SlideShare a Scribd company logo
1 of 4
Download to read offline
Volume 4 • Issue 1 • 1000128
J Powder Metall Min
ISSN: 2168-9806 JPMM, an open access journal
Research Article Open Access
Trivedi et al., J Powder Metall Min 2015, 4:1
http://dx.doi.org/10.4172/2168-9806.1000128
Research Article Open Access
Powder Metallurgy & Mining
Characterization of Physical, Thermal and Structural Properties of
Chromium (VI) Oxide Powder: Impact of Biofield Treatment
Mahendra Kumar Trivedi1
, Rama Mohan Tallapragada1
, Alice Branton1
, Dahryn Trivedi1
, Gopal Nayak1
, Omprakash Latiyal2
, and Snehasis
Jana2
*
1
Trivedi Global Inc, S Eastern Avenue Suite, Henderson, USA
2
Trivedi Science Research Laboratory Pvt. Ltd., Madhya Pradesh, India
*Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory Pvt.
Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd, Bhopal-
462026, Madhya Pradesh, India, Tel: +91-755-6660006;E-mail:publication@trivedisrl.com
Received August 10, 2015; Accepted August 11, 2015; Published August 18,
2015
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al.
(2015) Characterization of Physical, Thermal and Structural Properties of Chro-
mium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128.
doi:10.4172/2168-9806.1000128
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits un-
restricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.
Keywords: Biofield treatment; Chromium (VI) oxide powder; X-Ray
diffraction; Fourier Transform Infrared Spectroscopy; TGA-DTA
Introduction
Chromium oxides gain significant attention due to their diverse
technological application in various industries. Chromium based
oxides are used in various chemical reactions due to their wide range
of oxidations states, it includes CrO2
, Cr­2
O3
, Cr2
O5
and CrO3
etc [1].
Out of these, chromium oxides, CrO3
is an important compound for
automobile industries due to its high corrosion resistance properties.
In these industries, CrO3
is used for plating the chromium on car body
and other auto components. In addition, it is a strong oxidising agent,
which enables it to be used in various pharmaceutical and chemical
industries [2,3]. It is also reported that Cr (VI) complexes exhibit the
antibacterial activity against Pseudomonas aeruginosa bacteria [4].
In crystal structure of CrO3
, its molecules form the chains of CrO­4
tetrahedra, which are linked at corner oxygen [5]. Furthermore, the
crystal structure parameters such as lattice parameter, unit cell volume
of CrO3
play a crucial role in modulating its chemical and physical
properties. Thus, based on the above applications of CrO3
powder,
authors planned to investigate an approach that could modify its
physical, thermal and structural properties.
In physics, energy is a property of object which can be transferred to
other objects, but it neither be created nor be destroyed. Albert Einstein
proposed the relationship between mass and energy i.e. E=mc2
[6]. This
energy can be transferred through various processes such as thermal,
chemical, kinetic, nuclear etc. Similarly, human nervous system
consists of neurons, which have the ability to transmit information in
the form of electrical signals [7-9]. Due to this, a human has ability to
harness the energy from environment/universe and can transmit into
any object (living or non-living) around the Globe. The object(s) always
receive the energy and responded into useful way that is called biofield
energy. This process is termed as biofield treatment. Mr. Trivedi’s
unique biofield treatment (The Trivedi Effect®
) is known to alter the
physical, structural and atomic characteristic in various metals [10-12]
and ceramics [13]. Additionally, the impact of biofield treatment has
been studied extensively in various fields such as microbiology [14,15],
biotechnology [16,17], and agriculture [18-20]. Moreover, biofield
treatment has significantly altered the particle size and crystallite size
in zinc powder upto six and two folds, respectively [21]. In addition, it
has substantially altered the unit cell volume and molecular weight in
vanadium pentoxide [13]. Thus, based on the literature and excellent
outcomes of biofield treatment, authors interested to investigate
the effect of biofield treatment on physical, thermal and structural
properties of CrO3
powder.
Materials and Methods
The CrO3
powder was purchased from Sigma Aldrich, India. The
sample was equally divided into two parts, considered as control and
treated. Treated group was in sealed pack and handed over to Mr.
Trivedi for biofield treatment under laboratory condition. Mr. Trivedi
provided the biofield treatment through his energy transmission
process to the treated group without touching the sample. The control
and treated samples were characterized using Thermo gravimetric
Abstract
Chromium (VI) oxide (CrO3
) has gained extensive attention due to its versatile physical and chemical properties.
The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural
properties of CrO3
powder. In this study, CrO3
powder was divided into two parts i.e. control and treatment. Control
part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control
and treated CrO3
samples were characterized using Thermo gravimetric analysis-differential thermal analysis
(TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DTA showed that the
melting point of treated CrO­3
was increased upto 212.65°C (T3) as compared to 201.43°C in control. In addition, the
latent heat of fusion was reduced upto 51.70% in treated CrO3
as compared to control. TGA showed the maximum
thermal decomposition temperature (Tmax
) around 330°C, was increased upto 340.12°C in treated CrO3
sample.
XRD data revealed that lattice parameter and unit cell volume of treated CrO3
samples were reduced by 0.25 and
0.92% respectively, whereas density was increased by 0.93% in treated CrO3
sample as compared to control. The
crystallite size of treated CrO3
was increased from 46.77 nm (control) to 60.13 nm after biofield treatment. FT-IR
spectra showed the absorption peaks corresponding to Cr=O at 906 and 944 cm-1
in control, which were increased
to 919 and 949 cm¬1
in treated CrO3
after biofield treatment. Overall, these results suggest that biofield treatment has
substantially altered the physical, thermal and structural properties of CrO3
powder.
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of
Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128
Page 2 of 4
Volume 4 • Issue 1 • 1000128
J Powder Metall Min
ISSN: 2168-9806 JPMM, an open access journal
analysis-differential thermal analysis (TGA-DTA), X-ray diffraction
(XRD), and Fourier transform infrared spectroscopy (FT-IR).
Thermo Gravimetric Analysis-Differential Thermal Analysis
(TGA-DTA)
Thermal analysis of control and treated CrO3
was analysed using
Mettler Toledo simultaneous TGA and Differential thermal analyser
(DTA). The samples were heated from room temperature to 400°C with
a heating rate of 5°C/min under air atmosphere. From DTA, melting
point and latent heat of fusion (ΔH) were computed using integral area
under peaks. Thermal decomposition temperature (Tmax
) was recorded
from TGA curve. Percent change in melting point was calculated using
following equation:
% change in Melting Point =
Treated Control
Control
T T
100
T
 −
× 
 
