SlideShare a Scribd company logo
1 of 5
Download to read offline
Open Access
Trivedi et al., J Chromatogr Sep Tech 2015, 6:5
http://dx.doi.org/10.4172/2157-7064.1000282
Research Article Open Access
Chromatography
Separation Techniques
JournalofChrom
atography & Sepa
rationTechniques
ISSN: 2157-7064
Volume 6 • Issue 5 • 1000282
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate
and Sodium Nitrate after Biofield Treatment
Mahendra Kumar Trivedi1
, Alice Branton1
, Dahryn Trivedi1
, Gopal Nayak1
, Khemraj Bairwa2
and Snehasis Jana2
*
1
Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
2
Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal- 462026, Madhya Pradesh, India
*Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory
Pvt. Ltd, Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd.,
Bhopal-462026, Madhya Pradesh, India, Tel: +91-755-6660006; Fax: +91-755-
6660006; E-mail: publication@trivedisrl.com
Received July 25, 2015; Accepted August 10, 2015; Published August 20, 2015
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015)
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and
Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282.
doi:10.4172/2157-7064.1000282
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.
Abstract
Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline
laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity,
and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral
properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e.,
control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment.
The spectral properties of control and treated groups of both compounds were studied using Fourier transform
infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated
disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control)
corresponding to O-H stretching from 2975 to 3357 cm-1
, PO-H symmetrical stretching from 2359 to 2350 cm-1
,
O=P-OH deformation from 1717-1796 cm-1
to 1701-1735 cm-1
, P=O asymmetric stretching from 1356 to 1260 cm-1
and P=O symmetric stretching from 1159 to 1132 cm-1
, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited
the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1
and NO3
asymmetric and symmetric
stretchings from 1369 to 1381 cm-1
and 1340 to 1267 cm-1
.
UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to
decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance
maxima (λmax
) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax
) at 209.2 nm after
biofield treatment.
Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on
spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two
orbitals (ground state and excited state) as compared to respective control.
Keywords: Disodium hydrogen phosphate; Sodium nitrate; Biofield
treatment; Fourier transform infrared spectroscopy; Ultraviolet
spectroscopy
Introduction
Disodium hydrogen phosphate  (Na2
HPO4
) or Disodium
hydrogen orthophosphate is the inorganic salt exists in anhydrous
form as well as forms with dihydrate, heptahydrate and octahydrate.
All these forms are water-soluble white powders. It is widely used in
food products to adjust the pH, and to prevent the milk coagulation
in the preparation of condensed milk [1]. Similarly, it is used as
an anti-caking additive in powdered products. In conjunction with
trisodium phosphate it is used as detergents, cleaning agents and in
water treatment [2]. The monobasic and dibasic sodium phosphate
is used as a saline laxative to treat constipation or to clean the bowel
before colonoscopy [3].
Sodium nitrate (NaNO3
) is a highly water soluble white powder. It
is a readily available source of nitrate anion (NO3
-
) and widely used in
numerous chemical reactions at industrial scale for the production of
fertilizers, smoke bombs, pyrotechnics, and as a solid rocket propellant.
It is also a food additive and used as color fixative and preservative
[4]. Sodium nitrate is also used in conjunction with calcium nitrate
and potassium nitrate for heat storage and heat transfer in solar power
plants [5]. In addition, researcher also reported its beneficial effects in
lowering blood pressure by slightly expanding the arteries [6]. However,
it is also associated to higher risk of gastrointestinal cancer [7]. The
chemical and physical stability of any compound are most desired
qualities that determine the shelf life and effectiveness of compound
[8]. Hence, it is advantageous to find out an alternate approach, which
could alter the spectral properties of chemical compounds. Recently,
biofield treatment is reported to alter the physical, and structural
properties of various living and non-living substances [9,10].
The relation between mass-energy was described by Hasenohrl [11].
Later on, Einstein gave the well-known equation E=mc2
for light and
mass [12]. The mass is consist of energy and once this energy vibrates at
a certain frequency, it gives physical, atomic and structural properties
like shape, size, texture, crystal structure, and atomic weight to the
matter. Similarly, the human body also comprises of vibratory energy
particles like neutrons, protons, and electrons. Due to the vibration
of these particles in the nucleus, an electrical impulse generated
[13]. According to Ampere-Maxwell-Law, varying of these electrical
impulses with time generates magnetic field, which cumulatively form
electromagnetic field [14]. Hence, electromagnetic field generated from
human body is known as biofield and energy associated with this field
called biofield energy [15,16]. Mr. Trivedi has the ability to harness the
energy from environment or universe and can transmit into any living
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate
and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282
Page 2 of 5
Volume 6 • Issue 5 • 1000282
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal
or nonliving object around this Globe. The object(s) always receive the
energy and responding into useful way, this process is known as biofield
treatment. Mr. Trivedi’s biofield treatment has considerably changed
the physicochemical, thermal and structural properties of metals
[10,17] and ceramics [18,19]. Growth and anatomical characteristics
of some plants were also increased after biofield treatment [20,21].
Further, biofield treatment has showed the significant effect in the field
of microbiology [9,22] and agriculture science [23,24].
Considering the above mentioned facts, presented study was
attempted to investigate the impact of biofield treatment on atomic
level like force constant, dipole moment, and energy gape between
highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) of disodium hydrogen orthophosphate and
sodium nitrate.
Materials and Methods
Study design
The disodium hydrogen orthophosphate was procured from
Qualigens Fine Chemicals (Mumbai, India), and sodium nitrate was
procured from Sigma-Aldrich, MA, USA. Each compound was divided
into two parts i.e., control and treatment. The control samples were
remained as untreated, and treatment samples were handed over in
sealed pack to Mr. Trivedi for biofield treatment under laboratory
condition. Mr. Trivedi provided this treatment through his energy
transmission process to the treatment groups without touching
the sample. The control and treated samples of disodium hydrogen
orthophosphate and sodium nitrate (Figure 1) were evaluated using
FT-IR and UV-Vis spectroscopy.
FT-IR spectroscopic characterization
FT-IR spectra of control and treated samples of disodium hydrogen
orthophosphate and sodium nitrate were recorded on Shimadzu’s
Fourier transform infrared spectrometer (Japan) with frequency range
of 4000-500 cm-1
. The analysis were carried out to evaluate the impact
of biofield treatment at atomic level like dipole moment, force constant
and bond strength in chemical structure [25].
