SlideShare a Scribd company logo
1 of 12
Fan Liu, Michael
Furrow
1
Hursthouse, M. B.; Motewaili, M.; O'Brien, P.; Walsh, J. R.; Jones, A. C. J. Mater.
Chem.
1991, 1, 139–140.
Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071-
6072.
Zn—C
1.98 Å
n-C6H13 Et 81 61
3
H C
Zn—C
1.95 Å
80
Et 90
PhCH2CH2
N
81
Et 96
(E)-PhC(H)=CH
180 ° N CH3
N
CH3 96
Et 93
145 ° Zn
H3C
p-CH3OC6H4
H3C Zn CH3
CH3
2 H3C H3C N 3 86
N N Et 93
N CH p-ClC6H4
59
Me 91
Ph
H3C
N
H3C
CH3
N
97
Et 98
Ph
R R' % yield % ee
R H toluene, 0
°C
R R'
 X-Ray structures of dimethylzinc and its adduct with 1,3,5-trimethylhexahydro-1,3,5-
triazine show that upon bis-complexation, dimethylzinc shifts from a linear geometry to a
tetrahedral geometry and that the carbon-zinc bond length increases from 1.95 Å to 1.98
Å. This is proposed to increase the nucleophilicity of the methyl groups, accelerating
addition to carbonyl compounds.
+ R'2Zn
O 2 mol % (–)-
DAIB
OH
Soai, K.; Watanabe, M.; Koyano, M. Bull. Chem. Soc. Jpn. 1989, 25, 2124–
2125.
(–)-DAIB
H3C
racemic
Bz Bz
toluene, 23°C, 14
h 93%
H (C2H5)2Zn
+ CH3
5 mol %
TMEDA
O OH
 In 1986, Noyori et al. published the first highly selective procedure for the asymmetric addition of
diethyl- and dimethylzinc to aldehydes employing (–)-3-exo-(dimethylamino)isoborneol (DAIB) as
a chiral catalyst.
H3C CH3
N(CH3)3
OH
 The addition of a catalytic amount of TMEDA will promote the addition of diethylzinc at
room temperature to 4-benzoylbenzaldehyde in 93% yield.
Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823–
2824.
 The reactivity of dialkylzinc reagents towards ketones and aldehydes is low; the rate of addition
of Et2Zn to benzaldehyde is negligible at room temperature.
96% yield, 49%
ee
Background:
H + (C2H5)2Zn
CH3
O OH
OH
H3C
2 mol % CH3 NH2
toluene, 20 °C, 43 h
Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757–824.
Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71–
83. Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem. Int. Ed. 2013, 52, 1890–
1932.
Recent Reviews:  In 1984, Oguni and Omi found that a small amount of (S)-leucinol catalyzed the
enantioselective addition (49% ee) of diethylzinc to benzaldehyde.
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028-4036. Oguni, N.;
Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877.
Fan Liu, Michael
Furrow
2
Itsuno, S.; Fréchet, J. M. J. J. Org. Chem. 1987, 52, 4142–4143.
Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987, 28, 5237–
5240. Evans, D. A. Science 1988, 240, 420–426.
homochiral dimer,
less stable,
dissociates
Et Et Ar
Zn
H
3
O
Et
Ar
3
3 3 H
H C H C
O
CH
Zn
Et
O
CH O
H3C CH3
3
H C
N N 3
Zn
Et
Zn
Et H C
slow
3 3
CH CH
3 3 3 3 3
H C CH H C CH H C
CH3 R Zn
CH3
O
N
CH3
H
Ar
Et Ar Zn R
O
N
3
EtZnO H O H H
CH3 CH
heterochiral dimer,
more stable, does not
readily dissociate
H3C Zn
Et
Et
+
O 3
3
H C
O
CH
Zn Et CH3
3
3 H C
CH
N
Zn Et
CH3
H
N H3C
H3C CH3
N
CH3
R Zn
H3C CH3
R Zn O
O N
H3C H3C
CH3
CH3
H H H3C CH3
H
H3C H3C
3 O O
H C
Et2Zn H3C
N
Zn R
N
Zn R
3
N(CH3)3
OH
CH3
3
CH
CH3
H3C CH3 CH H3C CH3
H3C CH3
 This observation is consistent with a mechanistic proposal involving two Zn atoms per
aldehyde:
(–)-DAIB (+)-DAIB
Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028–
4036.
H H3C CH3
3
3 H C
H3C 3
O
CH
H C
Zn Et +
N
R Zn
O
N
3
CH CH3
1 : 1 : 0 0 —
1 : 1 : 1 1 0
50 : 50 : 1 97 98
H3C CH3 H
aldehyde : Et2Zn : DAIB % yield % ee
92% yield, 95%
ee
toluene, 0 °C, 6
h
2 5 2
H (C H ) Zn
+
H + (C2H5)2Zn
CH3
CH3
cat. (–)-
DAIB
O
O OH
8 mol % (–)-DAIB
15 % ee
OH
 A non-linear dependence of product ee on catalyst ee was observed. Heterochiral dimerization
to form an unreactive species was invoked to account for in situ amplification of product ee:
Mechanism:
 The stoichiometry of aldehyde, diethylzinc, and DAIB ligand determines reactivity: alkylation
occurs only when the ratio of Et2Zn : DAIB is greater than 1:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
Reeder, M. R.; Gleaves, H. E.; Hoover, S. A.; Imbordino, R. J.; Pangborn, J. J. Org. Process
Res.
Dev. 2003, 7, 696–
699.
Kim, J. G.; Walsh, P. J. Angew. Chem. Int. Ed. 2006, 45, 4175–
4178.
Fan Liu, Michael
Furrow
3
TEEDA
H3C CH3
SO2CH3
3 3 (5 mol%)
H C CH
H3C
unstable
above –50
ºC
stable N N TEEDA
(equiv) yield ee
0 –
2
0.8 99
92
SO2CH3
90% N
OH
H Li ZnCl Br
THF, –60
ºC
O
H3C CH3
ZnCl2 N MTBE
hexane
s
N O 1. n-BuLi N O O
N O
Pd(PPh 3)4
(5 mol%)
60 ºC
 Transmetallation with a Zinc Salt:
 Substrates that are less readily prepared by direct reduction can be prepared by treatment of
a Zinc(II) halide with two equivalents of alkyllithium or alkylmagnesium halide:
Cote, A.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 2771–2773.
• N,N,N,N-tetraethylethylenediamine (TEEDA) can be used to scavenge salts and the resulting in situ
formed zinc reagents function in catalytic asymmetric addition reactions to aldehydes:
3. O
H OH
Br1. n-BuLi 2. ZnCl2
Choi, B. S.; Chang, J. H.; Choi, H.-W.; Kim, Y. K.; Lee, K. K.; Lee, K. W.; Lee, J. H.; Heo, T.;
Nam,
D. H.; Shin, H. Org. Process Res. Dev. 2005, 9, 311–313.
0 → 23 ºC
> 95%
H3C H3C
MgCl Zn
2 x + Zn(OCH3)2 + 2 CH3OMgCl
CH3 CH3 CH3
CH3
2
Et O
11.5
kg
10.6 kg
THF, 70
ºC
Cl Cl
2 2 10.0
kg
2. 6N HCl
72%
EtO C Br EtO C ZnBr
Cl  Zn(OCH3)2 can also be used. The byproduct, CH3OMgCl, precipitates from the reaction mixture
and salt-free ethereal solutions of diorganozinc can be obtained after filtration or centrifugation:
Cl EtO2C F
1. Zn
MsOH (5
mol%)
O
NC F
von dem bussche-Hünnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719–
5730. Brubaker, J. D.; Myers, A. G. Org. Lett. 2007, 9, 3523–3525.
O
 methanesulfonic acid can be used to activate zinc
metal:
N
>80%
93%
ee
CH3
OBn OBn
200 ºC
<30 mmHg
89 %
Et2Zn
EtI EtBr
+
Zn-Cu
neat, reflux
distillation
2
+
BrZnI
H N N
[EtZnI]
+
[EtZnBr]
Et Zn THF, –75 ºC
OLi
O O
Schlenk
Equilibrium
O OH
3.
filtration
Zn
ZnCl2
(1.0 M in Et2O)
2.
dioxane
(1.0 M in Et2O)
(salt free)
MgBr
1.
 Metallic Zinc Insertion:
 One of the early methods involves treatment of an alkyliodide or bromide with zinc dust or an
activated form of Zn, such as zinc-copper couple (Zn(Cu)). The method requires rather harsh
conditions and is limited to low molecular weight dialkylzinc species due to the need to distill
the products while avoiding competitive Wurtz coupling:
 1,4-Dioxane forms insoluble complexes with magnesium halides and allows the synthesis of
diorganozinc reagents that were not commercially available to subsequently be used in
asymmetric additions to carbonyl compounds:
Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71–
83. Knochel, P.; Perea, J. J. A.; Jones, P. Tetrahedron 1998, 54, 8275–8319.
 In many cases, lithium or magnesium halide byproducts must be removed to avoid salt
complexation with chiral additives in subsequent enantioselective processes.
Myers
Preparation of Organozinc Reagents:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Kneisel, F. F.; Dochnahl, M.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 1017–
1021.
Wipf, P.; Xu, W. Org. Synth. 1997, 74, 205–
211. Fan Liu, Michael
Furrow
4
CH3
Li(acac)2
H O O H H O
Cp2ZrHCl ZnMe2
CH2Cl2
0 → 23 ºC
toluene
–60 → 0 ºC
ZrCp2Cl > 86% Zn
OTBDPS OTBDPS OTBDPS 3
H O
H3CO Zn OCH3 H3CO Zn
O CH
i-Pr
Li+
OAc OAc AcO O
 organozirconium
:
CH3
H3CO I
Vettel, S.; Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 7473–
7481.
OAc
H O H O
OPiv OPiv
COD (2 mol%), neat, 50–60
°C
> 40%
2 x
Li(acac)2
Et2Zn (0.6 equiv), Ni(acac)2 (1 mol%) i-Pr
2
) Zn H3CO I H3CO Zn
i-Pr2Zn
Li(acac) 2 (10 mol%)
Et2O, NMP 25
ºC, 12 h
>90%
OAc OAc
 organonickel
:
 Aryl and alkenyl iodides can undergo halogen-zinc exchange with i-P2rZn. Li(acac)2 activates
the intermediate mixed diorganozinc as an ate complex and promotes the second exchange:
Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996,
61, 8229–8243.
Powell, N. A.; Rychnovsky, S. D. J. Org. Chem. 1999, 64, 2026–
2037.
> 86%
2 2
EtO C 2. Et Zn, neat, 0 °C t-Bu
EtO2C 2
) Zn TMSOTf, CH2Cl2
–78 ºC, 67%
0.1 mm
Hg 50
°C
2
I OEt EtO ) Zn
CO2Et O O
1. Et2BH, Et2O, 0 °C CO2Et
OEt
O O
n-Hex
O O
t-Bu
O
Et2Zn CuI
(3 mol%)
neat, 50
°C
 organoboron
:
Milgram, B. C.; Liau, B. B.; Shair, M. D. Org. Lett. 2011, 13, 6436–
6439.
Substrate decomposition occurred in the absence of
ZnEt2.
Rozema, M. J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P. Tetrahedron