Where, T Control
and T Treated
are the melting point of control and
treated samples, respectively.
Similarly, percent change in ΔH and Tmax
were calculated.
X-ray Diffraction study (XRD)
XRD analysis of control and treated CrO3
powder was carried out
on Phillips, Holland PW 1710 X-ray diffractometer system, which had
a copper anode with nickel filter. The radiation of wavelength used by
the XRD system was 1.54056Å. The data obtained from this XRD were
in the form of a chart of 2θ vs. intensity and a detailed table containing
peak intensity counts, d value (Å), peak width (θ°
), relative intensity
(%) etc. Additionally, PowderX software was used to calculate lattice
parameter and unit cell volume of CrO3
powder samples. Weight of the
unit cell was calculated as, molecular weight multiplied by the number
of atoms present in a unit cell.
The crystallite size (G) was calculated by using formula:
G=kλ/(bCosθ),
Here, λ is the wavelength of radiation used, b is full width
half maximum (FWHM) and k is the equipment constant (0.94).
Furthermore, the percent change in the lattice parameter was calculated
using following equation:
% change in lattice parameter =
Treated Control
Control
A A
100
A
 −
× 
 
Where A Control
and A Treated
are the lattice parameter of treated and
control samples respectively. Similarly, the percent change in all other
parameters such as unit cell volume, density, molecular weight, and
crystallite size were calculated.
Fourier Transform Infrared Spectroscopy (FT-IR)
FT-IR spectroscopic analysis was carried out to evaluate the
impact of biofield treatment at atomic and molecular level like bond
strength, stability, and rigidity of structure etc. [22]. FT-IR analysis of
control and treated CrO3
samples was performed on Shimadzu, Fourier
transform infrared (FT-IR) spectrometer with frequency range of 300-
4000 cm-1
was used.
Results and Discussion	
Thermo Gravimetric Analysis-Differential Thermal Analysis
(TGA-DTA)
Thermal analysis of control and treated CrO3
samples was
performed using TGA-DTA and results are presented in Table 1. DTA
result showed that melting point of control sample was 201.43°C in
control, however it was changed to 204.28°C, 204.24°C, 212.65°C and
200.88°C in treated CrO3
samples T1, T2, T3 and T4, respectively. It
indicated that melting point was increased by 1.41, 1.40, and 5.57%
in T1, T2, and T3, respectively, whereas a slight change (-0.27%) was
observed in T4, as compared to control. Furthermore, data also showed
that the simultaneous DTA (SDTA) integral area (denoted as negative
value) at melting point was 235.53, 252.69, 235.13, 414.03, and 142.22 s
°C in control, T1, T2, T3 and T4, respectively (Table 1). Further, SDTA
integral values were used to compute the latent heat of fusion of control
and treated CrO3
samples. The latent heat of fusion (ΔH) was 486.87J/g
in control, whereas it was changed to 507.37, 274.04, 235.15, and 433.09
J/g in T1, T2, T3 and T4 respectively. Thus, data suggest that ΔH was
increased by 4.21% in T1, however it was decreased by 43.71, 51.70,
and 11.05% in T2, T3 and T4, respectively as compared to control.
The melting point is fundamentally related with the kinetic energy
and thermal vibration of the molecules, whereas latent heat of fusion
is relates with the potential energy of molecules. Thus, the changes in
melting point and ΔH after biofield treatment indicated that biofield
treatment probably altered the kinetic and potential energy of the CrO3
molecules. It is assumed the bio field treatment might transfer the
energy to treated sample, which probably altered the internal energy
of the molecules. Besides, the thermal decomposition temperature
(Tmax
) was observed at 330°C in control and it was increased to 335,
336.98, 333.4, and 340.1°C in T1, T2, T3 and T4 respectively. It could
be due to decomposition of CrO3
to Cr2
O5
and Cr3
O8.
It is reported
that in thermal decomposition process of CrO3
, first converts to Cr2
O5
followed by Cr3
O8
[23]. Further, data suggest that Tmax
was increased
by 1.52, 2.12, 1.02, and 3.07% in T1, T2, T3 and T4, respectively as
compared to control. It could be due to increase in thermal stability
of treated CrO3
samples after biofield treatment. In this process,
samples lost around 13.28, 14.49, 82.57, 10.48, and 6.03% of its weight
in control, T1, T2, T3, and T4, respectively. Recently, it was reported
that biofield treatment has altered the percent weight loss in treated
lead and tin powders [12]. The percent of weight loss of CrO3
powder
sample was higher in T1, T2, and T3 but lesser in T4, as compared to
control. It could be due to change in intermolecular interaction and
thermal stability in treated CrO3
after biofield treatment. Hence, TGA-
DTA study revealed that biofield treatment has significantly altered the
thermal properties of CrO3
powder.
X-ray Diffraction study (XRD)
XRD pattern of control and treated CrO3
samples are presented in
Figure 1. The control sample peaks in XRD pattern were observed at
2θ=21.33°, 26.01°, 26.42°, 31.16°, 37.53°, 37.97°, and 40.03° which were
Parameters Control T1 T2 T3 T4
Melting point (°C) 201.43 204.28 204.24 212.65 200.88
% change 1.41 1.4 5.57 -0.27
SDTA integral area at
melting point (s°C)
-235.53 -252.69 -235.13 -414.03 -142.22
Latent heat of fusion,
ΔH (J/g)
486.87 507.37 274.04 235.15 433.09
% change 4.21 -43.71 -51.7 -11.05
Decomposition Temp,
Tmax (°C)
330 335 336.98 333.36 340.12
Percent change 1.52 2.12 1.02 3.07
Percent weight loss at
Tmax
-13.28 -14.49 -82.57 -10.48 -6.03
Table 1: TGA-DTA analysis of chromium (VI) oxide powder.
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of
Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128
Page 3 of 4
Volume 4 • Issue 1 • 1000128
J Powder Metall Min
ISSN: 2168-9806 JPMM, an open access journal
supported by literature data of CrO3
[24]. However, XRD of treated
CrO3
sample exhibited peaks at 2θ=21.39°, 26.13°, 26.51°, 31.32°, 37.63°,
and 38.11°. The intense peaks in XRD pattern of control and treated
CrO3
samples suggested its crystalline nature. Further, the crystal
structure parameter such as lattice parameter, and unit cell volume
were calculated using PowderX software and their percent change
with respect to control are presented in Figure 2. Data showed that the
lattice parameter and unit cell volume was reduced by 0.25 and 0.92%,
respectively as compared to control. The change in unit cell volume
can be considered as volumetric strain. Herein, negative volumetric
strain found in treated CrO3
indicated that biofield treatment possibly
induced compressive stress along the lattice parameter “a” that led
to reduced unit cell volume in treated sample. Recently, alteration in
unit cell volume and lattice parameter in zinc oxide, iron oxide and
copper oxides using biofield treatment was reported by our group
[25]. In addition, the density of treated CrO3
was increased by 0.93%
and molecular weight was reduced by 0.92% as compared to control.
It could be possible if number of protons and neutron altered after
biofield treatment. Thus, it is hypothesized that a weak reversible
nuclear level reaction including neutrons-protons and neutrinos might
occur in treated CrO3
powders after biofield treatment [26]. Besides,
the crystallite size was calculated using Scherrer formula is presented
in Table 2. Data showed that crystallite size was 46.77 nm in control,
whereas it was increased to 60.13 nm in treated sample. It suggested
that crystallite size was increased by 28.57% as compared to control.
Previously, our group reported that biofield treatment has increase the
crystallite size in silicon dioxide [27], silicon carbide [28] and antimony
[29]. Furthermore, in order to increase the crystallite size, sufficient
amount of energy is required to move the crystallite boundaries. Thus,
it is hypothesised that the energy required for this process might be
transferred through biofield treatment and that might be responsible
for increase in crystallite size. Hence, XRD data revealed that biofield
treatment has altered the physical and structural properties of CrO3
powder.
Fourier Transform Infrared Spectroscopy (FT-IR)