UV-Vis spectroscopic analysis
UV spectra of control and treated sample of disodium hydrogen
orthophosphate and sodium nitrate were recorded on Shimadzu UV-
2400 PC series spectrophotometer with 1 cm quartz cell and a slit width
of 2.0 nm. The analysis was carried out using wavelength in the range of
200-400 nm. The UV spectral analysis was performed to determine the
effect of biofield treatment on the energy gap of two orbitals. Existing
literature on principle of UV spectroscopy suggests that a molecule can
absorbs UV radiation owing to presence of either or both conjugated pi
(π)-bondingsystems(π-π*transition)andnonbondingelectronsystem
(n-π* transition) in the compound. The UV absorption phenomenon
occurred when electrons travelled from low energy orbital (i.e., σ, n,
and π) to high energy orbital (i.e., σ* and π*). There is certain energy
gape between σ-σ*, σ-π*, π -π* and n-π* orbitals. When this energy gap
altered, the wavelength (λmax
) was also altered respectively [25].
Results and Discussion
FT-IR spectroscopic analysis
The FT-IR spectra of control and treated disodium hydrogen
orthophosphateareshowninFigure2andtheFT-IRdatainterpretation
is reported in Table 1. Absorption bands in frequency region of 4000 to
1450 cm-1
are usually due to stretching vibrations of diatomic units,
which sometime also called as group frequency region. The spectrum
of control disodium hydrogen orthophosphate Figure 2 showed the IR
peak at 2975 cm-1
for O-H stretching due to water of crystallization.
This peak was shifted to 3357 cm-1
in treated sample, which indicated
the enhanced hydrogen bonding inside the water of crystallization in
the treated sample of disodium hydrogen orthophosphate with respect
of control.
Frequency (ν) of stretching vibrational peak depends on two factors
i.e., force constant (k) and reduced mass (μ), which can be explained
by following equation [26] ( )1/ 2 /c kν π µ= √ ; here, c is speed of light.
If μ is constant, then the frequency is directly proportional to the force
constant; therefore, increase or decrease in frequency of any bond
indicates a respective increase and decrease in force constant [25].
The PO-H asymmetrical stretching was appeared at 2826-2871 cm-1
in
control sample that were shifted to higher wavenumber in treated sample
i.e., at 2914-3111 cm-1
. The PO-H symmetrical stretching was appeared
at 2359 cm-1
in control sample, which was shifted to lower wavenumber
(2350 cm-1
) after biofield treatment. The PO-H bending was assigned
Figure 1: Chemical structure of (a) disodium hydrogen orthophosphate and
(b) sodium nitrate.
Figure 2: FT-IR spectra of disodium hydrogen orthophosphate (a) control and
(b) treated.
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate
and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282
Page 3 of 5
Volume 6 • Issue 5 • 1000282
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal
to peak at 949 cm-1
in control sample, and 953 cm-1
in treated sample of
disodium hydrogen orthophosphate. The alteration in wavenumber of
PO-H asymmetric and symmetric stretchings might be due to alteration
in bending and torsional force and flexibility of PO-H bond in treated
disodium hydrogen orthophosphate as compared to control.
According to Colth up NB, coexisting of P-OH group with one
P=O group leads to an additional broad band peak at frequency region
of 1630-1750 cm-1
[27]. This band attributed to P-OH stretching
vibration with overtone of out of plane P-OH bending. The disodium
hydrogen orthophosphate molecule also have the similar pattern of
P-OH and P=O groups, therefore peak appeared in the region of 1717-
1760 cm-1
in control sample were assigned to O=P-OH deformation
vibrations. After biofield treatment, the peak corresponding to O=P-
OH deformation vibrations were observed at lower frequency region
(1701-1717 cm-1
) with respect of control, this could be due to decrease
in the bending force of O=P-OH deformation in treated sample. The
P=O stretching in control disodium hydrogen orthophosphate was
appeared at 1159-1356 cm-1
that was shifted to 1132-1260 cm-1
after
biofield treatment. This could be due to reduced force constant of
P=O in treated disodium hydrogen orthophosphate as compared to
control. The vibrational frequency for P-O stretching was appeared
at 1075 cm-1
in control, which was shifted to 1057 cm-1
after biofield
treatment. It suggested a possible decrease in force constant of P-O
bond after biofield treatment with respect of control. The IR peak for
P-OH out plane bending was appeared at 548 cm-1
in control sample,
which was observed at 540 cm-1
in treated sample. The FT-IR data of
control disodium hydrogen orthophosphate was well supported by the
literature data [28].
The FT-IR spectra of control and treated sodium nitrate are shown
in Figure 3 and the FT-IR data interpretation is reported in Table 2.
The FT-IR spectrum of control and treated sodium nitrate exhibited
a vibrational peak at 3478 cm-1
and 3445 cm-1
, respectively, which
were attributed to O-H stretching of H2
O molecules due to water
absorption. The characteristic vibrational peak for N=O stretching was
appeared at 1788 cm-1
in control sample of sodium nitrate that was
shifted to 1648 cm-1
after biofield treatment. This suggested a decreases
in force constant of N=O bond as compared to control sodium nitrate.
The NO3
asymmetric stretching was appeared at 1340-1369 cm-1
in
control sample and at 1267-1381 cm-1
in treated sample of sodium
nitrate. It showed an alteration in wavenumber of NO3
stretching due
to possible alteration in force constant and dipole moment of NO3
group vibrations. The NO3
symmetric stretching peak was observed at
835 cm-1
in control and at 827 cm-1
in treated sample of sodium nitrate.
The downstream shifting in frequency of NO3
symmetric stretching
indicates a possible reduction in force constant of NO3
group after
biofield treatment as compared to control. The FT-IR data of control
sodium nitrate was well supported by the literature data [29].
Overall, the FT-IR spectra of biofield treated disodium hydrogen
orthophosphate exhibited the alteration in wavenumber of some
functional group or bonds like O=P-H, P-OH, P=O, and P-O with
respect of control sample. Whereas, the biofield treated sodium nitrate
showed the alteration in wavenumber of N=O and NO3
asymmetric
and symmetric stretching as compared to control. It may be due to
alteration in force constant, bond strength and dipole moment of
respective bonds of disodium hydrogen orthophosphate and sodium
nitrate as compared to respective control.
UV-Vis spectroscopy
UV spectra of control and biofield treated disodium hydrogen
orthophosphate are shown in Figure 4. The UV spectrum of treated
disodium hydrogen orthophosphate (Figure 4b) did not show the
significant change in absorption maxima (λmax
), however the negative
UV absorbance appeared with respect to control (Figure 4a). This
could be due to decrease in UV absorbance of disodium hydrogen
orthophosphate after biofield treatment as compared to control.
The UV spectra of control and treated sodium nitrate are shown
in Figure 5. The control sample exhibited two absorbance maxima
(λmax
) at 239.4 nm and 341.4 nm. However, the biofield treated sodium
nitrate exhibited only one absorbance maxima at 209.2 nm. The UV
Wave number (cm-1
)
Frequency Assignment
Control Treated
2975 3357 O-H stretching due to water of crystallization
2826-2871 2914-3111 PO-H asymmetrical stretching
2359 2350 PO-H symmetrical stretching
1717-1760 1701-1717 O=P-OH deformation vibration
1159-1356 1132-1260 P=O stretching
1075 1057 P-O stretching
949 953 PO-H bending
548 540 Out of plane P-OH bending
Table 1: FT-IR vibrational peaks observed in disodium hydrogen orthophosphate.
Wave number (cm-1
)
Frequency AssignmentControl Treated
3478 3445 O-H stretching of H2
