SlideShare a Scribd company logo
1 of 5
Download to read offline
Zero bias Conductance
1. Side-coupled device

1.1. The Model


                                                   t
                 H   =         εLk c† cLk +
                                    Lk            √ 0 d†           cLk + H.c.
                           k
                                                   2N          k

                                                   t
                     +         εRk c† cRk +
                                    Rk            √ 0 d†           cRk + H.c.
                           k
                                                   2N          k

                     + V c† f0 + H.c + Kf0 f0
                          d
                                         †


                     + εd c† cd + U nd↑ nd↓ .
                           d
                                                                                      (1.1)

We consider εF ≡ 0, εLk = εk − ∆µ and εRk = εk + ∆µ. The chemical potential dif-
ference between the reservoirs is 2∆µ and ∆µ = e∆φ/2 for an applied bias ∆φ. The
zero bias conductance occurs for the regime ∆φ → 0. Using the canonical even-odd
transformation

                                              1
                                cLk     =    √ (cek + cok )                           (1.2)
                                               2
                                              1
                                cRk     =    √ (cek − cok )                           (1.3)
                                               2
we derive a free Hamiltonian

                                      Ho =        εk c† cok
                                                      ok                              (1.4)
                                              k

and an interacting one in terms of a renormalized hybridization


                                         √     t0 †
            He   =        εk c† cek +
                              ek             2√    d           cek + V c† f0 + H.c.
                                                                        d
                      k
                                                2N        kσ

                 +     †
                     Kf0 f0 + εd c† cd + U nd↑ nd↓ .
                                  d                                                   (1.5)

Note that

                                        H = Ho + He ,                                 (1.6)
which satisfies the property

                                        [Ho , He ] = 0.                               (1.7)
2. Linear response theory

   We consider the Hamiltonian splitted as

                                     H =H+H                                        (2.1)
and the time evolution of an eigenstate |Φn in the interaction picture
                                             t
                                         i
                       |Φn =       1−             H (τ ) dτ    |Ψn ,               (2.2)
                                             −∞

where |Ψn is an eigenstate of the Hamiltonian H. The Hamiltonian H is treated as a
perturbation. So the current J through the system is determined by the thermal average
of the current operator IL (t) over the states |Ψn . Therefore, we have
                                     t
                               i
                        J =−                 IL (t) , H (τ )    dτ.                (2.3)
                                   −∞

   The time evolution for the operators is


                                             H                  H
                      IL (t) = exp i             t IL exp −i        t              (2.4)

                                             H                  H
                      H (t) = exp i              t H exp −i         t .            (2.5)

   The perturbative Hamiltonian is


     H = −∆µ           c† cLk − c† cRk = −∆µ
                        Lk       Rk                            c† cok + c† cek .
                                                                ek       ok        (2.6)
                  k                                      k
3. The Conductance

   We want to derive the conductance expressed in the form

                           J    2e2                            ∂fF (ε)
                      G=      =              dεT (ε, β) −                                    (3.1)
                           ∆φ    h                               ∂ε
where T (ε, β) is the transmission coefficient. Let us first calculate the current

                                        ie
                              IL = −               c† cLk , H
                                                    Lk                                       (3.2)
                                               k

                                  ie t0
                         IL = −     √                c† d − d† cLk
                                                      Lk                                     (3.3)
                                      2N       k

                    ie t0
            IL = − √ √                   c† d − d† cek + c† d − d† cok
                                          ek              ok                         .       (3.4)
                     2 2N         k

The substitution of Eqs.(2.4), (2.5), (2.6) and (3.4) in Eq.(2.3) leads to

                              √ e                  +∞
                         J = − 2 ∆µ                     dτ F (t − τ )                        (3.5)
                                                   −∞

with the correlator


                   i                     t
     F (t − τ ) = − θ (t − τ )          √0         c† (t) d (t) , c† (τ ) coq (τ )
                                                    ok             eq                    .   (3.6)
                                  kq
                                         2N

   The integral of Eq.(3.5) results in

      +∞                                                                  +∞
                                    i
           dτ F (t − τ ) =      −        Z−1            exp (−βEn )            θ (t − τ ) dτ
    −∞                                         kq mn                     −∞

                                   i                                       t0 †
                          ×   exp − (En − Em ) (τ − t)               Ψn | √    cok d |Ψm
                                                                            2N
                          ×    Ψm | c† coq |Ψn
                                     eq
                                                                          +∞
                                    i
                          −     −        Z−1            exp (−βEn )            θ (t − τ ) dτ
                                               kq mn                     −∞

