(5).




               2. If f(x) = x2 + 1, find f(x + 2)




                                                                                                        1
21.notebook                                       October 24, 2012



              3. If h(θ) = sinθ, find 4√3h(30o)




                                                                     2
21.notebook                                                                                  October 24, 2012



              Function: each number in domain corresponds with exactly one number in the range. 


                2 things that restrict the domain of a function
                Fractions ­ why?


                Square Roots ­ why?




                                                                                                                3
21.notebook                                                   October 24, 2012



              4. If f(x) = √10 ­ x  , find the domain of f.




                                                                                 4
21.notebook                                                        October 24, 2012


                              1
              5. If g(x) =               , find the domain of g.
                            x ­ 2




                                                                                      5
21.notebook                                                                                 October 24, 2012



              6. Find the domain and range of the function y = √x and graph the function.




                                                                                                               6
21.notebook                                                                                     October 24, 2012


              7. Find the domain and range of the function y = √x + 4 and graph the function.




                                                                                                                   7
21.notebook                                                                                    October 24, 2012



              Mapping


              scan picture from page 155




              relation ­ mapping or correspondence that maps every member of the domain 
              to one or more members of the range

              one­to­one function ­ a function where every element of the range corresponds 
              to no more than one member of the domain

                                                                                                                  8
21.notebook                                                                             October 24, 2012


              9. For each diagram, determine whether or not it designates a function:

                   insert scan from p 156




                                                                                                           9
21.notebook                                                                 October 24, 2012


              10. Which of the following sets of ordered pairs are functions?

              a) {(1, 2), (2, 3), (3, 4), (4, 5)}

              b) {(1, 2), (2, 3), (1, 3), (4, 5)}

              c) {(4, 3), (2, 2), (4, 3), (3, 3)}

              d) {(1, ­1), (4, ­1), (­1, ­1), (3, ­2)}




                                                                                               10
21.notebook                                               October 24, 2012



              Vertical Line Test ­ tests for a function

              insert picture from p 156




                                                                             11
21.notebook                                                         October 24, 2012



              Horizontal Line Test ­ a function is one­to­one if any 
              horizontal line intersects its graph at most one point


                              Insert pic p 157




                                                                                       12
21.notebook                                                            October 24, 2012


              11. Determine if each graph represents the graph of a 
              function.  If so, determine whether it is one­to­one.



                               insert graphs from 157




                                                                                          13
21.notebook                                                                  October 24, 2012


              8. Find the domain and range of the function f(x) = 
                                                                      √x
                                                                     x ­ 2




                                                                                                14

More Related Content

What's hot

11.some fixed point theorems in generalised dislocated metric spaces
11.some fixed point theorems in generalised dislocated metric spaces11.some fixed point theorems in generalised dislocated metric spaces
11.some fixed point theorems in generalised dislocated metric spacesAlexander Decker
 
Some fixed point theorems in generalised dislocated metric spaces
Some fixed point theorems in generalised dislocated metric spacesSome fixed point theorems in generalised dislocated metric spaces
Some fixed point theorems in generalised dislocated metric spacesAlexander Decker
 
Mathematicalfoundationofcomputerscience
MathematicalfoundationofcomputerscienceMathematicalfoundationofcomputerscience
Mathematicalfoundationofcomputersciencejntuworld
 
Prac 2 rolle's thm
Prac  2 rolle's thmPrac  2 rolle's thm
Prac 2 rolle's thmHimani Asija
 
Functional Programming In Mathematica
Functional Programming In MathematicaFunctional Programming In Mathematica
Functional Programming In MathematicaHossam Karim
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Alexander Litvinenko
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Sebastian De Haro
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Prac 3 lagrange's thm
Prac  3 lagrange's thmPrac  3 lagrange's thm
Prac 3 lagrange's thmHimani Asija
 
Ad2014 calvec-industrial-jllf.ps14000302.departamental2
Ad2014 calvec-industrial-jllf.ps14000302.departamental2Ad2014 calvec-industrial-jllf.ps14000302.departamental2
Ad2014 calvec-industrial-jllf.ps14000302.departamental2Angel David Ortiz Resendiz
 