O molecules due to water absorption
1788 1648 N=O stretching
1340-1369 1267-1381 NO3
asymmetric stretching
835 827 NO3
symmetric stretching
Table 2: FT-IR vibrational peaks observed in sodium nitrate.
Figure 3: FT-IR spectra of sodium nitrate (a) control and (b) treated.
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate
and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282
Page 4 of 5
Volume 6 • Issue 5 • 1000282
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal
absorption occurred due to transition of electron i.e., bonding (π-
π* transition) or nonbonding (n-π* transition) from ground state to
excited state. Alteration in absorption peak in UV spectrum might
refer to alteration in bonding or nonbonding electron transition
possibly due to chemical alteration in structure of tested compound
[25]. Therefore, it is hypothesized that, biofield treatment may induce
the alteration in bonding or nonbonding electron transition of sodium
nitrate as compared to control, which might be due to an alteration in
Figure 4: UV spectra of disodium hydrogen orthophosphate (a) control and
(b) treated.
Figure 5: UV spectra of sodium nitrate (a) control and (b) treated.
chemical structure of sodium nitrate with respect of control sample.
To the best of our knowledge, this is the first report showing an impact
of biofield treatment on structural properties like force constant, bond
strength, and dipole moment, of disodium hydrogen orthophosphate
and sodium nitrate.
Conclusion
FT-IR spectrum of biofield treated disodium hydrogen
orthophosphate showed the alteration in wavenumber of IR peaks
assigned to O=P-H, O=P-OH, P=O, and P-O vibrations as compared
to control. Likewise, the biofield treated sodium nitrate also showed
the alteration in wavenumber of IR peaks assigned to N=O stretching
and NO3
stretching with respect of control. UV spectrum of treated
disodium hydrogen orthophosphate showed the alteration in UV
absorbance and UV spectrum of treated sodium nitrate showed the
alteration in absorption maxima (λmax
), as compared to respective
control.
Altogether, the FT-IR results showed an impact of biofield
treatment on structural properties like force constant, bond strength,
and flexibility of treated compounds with respect to control. Likely, the
UV result suggests the impact of biofield treatment on bonding and
nonbonding electron transition of treated compounds with respect to
control.
Acknowledgement
The authors would like to acknowledge the whole team of MGV Pharmacy
College, Nashik for providing the instrumental facility.
References
1.	 Furia TE (1972) Handbook of food additives. (2nd edn) CRC press.
2.	 Buchel KH, Moretto HH, Werner D (2008) Industrial inorganic chemistry. (2nd
edn) Wiley, New York.
3.	 Pray WS (2006) Nonprescription product therapeutics. Lippincott Williams &
Wilkins, USA.
4.	 Sodium nitrate (2014) The columbia encyclopedia, (6th
edn).
5.	 Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal
energy storage technologies and systems for concentrating solar power plants.
Prog Energy Combust Sci 39: 285-319.
6.	 Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E (2006) Effects of
dietary nitrate on blood pressure in healthy volunteers. N Engl J Med 355:
2792-2793.
7.	 Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the
physiologic context for potential health benefits. Am J Clin Nutr 90: 1-10.
8.	 Blessy M, Patel RD, Prajapati PN, Agrawal YK (2014) Development of forced
degradation and stability indicating studies of drugs-A review. J Pharm Anal
4: 159-165.
9.	 Trivedi MK, Patil S (2008) Impact of an external energy on Yersinia enterocolitica
[ATCC-23715] in relation to antibiotic susceptibility and biochemical reactions:
An experimental study. Internet J Alternat Med 6.
10.	Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through
biofield changing metal powder characteristics experiments on powder
characterisation at a PM Plant. Future Control and Automation LNEE 173: 247-
252.
11.	Hasenohrl F (1904) On the theory of radiation in moving bodies. Ann Phys
320: 344-370.
12.	Einstein A (1905) Does the inertia of a body depend upon its energy-content?
Ann Phys 18: 639-641.
13.	Becker RO, Selden G (1985) The body electric: Electromagnetism and the
foundation of life. William Morrow and Company Inc, New York.
14.	Maxwell JC (1865) A dynamical theory of the electromagnetic field. Phil Trans
R Soc Lond 155: 459-512.
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate
and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282
Page 5 of 5
Volume 6 • Issue 5 • 1000282
J Chromatogr Sep Tech
ISSN: 2157-7064 JCGST, an open access journal
15.	Rubik B (2002) The biofield hypothesis: its biophysical basis and role in
medicine. J Altern Complement Med 8: 703-717.
16.	Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's string galvanometer:
the first electrocardiograph. Tex Heart Inst J 35: 174-178.
17.	Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy
on atomic, crystalline and powder characteristics of antimony and bismuth
powders. Bull Mater Sci 32: 471-479.
18.	Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on
the physical and thermal characteristics of vanadium pentoxide powders. J
Material Sci Eng S11: 001.
19.	Trivedi MK, Patil S., Tallapragada RM (2014) Atomic, crystalline and powder
characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144.
20.	Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield
treatment on growth and anatomical characteristics of Pogostemon cablin
(Benth). Biotechnology 11: 154-162.
21.	Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and
adaptation. J Environ Health Sci 1: 1-9.
22.	Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial
sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect
Dis Ther 3: 222.
23.	Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on
growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105.
24.	Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield
treatment on ginseng and organic blueberry yield. Agrivita, J Agric Sci 35.
25.	Pavia DL, Lampman GM, Kriz GS (2001) Introduction to Spectroscopy (3rd
edn), Thomson Learning, Singapore.
26.	Stuart BH (2004) Infrared spectroscopy: Fundamentals and applications
(analytical techniques in the sciences (AnTs). John Wiley & Sons Ltd,
Chichester, UK.
27.	Colthup NB (1975) Introduction to infrared and raman spectroscopy. (2nd edn),
Academic Press Inc, New York.
28.	Portia SAU, Jayanthi K, Ramamoorthy K (2014) Growth and characterization
of pure and disodium hydrogen phosphate mixed with potassium dihydrogen
phosphate crystal by using slow evaporation technique. Am J Biol Pharm Res
1: 77-82.
29.	Hernandez-Paredes J, Glossman-Mitnik D, Esparza-Ponce HE, Alvarez-
Ramos ME, Duarte-Moller A (2008) Band structure, optical properties and
infrared spectrum of glycine-sodium nitrate crystal. J Mol Struct 875: 295-301.
OMICS International: Publication Benefits & Features
Unique features:
•	 Increased global visibility of articles through worldwide distribution and indexing
•	 Showcasing recent research output in a timely and updated manner
•	 Special issues on the current trends of scientific research
Special features:
•	 700 Open Access Journals
•	 50,000 editorial team
•	 Rapid review process
•	 Quality and quick editorial, review and publication processing
•	 Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
•	 Sharing Option: Social Networking Enabled
•	 Authors, Reviewers and Editors rewarded with online Scientific Credits
•	 Better discount for your subsequent articles
Submit your manuscript at: http://www.editorialmanager.com/biochem
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015)
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and
Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282.
doi:10.4172/2157-7064.1000282