                                   i
                          ×   exp − (Em − En ) (τ − t)               Ψn | c† coq |Ψm
                                                                           eq

                                     t0 †
                          ×    Ψm | √    cok d |Ψn .                                         (3.7)
                                      2N
    Now we exchange n ↔ m in the second term of (3.7) and introduce an infinitesimal
parameter η in the exponentials,
     +∞
                                                           (exp (−βEn ) − exp (−βEm ))
           dτ F (t − τ ) =    limη→0+ Z−1
    −∞                                                            En − Em + iη
                                                   kq mn
                                     t0 †
                         ×     Ψn | √    cok d |Ψm Ψm | c† coq |Ψn .
                                                         eq                                  (3.8)
                                      2N
We see that the term Ψm | c† coq |Ψn mixtures the conduction bands.
                                eq
     We eliminate such mixture calculating


                   Ψm | c† coq , H |Ψn
                         eq                         =    Ψm | c† coq H − Hc† coq |Ψn
                                                               eq          e

                                                    = (En − Em ) Ψm | c† coq |Ψn ,
                                                                       eq                              (3.9)


                                                       1      √ t0
               Ψm | c† coq |Ψn
                     eq                  =     −               2√    Ψm | d† coq |Ψn .
                                                   (En − Em )     2N

                                                                                                      (3.10)

     The combination of Eq.(3.10) with the limit

                                 exp (−βEn ) − exp (−βEm )
                limEm →En                                  = −β exp (−βEn )                           (3.11)
                                         En − Em
     in Eq.(3.8) leads to

                 e                                                                      t
 J     =       −2 π∆µβZ−1                exp (−βEn ) δ (En − Em ) Ψn |                 √ 0 c† d |Ψm
                                                                                            ok
                                   mn                                             k
                                                                                        2N
                            t
       ×       Ψm |        √ 0 d† coq |Ψn .                                                           (3.12)
                      q     2N

     The property of Eq.(1.7) allows to write

                                                |Ψm = |r |s                                           (3.13)


       Z−1 exp (−βEn ) δ (En − Em ) = Z−1 Z−1 exp (−βEr ) exp (−βEs )
                                        e   o
                                                      e           o

                                          e    o    e      o
                                    × δ (Er + Es − Er − Es )


                           e           o           e    e           o    o
           =       exp (−βEr ) exp (−βEs ) δ (ε + Er − Er ) δ (ε + Es − Es ) dε


               1               o             o             e             e
           =          [exp (−βEs ) + exp (−βEs )] [exp (−βEr ) + exp (−βEr )]
               β

                               ∂fF (ε)               e    e           o    o
                    × −                      δ (ε + Er − Er ) δ (ε + Es − Es ) dε,                    (3.14)
                                 ∂ε
where |r and |s are even and odd eigenstates, respectively. Applying them on Eq.(3.12),
we finally derive the conductance

                                2e2                          d|d†   ε        ∂fF (ε)
                      G=            πΓ        dε −                       −                            (3.15)
                                 h                            π                ∂ε
                           2
                                                                                                     Nq
where Γ = π          t
                    √0
                       N
                                           1
                               ρ and ρ = − π            kq     c† |coq
                                                                ok              . Using    t
                                                                                          √0
                                                                                             N
                                                                                                 =   πρ ,   we
                                                                         ε=εF
recover Eq.(5) of the manuscript.

More Related Content

What's hot

Modular representation theory of finite groups
Modular representation theory of finite groupsModular representation theory of finite groups
Modular representation theory of finite groupsSpringer
 
Integration by Parts for DK Integral
Integration by Parts for DK Integral Integration by Parts for DK Integral
Integration by Parts for DK Integral IJMER
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsSpringer
 
lecture 4
lecture 4lecture 4
lecture 4sajinsc
 
Goldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsGoldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsMathieu Dutour Sikiric
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Alberto Maspero
 
Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Udo Ornik
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
LAP2009c&p109-hooke2.5 ht
LAP2009c&p109-hooke2.5 htLAP2009c&p109-hooke2.5 ht
LAP2009c&p109-hooke2.5 htA Jorge Garcia
 
Ch12 z5e kinetics
Ch12 z5e kineticsCh12 z5e kinetics
Ch12 z5e kineticsblachman
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms IiSri Prasanna
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4Vin Voro
 
4 damped harmonicoscillator
4 damped harmonicoscillator4 damped harmonicoscillator
4 damped harmonicoscillatorSusanti santi
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notationsNikhil Sharma
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theoremRajendran
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 

What's hot (20)

Modular representation theory of finite groups
Modular representation theory of finite groupsModular representation theory of finite groups
Modular representation theory of finite groups
 