Combinatorics of 4-dimensional Resultant Polytopes
Combinatorics of 4-dimensional Resultant PolytopesCombinatorics of 4-dimensional Resultant Polytopes
Combinatorics of 4-dimensional Resultant PolytopesVissarion Fisikopoulos
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptestGarden City
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 

What's hot (17)

11.some fixed point theorems in generalised dislocated metric spaces
11.some fixed point theorems in generalised dislocated metric spaces11.some fixed point theorems in generalised dislocated metric spaces
11.some fixed point theorems in generalised dislocated metric spaces
 
Some fixed point theorems in generalised dislocated metric spaces
Some fixed point theorems in generalised dislocated metric spacesSome fixed point theorems in generalised dislocated metric spaces
Some fixed point theorems in generalised dislocated metric spaces
 
Mathematicalfoundationofcomputerscience
MathematicalfoundationofcomputerscienceMathematicalfoundationofcomputerscience
Mathematicalfoundationofcomputerscience
 
Prac 2 rolle's thm
Prac  2 rolle's thmPrac  2 rolle's thm
Prac 2 rolle's thm
 
Formula m2
Formula m2Formula m2
Formula m2
 
Functional Programming In Mathematica
Functional Programming In MathematicaFunctional Programming In Mathematica
Functional Programming In Mathematica
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 
gfg
gfggfg
gfg
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Prac 3 lagrange's thm
Prac  3 lagrange's thmPrac  3 lagrange's thm
Prac 3 lagrange's thm
 
Ad2014 calvec-industrial-jllf.ps14000302.departamental2
Ad2014 calvec-industrial-jllf.ps14000302.departamental2Ad2014 calvec-industrial-jllf.ps14000302.departamental2
Ad2014 calvec-industrial-jllf.ps14000302.departamental2
 
Combinatorics of 4-dimensional Resultant Polytopes
Combinatorics of 4-dimensional Resultant PolytopesCombinatorics of 4-dimensional Resultant Polytopes
Combinatorics of 4-dimensional Resultant Polytopes
 
Daa q.paper
Daa q.paperDaa q.paper
Daa q.paper
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Pc12 sol c03_cp
Pc12 sol c03_cpPc12 sol c03_cp
Pc12 sol c03_cp
 

Similar to Lesson 21

5.1 vertex symm t-table
5.1 vertex symm t-table5.1 vertex symm t-table
5.1 vertex symm t-tableandreagoings
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functionsLeo Crisologo
 
4.3 25th october 2012
4.3 25th october 20124.3 25th october 2012
4.3 25th october 2012Garden City
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examplesLeo Crisologo
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Matthew Leingang
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Mel Anthony Pepito
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 
Difrentiation 140930015134-phpapp01
Difrentiation 140930015134-phpapp01Difrentiation 140930015134-phpapp01
Difrentiation 140930015134-phpapp01rakambantah
 
Integrated methods for optimization
Integrated methods for optimizationIntegrated methods for optimization
Integrated methods for optimizationSpringer
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal designAlexander Decker
 
Support Vector Machine
Support Vector MachineSupport Vector Machine
Support Vector MachineLucas Xu
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Matthew Leingang
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides) Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides) Mel Anthony Pepito
 

Similar to Lesson 21 (20)

5.1 vertex symm t-table
5.1 vertex symm t-table5.1 vertex symm t-table
5.1 vertex symm t-table
 
Functions
FunctionsFunctions
Functions
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
4.3 25th october 2012
4.3 25th october 20124.3 25th october 2012
4.3 25th october 2012
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Unit 1.4
Unit 1.4Unit 1.4
Unit 1.4
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
 
Unit 2.8
Unit 2.8Unit 2.8
Unit 2.8
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
Difrentiation 140930015134-phpapp01
Difrentiation 140930015134-phpapp01Difrentiation 140930015134-phpapp01
Difrentiation 140930015134-phpapp01
 
Unit 1.2
Unit 1.2Unit 1.2
Unit 1.2
 
Lesson 51
Lesson 51Lesson 51
Lesson 51
 
Integrated methods for optimization
Integrated methods for optimizationIntegrated methods for optimization
Integrated methods for optimization
 
Week 3 - Trigonometry
Week 3 - TrigonometryWeek 3 - Trigonometry
Week 3 - Trigonometry
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal design
 
Support Vector Machine
Support Vector MachineSupport Vector Machine
Support Vector Machine
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)
 
Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides) Lesson 8: Basic Differentiation Rules (Section 41 slides)
Lesson 8: Basic Differentiation Rules (Section 41 slides)
 

More from andreagoings (20)

To know test 17
To know test 17To know test 17
To know test 17
 
Lesson 72
Lesson 72Lesson 72
Lesson 72
 
Lesson 71
Lesson 71Lesson 71
Lesson 71
 
Lesson 70
Lesson 70Lesson 70
Lesson 70
 
Lesson 69
Lesson 69Lesson 69
Lesson 69
 
To Know Test 16
To Know Test 16To Know Test 16
To Know Test 16
 
Lesson 68
Lesson 68Lesson 68
Lesson 68
 
12.1 day 2
12.1 day 212.1 day 2
12.1 day 2
 
12.1 sin cos tan
12.1 sin cos tan12.1 sin cos tan
12.1 sin cos tan
 
Lesson 67
Lesson 67Lesson 67
Lesson 67
 
Lesson 66
Lesson 66Lesson 66
Lesson 66
 
Lesson 65
Lesson 65Lesson 65
Lesson 65
 
11.6 geometric sequences
11.6 geometric sequences11.6 geometric sequences
11.6 geometric sequences
 
To know test 15
To know test 15To know test 15
To know test 15
 
Lesson 63
Lesson 63Lesson 63
Lesson 63
 
11.5 arithmetic sequences
11.5 arithmetic sequences11.5 arithmetic sequences
11.5 arithmetic sequences
 
11.3 sequences
11.3 sequences11.3 sequences
11.3 sequences
 
Lesson 62
Lesson 62Lesson 62
Lesson 62
 
Lesson 61
Lesson 61Lesson 61
Lesson 61
 
11.2 multiplying matrices
11.2 multiplying matrices11.2 multiplying matrices
11.2 multiplying matrices
 

Lesson 21

  • 1. 21.notebook October 24, 2012 21. Functions, Domain and Range, Types of Functions, Tests for Functions 1. If f(x) = x2 + x ­ 10, find f(5). 2. If f(x) = x2 + 1, find f(x + 2) 1
  • 2. 21.notebook October 24, 2012 3. If h(θ) = sinθ, find 4√3h(30o) 2
  • 3. 21.notebook October 24, 2012 Function: each number in domain corresponds with exactly one number in the range.  2 things that restrict the domain of a function Fractions ­ why? Square Roots ­ why? 3
  • 4. 21.notebook October 24, 2012 4. If f(x) = √10 ­ x  , find the domain of f. 4
  • 5. 21.notebook October 24, 2012   1 5. If g(x) =               , find the domain of g. x ­ 2 5
  • 6. 21.notebook October 24, 2012 6. Find the domain and range of the function y = √x and graph the function. 6
  • 7. 21.notebook October 24, 2012 7. Find the domain and range of the function y = √x + 4 and graph the function. 7
  • 8. 21.notebook October 24, 2012 Mapping scan picture from page 155 relation ­ mapping or correspondence that maps every member of the domain  to one or more members of the range one­to­one function ­ a function where every element of the range corresponds  to no more than one member of the domain 8
  • 9. 21.notebook October 24, 2012 9. For each diagram, determine whether or not it designates a function: insert scan from p 156 9
  • 10. 21.notebook October 24, 2012 10. Which of the following sets of ordered pairs are functions? a) {(1, 2), (2, 3), (3, 4), (4, 5)} b) {(1, 2), (2, 3), (1, 3), (4, 5)} c) {(4, 3), (2, 2), (4, 3), (3, 3)} d) {(1, ­1), (4, ­1), (­1, ­1), (3, ­2)} 10
  • 11. 21.notebook October 24, 2012 Vertical Line Test ­ tests for a function insert picture from p 156 11
  • 12. 21.notebook October 24, 2012 Horizontal Line Test ­ a function is one­to­one if any  horizontal line intersects its graph at most one point Insert pic p 157 12
  • 13. 21.notebook October 24, 2012 11. Determine if each graph represents the graph of a  function.  If so, determine whether it is one­to­one. insert graphs from 157 13
  • 14. 21.notebook October 24, 2012 8. Find the domain and range of the function f(x) =   √x x ­ 2 14