More Related Content

What's hot

A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...
A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...
A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...paperpublications3
 
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...Nanomedicine Journal (NMJ)
 
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Alexander Decker
 
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...Alexander Decker
 
Iodine
IodineIodine
Iodineimplax
 
Paper id 24201487
Paper id 24201487Paper id 24201487
Paper id 24201487IJRAT
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Mahendra Kumar Trivedi
 
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...chemsurya
 
Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...pharmaindexing
 
Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...SriramNagarajan15
 
Poster 102 pharmmatoxico
Poster 102 pharmmatoxicoPoster 102 pharmmatoxico
Poster 102 pharmmatoxicoJIB Congress
 
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...EDITOR IJCRCPS
 
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...albertdivis
 
Muhammad Saad Published Paper
Muhammad Saad Published PaperMuhammad Saad Published Paper
Muhammad Saad Published PaperFakhra Shaheen
 
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...IOSR Journals
 
Antibacterial Property of Essential Oil and its vibrational analysis
Antibacterial Property of Essential Oil and its vibrational analysisAntibacterial Property of Essential Oil and its vibrational analysis
Antibacterial Property of Essential Oil and its vibrational analysisIOSR Journals
 

What's hot (19)

A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...
A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...
A Review on Removal and Recovery of Phosphorus and Nitrogen from Domestic Was...
 
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...
Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrich...
 
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
Nano ti o2 as an efficient and reusable heterogeneous catalyst for the synthe...
 