Lett.
1993, 34, 3115–3118.
Rozema, M. J.; Sidduri, A.; Knochel, P. J. Org. Chem. 1992, 57, 1956–1958.
n-Hex OAc
3 3
82% CH
3
H
OTBS
H C
OBn MoOPH OBn
H
OTBS
OBn
H
OTBS
Ph
Si
Ph
Si
H3C
CH
0.1 mm Hg, 50
°C
> 95%
OPiv
OPiv Me2PhSiLi,
ZnEt2;
AcOCH2(CH2)3CH2I (AcOCH2(CH2)3CH2)2Zn
HO
O O
OZn–Et2Li+
OPiv
Et2Zn, CuI (0.1 mol%)
neat, 50 °C;
 organolithium
:
 Halogen-Diorganozinc Exchange:
 Iodine-zinc exchange reactions have been used to prepare dialkylzinc species containing
esters, nitriles, chlorides, sulfonamides, and boronic acids. CuI or UV light were found to
accelerate the reaction. Removal of excess Et2Zn and EtI was necessary to drive the reaction:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myers
 Transmetallation with a Diorganozinc Reagent:
 Functionalized diorganozinc reagents can be prepared via transmetallation of
organolithium, organoboron, organonickel, and organozirconium with dimethyl-, diethyl-, or
diisopropylzinc:
Nugent, W. A. Org. Lett. 2002, 4, 2133–
2136.
Fan Liu, Michael
Furrow
5
Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1496–1498.
H3C H3C
86%, > 94%
ee
hexanes,
toluene 0 ºC,
91%
99% ee
H3C H H3C Et
Cl
3 (5 mol%) 2
Et O, –20 °C
O OH
2
Et Zn H
OH
6 (8 mol%)
Ti(Oi-Pr)4
O
Watanabe, M.; Soai, K. J. Chem. Soc., Perkin Trans. 1, 1994, 3125–
3128.
(Cl(CH2)4)2Zn + (TMSCH2)2Zn (Cl(CH2)4)Zn(CH2TMS)
neat, 25
°C
O OH
H toluene, 0 ºC
82%, 96%
ee
Et
Ph Ph
 Unsymmetrical dialkyl zinc containing a trimethylsilylmethyl group as a non-transferable group
can be prepared to avoid losing one equivalent of valuable alkyl zinc precursor:
Et2Zn
n-BuLi, 2 (8 mol%)
O O
 Chemoselective addition to aldehydes can be achieved in the presence of
ketones:
Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989, 30, 1657–1660.
Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1989,
30, 7095–7098.
Hayasaka, T.; Yokoyama, S.; Soai, K. J. Org. Chem. 1991, 56, 4264–
4268.
toluene, –30
ºC
99%, 98% ee
Ph H Ph n-Bu
O OH
Ph H Ph Et
hexanes, 0
ºC
94%, 95% ee
n-Bu2Zn, Ti(Oi-Pr)4
6 (2 mol%)
O OH
Schmidt, B.; Seebach, D. Angew. Chem. Int. Ed. 1991, 30, 99–
101.
Et2Zn
1 (6 mol%)
5 6
 Ligand 1 extends the scope of the initial DAIB reaction to include aliphatic
aldehydes:
7 H3CO H3CO
toluene
0 → 23 ºC, 89%
98% ee
toluene
–75 → 23 ºC, 86% H3CO
94% ee
NHTf Et H Et
Ph
Ph N (1.2 equiv)
O
O 3
3 4
OH OH
CH
H C Et2Zn O Ti(Oi-Pr) 5 (2 equiv)
NHTf
CH3
H3C
OH
OH
O
O O O
Ti
O O
Ph
Ph
Ph Ph Ph Ph N
 Using 5 as a chiral additive, either enantiomer of the product can be obtained by changing
the reaction conditions:
Et2Zn
5 (10 mol%)
1 2 3 4
Nugent, W. A. Chem. Commun. 1999, 1369–
1370.
HO N(n-Bu)2 H3C
N
CH3
3
Ph CH
N
OH
CH3 CH3
Ph
Ph
OH
hexanes,
toluene 0 ºC,
94%
99% ee
O
HO N H3C CH3 H Et
H3C H3C
O OH
Et2Zn
ent-4 (5 mol%)
O
shown
here:
 3-exo-morpholinoisoborneol (MIB), 4, more stable and easier to prepare than DAIB, catalyzes
enantioselective additions to aldehydes with similar selectivity and efficiency. It also shows
improved selectivity with α-branched, aliphatic aldehydes:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myers
Alkylzinc Addition to Aldehydes:
 A variety of chiral catalysts and ligands have been developed that promote the addition of
dialkylzinc reagents to give enantiomerically enriched secondary alcohols. Only a few
representative ones are
Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454–
6455. Fan Liu, Michael
Furrow
6
Cl
toluene, –30 ºC
83%, 97%
ee
H
Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996,
61, 8229–8243.
Cl
O
Ginnol
3 n-Bu
n-Bu
n-Bu H 3 2
Zn
CH
3 3 SH N(CH )
CH H C
THF, –60 → 0 °C
95%
OH
CH3
1.Cp2ZrHCl
CH2Cl2, 23 ºC
2.Me2Zn
toluene, –65 ºC
Bu2Cu(CN)Li2
(10 mol%)
OH
69%, 92%
ee
Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta. 1992, 75, 170–173.
Oppolzer, W.; Radinov, R. N.; De Brabander, J. Tetrahedron Lett. 1995, 36, 2607–
2610.
CH3 CH3
H
Br
60%, 82%
de
O OH H3C
3
H C
(Br(CH2)5)2Zn
Ti(Oi-Pr)4
6 (8 mol%)
toluene
–60 → –20 °C
O O
O O
2. Et2Zn
(–)-DAIB (1 mol%)
H
1. (Cy)2BH•S(CH3)2
hexanes
–20 → 23 °C
HO
O
Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130–
9136.
(–)-
Gloeosporone
 Mixed organozinc reagents, formed via transmetallation of organoboron or organozirconium with
dialkylzinc, can be used to form enantiomerically enriched allylic alcohols in the presence of a
chiral amino alcohol catalyst:
CH3
Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645–
5648.
H
O
O OH O
hexanes, 0
ºC
90%, 96%
ee
O
Zn
H n-Bu
n-Bu
88% yield, >98%
ee
3 OH
H C (20 mol%)
O
H3CO H H3CO CH3
N N(CH3)2
3 3
OCH O OCH OH
OH
(n-C5H11)2Zn
Ti(Oi-Pr)4
6 (20 mol%)
toluene
–78 → –20 °C
 The first example of catalytic asymmetric vinylzinc additions to aldehydes was reported using
a
chiral diaminoalcohol ligand:
H3C CH3
Alkenylzinc Addition to Aldehydes:
Myers
Dialkylzinc Reagents in Synthesis:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Kerrigan, M. H.; Jeon, S.-J.; Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem.
Soc.
2009, 131, 8434–
8445.
Fan Liu, Michael
Furrow
7
O
50%, 95%
ee
H OHC
(–)-Longithorone A CH3
Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773–775.
H O
Cy
Et Et Cy
Zn B
O
3
CH
n-Bu n-Bu O
H
2
Et Zn
Cy Cy
OH n-Bu O
H H
H3C
TMEDA
4 (5 mol%)
toluene, 0
ºC
97% yield, 90%
ee
0 → 23 °C 2. TBAF, THF
0 → 23 °C
Br Br OH
TBSO I
Br n-Bu n-Bu 1. as above
n-Bu HO OCH3
–78 → 0 °C
Cy2B
2 +
2. Et Zn
1. (Cy)2BH
toluene
H H
Cy
Cy B
Et
HO
O
OCH3
CH3
H
 Tri-substituted Z-allylic alcohol can also be
prepared:
TBSO
TIPS CH3
91% yield, 95%
ee
TMS CH3 OH
+
Salvi, L.; Jeon, S.-J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2007, 129,
16119– 16125.
OCH3
3. H3C NMe2
Ph OLi
(2.5 equiv)
toluene, 0°C
TMS CH3
I TBSO
2. ZnBr2,
Et2O, 0 ºC
H
69%, 93%
ee
S 3
2
BCy2 TIPS CH
Et O, –78°C
–78 °C
O OTBDPS 1. t-BuLi
S H
OH OTBDPS H
Et2Zn
TEEDA
4 (5 mol%)
–78 → 23 °C
Alkenylzinc Reagents in Synthesis:
DeBerardinis, A. M.; Turlington, M.; Pu, L. Angew. Chem. Int. Ed. 2011, 50, 2368–
2370.
Cl
OTBDPS
H3C
O
94%, >99%
ee
3
H C H O
H
Cy B
Cy
3
Li H H CO n-Bu
CH2Cl2
H3CO
–20 → 23 °C Cl
Cl (26 mol%)
n-Bu NMP, 0 ºC
7 (10 mol%) H CH3
OTBDPS 2
OTBDPS
Cy2B HO
MTBE I 3
O CH
Et2Zn
Li(acac)
2. t-BuLi
–78 → 23 °C
2 H
1. (Cy) BH
H3C CH3
 Hydride migration from a boron ate complex provides access to enantiomerically enriched Z-
allylic alcohols:
 Direct transmetallations from vinyl iodides provide alkenylzinc reagents not accessible
through hydroboration or hydrozirconation:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
Ishizaki, M.; Hoshino, O. Tetrahedron: Asymmetry 1994, 5,
1901.
Magnus, N. A.; Anzeveno, P. B.; Coffey, D. S.; Hay, D. A.; Laurila, M. E.; Schkeryantz, J. M.; Shaw,
B. W.; Staszak, M. A. Org. Process Res. Dev. 2007, 11, 560–
567.
Fan Liu, Michael
Furrow
8
OTBS
17.6 kg
–5 → –10 ºC
47.6 kg
88%, >94%
ee
H
60 ºC CN  The low yields in these reactions was attributed in part to competitive addition of ethyl groups to
the aldehydes.
toluene O TBSO
B
O O
Et2Zn (20 mol%)
OH
O
B
B
Ph OH
Ph
Ph
N
OTBS OTBS
DiMPEG = dimethoxy
poly(ethyleneglycol)
Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850–
14851.
R1 R2 T (°C) % yield % ee
C6H5 C6H5 0 64 90
C6H5 c-Hx 0 88 91
C6H5 t-Bu 0 61 95
Ph3Si c-Hx 23 55 91
C6H13 t-Bu 23 67 87
CN
C6H13 C6H5 23 41 78
Cl 8
toluene, –10 ºC
O
H p-ClC6H4
toluene
60 ºC,
>95%
Ph
Ph ZnEt
Ph B(OH)2
Et2Zn OH N
OH
N
OH
Fe Ph Ph
(S)-cat.
t-Bu
8 (10 mol%)
DiMPEG
(10 mol%)
O O
H3C CH3
CH3
 Widely available aryl boronic acids and boroxines can be directly transformed into arylzinc
reagents and undergo enantioselective arylation of aldehydes with excellent selectivity:
R1
THF,
reflux
THF
DeBerardinis, A. M.; Turlington, M.; Ko, J.; Sole, L.; Pu, L. J. Org. Chem. 2010, 75, 2836–
2850.
R2
R1 ZnEt
R1
Et2Zn
OH
R2 H
10 mol % (S)-cat.
OCH3 OCH3
NMP, 0
ºC
THF, 0
ºC
23 ºC
O
7 (10 mol%)
I H
Et2Zn
Li(acac)2
(26 mol%)
OH
O
 Mixed alkylalkynylzinc reagents can be prepared directly from terminal acetylenes and have
been shown to undergo catalyzed 1,2-additions to aldehydes with good enantioselectivities.
 Ligand 7 (see page 5) has been found to promote highly enantioselective additions of
diphenylzinc and functionalized diaryl zinc to aromatic and aliphatic aldehydes:
Wu, X.-F.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141–
3160. Trost, B. M.; Weiss, A. Adv. Synth. Catal. 2009, 351, 963–