Topic 8 kft 131
Topic 8 kft 131Topic 8 kft 131
Topic 8 kft 131
 
Integration by Parts for DK Integral
Integration by Parts for DK Integral Integration by Parts for DK Integral
Integration by Parts for DK Integral
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systems
 
Energetics1
Energetics1Energetics1
Energetics1
 
lecture 4
lecture 4lecture 4
lecture 4
 
Goldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsGoldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane maps
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
 
Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Recurrences
RecurrencesRecurrences
Recurrences
 
LAP2009c&p109-hooke2.5 ht
LAP2009c&p109-hooke2.5 htLAP2009c&p109-hooke2.5 ht
LAP2009c&p109-hooke2.5 ht
 
Ch12 z5e kinetics
Ch12 z5e kineticsCh12 z5e kinetics
Ch12 z5e kinetics
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
 
4 damped harmonicoscillator
4 damped harmonicoscillator4 damped harmonicoscillator
4 damped harmonicoscillator
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notations
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theorem
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 

Similar to Conductance

Supplement to local voatility
Supplement to local voatilitySupplement to local voatility
Supplement to local voatilityIlya Gikhman
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1Iwan Pranoto
 
Multiplicity of solutions for a reactive variable viscous couette flow
Multiplicity of solutions for a reactive variable viscous couette flowMultiplicity of solutions for a reactive variable viscous couette flow
Multiplicity of solutions for a reactive variable viscous couette flowAlexander Decker
 
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...11.0001www.iiste.org call for paper.differential approach to cardioid distrib...
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...Alexander Decker
 
1.differential approach to cardioid distribution -1-6
1.differential approach to cardioid distribution -1-61.differential approach to cardioid distribution -1-6
1.differential approach to cardioid distribution -1-6Alexander Decker
 
Ch06b entropy
Ch06b entropyCh06b entropy
Ch06b entropysuresh301
 

Similar to Conductance (20)

Supplement to local voatility
Supplement to local voatilitySupplement to local voatility
Supplement to local voatility
 
Desktop
DesktopDesktop
Desktop
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1
 
Multiplicity of solutions for a reactive variable viscous couette flow
Multiplicity of solutions for a reactive variable viscous couette flowMultiplicity of solutions for a reactive variable viscous couette flow
Multiplicity of solutions for a reactive variable viscous couette flow
 
Cutoff frequency
Cutoff frequencyCutoff frequency
Cutoff frequency
 
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...11.0001www.iiste.org call for paper.differential approach to cardioid distrib...
11.0001www.iiste.org call for paper.differential approach to cardioid distrib...
 
1.differential approach to cardioid distribution -1-6
1.differential approach to cardioid distribution -1-61.differential approach to cardioid distribution -1-6
1.differential approach to cardioid distribution -1-6
 
Gc chemical equilibrium
Gc  chemical equilibriumGc  chemical equilibrium
Gc chemical equilibrium
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
Ch06b entropy
Ch06b entropyCh06b entropy
Ch06b entropy
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Fourier series
Fourier seriesFourier series
Fourier series
 

Recently uploaded

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfdanishmna97
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformWSO2
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringWSO2
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceIES VE
 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 

Recently uploaded (20)

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cf
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software Engineering
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational Performance
 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 