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
11.nano ti o0002www.iiste.org call for_paper as an efficient and reusable het...
 
Iodine
IodineIodine
Iodine
 
Paper id 24201487
Paper id 24201487Paper id 24201487
Paper id 24201487
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
 
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
 
E0312017022
E0312017022E0312017022
E0312017022
 
Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...
 
Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...Analytical method development and its application to extractive spectrophotom...
Analytical method development and its application to extractive spectrophotom...
 
Poster 102 pharmmatoxico
Poster 102 pharmmatoxicoPoster 102 pharmmatoxico
Poster 102 pharmmatoxico
 
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...
BIOSORPTION OF ZINC (II) IONS FROM AQUEOUS SOLUTION USING BORASSUS FLABELLIFE...
 
E03201024027
E03201024027E03201024027
E03201024027
 
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...Biofield Treatment: A Potential Strategy for Modification of Physical and The...
Biofield Treatment: A Potential Strategy for Modification of Physical and The...
 
My paper
My paperMy paper
My paper
 
Muhammad Saad Published Paper
Muhammad Saad Published PaperMuhammad Saad Published Paper
Muhammad Saad Published Paper
 
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...
Synthesis, growth of semiorganic TGDCC (Tetra Glycine Dihydrated Calcium Chlo...
 
Antibacterial Property of Essential Oil and its vibrational analysis
Antibacterial Property of Essential Oil and its vibrational analysisAntibacterial Property of Essential Oil and its vibrational analysis
Antibacterial Property of Essential Oil and its vibrational analysis
 

Similar to Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment

Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...Mahendra Kumar Trivedi
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazolealbertdivis
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleMahendra Kumar Trivedi
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...albertdivis
 
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...albertdivis
 
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Apeksha singh
 
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...albertdivis
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Mahendra Kumar Trivedi
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...albertdivis
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...wilhelm mendel
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...rachelsalk
 
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...albertdivis
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...albertdivis
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Mahendra Kumar Trivedi
 
Photocatalytic oxidation of pharmaceuticals
Photocatalytic oxidation of pharmaceuticalsPhotocatalytic oxidation of pharmaceuticals
Photocatalytic oxidation of pharmaceuticalsMehdi Aissani
 
Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...albertdivis
 
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...albertdivis
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Mahendra Kumar Trivedi
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...albertdivis
 

Similar to Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment (20)

Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofiel...
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
 
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and TinidazoleSpectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole
 
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
Impact of Biofield Treatment on Atomic and Structural Characteristics of Bari...
 
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characteriza...
 
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
Characterisation of-physical-spectral-and-thermal-properties-of-biofieldtreat...
 
JSEHR 1(1)-4
JSEHR 1(1)-4JSEHR 1(1)-4
JSEHR 1(1)-4
 
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae ...
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...
 
Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...Characterization of Physical and Structural Properties of Brass Powder After ...
Characterization of Physical and Structural Properties of Brass Powder After ...
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
 
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Trea...
 
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
Evaluation of Biofield Treatment on Physical and Structural Properties of Bro...
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
 
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
Potential Impact of BioField Treatment on Atomic and Physical Characteristics...
 
Photocatalytic oxidation of pharmaceuticals
Photocatalytic oxidation of pharmaceuticalsPhotocatalytic oxidation of pharmaceuticals
Photocatalytic oxidation of pharmaceuticals
 
Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...Characterization of Physical and Structural Properties of Aluminium Carbide P...
Characterization of Physical and Structural Properties of Aluminium Carbide P...
 
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichloroben...
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
 
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Pe...
 

More from albertdivis

Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...albertdivis
 
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...albertdivis
 
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...albertdivis
 
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...albertdivis
 
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...albertdivis
 
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...albertdivis
 
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...albertdivis
 
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...albertdivis
 
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...albertdivis
 
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...albertdivis
 
Structural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and MentholStructural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and Mentholalbertdivis
 
Characterization of Physical, Thermal and Structural Properties of Chromium (...
Characterization of Physical, Thermal and Structural Properties of Chromium (...Characterization of Physical, Thermal and Structural Properties of Chromium (...
Characterization of Physical, Thermal and Structural Properties of Chromium (...albertdivis
 
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...albertdivis
 
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...albertdivis
 
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...albertdivis
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...albertdivis
 
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and PiroxicamEffect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicamalbertdivis
 
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...albertdivis
 

More from albertdivis (18)

Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
Physical and Structural Characterization of Biofield Treated Imidazole Deriva...
 
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on...
 
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
Characterization of Physical, Spectral and Thermal Properties of Biofield Tre...
 
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcesc...
 
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Pr...
 
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotypi...
 
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myri...
 
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Imp...
 
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of ...
 
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential U...
 
Structural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and MentholStructural and Physical Properties of Biofield Treated Thymol and Menthol
Structural and Physical Properties of Biofield Treated Thymol and Menthol
 
Characterization of Physical, Thermal and Structural Properties of Chromium (...
Characterization of Physical, Thermal and Structural Properties of Chromium (...Characterization of Physical, Thermal and Structural Properties of Chromium (...
Characterization of Physical, Thermal and Structural Properties of Chromium (...
 
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...
An Evaluation of Biofield Treatment on Thermal, Physical and Structural Prope...
 
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
In Vitro Evaluation of Biofield Treatment on Cancer Biomarkers Involved in En...
 
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
Influence of Biofield Treatment on Physical, Structural and Spectral Properti...
 
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...Effect of Biofield Treatment on Structural and Morphological Properties of Si...
Effect of Biofield Treatment on Structural and Morphological Properties of Si...
 
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and PiroxicamEffect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
 
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Re...
 