983.
Pu, L. Tetrahedron 2003, 59, 9873–9886.
 Unlike dialkylzinc additions, diphenylzinc additions to aldehydes take place smoothly even without
a catalyst. This background reaction has made it more difficult to develop enantioselective
variants.
Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. Soc. Rev. 2006, 35, 454–470.
Recent Reviews:
Alkynylzinc Additions to Aldehydes
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myers
Arylzinc Addition to Aldehydes:
77%, 98%
ee
Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687–
9688.
Fan Liu, Michael
Furrow
9
Diez, S. R.; Adger, B.; Carreira, E. M. Tetrahedron. 2002, 58, 8341–
8344.
3
Et N, toluene, 60 °C
3
CH
Zn(OTf)2 (20 mol%) CH3
H OTMS
CH3
CH3
3
H CH
CH3
+
H3C 3
H C
OTMS
O
OH
(+)-N-methyl
ephedrine (22
mol%)
OH
O 3
H CH
Zn(OTf)2, Et3N
toluene, 60 °C
72%, 99% ee, dr = 92 : 8
CH3
H
+
CH3
(–)-N-methyl ephedrine
3
CH
 The system is less effective for aromatic aldehydes because of a competitive Cannizzaro
reaction.
OBz OBz
 It was shown that by raising the reaction temperature to 60 °C, the in situ zinc acetylide
formation and addition reaction can be made catalytic in both zinc and chiral ligand.
 The resulting terminal acetylene can be used to prepare enantiomerically enriched 1,4 -
diols:
Boyall, D.; Lopez, F.;Sasaki, H.; Frantz, D.; Carreira, E. M. Org. Lett. 2000, 2, 4233–
4236.
Frantz, D. E.; Fassler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373–381.
Boyall, D.; Frantz, D.; Carreira, E. M. Org. Lett. 2002, 4, 2605–2606.
For an investigation on the reaction mechanism, see: Fässler, R.; Tomooka, C. S.; Frantz, D.
E.; Carreira, E. M. Proc. Natl. Acad. Sci. 2004, 101, 5843–5845.
Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806–1807.
R1 R2 yield (%) ee (%)
n-C5H11 CH2CH2Ph 94 97
n-C5H11 Ph 90 97
i-Pr Ph 96 92
Ph Ph 82 93
2 3
toluene, 23 °C;
benzoyl
chloride
Zn(OTf) , Et N
Ph OH
(+)-N-
methylephedrine
R2 toluene, 110
ºC
1
H3C CH3
H
R % overall yield % ee
n-C3H7 68 99
n-C5H11 71 98
t-Bu 65 98
c-C6H11 73 99
TIPSO(CH2)2 71 97
R H R H (–)-N-methyl ephedrine R
R1
OH
H R2
(+)-N-methyl ephedrine
Zn(OTf)2, Et3N
toluene, 23 °C
2 3
3 2 K CO
O H C NMe R
O OBz
OH cat. 18-cr-
6
H OBz
OH
CH3
CH3
 All reagents are stoichiometric or
superstoichiometric.
 Protection of the 2° propargylic alcohol prior to cleavage of acetone from the adducts leads
to improved yields.
 The reactions can be carried out without rigorous exclusion of oxygen or moisture using
reagent- grade toluene (84–1000 ppm H2O).
 Enantioselective additions of 2-methyl-3-butyn-2-ol to aldehydes provide access to optically
active terminal acetylenes after cleavage of acetone from the products.
 In 2000, Carreira et al. published an in situ preparation of alkynylzinc reagents and their addition
to aldehydes with excellent enantioselectivities and yields.
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
1
Topic, D.; Aschwanden, P.; Fässler, R.; Carreira, E. M. Org. Lett. 2005, 7, 5329–
5330.
Fan Liu, Michael
Furrow
10
R O 3
CH
H H
H
O
N 1
O CH3
Li, X.; Lu, G.; Kwok, W. H.; Chan. A. S. C. J. Am. Chem. Soc. 2002, 124, 12636–12637.
85%, 99%
ee
3 2
Zn(CH ) , THF, 0 °C
R2
Ph OH
Ligand
R Ph
toluene, 23 °C
92%, dr = 96 : 4
–O +
6 4
p-BrC H H
H
+ p-BrC6H4 H3C NHTs
ZnCl2, Et3N HO
N
Xc* O H Ph
(S)-BINOL (10 mol%)
Ligand (10 mol%)
OH
H3C CH3
O O
 A highly effective two-catalyst system was reported for the addition of zinc acetylide to aromatic
aldehydes. The stereochemistry of BINOL determines the stereochemistry of the products, while
the second ligand improves catalytic activity and enantioselectivity:
 The use of ZnCl2 homogenizes the reaction mixture and obviates the need for N,N-
dimethylethanolamine:
Fassler, R.; Frantz, D. E.; Oetiker, J.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 2002,
41, 3054–3056.
 Lowering the loading of Zn(OTf)2 to 20 mol% resulted in lower selectivites and isolated
yields.
Knöpfel, T. F.; Boyall, D.; Carreira, E. M. Org. Lett. 2004, 6, 2281–2283.
O
R
HO O R
6 11
>98% ee
R = c-C H , 83%,
O
>98% ee
1. KOH, PrOH, 97 ºC H3C
1. DMSO, 100 ºC Ph
R = i-Pr, 97%, O
H3C
N
CH3 Ph 88 95:5
i-Pr C(OH)Me2 98 96:4
t-Bu Ph 91 97:3
Ph SiMe3 88 95:5
Ph Ph
R2 overall yield
(%)
dr
R1
O O
O O 2
Et3N, CH2Cl2, 23 ºC
Ph Ph R
O Zn(OTf) (60 mol%)
CH3
2
R
3
H O H
CH
HOHN H R , TiCl4
pyridine, THF
–78 → 23 ºC
O
MeOH, H2O, 60 ºC H3C H3C H
O O
+ Ph
H3C
N
H3C
N
O
2
H NOH•HCl, NaOAc
OH
HN
R1
H3C CH3
O O
 The oxazepanedione shown below, prepared in 3 steps from ephedrine and dimethyl malonate,
undergoes condensation with aldehydes mediated by TiCl4. Conjugate addition of zinc
alkynylides followed by hydrolysis and decarboxylation give β-alkynyl acids in good yields and
selectivities:
O 3 2 2
3 Et N, CH Cl , 23 °C;
CH R2
H H
R1 H
Pinet, S.; Pandya, S. U.; Chavant, P. Y.; Ayling, A.; Vallee, Y. Org. Lett. 2002, 4, 1463–
1466.
O CH3
O R1
–O +
N
N
c
HO X *
O O Bn
H R2
Zn(OTf)2 (0.5 equiv)
Me2NCH2CH2OH (0.5 equiv)
81% H3C
H3C
NHBn
N
3 3
H C CH OH
Zn, AcOH, H2O
Ph
Ph
 Hydroxylamines are readily reduced to free
amines:
 A mannose-derived auxiliary was employed to promote diastereoselective alkynylzinc additions
to nitrones. The nitrone auxiliary was prepared from mannose, acetone and N-hydroxylamine.
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
Lehr, K.; Mariz, R.; Leseurre, L.; Gabor, B. Fürstner, A. Angew. Chem. Int. Ed. 2011, 50,
11373–
11377. Fan Liu, Michael
Furrow
11
(–)-Tulearin
C
CH3
OH
H3C
Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans, D. A. J. Am. Chem. Soc. 2007, 129,
8968– 8969.
O O CH3
OH HO
7 steps
C5H11
CH3
3 3
3 3
CH CH
OH CH OH CH
(–)-Salvinorin
A
2. I2, –20 ºC, 99%
(CH3O)2HC H3CO2C
CH3
3
CH
OH I
7 steps 1. Red-Al, Et2O
3Å MS, 0 → 23 ºC C5H11
Me
O C5H11
O
BOMO
AcO
H
O O
O
H
O
H
Me
toluene, 23 ºC
91%, dr > 95 : 5
CH3
O CH3
2 2
Zn(OTf) , i-Pr NEt
+
5 11
C H
O H
O (+)-N-Me-ephedrine
Kleinbeck, F.; Carreira, E. M. Angew. Chem. Int. Ed. 2009, 48, 578–
581.
–78 → 5 ºC, 99%
single
diastereomer
TBAF, DMF,
THF
(–)-Bafilomycin A1 CH3 CH3 OH
(CH3O)2HC
H3C CH3
O
CH3 CH3 OCH3 CH3
HO 13
steps
TBDPS
O
HO
10
steps
CH3 O
O
BOMO H3C
H3C
O OH O
Ph CH3 OTBS
CO2CH3
OH CH(OMe)2
H3C
O CH3
OTE
S
H3CO2C
H3C CH 3
O O
OH
i-Pr
O
H3CO CH3 CH3 O CH3 CH3
H3CO
Zn(OTf)2, Et3N
toluene, 23 ºC
90%, dr = 6 : 1
CH3
H + H 3 3
(–)-N-Me-ephedrine CH CH O
Ph 3
H C
CH3 OTBS
CO2CH3
O CH(OMe)2
Zn(OTf)2, i-Pr2NEt
toluene, 23 ºC
91%, dr > 95 : 5
H3C
H +
H3CO2C (+)-N-Me-ephedrine
OTES
TBDPS
O
3 3
3
H CO CH CH
H3C CH 3
O O
Alkynylzinc Reagents in Synthesis:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myer
s
Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355–
8361. Fan Liu, Michael
Furrow
12
Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. Org. Lett. 2006, 8, 2277–
2280.
92%, 92%
ee
 This method is only effective for aromatic
ketones.
Zn(CH3)2, Ti (Oi-Pr)4
toluene, 23 ºC
9 (5 mol%)
CH3
H3C H3C
O H3C OH
Ph
hexanes, –18 ºC
83%, 94% ee
CH3 Ph
+
HO CH3
F
F O
11 (1 mol%)
Et2Zn
3
Zn
H C
1.Cp2ZrHCl
CH2Cl2, 23 ºC
2. Zn(CH3)2
toluene, –78 ºC
Saito, B.; Katsuki, T. Synlett. 2004, 1557–
1560.
Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538–
6539.
90%, 95%
ee
toluene, –78
ºC
3 2
2. Zn(CH ) Ph
CH2Cl2
toluene, 23 ºC
61%, 87% ee
3
Ph n-Pr Ph
Zn
H C
Ph
Ph CH3
9 (10 mol%)
Zn(CH3)2, Ti(Oi-Pr)4
toluene, 23 ºC
H3C OH
Ph
+
1. Cp2ZrHCl
CH2Cl2, 23 ºC
HO n-Pr
O
3. O 10 (8 mol%)
(CH3)2Zn
Garcia, C.; Larochelle, L K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970–
10971. Yus, M.; Ramon, D. J.; Prieto, O. Tetrahedron: Asymmetry 2002, 13, 2291–
2293.
CH2Cl2
toluene, 23 ºC
53%, 93% ee
t-Bu CH3 t-Bu
CH3 CH3
+
hexanes
toluene, 23
ºC
78%, 99%
ee
HO CH3
O
10 (8 mol%)
(CH3)2Zn
CH3
9 (2 mol%)
Et2Zn, Ti(Oi-Pr)4
O OH
CH3
Et
10 11
HO CH3
H3C OH 9
OH
N
CH3
Ph
Ph
H3C O O
O S NH HN S O
Ph
N N
OH HO
Ph Ph
Using Ti(Oi-Pr)4 as a Lewis acid, ligand 9 catalyzes the formation of tertiary alcohols with high
selectivity:
 Salen ligand 10 and Schiff base ligand 11 were found to promote efficient addition of zinc
acetylides to ketones:
Chem
115
Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
Myers
Asymmetric Addition to Ketones:
Ketones are less reactive than aldehydes and often give 1,2-addition products in lower
yields because of competitve enolization or reduction of the carbonyl group.