Conductance

  • 2. 1. Side-coupled device 1.1. The Model t H = εLk c† cLk + Lk √ 0 d† cLk + H.c. k 2N k t + εRk c† cRk + Rk √ 0 d† cRk + H.c. k 2N k + V c† f0 + H.c + Kf0 f0 d † + εd c† cd + U nd↑ nd↓ . d (1.1) We consider εF ≡ 0, εLk = εk − ∆µ and εRk = εk + ∆µ. The chemical potential dif- ference between the reservoirs is 2∆µ and ∆µ = e∆φ/2 for an applied bias ∆φ. The zero bias conductance occurs for the regime ∆φ → 0. Using the canonical even-odd transformation 1 cLk = √ (cek + cok ) (1.2) 2 1 cRk = √ (cek − cok ) (1.3) 2 we derive a free Hamiltonian Ho = εk c† cok ok (1.4) k and an interacting one in terms of a renormalized hybridization √ t0 † He = εk c† cek + ek 2√ d cek + V c† f0 + H.c. d k 2N kσ + † Kf0 f0 + εd c† cd + U nd↑ nd↓ . d (1.5) Note that H = Ho + He , (1.6) which satisfies the property [Ho , He ] = 0. (1.7)
  • 3. 2. Linear response theory We consider the Hamiltonian splitted as H =H+H (2.1) and the time evolution of an eigenstate |Φn in the interaction picture t i |Φn = 1− H (τ ) dτ |Ψn , (2.2) −∞ where |Ψn is an eigenstate of the Hamiltonian H. The Hamiltonian H is treated as a perturbation. So the current J through the system is determined by the thermal average of the current operator IL (t) over the states |Ψn . Therefore, we have t i J =− IL (t) , H (τ ) dτ. (2.3) −∞ The time evolution for the operators is H H IL (t) = exp i t IL exp −i t (2.4) H H H (t) = exp i t H exp −i t . (2.5) The perturbative Hamiltonian is H = −∆µ c† cLk − c† cRk = −∆µ Lk Rk c† cok + c† cek . ek ok (2.6) k k
  • 4. 3. The Conductance We want to derive the conductance expressed in the form J 2e2 ∂fF (ε) G= = dεT (ε, β) − (3.1) ∆φ h ∂ε where T (ε, β) is the transmission coefficient. Let us first calculate the current ie IL = − c† cLk , H Lk (3.2) k ie t0 IL = − √ c† d − d† cLk Lk (3.3) 2N k ie t0 IL = − √ √ c† d − d† cek + c† d − d† cok ek ok . (3.4) 2 2N k The substitution of Eqs.(2.4), (2.5), (2.6) and (3.4) in Eq.(2.3) leads to √ e +∞ J = − 2 ∆µ dτ F (t − τ ) (3.5) −∞ with the correlator i t F (t − τ ) = − θ (t − τ ) √0 c† (t) d (t) , c† (τ ) coq (τ ) ok eq . (3.6) kq 2N The integral of Eq.(3.5) results in +∞ +∞ i dτ F (t − τ ) = − Z−1 exp (−βEn ) θ (t − τ ) dτ −∞ kq mn −∞ i t0 † × exp − (En − Em ) (τ − t) Ψn | √ cok d |Ψm 2N × Ψm | c† coq |Ψn eq +∞ i − − Z−1 exp (−βEn ) θ (t − τ ) dτ kq mn −∞ i × exp − (Em − En ) (τ − t) Ψn | c† coq |Ψm eq t0 † × Ψm | √ cok d |Ψn . (3.7) 2N Now we exchange n ↔ m in the second term of (3.7) and introduce an infinitesimal parameter η in the exponentials, +∞ (exp (−βEn ) − exp (−βEm )) dτ F (t − τ ) = limη→0+ Z−1 −∞ En − Em + iη kq mn t0 † × Ψn | √ cok d |Ψm Ψm | c† coq |Ψn . eq (3.8) 2N
  • 5. We see that the term Ψm | c† coq |Ψn mixtures the conduction bands. eq We eliminate such mixture calculating Ψm | c† coq , H |Ψn eq = Ψm | c† coq H − Hc† coq |Ψn eq e = (En − Em ) Ψm | c† coq |Ψn , eq (3.9) 1 √ t0 Ψm | c† coq |Ψn eq = − 2√ Ψm | d† coq |Ψn . (En − Em ) 2N (3.10) The combination of Eq.(3.10) with the limit exp (−βEn ) − exp (−βEm ) limEm →En = −β exp (−βEn ) (3.11) En − Em in Eq.(3.8) leads to e t J = −2 π∆µβZ−1 exp (−βEn ) δ (En − Em ) Ψn | √ 0 c† d |Ψm ok mn k 2N t × Ψm | √ 0 d† coq |Ψn . (3.12) q 2N The property of Eq.(1.7) allows to write |Ψm = |r |s (3.13) Z−1 exp (−βEn ) δ (En − Em ) = Z−1 Z−1 exp (−βEr ) exp (−βEs ) e o e o e o e o × δ (Er + Es − Er − Es ) e o e e o o = exp (−βEr ) exp (−βEs ) δ (ε + Er − Er ) δ (ε + Es − Es ) dε 1 o o e e = [exp (−βEs ) + exp (−βEs )] [exp (−βEr ) + exp (−βEr )] β ∂fF (ε) e e o o × − δ (ε + Er − Er ) δ (ε + Es − Es ) dε, (3.14) ∂ε where |r and |s are even and odd eigenstates, respectively. Applying them on Eq.(3.12), we finally derive the conductance 2e2 d|d† ε ∂fF (ε) G= πΓ dε − − (3.15) h π ∂ε 2 Nq where Γ = π t √0 N 1 ρ and ρ = − π kq c† |coq ok . Using t √0 N = πρ , we ε=εF recover Eq.(5) of the manuscript.