Recently uploaded

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 

Recently uploaded (20)

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 

Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment

  • 1. Open Access Trivedi et al., J Chromatogr Sep Tech 2015, 6:5 http://dx.doi.org/10.4172/2157-7064.1000282 Research Article Open Access Chromatography Separation Techniques JournalofChrom atography & Sepa rationTechniques ISSN: 2157-7064 Volume 6 • Issue 5 • 1000282 J Chromatogr Sep Tech ISSN: 2157-7064 JCGST, an open access journal Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment Mahendra Kumar Trivedi1 , Alice Branton1 , Dahryn Trivedi1 , Gopal Nayak1 , Khemraj Bairwa2 and Snehasis Jana2 * 1 Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA 2 Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal- 462026, Madhya Pradesh, India *Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd, Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal-462026, Madhya Pradesh, India, Tel: +91-755-6660006; Fax: +91-755- 6660006; E-mail: publication@trivedisrl.com Received July 25, 2015; Accepted August 10, 2015; Published August 20, 2015 Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282 Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1 , PO-H symmetrical stretching from 2359 to 2350 cm-1 , O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1 , P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1 , etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1 . UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (λmax ) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax ) at 209.2 nm after biofield treatment. Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control. Keywords: Disodium hydrogen phosphate; Sodium nitrate; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy Introduction Disodium hydrogen phosphate  (Na2 HPO4 ) or Disodium hydrogen orthophosphate is the inorganic salt exists in anhydrous form as well as forms with dihydrate, heptahydrate and octahydrate. All these forms are water-soluble white powders. It is widely used in food products to adjust the pH, and to prevent the milk coagulation in the preparation of condensed milk [1]. Similarly, it is used as an anti-caking additive in powdered products. In conjunction with trisodium phosphate it is used as detergents, cleaning agents and in water treatment [2]. The monobasic and dibasic sodium phosphate is used as a saline laxative to treat constipation or to clean the bowel before colonoscopy [3]. Sodium nitrate (NaNO3 ) is a highly water soluble white powder. It is a readily available source of nitrate anion (NO3 - ) and widely used in numerous chemical reactions at industrial scale for the production of fertilizers, smoke bombs, pyrotechnics, and as a solid rocket propellant. It is also a food additive and used as color fixative and preservative [4]. Sodium nitrate is also used in conjunction with calcium nitrate and potassium nitrate for heat storage and heat transfer in solar power plants [5]. In addition, researcher also reported its beneficial effects in lowering blood pressure by slightly expanding the arteries [6]. However, it is also associated to higher risk of gastrointestinal cancer [7]. The chemical and physical stability of any compound are most desired qualities that determine the shelf life and effectiveness of compound [8]. Hence, it is advantageous to find out an alternate approach, which could alter the spectral properties of chemical compounds. Recently, biofield treatment is reported to alter the physical, and structural properties of various living and non-living substances [9,10]. The relation between mass-energy was described by Hasenohrl [11]. Later on, Einstein gave the well-known equation E=mc2 for light and mass [12]. The mass is consist of energy and once this energy vibrates at a certain frequency, it gives physical, atomic and structural properties like shape, size, texture, crystal structure, and atomic weight to the matter. Similarly, the human body also comprises of vibratory energy particles like neutrons, protons, and electrons. Due to the vibration of these particles in the nucleus, an electrical impulse generated [13]. According to Ampere-Maxwell-Law, varying of these electrical impulses with time generates magnetic field, which cumulatively form electromagnetic field [14]. Hence, electromagnetic field generated from human body is known as biofield and energy associated with this field called biofield energy [15,16]. Mr. Trivedi has the ability to harness the energy from environment or universe and can transmit into any living
  • 2. Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282 Page 2 of 5 Volume 6 • Issue 5 • 1000282 J Chromatogr Sep Tech ISSN: 2157-7064 JCGST, an open access journal or nonliving object around this Globe. The object(s) always receive the energy and responding into useful way, this process is known as biofield treatment. Mr. Trivedi’s biofield treatment has considerably changed the physicochemical, thermal and structural properties of metals [10,17] and ceramics [18,19]. Growth and anatomical characteristics of some plants were also increased after biofield treatment [20,21]. Further, biofield treatment has showed the significant effect in the field of microbiology [9,22] and agriculture science [23,24]. Considering the above mentioned facts, presented study was attempted to investigate the impact of biofield treatment on atomic level like force constant, dipole moment, and energy gape between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of disodium hydrogen orthophosphate and sodium nitrate. Materials and Methods Study design The disodium hydrogen orthophosphate was procured from Qualigens Fine Chemicals (Mumbai, India), and sodium nitrate was procured from Sigma-Aldrich, MA, USA. Each compound was divided into two parts i.e., control and treatment. The control samples were remained as untreated, and treatment samples were handed over in sealed pack to Mr. Trivedi for biofield treatment under laboratory condition. Mr. Trivedi provided this treatment through his energy transmission process to the treatment groups without touching the sample. The control and treated samples of disodium hydrogen orthophosphate and sodium nitrate (Figure 1) were evaluated using FT-IR and UV-Vis spectroscopy. FT-IR spectroscopic characterization FT-IR spectra