More Related Content

Similar to zinc_final.ppt

Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxHirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxIlanHirschfield
 
Ramesh research scientist
Ramesh research scientistRamesh research scientist
Ramesh research scientistRamesh Yella
 
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Stephan Irle
 
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesOrganocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesDrMAdamSayah
 
Applications of Phosphine ligands in Pd and Ru-Catalyzed Reactions
Applications of Phosphine ligands  in Pd and Ru-Catalyzed ReactionsApplications of Phosphine ligands  in Pd and Ru-Catalyzed Reactions
Applications of Phosphine ligands in Pd and Ru-Catalyzed ReactionsGowrisankar Saravanan
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activityAlexander Decker
 
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPY
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPYMETALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPY
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPYijac123
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...IJERA Editor
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...IJERA Editor
 
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Peter ten Holte
 
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Peter ten Holte
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...inventionjournals
 
Pawan ncnre presentation final r
Pawan ncnre presentation final rPawan ncnre presentation final r
Pawan ncnre presentation final rPawan Kumar
 

Similar to zinc_final.ppt (20)

2
22
2
 
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxHirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
 
Ramesh research scientist
Ramesh research scientistRamesh research scientist
Ramesh research scientist
 
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
 
z4
z4z4
z4
 
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesOrganocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
 
Applications of Phosphine ligands in Pd and Ru-Catalyzed Reactions
Applications of Phosphine ligands  in Pd and Ru-Catalyzed ReactionsApplications of Phosphine ligands  in Pd and Ru-Catalyzed Reactions
Applications of Phosphine ligands in Pd and Ru-Catalyzed Reactions
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Viva 01032011
Viva 01032011Viva 01032011
Viva 01032011
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
 
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPY
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPYMETALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPY
METALLO - BIOACTIVE COMPOUNDS AS POTENTIAL NOVEL ANTICANCER THERAPY
 
Pericyclic reactions in ethers biofuels
Pericyclic reactions in ethers biofuelsPericyclic reactions in ethers biofuels
Pericyclic reactions in ethers biofuels
 
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chlor...
 
Ijaret 06 10_007
Ijaret 06 10_007Ijaret 06 10_007
Ijaret 06 10_007
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
 
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
Polymer-Supported N-Tritylaziridinyl(diphenyl)methanol as an Effective Cataly...
 