FT-IR spectrum of control and treated are shown in Figure 3. IR
spectra exhibited the absorption peaks at 496, 736, 906, and 944 cm-1
in control, whereas these peaks were shifted to higher wavenumber
i.e. 501, 741, 919, and 949 cm­-1
in treated CrO3
spectra. The peaks at
906 and 944 cm-1
in control and 919 and 949 cm­-1
in treated CrO3
can
be attributed to chromyl (Cr=O) vibrations [30]. The wavenumber
observed in IR spectra is directly proportional to bond force constant.
Thus it is assumed that the increase in wave number for Cr =O vibration
could be due to increase in bond force constant after biofield treatment.
Figure 1: XRD pattern of chromium (VI) oxide powder. (a) Control and (b) Treated.
Figure 2: Effect of biofield treatment on lattice parameter, unit cell volume,
density, and molecular weight of treated chromium (VI) oxide powder as
compared to control.
Figure 3: FT-IR spectrum of chromium (VI) oxide powder. (a) Control and (b)
Treated.
Crystallite Size (nm) % change in
Control Treated Crystallite size
46.77 60.13 28.57
Table 2: Effect of biofield treatment on crystallite size chromium (VI) oxide
powder.
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of
Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128
Page 4 of 4
Volume 4 • Issue 1 • 1000128
J Powder Metall Min
ISSN: 2168-9806 JPMM, an open access journal
In our previous study on iron oxide, biofield treatment had altered the
bondstrengthofFe-Obond[25].Thus,itishypothesizedthattheenergy
transferred through biofield treatment probably enhanced the Cr=O
bond strength in treated CrO3
molecules, which may lead to increase
bond force constant, thus increase the wavenumber. In addition, the
increase in Cr=O bond strength could increase the stability of CrO3
molecules. It is also supported by increase in thermal stability of treated
CrO3
after biofield treatment.
Conclusion
The thermal analysis of CrO3
using TGA-DTA revealed that
biofield treatment has altered the melting point, ΔH, and Tmax
. The
melting point was increased upto 5.57% in treated CrO3
, whereas
ΔH was reduced upto 51.70% in treated as compared to control.
It is assumed that biofield treatment probably altered the internal
energy of treated CrO3
samples, which may lead to alter the melting
point and ΔH. In addition, Tmax
was slightly increased up to 3.077%
as compared to control. Besides, XRD data exhibited the alteration in
lattice parameter, unit cell volume, density, and molecular weight in
treated CrO3
as compared to control. The crystallite size of treated CrO3
sample was increased by 28.57% as compared to control. It may be due
to movement of crystallite boundaries through biofield energy, which
probably transferred via biofield treatment. FT-IR spectra revealed that
the absorption peaks were shifted from 906 and 944 cm-1
(control) to
higher wavenumber i.e. 919 and 949 cm-1
in treated CrO3
sample. It
could be due to increase of bond force constant of Cr=O bond after
biofield treatment. Overall, study results suggest that biofield treatment
has significantly altered the thermal, physical and structural properties
of CrO3
powder. It is also assumed that biofield treated CrO­3
could be
useful for chrome plating applications in automobile industries.
Acknowledgement
Authors gratefully acknowledged to Dr. Cheng Dong of NLSC, Institute of
Physics, and Chinese academy of Sciences for providing the facilities to use
PowderX software for analyzing XRD data. Authors also would like to thank Trivedi
Science, Trivedi master wellness and Trivedi testimonials for their support during
the work.
References
1.	 Zhai HJ, Li S, Dixon DA, Wang LS (2008) Probing the electronic and
structural properties of chromium oxide clusters (CrO3
)n
-
and (CrO3
)n
(n=1-5):
Photoelectron spectroscopy and density functional calculations. J Am Chem
Soc 130: 5167-5177.
2.	 Zhao M, Li J, Song Z, Desmond R, Tschaen DM et al. (1998) A novel chromium
trioxide catalyzed oxidation of primary alcohols to the carboxylic acids.
Tetrahedron Lett 39: 5323-5326.
3.	 Corey EJ, Link JO, Shao Y (1992) Two effective procedures for the synthesis
of trichloromethyl ketones, useful precursors of chiral α-amino and α-hydroxy
acids. Tetrahedron Lett 33: 3435-3438.
4.	 Jaswal VS, Arora AK, Singh J, Kinger M, Gupta VD (2014) Synthesis and
characterization of chromium oxide nanoparticles. Orient J Chem 30: 559-566.
5.	 Stephens JS, Cruickshank DWJ (1970) The crystal structure of (CrO3
)∞
. Acta
Cryst B26: 222-226.
6.	 Einstein A (1905) Does the inertia of a body depend upon its energy-content.
Annalen der Physik 18: 639-641.
7.	 Becker RO, Selden G (1985) The body electric: Electromagnetism and the
foundation of life. William Morrow and Company, New York City, USA.
8.	 Barnes RB (1963) Thermography of the human body. Science 140: 870-877.
9.	 Born M (1971) The Born-Einstein Letters (1stedn). Walker and Company,
New York.
10.	Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through
bio field changing metal powder characteristics experiments on powder
characteristics at a PM plant. Future Control and Automation LNEE 173:
247-252.
11.	Trivedi MK, Patil S, Tallapragada RM (2015) Effect of biofield treatment on the
physical and thermal characteristics of aluminium powders. Ind Eng Manage
4: 151.
12.	Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the
physical and thermal characteristics of silicon, tin and lead powders. J Material
Sci Eng 2: 125.
13.	Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the
physical and thermal characteristics of vanadium pentoxide powder. J Material
Sci Eng S11: 001.
14.	Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial
sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect
Dis Ther 3: 222.
15.	Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and
biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment.
J Microb Biochem Technol 7: 203-206.
16.	Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield
treatment on growth and anatomical characteristics of Pogostemon cablin
(Benth). Biotechnology 11: 154-162.
17.	Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and
adaptation. J Environ Health Sci 1: 1-9.
18.	Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on
growth and yield of lettuce and tomato. Aust J Basic and Appl Sci 6: 100-105.
19.	Lenssen AW (2013) Biofield and fungicide seed treatment influences on
soybean productivity, seed quality and weed community. Agricultural Journal
8: 138-143.
20.	Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield
treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35.
21.	Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal
powder characteristics. Met Powder Rep 63: 22-28.
22.	Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy (3rdedn)
Thomson Learning, Singapore.
23.	Fouad NE (1996) Non-isorhermal kinetics of CrO3
decomposition pathways in
air. J Therm Anal 46: 1271-1282.
24.	Sajadi SAA, Khaleghian M (2014) Study of thermal behavior of CrO3 using TG
and DSC. J Therm Anal Calorim 116: 915-921.
25.	Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the
atomic and crystalline characteristics of ceramic oxide nano powders after bio
field treatment. Ind Eng Manage 4: 161.
26.	Narlikar JV (1993) Introduction to cosmology (2nd
edn) Jones and Bartlett Inc.,
Cambridge University Press.
27.	Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder
characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144.
28.	Trivedi MK, Nayak G, Tallapragada RM, Patil S, Latiyal O, et al. (2015) Effect of
biofield treatment on structural and morphological properties of silicon carbide.
J Powder Metall Min 4:1.
29.	Dhabade VV, Tallapragada RM, Trivedi MK (2009) Effect of external energy
on atomic, crystalline and powder characteristics of antimony and bismuth
powders. Bull Mater Sci 32: 471-479.
30.	Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and
spectroscopy of chromium in inorganic oxides. Chem Rev 96: 3327-3349.
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et
al. (2015) Characterization of Physical, Thermal and Structural Properties of
Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall
Min 4: 128. doi:10.4172/2168-9806.1000128