of control and treated samples of disodium hydrogen orthophosphate and sodium nitrate were recorded on Shimadzu’s Fourier transform infrared spectrometer (Japan) with frequency range of 4000-500 cm-1 . The analysis were carried out to evaluate the impact of biofield treatment at atomic level like dipole moment, force constant and bond strength in chemical structure [25]. UV-Vis spectroscopic analysis UV spectra of control and treated sample of disodium hydrogen orthophosphate and sodium nitrate were recorded on Shimadzu UV- 2400 PC series spectrophotometer with 1 cm quartz cell and a slit width of 2.0 nm. The analysis was carried out using wavelength in the range of 200-400 nm. The UV spectral analysis was performed to determine the effect of biofield treatment on the energy gap of two orbitals. Existing literature on principle of UV spectroscopy suggests that a molecule can absorbs UV radiation owing to presence of either or both conjugated pi (π)-bondingsystems(π-π*transition)andnonbondingelectronsystem (n-π* transition) in the compound. The UV absorption phenomenon occurred when electrons travelled from low energy orbital (i.e., σ, n, and π) to high energy orbital (i.e., σ* and π*). There is certain energy gape between σ-σ*, σ-π*, π -π* and n-π* orbitals. When this energy gap altered, the wavelength (λmax ) was also altered respectively [25]. Results and Discussion FT-IR spectroscopic analysis The FT-IR spectra of control and treated disodium hydrogen orthophosphateareshowninFigure2andtheFT-IRdatainterpretation is reported in Table 1. Absorption bands in frequency region of 4000 to 1450 cm-1 are usually due to stretching vibrations of diatomic units, which sometime also called as group frequency region. The spectrum of control disodium hydrogen orthophosphate Figure 2 showed the IR peak at 2975 cm-1 for O-H stretching due to water of crystallization. This peak was shifted to 3357 cm-1 in treated sample, which indicated the enhanced hydrogen bonding inside the water of crystallization in the treated sample of disodium hydrogen orthophosphate with respect of control. Frequency (ν) of stretching vibrational peak depends on two factors i.e., force constant (k) and reduced mass (μ), which can be explained by following equation [26] ( )1/ 2 /c kν π µ= √ ; here, c is speed of light. If μ is constant, then the frequency is directly proportional to the force constant; therefore, increase or decrease in frequency of any bond indicates a respective increase and decrease in force constant [25]. The PO-H asymmetrical stretching was appeared at 2826-2871 cm-1 in control sample that were shifted to higher wavenumber in treated sample i.e., at 2914-3111 cm-1 . The PO-H symmetrical stretching was appeared at 2359 cm-1 in control sample, which was shifted to lower wavenumber (2350 cm-1 ) after biofield treatment. The PO-H bending was assigned Figure 1: Chemical structure of (a) disodium hydrogen orthophosphate and (b) sodium nitrate. Figure 2: FT-IR spectra of disodium hydrogen orthophosphate (a) control and (b) treated.
  • 3. Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282 Page 3 of 5 Volume 6 • Issue 5 • 1000282 J Chromatogr Sep Tech ISSN: 2157-7064 JCGST, an open access journal to peak at 949 cm-1 in control sample, and 953 cm-1 in treated sample of disodium hydrogen orthophosphate. The alteration in wavenumber of PO-H asymmetric and symmetric stretchings might be due to alteration in bending and torsional force and flexibility of PO-H bond in treated disodium hydrogen orthophosphate as compared to control. According to Colth up NB, coexisting of P-OH group with one P=O group leads to an additional broad band peak at frequency region of 1630-1750 cm-1 [27]. This band attributed to P-OH stretching vibration with overtone of out of plane P-OH bending. The disodium hydrogen orthophosphate molecule also have the similar pattern of P-OH and P=O groups, therefore peak appeared in the region of 1717- 1760 cm-1 in control sample were assigned to O=P-OH deformation vibrations. After biofield treatment, the peak corresponding to O=P- OH deformation vibrations were observed at lower frequency region (1701-1717 cm-1 ) with respect of control, this could be due to decrease in the bending force of O=P-OH deformation in treated sample. The P=O stretching in control disodium hydrogen orthophosphate was appeared at 1159-1356 cm-1 that was shifted to 1132-1260 cm-1 after biofield treatment. This could be due to reduced force constant of P=O in treated disodium hydrogen orthophosphate as compared to control. The vibrational frequency for P-O stretching was appeared at 1075 cm-1 in control, which was shifted to 1057 cm-1 after biofield treatment. It suggested a possible decrease in force constant of P-O bond after biofield treatment with respect of control. The IR peak for P-OH out plane bending was appeared at 548 cm-1 in control sample, which was observed at 540 cm-1 in treated sample. The FT-IR data of control disodium hydrogen orthophosphate was well supported by the literature data [28]. The FT-IR spectra of control and treated sodium nitrate are shown in Figure 3 and the FT-IR data interpretation is reported in Table 2. The FT-IR spectrum of control and treated sodium nitrate exhibited a vibrational peak at 3478 cm-1 and 3445 cm-1 , respectively, which were attributed to O-H stretching of H2 O molecules due to water absorption. The characteristic vibrational peak for N=O stretching was appeared at 1788 cm-1 in control sample of sodium nitrate that was shifted to 1648 cm-1 after biofield treatment. This suggested a decreases in force constant of N=O bond as compared to control sodium nitrate. The NO3 asymmetric stretching was appeared at 1340-1369 cm-1 in control sample and at 1267-1381 cm-1 in treated sample of sodium nitrate. It showed an alteration in wavenumber of NO3 stretching due to possible alteration in force constant and dipole moment of NO3 group vibrations. The NO3 symmetric stretching peak was observed at 835 cm-1 in control and at 827 cm-1 in treated sample of sodium nitrate. The downstream shifting in frequency of NO3 symmetric stretching indicates a possible reduction in force constant of NO3 group after biofield treatment as compared to control. The FT-IR data of control sodium nitrate was well supported by the literature data [29]. Overall, the FT-IR spectra of biofield treated disodium hydrogen