1
11
1
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
 
Pawan ncnre presentation final r
Pawan ncnre presentation final rPawan ncnre presentation final r
Pawan ncnre presentation final r
 

More from amanueltafese2

Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptx
Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptxChapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptx
Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptxamanueltafese2
 
Part III-Managerial Accounting.pptx
Part III-Managerial Accounting.pptxPart III-Managerial Accounting.pptx
Part III-Managerial Accounting.pptxamanueltafese2
 
Part I - Financial Accounting.ppt
Part I - Financial Accounting.pptPart I - Financial Accounting.ppt
Part I - Financial Accounting.pptamanueltafese2
 
Chapter 6 - Market Research.pptx
Chapter 6 - Market Research.pptxChapter 6 - Market Research.pptx
Chapter 6 - Market Research.pptxamanueltafese2
 
Chapter 3- Strategic Marketing Planning Edited.pptx
Chapter 3- Strategic Marketing Planning Edited.pptxChapter 3- Strategic Marketing Planning Edited.pptx
Chapter 3- Strategic Marketing Planning Edited.pptxamanueltafese2
 
Lecture Note Chapter 3 & 4.pptx
Lecture Note Chapter 3 & 4.pptxLecture Note Chapter 3 & 4.pptx
Lecture Note Chapter 3 & 4.pptxamanueltafese2
 
network design chapter 4(1).pptx
network design chapter 4(1).pptxnetwork design chapter 4(1).pptx
network design chapter 4(1).pptxamanueltafese2
 
NETWORK DESIGNchapter5 part1.pptx
NETWORK DESIGNchapter5 part1.pptxNETWORK DESIGNchapter5 part1.pptx
NETWORK DESIGNchapter5 part1.pptxamanueltafese2
 
NETWORK DESIGN CHAPTER 1(1).pptx
NETWORK DESIGN CHAPTER 1(1).pptxNETWORK DESIGN CHAPTER 1(1).pptx
NETWORK DESIGN CHAPTER 1(1).pptxamanueltafese2
 
Abebe project proposal.pptx
Abebe project proposal.pptxAbebe project proposal.pptx
Abebe project proposal.pptxamanueltafese2
 
Presentation1 GLC.pptx
Presentation1 GLC.pptxPresentation1 GLC.pptx
Presentation1 GLC.pptxamanueltafese2
 
Organozinc_compound.ppt
Organozinc_compound.pptOrganozinc_compound.ppt
Organozinc_compound.pptamanueltafese2
 
Organozinc_compound.ppt
Organozinc_compound.pptOrganozinc_compound.ppt
Organozinc_compound.pptamanueltafese2
 
GIS Lecture_edited.ppt
GIS Lecture_edited.pptGIS Lecture_edited.ppt
GIS Lecture_edited.pptamanueltafese2
 

More from amanueltafese2 (20)

Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptx
Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptxChapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptx
Chapter_4_Marketing_Mix_Price,_Product,_Promotion_and_Place.pptx
 
Part III-Managerial Accounting.pptx
Part III-Managerial Accounting.pptxPart III-Managerial Accounting.pptx
Part III-Managerial Accounting.pptx
 
Part I - Financial Accounting.ppt
Part I - Financial Accounting.pptPart I - Financial Accounting.ppt
Part I - Financial Accounting.ppt
 
Chapter 6 - Market Research.pptx
Chapter 6 - Market Research.pptxChapter 6 - Market Research.pptx
Chapter 6 - Market Research.pptx
 
Chapter 3- Strategic Marketing Planning Edited.pptx
Chapter 3- Strategic Marketing Planning Edited.pptxChapter 3- Strategic Marketing Planning Edited.pptx
Chapter 3- Strategic Marketing Planning Edited.pptx
 
Presentation2.pptx
Presentation2.pptxPresentation2.pptx
Presentation2.pptx
 
Dr. umer.pptx
Dr. umer.pptxDr. umer.pptx
Dr. umer.pptx
 
chem 576...1 ppt.ppt
chem 576...1 ppt.pptchem 576...1 ppt.ppt
chem 576...1 ppt.ppt
 
Lecture Note Chapter 3 & 4.pptx
Lecture Note Chapter 3 & 4.pptxLecture Note Chapter 3 & 4.pptx
Lecture Note Chapter 3 & 4.pptx
 
network design chapter 4(1).pptx
network design chapter 4(1).pptxnetwork design chapter 4(1).pptx
network design chapter 4(1).pptx
 
NETWORK DESIGNchapter5 part1.pptx
NETWORK DESIGNchapter5 part1.pptxNETWORK DESIGNchapter5 part1.pptx
NETWORK DESIGNchapter5 part1.pptx
 
NETWORK DESIGN CHAPTER 1(1).pptx
NETWORK DESIGN CHAPTER 1(1).pptxNETWORK DESIGN CHAPTER 1(1).pptx
NETWORK DESIGN CHAPTER 1(1).pptx
 
stereochemistry-1.pdf
stereochemistry-1.pdfstereochemistry-1.pdf
stereochemistry-1.pdf
 
aman ppfa - Copy.pptx
aman ppfa - Copy.pptxaman ppfa - Copy.pptx
aman ppfa - Copy.pptx
 
Abebe project proposal.pptx
Abebe project proposal.pptxAbebe project proposal.pptx
Abebe project proposal.pptx
 
Presentation1 GLC.pptx
Presentation1 GLC.pptxPresentation1 GLC.pptx
Presentation1 GLC.pptx
 
Organozinc_compound.ppt
Organozinc_compound.pptOrganozinc_compound.ppt
Organozinc_compound.ppt
 
Organozinc_compound.ppt
Organozinc_compound.pptOrganozinc_compound.ppt
Organozinc_compound.ppt
 
SEMINARPAPER.ppt
SEMINARPAPER.pptSEMINARPAPER.ppt
SEMINARPAPER.ppt
 
GIS Lecture_edited.ppt
GIS Lecture_edited.pptGIS Lecture_edited.ppt
GIS Lecture_edited.ppt
 