More Related Content

What's hot

Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini Review
Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini ReviewCrimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini Review
Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini ReviewcrimsonpublishersOOIJ
 
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...albertdivis
 
Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...albertdivis
 
Investigation of structural, kinetic and thermodynamic properties of proteins...
Investigation of structural, kinetic and thermodynamic properties of proteins...Investigation of structural, kinetic and thermodynamic properties of proteins...
Investigation of structural, kinetic and thermodynamic properties of proteins...Abesh Bhar
 
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...albertdivis
 
Synthesis and Pharmacological Evaluation of Novel Heterocyclic Compound
Synthesis and Pharmacological Evaluation of Novel Heterocyclic CompoundSynthesis and Pharmacological Evaluation of Novel Heterocyclic Compound
Synthesis and Pharmacological Evaluation of Novel Heterocyclic CompoundIJSRD
 
1 s2.0-s092583881100781 x-main
1 s2.0-s092583881100781 x-main1 s2.0-s092583881100781 x-main
1 s2.0-s092583881100781 x-mainElias Aguiar
 
Various techniques for study of Crystal Properties
Various techniques for study of Crystal PropertiesVarious techniques for study of Crystal Properties
Various techniques for study of Crystal PropertiesCooling Crystal
 
CV S. A. Siadati English (Edited at 94-6-5)
CV              S. A. Siadati English (Edited at 94-6-5)CV              S. A. Siadati English (Edited at 94-6-5)
CV S. A. Siadati English (Edited at 94-6-5)Seyyed Amir Siadati
 
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...Alexander Decker
 
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Alexander Decker
 
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...Abby Keif
 
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...Nanomedicine Journal (NMJ)
 
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...IJERA Editor
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...rachelsalk
 

What's hot (17)

Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini Review
Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini ReviewCrimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini Review
Crimson Publishers-Poly(Glycerol-Sebacate) Elastomer: A Mini Review
 
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
 
G42044752
G42044752G42044752
G42044752
 
Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...
 
Investigation of structural, kinetic and thermodynamic properties of proteins...
Investigation of structural, kinetic and thermodynamic properties of proteins...Investigation of structural, kinetic and thermodynamic properties of proteins...
Investigation of structural, kinetic and thermodynamic properties of proteins...
 
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
 
Ijmert vol-6-issue-2-0013
Ijmert vol-6-issue-2-0013Ijmert vol-6-issue-2-0013
Ijmert vol-6-issue-2-0013
 
Synthesis and Pharmacological Evaluation of Novel Heterocyclic Compound
Synthesis and Pharmacological Evaluation of Novel Heterocyclic CompoundSynthesis and Pharmacological Evaluation of Novel Heterocyclic Compound
Synthesis and Pharmacological Evaluation of Novel Heterocyclic Compound
 
1 s2.0-s092583881100781 x-main
1 s2.0-s092583881100781 x-main1 s2.0-s092583881100781 x-main
1 s2.0-s092583881100781 x-main
 
Various techniques for study of Crystal Properties
Various techniques for study of Crystal PropertiesVarious techniques for study of Crystal Properties
Various techniques for study of Crystal Properties
 
CV S. A. Siadati English (Edited at 94-6-5)
CV              S. A. Siadati English (Edited at 94-6-5)CV              S. A. Siadati English (Edited at 94-6-5)
CV S. A. Siadati English (Edited at 94-6-5)
 
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
 
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
 
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...
Research by Mahendra Trivedi - Biofield Treatment: A Potential Strategy for M...
 
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...
Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposi...
 
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...
Synthesis & Bio-Evaluation of 4-Amino-5-Benzyl-2, 4-Dihydro-3H-1, 2, 4-Triazo...
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
 

Similar to Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...albertdivis
 
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...albertdivis
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...albertdivis
 
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...albertdivis
 
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...Mahendra Kumar Trivedi
 
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...albertdivis
 
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...Mahendra Kumar Trivedi
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...albertdivis
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Mahendra Kumar Trivedi
 
Influence of Biofield Treatment on Physical and Structural Characteristics of...
Influence of Biofield Treatment on Physical and Structural Characteristics of...Influence of Biofield Treatment on Physical and Structural Characteristics of...
Influence of Biofield Treatment on Physical and Structural Characteristics of...albertdivis
 
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...rachelsalk
 
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...wilhelm mendel
 
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...albertdivis
 
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...Mahendra Kumar Trivedi
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...albertdivis
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...wilhelm mendel
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Mahendra Kumar Trivedi
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Mahendra Kumar Trivedi
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...albertdivis
 
IRJET-Steel and Glass Fibre Reinforced Concrete: A Review
IRJET-Steel and Glass Fibre Reinforced Concrete: A ReviewIRJET-Steel and Glass Fibre Reinforced Concrete: A Review
IRJET-Steel and Glass Fibre Reinforced Concrete: A ReviewIRJET Journal
 

Similar to Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment (20)

Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
 
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...
 
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
 
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...
Biofield Treatment Impact on Atomic, Physical and Thermal Properties Indium P...
 
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
 
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
Evaluation of Biofield Treatment on Physical, Atomic and Structural Character...
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
 
Influence of Biofield Treatment on Physical and Structural Characteristics of...
Influence of Biofield Treatment on Physical and Structural Characteristics of...Influence of Biofield Treatment on Physical and Structural Characteristics of...
Influence of Biofield Treatment on Physical and Structural Characteristics of...
 
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
 
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
Physicochemical and Spectroscopic Characterization of Biofield Energy Treated...
 
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
 
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
Impact of Biofield Treatment on Physical, Structural and Spectral Properties ...
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
 
IRJET-Steel and Glass Fibre Reinforced Concrete: A Review
IRJET-Steel and Glass Fibre Reinforced Concrete: A ReviewIRJET-Steel and Glass Fibre Reinforced Concrete: A Review
IRJET-Steel and Glass Fibre Reinforced Concrete: A Review
 

More from albertdivis

Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...albertdivis
 
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...albertdivis
 
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...albertdivis
 
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...albertdivis
 
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...albertdivis
 
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...albertdivis
 
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...albertdivis
 
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...albertdivis
 
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...albertdivis
 
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...albertdivis
 
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...albertdivis
 
Structural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and MentholStructural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and Mentholalbertdivis
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazolealbertdivis
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...albertdivis
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...albertdivis
 
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...albertdivis
 
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...albertdivis
 
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...albertdivis
 
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and PiroxicamEffect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicamalbertdivis
 
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...albertdivis
 

More from albertdivis (20)

Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
 
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
 
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
 
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
 
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
 
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
 
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
 
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
 
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium...
 
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
 
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
 
Structural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and MentholStructural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and Menthol
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
 
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
 
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
 
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...
An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmace...
 
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and PiroxicamEffect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
 
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
 

Recently uploaded

Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 

Recently uploaded (20)

Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 

Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

  • 1. Volume 4 • Issue 1 • 1000128 J Powder Metall Min ISSN: 2168-9806 JPMM, an open access journal Research Article Open Access Trivedi et al., J Powder Metall Min 2015, 4:1 http://dx.doi.org/10.4172/2168-9806.1000128 Research Article Open Access Powder Metallurgy & Mining Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment Mahendra Kumar Trivedi1 , Rama Mohan Tallapragada1 , Alice Branton1 , Dahryn Trivedi1 , Gopal Nayak1 , Omprakash Latiyal2 , and Snehasis Jana2 * 1 Trivedi Global Inc, S Eastern Avenue Suite, Henderson, USA 2 Trivedi Science Research Laboratory Pvt. Ltd., Madhya Pradesh, India *Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd, Bhopal- 462026, Madhya Pradesh, India, Tel: +91-755-6660006;E-mail:publication@trivedisrl.com Received August 10, 2015; Accepted August 11, 2015; Published August 18, 2015 Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of Chro- mium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128 Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits un- restricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Keywords: Biofield treatment; Chromium (VI) oxide powder; X-Ray diffraction; Fourier Transform Infrared Spectroscopy; TGA-DTA Introduction Chromium oxides gain significant attention due to their diverse technological application in various industries. Chromium based oxides are used in various chemical reactions due to their wide range of oxidations states, it includes CrO2 , Cr­2 O3 , Cr2 O5 and CrO3 etc [1]. Out of these, chromium oxides, CrO3 is an important compound for automobile industries due to its high corrosion resistance properties. In these industries, CrO3 is used for plating the chromium on car body and other auto components. In addition, it is a strong oxidising agent, which enables it to be used in various pharmaceutical and chemical industries [2,3]. It is also reported that Cr (VI) complexes exhibit the antibacterial activity against Pseudomonas aeruginosa bacteria [4]. In crystal structure of CrO3 , its molecules form the chains of CrO­4 tetrahedra, which are linked at corner oxygen [5]. Furthermore, the crystal structure parameters such as lattice parameter, unit cell volume of CrO3 play a crucial role in modulating its chemical and physical properties. Thus, based on the above applications of CrO3 powder, authors planned to investigate an approach that could modify its physical, thermal and structural properties. In physics, energy is a property of object which can be transferred to other objects, but it neither be created nor be destroyed. Albert Einstein proposed the relationship between mass and energy i.e. E=mc2 [6]. This energy can be transferred through various processes such as thermal, chemical, kinetic, nuclear etc. Similarly, human nervous system consists of neurons, which have the ability to transmit information in the form of electrical signals [7-9]. Due to this, a human has ability to harness the energy from environment/universe and can transmit into any object (living or non-living) around the Globe. The object(s) always receive the energy and responded into useful way that is called biofield energy. This process is termed as biofield treatment. Mr. Trivedi’s unique biofield treatment (The Trivedi Effect® ) is known to alter the physical, structural and atomic characteristic in various metals [10-12] and ceramics [13]. Additionally, the impact of biofield treatment has been studied extensively in various fields such as microbiology [14,15], biotechnology [16,17], and agriculture [18-20]. Moreover, biofield treatment has significantly altered the particle size and crystallite size in zinc powder upto six and two folds, respectively [21]. In addition, it has substantially altered the unit cell volume and molecular weight in vanadium pentoxide [13]. Thus, based on the literature and excellent outcomes of biofield treatment, authors interested to investigate the effect of biofield treatment on physical, thermal and structural properties of CrO3 powder. Materials and Methods The CrO3 powder was purchased from Sigma Aldrich, India. The sample was equally divided into two parts, considered as control and treated. Treated group was in sealed pack and handed over to Mr. Trivedi for biofield treatment under laboratory condition. Mr. Trivedi provided the biofield treatment through his energy transmission process to the treated group without touching the sample. The control and treated samples were characterized using Thermo gravimetric Abstract Chromium (VI) oxide (CrO3 ) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO3 powder. In this study, CrO3 powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO3 samples were characterized using Thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DTA showed that the melting point of treated CrO­3 was increased upto 212.65°C (T3) as compared to 201.43°C in control. In addition, the latent heat of fusion was reduced upto 51.70% in treated CrO3 as compared to control. TGA showed the maximum thermal decomposition temperature (Tmax ) around 330°C, was increased upto 340.12°C in treated CrO3 sample. XRD data revealed that lattice parameter and unit cell volume of treated CrO3 samples were reduced by 0.25 and 0.92% respectively, whereas density was increased by 0.93% in treated CrO3 sample as compared to control. The crystallite size of treated CrO3 was increased from 46.77 nm (control) to 60.13 nm after biofield treatment. FT-IR spectra showed the absorption peaks corresponding to Cr=O at 906 and 944 cm-1 in control, which were increased to 919 and 949 cm¬1 in treated CrO3 after biofield treatment. Overall, these results suggest that biofield treatment has substantially altered the physical, thermal and structural properties of CrO3 powder.
  • 2. Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128 Page 2 of 4 Volume 4 • Issue 1 • 1000128 J Powder Metall Min ISSN: 2168-9806 JPMM, an open access journal analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Thermo Gravimetric Analysis-Differential Thermal Analysis (TGA-DTA) Thermal analysis of control and treated CrO3 was analysed using Mettler Toledo simultaneous TGA and Differential thermal analyser (DTA). The samples were heated from room temperature to 400°C with a heating rate of 5°C/min under air atmosphere. From DTA, melting point and latent heat of fusion (ΔH) were computed using integral area under peaks. Thermal decomposition temperature (Tmax ) was recorded from TGA curve. Percent change in melting point was calculated using following equation: % change in Melting Point = Treated Control Control T T 100 T  − ×    Where, T Control and T Treated are the melting point of control and treated samples, respectively. Similarly, percent change in ΔH and Tmax were calculated. X-ray Diffraction study (XRD) XRD analysis of control and treated CrO3 powder was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056Å. The data obtained from this XRD were in the form of a chart of 2θ vs. intensity and a detailed table containing peak intensity counts, d value (Å), peak width (θ° ), relative