Recently uploaded

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 

Recently uploaded (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

zinc_final.ppt

  • 1. Fan Liu, Michael Furrow 1 Hursthouse, M. B.; Motewaili, M.; O'Brien, P.; Walsh, J. R.; Jones, A. C. J. Mater. Chem. 1991, 1, 139–140. Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071- 6072. Zn—C 1.98 Å n-C6H13 Et 81 61 3 H C Zn—C 1.95 Å 80 Et 90 PhCH2CH2 N 81 Et 96 (E)-PhC(H)=CH 180 ° N CH3 N CH3 96 Et 93 145 ° Zn H3C p-CH3OC6H4 H3C Zn CH3 CH3 2 H3C H3C N 3 86 N N Et 93 N CH p-ClC6H4 59 Me 91 Ph H3C N H3C CH3 N 97 Et 98 Ph R R' % yield % ee R H toluene, 0 °C R R'  X-Ray structures of dimethylzinc and its adduct with 1,3,5-trimethylhexahydro-1,3,5- triazine show that upon bis-complexation, dimethylzinc shifts from a linear geometry to a tetrahedral geometry and that the carbon-zinc bond length increases from 1.95 Å to 1.98 Å. This is proposed to increase the nucleophilicity of the methyl groups, accelerating addition to carbonyl compounds. + R'2Zn O 2 mol % (–)- DAIB OH Soai, K.; Watanabe, M.; Koyano, M. Bull. Chem. Soc. Jpn. 1989, 25, 2124– 2125. (–)-DAIB H3C racemic Bz Bz toluene, 23°C, 14 h 93% H (C2H5)2Zn + CH3 5 mol % TMEDA O OH  In 1986, Noyori et al. published the first highly selective procedure for the asymmetric addition of diethyl- and dimethylzinc to aldehydes employing (–)-3-exo-(dimethylamino)isoborneol (DAIB) as a chiral catalyst. H3C CH3 N(CH3)3 OH  The addition of a catalytic amount of TMEDA will promote the addition of diethylzinc at room temperature to 4-benzoylbenzaldehyde in 93% yield. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823– 2824.  The reactivity of dialkylzinc reagents towards ketones and aldehydes is low; the rate of addition of Et2Zn to benzaldehyde is negligible at room temperature. 96% yield, 49% ee Background: H + (C2H5)2Zn CH3 O OH OH H3C 2 mol % CH3 NH2 toluene, 20 °C, 43 h Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757–824. Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71– 83. Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem. Int. Ed. 2013, 52, 1890– 1932. Recent Reviews:  In 1984, Oguni and Omi found that a small amount of (S)-leucinol catalyzed the enantioselective addition (49% ee) of diethylzinc to benzaldehyde. Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 2. Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028-4036. Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877. Fan Liu, Michael Furrow 2 Itsuno, S.; Fréchet, J. M. J. J. Org. Chem. 1987, 52, 4142–4143. Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987, 28, 5237– 5240. Evans, D. A. Science 1988, 240, 420–426. homochiral dimer, less stable, dissociates Et Et Ar Zn H 3 O Et Ar 3 3 3 H H C H C O CH Zn Et O CH O H3C CH3 3 H C N N 3 Zn Et Zn Et H C slow 3 3 CH CH 3 3 3 3 3 H C CH H C CH H C CH3 R Zn CH3 O N CH3 H Ar Et Ar Zn R O N 3 EtZnO H O H H CH3 CH heterochiral dimer, more stable, does not readily dissociate H3C Zn Et Et + O 3 3 H C O CH Zn Et CH3 3 3 H C CH N Zn Et CH3 H N H3C H3C CH3 N CH3 R Zn H3C CH3 R Zn O O N H3C H3C CH3 CH3 H H H3C CH3 H H3C H3C 3 O O H C Et2Zn H3C N Zn R N Zn R 3 N(CH3)3 OH CH3 3 CH CH3 H3C CH3 CH H3C CH3 H3C CH3  This observation is consistent with a mechanistic proposal involving two Zn atoms per aldehyde: (–)-DAIB (+)-DAIB Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028– 4036. H H3C CH3 3 3 H C H3C 3 O CH H C Zn Et + N R Zn O N 3 CH CH3 1 : 1 : 0 0 — 1 : 1 : 1 1 0 50 : 50 : 1 97 98 H3C CH3 H aldehyde : Et2Zn : DAIB % yield % ee 92% yield, 95% ee toluene, 0 °C, 6 h 2 5 2 H (C H ) Zn + H + (C2H5)2Zn CH3 CH3 cat. (–)- DAIB O O OH 8 mol % (–)-DAIB 15 % ee OH  A non-linear dependence of product ee on catalyst ee was observed. Heterochiral dimerization to form an unreactive species was invoked to account for in situ amplification of product ee: Mechanism:  The stoichiometry of aldehyde, diethylzinc, and DAIB ligand determines reactivity: alkylation occurs only when the ratio of Et2Zn : DAIB is greater than 1: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 3. Reeder, M. R.; Gleaves, H. E.; Hoover, S. A.; Imbordino, R. J.; Pangborn, J. J. Org. Process Res. Dev. 2003, 7, 696– 699. Kim, J. G.; Walsh, P. J. Angew. Chem. Int. Ed. 2006, 45, 4175– 4178. Fan Liu, Michael Furrow 3 TEEDA H3C CH3 SO2CH3 3 3 (5 mol%) H C CH H3C unstable above –50 ºC stable N N TEEDA (equiv) yield ee 0 – 2 0.8 99 92 SO2CH3 90% N OH H Li ZnCl Br THF, –60 ºC O H3C CH3 ZnCl2 N MTBE hexane s N O 1. n-BuLi N O O N O Pd(PPh 3)4 (5 mol%) 60 ºC  Transmetallation with a Zinc Salt:  Substrates that are less readily prepared by direct reduction can be prepared by treatment of a Zinc(II) halide with two equivalents of alkyllithium or alkylmagnesium halide: Cote, A.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 2771–2773. • N,N,N,N-tetraethylethylenediamine (TEEDA) can be used to scavenge salts and the resulting in situ formed zinc reagents function in catalytic asymmetric addition reactions to aldehydes: 3. O H OH Br1. n-BuLi 2. ZnCl2 Choi, B. S.; Chang, J. H.; Choi, H.-W.; Kim, Y. K.; Lee, K. K.; Lee, K. W.; Lee, J. H.; Heo, T.; Nam, D. H.; Shin, H. Org. Process Res. Dev. 2005, 9, 311–313. 0 → 23 ºC > 95% H3C H3C MgCl Zn 2 x + Zn(OCH3)2 + 2 CH3OMgCl CH3 CH3 CH3 CH3 2 Et O 11.5 kg 10.6 kg THF, 70 ºC Cl Cl 2 2 10.0 kg 2. 6N HCl 72% EtO C Br EtO C ZnBr Cl  Zn(OCH3)2 can also be used. The byproduct, CH3OMgCl, precipitates from the reaction mixture and salt-free ethereal solutions of diorganozinc can be obtained after filtration or centrifugation: Cl EtO2C F 1. Zn MsOH (5 mol%) O NC F von dem bussche-Hünnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719– 5730. Brubaker, J. D.; Myers, A. G. Org. Lett. 2007, 9, 3523–3525. O  methanesulfonic acid can be used to activate zinc metal: N >80% 93% ee CH3 OBn OBn 200 ºC <30 mmHg 89 % Et2Zn EtI EtBr + Zn-Cu neat, reflux distillation 2 + BrZnI H N N [EtZnI] + [EtZnBr] Et Zn THF, –75 ºC OLi O O Schlenk Equilibrium O OH 3. filtration Zn ZnCl2 (1.0 M in Et2O) 2. dioxane (1.0 M in Et2O) (salt free) MgBr 1.  Metallic Zinc Insertion:  One of the early methods involves treatment of an alkyliodide or bromide with zinc dust or an activated form of Zn, such as zinc-copper couple (Zn(Cu)). The method requires rather harsh conditions and is limited to low molecular weight dialkylzinc species due to the need to distill the products while avoiding competitive Wurtz coupling:  1,4-Dioxane forms insoluble complexes with magnesium halides and allows the synthesis of diorganozinc reagents that were not commercially available to subsequently be used in asymmetric additions to carbonyl compounds: Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71– 83. Knochel, P.; Perea, J. J. A.; Jones, P. Tetrahedron 1998, 54, 8275–8319.  In many cases, lithium or magnesium halide byproducts must be removed to avoid salt complexation with chiral additives in subsequent enantioselective processes. Myers Preparation of Organozinc Reagents: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
  • 4. Kneisel, F. F.; Dochnahl, M.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 1017– 1021. Wipf, P.; Xu, W. Org. Synth. 1997, 74, 205– 211. Fan Liu, Michael Furrow 4 CH3 Li(acac)2 H O O H H O Cp2ZrHCl ZnMe2 CH2Cl2 0 → 23 ºC toluene –60 → 0 ºC ZrCp2Cl > 86% Zn OTBDPS OTBDPS OTBDPS 3 H O H3CO Zn OCH3 H3CO Zn O CH i-Pr Li+ OAc OAc AcO O  organozirconium : CH3 H3CO I Vettel, S.; Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 7473– 7481. OAc H O H O OPiv OPiv COD (2 mol%), neat, 50–60 °C > 40% 2 x Li(acac)2 Et2Zn (0.6 equiv), Ni(acac)2 (1 mol%) i-Pr 2 ) Zn H3CO I H3CO Zn i-Pr2Zn Li(acac) 2 (10 mol%) Et2O, NMP 25 ºC, 12 h >90% OAc OAc  organonickel :  Aryl and alkenyl iodides can undergo halogen-zinc exchange with i-P2rZn. Li(acac)2 activates the intermediate mixed diorganozinc as an ate complex and promotes the second exchange: Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996, 61, 8229–8243. Powell, N. A.; Rychnovsky, S. D. J. Org. Chem. 1999, 64, 2026– 2037. > 86% 2 2 EtO C 2. Et Zn, neat, 0 °C t-Bu EtO2C 2 ) Zn TMSOTf, CH2Cl2 –78 ºC, 67% 0.1 mm Hg 50 °C 2 I OEt EtO ) Zn CO2Et O O 1. Et2BH, Et2O, 0 °C CO2Et OEt O O n-Hex O O t-Bu O Et2Zn CuI (3 mol%) neat, 50 °C  organoboron : Milgram, B. C.; Liau, B. B.; Shair, M. D. Org. Lett. 2011, 13, 6436– 6439. Substrate decomposition occurred in the absence of ZnEt2. Rozema, M. J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P. Tetrahedron Lett. 1993, 34, 3115–3118. Rozema, M. J.; Sidduri, A.; Knochel, P. J. Org. Chem. 1992, 57, 1956–1958. n-Hex OAc 3 3 82% CH 3 H OTBS H C OBn MoOPH OBn H OTBS OBn H OTBS Ph Si Ph Si H3C CH 0.1 mm Hg, 50 °C > 95% OPiv OPiv Me2PhSiLi, ZnEt2; AcOCH2(CH2)3CH2I (AcOCH2(CH2)3CH2)2Zn HO O O OZn–Et2Li+ OPiv Et2Zn, CuI (0.1 mol%) neat, 50 °C;  organolithium :  Halogen-Diorganozinc Exchange:  Iodine-zinc exchange reactions have been used to prepare dialkylzinc species containing esters, nitriles, chlorides, sulfonamides, and boronic acids. CuI or UV light were found to accelerate the reaction. Removal of excess Et2Zn and EtI was necessary to drive the reaction: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myers  Transmetallation with a Diorganozinc Reagent:  Functionalized diorganozinc reagents can be prepared via transmetallation of organolithium, organoboron, organonickel, and organozirconium with dimethyl-, diethyl-, or diisopropylzinc:
  • 5. Nugent, W. A. Org. Lett. 2002, 4, 2133– 2136. Fan Liu, Michael Furrow 5 Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1496–1498. H3C H3C 86%, > 94% ee hexanes, toluene 0 ºC, 91% 99% ee H3C H H3C Et Cl 3 (5 mol%) 2 Et O, –20 °C O OH 2 Et Zn H OH 6 (8 mol%) Ti(Oi-Pr)4 O Watanabe, M.; Soai, K. J. Chem. Soc., Perkin Trans. 1, 1994, 3125– 3128. (Cl(CH2)4)2Zn + (TMSCH2)2Zn (Cl(CH2)4)Zn(CH2TMS) neat, 25 °C O OH H toluene, 0 ºC 82%, 96% ee Et Ph Ph  Unsymmetrical dialkyl zinc containing a trimethylsilylmethyl group as a non-transferable group can be prepared to avoid losing one equivalent of valuable alkyl zinc precursor: Et2Zn n-BuLi, 2 (8 mol%) O O  Chemoselective addition to aldehydes can be achieved in the presence of ketones: Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989, 30, 1657–1660. Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1989, 30, 7095–7098. Hayasaka, T.; Yokoyama, S.; Soai, K. J. Org. Chem. 1991, 56, 4264– 4268. toluene, –30 ºC 99%, 98% ee Ph H Ph n-Bu O OH Ph H Ph Et hexanes, 0 ºC 94%, 95% ee n-Bu2Zn, Ti(Oi-Pr)4 6 (2 mol%) O OH Schmidt, B.; Seebach, D. Angew. Chem. Int. Ed. 1991, 30, 99– 101. Et2Zn 1 (6 mol%) 5 6  Ligand 1 extends the scope of the initial DAIB reaction to include aliphatic aldehydes: 7 H3CO H3CO toluene 0 → 23 ºC, 89% 98% ee toluene –75 → 23 ºC, 86% H3CO 94% ee NHTf Et H Et Ph Ph N (1.2 equiv) O O 3 3 4 OH OH CH H C Et2Zn O Ti(Oi-Pr) 5 (2 equiv) NHTf CH3 H3C OH OH O O O O Ti O O Ph Ph Ph Ph Ph Ph N  Using 5 as a chiral additive, either enantiomer of the product can be obtained by changing the reaction conditions: Et2Zn 5 (10 mol%) 1 2 3 4 Nugent, W. A. Chem. Commun. 1999, 1369– 1370. HO N(n-Bu)2 H3C N CH3 3 Ph CH N OH CH3 CH3 Ph Ph OH hexanes, toluene 0 ºC, 94% 99% ee O HO N H3C CH3 H Et H3C H3C O OH Et2Zn ent-4 (5 mol%) O shown here:  3-exo-morpholinoisoborneol (MIB), 4, more stable and easier to prepare than DAIB, catalyzes enantioselective additions to aldehydes with similar selectivity and efficiency. It also shows improved selectivity with α-branched, aliphatic aldehydes: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myers Alkylzinc Addition to Aldehydes:  A variety of chiral catalysts and ligands have been developed that promote the addition of dialkylzinc reagents to give enantiomerically enriched secondary alcohols. Only a few representative ones are
  • 6. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454– 6455. Fan Liu, Michael Furrow 6 Cl toluene, –30 ºC 83%, 97% ee H Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996, 61, 8229–8243. Cl O Ginnol 3 n-Bu n-Bu n-Bu H 3 2 Zn CH 3 3 SH N(CH ) CH H C THF, –60 → 0 °C 95% OH CH3 1.Cp2ZrHCl CH2Cl2, 23 ºC 2.Me2Zn toluene, –65 ºC Bu2Cu(CN)Li2 (10 mol%) OH 69%, 92% ee Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta. 1992, 75, 170–173. Oppolzer, W.; Radinov, R. N.; De Brabander, J. Tetrahedron Lett. 1995, 36, 2607– 2610. CH3 CH3 H Br 60%, 82% de O OH H3C 3 H C (Br(CH2)5)2Zn Ti(Oi-Pr)4 6 (8 mol%) toluene –60 → –20 °C O O O O 2. Et2Zn (–)-DAIB (1 mol%) H 1. (Cy)2BH•S(CH3)2 hexanes –20 → 23 °C HO O Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130– 9136. (–)- Gloeosporone  Mixed organozinc reagents, formed via transmetallation of organoboron or organozirconium with dialkylzinc, can be used to form enantiomerically enriched allylic alcohols in the presence of a chiral amino alcohol catalyst: CH3 Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645– 5648. H O O OH O hexanes, 0 ºC 90%, 96% ee O Zn H n-Bu n-Bu 88% yield, >98% ee 3 OH H C (20 mol%) O H3CO H H3CO CH3 N N(CH3)2 3 3 OCH O OCH OH OH (n-C5H11)2Zn Ti(Oi-Pr)4 6 (20 mol%) toluene –78 → –20 °C  The first example of catalytic asymmetric vinylzinc additions to aldehydes was reported using a chiral diaminoalcohol ligand: H3C CH3 Alkenylzinc Addition to Aldehydes: Myers Dialkylzinc Reagents in Synthesis: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds
  • 7. Kerrigan, M. H.; Jeon, S.-J.; Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 8434– 8445. Fan Liu, Michael Furrow 7 O 50%, 95% ee H OHC (–)-Longithorone A CH3 Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773–775. H O Cy Et Et Cy Zn B O 3 CH n-Bu n-Bu O H 2 Et Zn Cy Cy OH n-Bu O H H H3C TMEDA 4 (5 mol%) toluene, 0 ºC 97% yield, 90% ee 0 → 23 °C 2. TBAF, THF 0 → 23 °C Br Br OH TBSO I Br n-Bu n-Bu 1. as above n-Bu HO OCH3 –78 → 0 °C Cy2B 2 + 2. Et Zn 1. (Cy)2BH toluene H H Cy Cy B Et HO O OCH3 CH3 H  Tri-substituted Z-allylic alcohol can also be prepared: TBSO TIPS CH3 91% yield, 95% ee TMS CH3 OH + Salvi, L.; Jeon, S.-J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2007, 129, 16119– 16125. OCH3 3. H3C NMe2 Ph OLi (2.5 equiv) toluene, 0°C TMS CH3 I TBSO 2. ZnBr2, Et2O, 0 ºC H 69%, 93% ee S 3 2 BCy2 TIPS CH Et O, –78°C –78 °C O OTBDPS 1. t-BuLi S H OH OTBDPS H Et2Zn TEEDA 4 (5 mol%) –78 → 23 °C Alkenylzinc Reagents in Synthesis: DeBerardinis, A. M.; Turlington, M.; Pu, L. Angew. Chem. Int. Ed. 2011, 50, 2368– 2370. Cl OTBDPS H3C O 94%, >99% ee 3 H C H O H Cy B Cy 3 Li H H CO n-Bu CH2Cl2 H3CO –20 → 23 °C Cl Cl (26 mol%) n-Bu NMP, 0 ºC 7 (10 mol%) H CH3 OTBDPS 2 OTBDPS Cy2B HO MTBE I 3 O CH Et2Zn Li(acac) 2. t-BuLi –78 → 23 °C 2 H 1. (Cy) BH H3C CH3  Hydride migration from a boron ate complex provides access to enantiomerically enriched Z- allylic alcohols:  Direct transmetallations from vinyl iodides provide alkenylzinc reagents not accessible through hydroboration or hydrozirconation: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 8. Ishizaki, M.; Hoshino, O. Tetrahedron: Asymmetry 1994, 5, 1901. Magnus, N. A.; Anzeveno, P. B.; Coffey, D. S.; Hay, D. A.; Laurila, M. E.; Schkeryantz, J. M.; Shaw, B. W.; Staszak, M. A. Org. Process Res. Dev. 2007, 11, 560– 567. Fan Liu, Michael Furrow 8 OTBS 17.6 kg –5 → –10 ºC 47.6 kg 88%, >94% ee H 60 ºC CN  The low yields in these reactions was attributed in part to competitive addition of ethyl groups to the aldehydes. toluene O TBSO B O O Et2Zn (20 mol%) OH O B B Ph OH Ph Ph N OTBS OTBS DiMPEG = dimethoxy poly(ethyleneglycol) Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850– 14851. R1 R2 T (°C) % yield % ee C6H5 C6H5 0 64 90 C6H5 c-Hx 0 88 91 C6H5 t-Bu 0 61 95 Ph3Si c-Hx 23 55 91 C6H13 t-Bu 23 67 87 CN C6H13 C6H5 23 41 78 Cl 8 toluene, –10 ºC O H p-ClC6H4 toluene 60 ºC, >95% Ph Ph ZnEt Ph B(OH)2 Et2Zn OH N OH N OH Fe Ph Ph (S)-cat. t-Bu 8 (10 mol%) DiMPEG (10 mol%) O O H3C CH3 CH3  Widely available aryl boronic acids and boroxines can be directly transformed into arylzinc reagents and undergo enantioselective arylation of aldehydes with excellent selectivity: R1 THF, reflux THF DeBerardinis, A. M.; Turlington, M.; Ko, J.; Sole, L.; Pu, L. J. Org. Chem. 2010, 75, 2836– 2850. R2 R1 ZnEt R1 Et2Zn OH R2 H 10 mol % (S)-cat. OCH3 OCH3 NMP, 0 ºC THF, 0 ºC 23 ºC O 7 (10 mol%) I H Et2Zn Li(acac)2 (26 mol%) OH O  Mixed alkylalkynylzinc reagents can be prepared directly from terminal acetylenes and have been shown to undergo catalyzed 1,2-additions to aldehydes with good enantioselectivities.  Ligand 7 (see page 5) has been found to promote highly enantioselective additions of diphenylzinc and functionalized diaryl zinc to aromatic and aliphatic aldehydes: Wu, X.-F.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141– 3160. Trost, B. M.; Weiss, A. Adv. Synth. Catal. 2009, 351, 963– 983. Pu, L. Tetrahedron 2003, 59, 9873–9886.  Unlike dialkylzinc additions, diphenylzinc additions to aldehydes take place smoothly even without a catalyst. This background reaction has made it more difficult to develop enantioselective variants. Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. Soc. Rev. 2006, 35, 454–470. Recent Reviews: Alkynylzinc Additions to Aldehydes Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myers Arylzinc Addition to Aldehydes:
  • 9. 77%, 98% ee Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687– 9688. Fan Liu, Michael Furrow 9 Diez, S. R.; Adger, B.; Carreira, E. M. Tetrahedron. 2002, 58, 8341– 8344. 3 Et N, toluene, 60 °C 3 CH Zn(OTf)2 (20 mol%) CH3 H OTMS CH3 CH3 3 H CH CH3 + H3C 3 H C OTMS O OH (+)-N-methyl ephedrine (22 mol%) OH O 3 H CH Zn(OTf)2, Et3N toluene, 60 °C 72%, 99% ee, dr = 92 : 8 CH3 H + CH3 (–)-N-methyl ephedrine 3 CH  The system is less effective for aromatic aldehydes because of a competitive Cannizzaro reaction. OBz OBz  It was shown that by raising the reaction temperature to 60 °C, the in situ zinc acetylide formation and addition reaction can be made catalytic in both zinc and chiral ligand.  The resulting terminal acetylene can be used to prepare enantiomerically enriched 1,4 - diols: Boyall, D.; Lopez, F.;Sasaki, H.; Frantz, D.; Carreira, E. M. Org. Lett. 2000, 2, 4233– 4236. Frantz, D. E.; Fassler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373–381. Boyall, D.; Frantz, D.; Carreira, E. M. Org. Lett. 2002, 4, 2605–2606. For an investigation on the reaction mechanism, see: Fässler, R.; Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc. Natl. Acad. Sci. 2004, 101, 5843–5845. Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806–1807. R1 R2 yield (%) ee (%) n-C5H11 CH2CH2Ph 94 97 n-C5H11 Ph 90 97 i-Pr Ph 96 92 Ph Ph 82 93 2 3 toluene, 23 °C; benzoyl chloride Zn(OTf) , Et N Ph OH (+)-N- methylephedrine R2 toluene, 110 ºC 1 H3C CH3 H R % overall yield % ee n-C3H7 68 99 n-C5H11 71 98 t-Bu 65 98 c-C6H11 73 99 TIPSO(CH2)2 71 97 R H R H (–)-N-methyl ephedrine R R1 OH H R2 (+)-N-methyl ephedrine Zn(OTf)2, Et3N toluene, 23 °C 2 3 3 2 K CO O H C NMe R O OBz OH cat. 18-cr- 6 H OBz OH CH3 CH3  All reagents are stoichiometric or superstoichiometric.  Protection of the 2° propargylic alcohol prior to cleavage of acetone from the adducts leads to improved yields.  The reactions can be carried out without rigorous exclusion of oxygen or moisture using reagent- grade toluene (84–1000 ppm H2O).  Enantioselective additions of 2-methyl-3-butyn-2-ol to aldehydes provide access to optically active terminal acetylenes after cleavage of acetone from the products.  In 2000, Carreira et al. published an in situ preparation of alkynylzinc reagents and their addition to aldehydes with excellent enantioselectivities and yields. Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 10. 1 Topic, D.; Aschwanden, P.; Fässler, R.; Carreira, E. M. Org. Lett. 2005, 7, 5329– 5330. Fan Liu, Michael Furrow 10 R O 3 CH H H H O N 1 O CH3 Li, X.; Lu, G.; Kwok, W. H.; Chan. A. S. C. J. Am. Chem. Soc. 2002, 124, 12636–12637. 85%, 99% ee 3 2 Zn(CH ) , THF, 0 °C R2 Ph OH Ligand R Ph toluene, 23 °C 92%, dr = 96 : 4 –O + 6 4 p-BrC H H H + p-BrC6H4 H3C NHTs ZnCl2, Et3N HO N Xc* O H Ph (S)-BINOL (10 mol%) Ligand (10 mol%) OH H3C CH3 O O  A highly effective two-catalyst system was reported for the addition of zinc acetylide to aromatic aldehydes. The stereochemistry of BINOL determines the stereochemistry of the products, while the second ligand improves catalytic activity and enantioselectivity:  The use of ZnCl2 homogenizes the reaction mixture and obviates the need for N,N- dimethylethanolamine: Fassler, R.; Frantz, D. E.; Oetiker, J.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 2002, 41, 3054–3056.  Lowering the loading of Zn(OTf)2 to 20 mol% resulted in lower selectivites and isolated yields. Knöpfel, T. F.; Boyall, D.; Carreira, E. M. Org. Lett. 2004, 6, 2281–2283. O R HO O R 6 11 >98% ee R = c-C H , 83%, O >98% ee 1. KOH, PrOH, 97 ºC H3C 1. DMSO, 100 ºC Ph R = i-Pr, 97%, O H3C N CH3 Ph 88 95:5 i-Pr C(OH)Me2 98 96:4 t-Bu Ph 91 97:3 Ph SiMe3 88 95:5 Ph Ph R2 overall yield (%) dr R1 O O O O 2 Et3N, CH2Cl2, 23 ºC Ph Ph R O Zn(OTf) (60 mol%) CH3 2 R 3 H O H CH HOHN H R , TiCl4 pyridine, THF –78 → 23 ºC O MeOH, H2O, 60 ºC H3C H3C H O O + Ph H3C N H3C N O 2 H NOH•HCl, NaOAc OH HN R1 H3C CH3 O O  The oxazepanedione shown below, prepared in 3 steps from ephedrine and dimethyl malonate, undergoes condensation with aldehydes mediated by TiCl4. Conjugate addition of zinc alkynylides followed by hydrolysis and decarboxylation give β-alkynyl acids in good yields and selectivities: O 3 2 2 3 Et N, CH Cl , 23 °C; CH R2 H H R1 H Pinet, S.; Pandya, S. U.; Chavant, P. Y.; Ayling, A.; Vallee, Y. Org. Lett. 2002, 4, 1463– 1466. O CH3 O R1 –O + N N c HO X * O O Bn H R2 Zn(OTf)2 (0.5 equiv) Me2NCH2CH2OH (0.5 equiv) 81% H3C H3C NHBn N 3 3 H C CH OH Zn, AcOH, H2O Ph Ph  Hydroxylamines are readily reduced to free amines:  A mannose-derived auxiliary was employed to promote diastereoselective alkynylzinc additions to nitrones. The nitrone auxiliary was prepared from mannose, acetone and N-hydroxylamine. Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 11. Lehr, K.; Mariz, R.; Leseurre, L.; Gabor, B. Fürstner, A. Angew. Chem. Int. Ed. 2011, 50, 11373– 11377. Fan Liu, Michael Furrow 11 (–)-Tulearin C CH3 OH H3C Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans, D. A. J. Am. Chem. Soc. 2007, 129, 8968– 8969. O O CH3 OH HO 7 steps C5H11 CH3 3 3 3 3 CH CH OH CH OH CH (–)-Salvinorin A 2. I2, –20 ºC, 99% (CH3O)2HC H3CO2C CH3 3 CH OH I 7 steps 1. Red-Al, Et2O 3Å MS, 0 → 23 ºC C5H11 Me O C5H11 O BOMO AcO H O O O H O H Me toluene, 23 ºC 91%, dr > 95 : 5 CH3 O CH3 2 2 Zn(OTf) , i-Pr NEt + 5 11 C H O H O (+)-N-Me-ephedrine Kleinbeck, F.; Carreira, E. M. Angew. Chem. Int. Ed. 2009, 48, 578– 581. –78 → 5 ºC, 99% single diastereomer TBAF, DMF, THF (–)-Bafilomycin A1 CH3 CH3 OH (CH3O)2HC H3C CH3 O CH3 CH3 OCH3 CH3 HO 13 steps TBDPS O HO 10 steps CH3 O O BOMO H3C H3C O OH O Ph CH3 OTBS CO2CH3 OH CH(OMe)2 H3C O CH3 OTE S H3CO2C H3C CH 3 O O OH i-Pr O H3CO CH3 CH3 O CH3 CH3 H3CO Zn(OTf)2, Et3N toluene, 23 ºC 90%, dr = 6 : 1 CH3 H + H 3 3 (–)-N-Me-ephedrine CH CH O Ph 3 H C CH3 OTBS CO2CH3 O CH(OMe)2 Zn(OTf)2, i-Pr2NEt toluene, 23 ºC 91%, dr > 95 : 5 H3C H + H3CO2C (+)-N-Me-ephedrine OTES TBDPS O 3 3 3 H CO CH CH H3C CH 3 O O Alkynylzinc Reagents in Synthesis: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myer s
  • 12. Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355– 8361. Fan Liu, Michael Furrow 12 Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. Org. Lett. 2006, 8, 2277– 2280. 92%, 92% ee  This method is only effective for aromatic ketones. Zn(CH3)2, Ti (Oi-Pr)4 toluene, 23 ºC 9 (5 mol%) CH3 H3C H3C O H3C OH Ph hexanes, –18 ºC 83%, 94% ee CH3 Ph + HO CH3 F F O 11 (1 mol%) Et2Zn 3 Zn H C 1.Cp2ZrHCl CH2Cl2, 23 ºC 2. Zn(CH3)2 toluene, –78 ºC Saito, B.; Katsuki, T. Synlett. 2004, 1557– 1560. Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538– 6539. 90%, 95% ee toluene, –78 ºC 3 2 2. Zn(CH ) Ph CH2Cl2 toluene, 23 ºC 61%, 87% ee 3 Ph n-Pr Ph Zn H C Ph Ph CH3 9 (10 mol%) Zn(CH3)2, Ti(Oi-Pr)4 toluene, 23 ºC H3C OH Ph + 1. Cp2ZrHCl CH2Cl2, 23 ºC HO n-Pr O 3. O 10 (8 mol%) (CH3)2Zn Garcia, C.; Larochelle, L K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970– 10971. Yus, M.; Ramon, D. J.; Prieto, O. Tetrahedron: Asymmetry 2002, 13, 2291– 2293. CH2Cl2 toluene, 23 ºC 53%, 93% ee t-Bu CH3 t-Bu CH3 CH3 + hexanes toluene, 23 ºC 78%, 99% ee HO CH3 O 10 (8 mol%) (CH3)2Zn CH3 9 (2 mol%) Et2Zn, Ti(Oi-Pr)4 O OH CH3 Et 10 11 HO CH3 H3C OH 9 OH N CH3 Ph Ph H3C O O O S NH HN S O Ph N N OH HO Ph Ph Using Ti(Oi-Pr)4 as a Lewis acid, ligand 9 catalyzes the formation of tertiary alcohols with high selectivity:  Salen ligand 10 and Schiff base ligand 11 were found to promote efficient addition of zinc acetylides to ketones: Chem 115 Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Myers Asymmetric Addition to Ketones: Ketones are less reactive than aldehydes and often give 1,2-addition products in lower yields because of competitve enolization or reduction of the carbonyl group.