intensity (%) etc. Additionally, PowderX software was used to calculate lattice parameter and unit cell volume of CrO3 powder samples. Weight of the unit cell was calculated as, molecular weight multiplied by the number of atoms present in a unit cell. The crystallite size (G) was calculated by using formula: G=kλ/(bCosθ), Here, λ is the wavelength of radiation used, b is full width half maximum (FWHM) and k is the equipment constant (0.94). Furthermore, the percent change in the lattice parameter was calculated using following equation: % change in lattice parameter = Treated Control Control A A 100 A  − ×    Where A Control and A Treated are the lattice parameter of treated and control samples respectively. Similarly, the percent change in all other parameters such as unit cell volume, density, molecular weight, and crystallite size were calculated. Fourier Transform Infrared Spectroscopy (FT-IR) FT-IR spectroscopic analysis was carried out to evaluate the impact of biofield treatment at atomic and molecular level like bond strength, stability, and rigidity of structure etc. [22]. FT-IR analysis of control and treated CrO3 samples was performed on Shimadzu, Fourier transform infrared (FT-IR) spectrometer with frequency range of 300- 4000 cm-1 was used. Results and Discussion Thermo Gravimetric Analysis-Differential Thermal Analysis (TGA-DTA) Thermal analysis of control and treated CrO3 samples was performed using TGA-DTA and results are presented in Table 1. DTA result showed that melting point of control sample was 201.43°C in control, however it was changed to 204.28°C, 204.24°C, 212.65°C and 200.88°C in treated CrO3 samples T1, T2, T3 and T4, respectively. It indicated that melting point was increased by 1.41, 1.40, and 5.57% in T1, T2, and T3, respectively, whereas a slight change (-0.27%) was observed in T4, as compared to control. Furthermore, data also showed that the simultaneous DTA (SDTA) integral area (denoted as negative value) at melting point was 235.53, 252.69, 235.13, 414.03, and 142.22 s °C in control, T1, T2, T3 and T4, respectively (Table 1). Further, SDTA integral values were used to compute the latent heat of fusion of control and treated CrO3 samples. The latent heat of fusion (ΔH) was 486.87J/g in control, whereas it was changed to 507.37, 274.04, 235.15, and 433.09 J/g in T1, T2, T3 and T4 respectively. Thus, data suggest that ΔH was increased by 4.21% in T1, however it was decreased by 43.71, 51.70, and 11.05% in T2, T3 and T4, respectively as compared to control. The melting point is fundamentally related with the kinetic energy and thermal vibration of the molecules, whereas latent heat of fusion is relates with the potential energy of molecules. Thus, the changes in melting point and ΔH after biofield treatment indicated that biofield treatment probably altered the kinetic and potential energy of the CrO3 molecules. It is assumed the bio field treatment might transfer the energy to treated sample, which probably altered the internal energy of the molecules. Besides, the thermal decomposition temperature (Tmax ) was observed at 330°C in control and it was increased to 335, 336.98, 333.4, and 340.1°C in T1, T2, T3 and T4 respectively. It could be due to decomposition of CrO3 to Cr2 O5 and Cr3 O8. It is reported that in thermal decomposition process of CrO3 , first converts to Cr2 O5 followed by Cr3 O8 [23]. Further, data suggest that Tmax was increased by 1.52, 2.12, 1.02, and 3.07% in T1, T2, T3 and T4, respectively as compared to control. It could be due to increase in thermal stability of treated CrO3 samples after biofield treatment. In this process, samples lost around 13.28, 14.49, 82.57, 10.48, and 6.03% of its weight in control, T1, T2, T3, and T4, respectively. Recently, it was reported that biofield treatment has altered the percent weight loss in treated lead and tin powders [12]. The percent of weight loss of CrO3 powder sample was higher in T1, T2, and T3 but lesser in T4, as compared to control. It could be due to change in intermolecular interaction and thermal stability in treated CrO3 after biofield treatment. Hence, TGA- DTA study revealed that biofield treatment has significantly altered the thermal properties of CrO3 powder. X-ray Diffraction study (XRD) XRD pattern of control and treated CrO3 samples are presented in Figure 1. The control sample peaks in XRD pattern were observed at 2θ=21.33°, 26.01°, 26.42°, 31.16°, 37.53°, 37.97°, and 40.03° which were Parameters Control T1 T2 T3 T4 Melting point (°C) 201.43 204.28 204.24 212.65 200.88 % change 1.41 1.4 5.57 -0.27 SDTA integral area at melting point (s°C) -235.53 -252.69 -235.13 -414.03 -142.22 Latent heat of fusion, ΔH (J/g) 486.87 507.37 274.04 235.15 433.09 % change 4.21 -43.71 -51.7 -11.05 Decomposition Temp, Tmax (°C) 330 335 336.98 333.36 340.12 Percent change 1.52 2.12 1.02 3.07 Percent weight loss at Tmax -13.28 -14.49 -82.57 -10.48 -6.03 Table 1: TGA-DTA analysis of chromium (VI) oxide powder.
  • 3. Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128 Page 3 of 4 Volume 4 • Issue 1 • 1000128 J Powder Metall Min ISSN: 2168-9806 JPMM, an open access journal supported by literature data of CrO3 [24]. However, XRD of treated CrO3 sample exhibited peaks at 2θ=21.39°, 26.13°, 26.51°, 31.32°, 37.63°, and 38.11°. The intense peaks in XRD pattern of control and treated CrO3 samples suggested its crystalline nature. Further, the crystal structure parameter such as lattice parameter, and unit cell volume were calculated using PowderX software and their percent change with respect to control are presented in Figure 2. Data showed that the lattice parameter and unit cell volume was reduced by 0.25 and 0.92%, respectively as compared to control. The change in unit cell volume can be considered as volumetric strain. Herein, negative volumetric strain found in treated CrO3 indicated that biofield treatment possibly induced compressive stress along the lattice parameter “a” that led to reduced unit cell volume in treated sample. Recently, alteration in unit cell volume and lattice parameter in zinc oxide, iron oxide and copper oxides using biofield treatment was reported by our group [25]. In addition, the density of treated CrO3 was increased by 0.93% and molecular weight was reduced by 0.92% as compared to control. It could be possible if number of protons and neutron altered after biofield treatment. Thus, it is hypothesized that a weak reversible nuclear level reaction including neutrons-protons and neutrinos might occur in treated CrO3 powders after biofield treatment [26]. Besides, the crystallite size was calculated using Scherrer formula is presented in Table 2. Data showed that crystallite size was 46.77 nm in control, whereas it was increased to 60.13 nm in treated sample. It suggested that crystallite size was increased by 28.57% as compared to control. Previously, our group reported that biofield treatment has increase the crystallite size in silicon dioxide [27], silicon carbide [28] and antimony [29]. Furthermore, in order to increase the crystallite size, sufficient amount of energy is required to move the crystallite boundaries. Thus, it is hypothesised that the energy required for this process might be transferred through biofield treatment and that might be responsible for increase in crystallite size. Hence, XRD data revealed that biofield treatment has altered the physical and structural properties of CrO3 powder. Fourier Transform Infrared Spectroscopy (FT-IR) FT-IR spectrum of control and treated are shown in Figure 3. IR spectra exhibited the absorption peaks at 496, 736, 906, and 944 cm-1 in control, whereas these peaks were shifted to higher wavenumber i.e. 501, 741, 919, and 949 cm­-1 in treated CrO3 spectra. The peaks at 906 and 944 cm-1 in control and 919 and 949 cm­-1 in treated CrO3 can be attributed to chromyl (Cr=O) vibrations [30]. The wavenumber observed in IR spectra is directly proportional to bond force constant. Thus it is assumed that the increase in wave number for Cr =O vibration could be due to increase in bond force constant after biofield treatment. Figure 1: XRD pattern of chromium (VI) oxide powder. (a) Control and (b) Treated. Figure 2: Effect of biofield treatment on lattice parameter, unit cell volume, density, and molecular weight of treated chromium (VI) oxide powder as compared to control. Figure 3: FT-IR spectrum of chromium (VI) oxide powder. (a) Control and (b) Treated. Crystallite Size (nm) % change in Control Treated Crystallite size 46.77 60.13 28.57 Table 2: Effect of biofield treatment on crystallite size chromium (VI) oxide powder.
  • 4. Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128 Page 4 of 4 Volume 4 • Issue 1 • 1000128 J Powder Metall Min ISSN: 2168-9806 JPMM, an open access journal In our previous study on iron oxide, biofield treatment had altered the bondstrengthofFe-Obond[25].Thus,itishypothesizedthattheenergy transferred through biofield treatment probably enhanced the Cr=O bond strength in treated CrO3 molecules, which may lead to increase bond force constant, thus increase the wavenumber. In addition, the increase in Cr=O bond strength could increase the stability of CrO3 molecules. It is also supported by increase in thermal stability of treated CrO3 after biofield treatment. Conclusion The thermal analysis of CrO3 using TGA-DTA revealed that biofield treatment has altered the melting point, ΔH, and Tmax . The melting point was increased upto 5.57% in treated CrO3 , whereas ΔH was reduced upto 51.70% in treated as compared to control. It is assumed that biofield treatment probably altered the internal energy of treated CrO3 samples, which may lead to alter the melting point and ΔH. In addition, Tmax was slightly increased up to 3.077% as compared to control. Besides, XRD data exhibited the alteration in lattice parameter, unit cell volume, density, and molecular weight in treated CrO3 as compared to control. The crystallite size of treated CrO3 sample was increased by 28.57% as compared to control. It may be due to movement of crystallite boundaries through biofield energy, which probably transferred via biofield treatment. FT-IR spectra revealed that the absorption peaks were shifted from 906 and 944 cm-1 (control) to higher wavenumber i.e. 919 and 949 cm-1 in treated CrO3 sample. It could be due to increase of bond force constant of Cr=O bond after biofield treatment. Overall, study results suggest that biofield treatment has significantly altered the thermal, physical and structural properties of CrO3 powder. It is also assumed that biofield treated CrO­3 could be useful for chrome plating applications in automobile industries. Acknowledgement Authors gratefully acknowledged to Dr. Cheng Dong of NLSC, Institute of Physics, and Chinese academy of Sciences for providing the facilities to use PowderX software for analyzing XRD data. Authors also would like to thank Trivedi Science, Trivedi master wellness and Trivedi testimonials for their support during the work. References 1. Zhai HJ, Li S, Dixon DA, Wang LS (2008) Probing the electronic and structural properties of chromium oxide clusters (CrO3 )n - and (CrO3 )n (n=1-5): Photoelectron spectroscopy and density functional calculations. J Am Chem Soc 130: 5167-5177. 2. Zhao M, Li J, Song Z, Desmond R, Tschaen DM et al. (1998) A novel chromium trioxide catalyzed oxidation of primary alcohols to the carboxylic acids. Tetrahedron Lett 39: 5323-5326. 3. Corey EJ, Link JO, Shao Y (1992) Two effective procedures for the synthesis of trichloromethyl ketones, useful precursors of chiral α-amino and α-hydroxy acids. Tetrahedron Lett 33: 3435-3438. 4. Jaswal VS, Arora AK, Singh J, Kinger M, Gupta VD (2014) Synthesis and characterization of chromium oxide nanoparticles. Orient J Chem 30: 559-566. 5. Stephens JS, Cruickshank DWJ (1970) The crystal structure of (CrO3 )∞ . Acta Cryst B26: 222-226. 6. Einstein A (1905) Does the inertia of a body depend upon its energy-content. Annalen der Physik 18: 639-641. 7. Becker RO, Selden G (1985) The body electric: Electromagnetism and the foundation of life. William Morrow and Company, New York City, USA. 8. Barnes RB (1963) Thermography of the human body. Science 140: 870-877. 9. Born M (1971) The Born-Einstein Letters (1stedn). Walker and Company, New York. 10. Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through bio field changing metal powder characteristics experiments on powder characteristics at a PM plant. Future Control and Automation LNEE 173: 247-252. 11. Trivedi MK, Patil S, Tallapragada RM (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminium powders. Ind Eng Manage 4: 151. 12. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 125. 13. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powder. J Material Sci Eng S11: 001. 14. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222. 15. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206. 16. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth). Biotechnology 11: 154-162. 17. Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9. 18. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic and Appl Sci 6: 100-105. 19. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143. 20. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35. 21. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28. 22. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy (3rdedn) Thomson Learning, Singapore. 23. Fouad NE (1996) Non-isorhermal kinetics of CrO3 decomposition pathways in air. J Therm Anal 46: 1271-1282. 24. Sajadi SAA, Khaleghian M (2014) Study of thermal behavior of CrO3 using TG and DSC. J Therm Anal Calorim 116: 915-921. 25. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161. 26. Narlikar JV (1993) Introduction to cosmology (2nd edn) Jones and Bartlett Inc., Cambridge University Press. 27. Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144. 28. Trivedi MK, Nayak G, Tallapragada RM, Patil S, Latiyal O, et al. (2015) Effect of biofield treatment on structural and morphological properties of silicon carbide. J Powder Metall Min 4:1. 29. Dhabade VV, Tallapragada RM, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479. 30. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96: 3327-3349. Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment. J Powder Metall Min 4: 128. doi:10.4172/2168-9806.1000128