orthophosphate exhibited the alteration in wavenumber of some functional group or bonds like O=P-H, P-OH, P=O, and P-O with respect of control sample. Whereas, the biofield treated sodium nitrate showed the alteration in wavenumber of N=O and NO3 asymmetric and symmetric stretching as compared to control. It may be due to alteration in force constant, bond strength and dipole moment of respective bonds of disodium hydrogen orthophosphate and sodium nitrate as compared to respective control. UV-Vis spectroscopy UV spectra of control and biofield treated disodium hydrogen orthophosphate are shown in Figure 4. The UV spectrum of treated disodium hydrogen orthophosphate (Figure 4b) did not show the significant change in absorption maxima (λmax ), however the negative UV absorbance appeared with respect to control (Figure 4a). This could be due to decrease in UV absorbance of disodium hydrogen orthophosphate after biofield treatment as compared to control. The UV spectra of control and treated sodium nitrate are shown in Figure 5. The control sample exhibited two absorbance maxima (λmax ) at 239.4 nm and 341.4 nm. However, the biofield treated sodium nitrate exhibited only one absorbance maxima at 209.2 nm. The UV Wave number (cm-1 ) Frequency Assignment Control Treated 2975 3357 O-H stretching due to water of crystallization 2826-2871 2914-3111 PO-H asymmetrical stretching 2359 2350 PO-H symmetrical stretching 1717-1760 1701-1717 O=P-OH deformation vibration 1159-1356 1132-1260 P=O stretching 1075 1057 P-O stretching 949 953 PO-H bending 548 540 Out of plane P-OH bending Table 1: FT-IR vibrational peaks observed in disodium hydrogen orthophosphate. Wave number (cm-1 ) Frequency AssignmentControl Treated 3478 3445 O-H stretching of H2 O molecules due to water absorption 1788 1648 N=O stretching 1340-1369 1267-1381 NO3 asymmetric stretching 835 827 NO3 symmetric stretching Table 2: FT-IR vibrational peaks observed in sodium nitrate. Figure 3: FT-IR spectra of sodium nitrate (a) control and (b) treated.
  • 4. Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282 Page 4 of 5 Volume 6 • Issue 5 • 1000282 J Chromatogr Sep Tech ISSN: 2157-7064 JCGST, an open access journal absorption occurred due to transition of electron i.e., bonding (π- π* transition) or nonbonding (n-π* transition) from ground state to excited state. Alteration in absorption peak in UV spectrum might refer to alteration in bonding or nonbonding electron transition possibly due to chemical alteration in structure of tested compound [25]. Therefore, it is hypothesized that, biofield treatment may induce the alteration in bonding or nonbonding electron transition of sodium nitrate as compared to control, which might be due to an alteration in Figure 4: UV spectra of disodium hydrogen orthophosphate (a) control and (b) treated. Figure 5: UV spectra of sodium nitrate (a) control and (b) treated. chemical structure of sodium nitrate with respect of control sample. To the best of our knowledge, this is the first report showing an impact of biofield treatment on structural properties like force constant, bond strength, and dipole moment, of disodium hydrogen orthophosphate and sodium nitrate. Conclusion FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the alteration in wavenumber of IR peaks assigned to O=P-H, O=P-OH, P=O, and P-O vibrations as compared to control. Likewise, the biofield treated sodium nitrate also showed the alteration in wavenumber of IR peaks assigned to N=O stretching and NO3 stretching with respect of control. UV spectrum of treated disodium hydrogen orthophosphate showed the alteration in UV absorbance and UV spectrum of treated sodium nitrate showed the alteration in absorption maxima (λmax ), as compared to respective control. Altogether, the FT-IR results showed an impact of biofield treatment on structural properties like force constant, bond strength, and flexibility of treated compounds with respect to control. Likely, the UV result suggests the impact of biofield treatment on bonding and nonbonding electron transition of treated compounds with respect to control. Acknowledgement The authors would like to acknowledge the whole team of MGV Pharmacy College, Nashik for providing the instrumental facility. References 1. Furia TE (1972) Handbook of food additives. (2nd edn) CRC press. 2. Buchel KH, Moretto HH, Werner D (2008) Industrial inorganic chemistry. (2nd edn) Wiley, New York. 3. Pray WS (2006) Nonprescription product therapeutics. Lippincott Williams & Wilkins, USA. 4. Sodium nitrate (2014) The columbia encyclopedia, (6th edn). 5. Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 39: 285-319. 6. Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E (2006) Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med 355: 2792-2793. 7. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90: 1-10. 8. Blessy M, Patel RD, Prajapati PN, Agrawal YK (2014) Development of forced degradation and stability indicating studies of drugs-A review. J Pharm Anal 4: 159-165. 9. Trivedi MK, Patil S (2008) Impact of an external energy on Yersinia enterocolitica [ATCC-23715] in relation to antibiotic susceptibility and biochemical reactions: An experimental study. Internet J Alternat Med 6. 10. Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through biofield changing metal powder characteristics experiments on powder characterisation at a PM Plant. Future Control and Automation LNEE 173: 247- 252. 11. Hasenohrl F (1904) On the theory of radiation in moving bodies. Ann Phys 320: 344-370. 12. Einstein A (1905) Does the inertia of a body depend upon its energy-content? Ann Phys 18: 639-641. 13. Becker RO, Selden G (1985) The body electric: Electromagnetism and the foundation of life. William Morrow and Company Inc, New York. 14. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Phil Trans R Soc Lond 155: 459-512.
  • 5. Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282 Page 5 of 5 Volume 6 • Issue 5 • 1000282 J Chromatogr Sep Tech ISSN: 2157-7064 JCGST, an open access journal 15. Rubik B (2002) The biofield hypothesis: its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717. 16. Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's string galvanometer: the first electrocardiograph. Tex Heart Inst J 35: 174-178. 17. Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479. 18. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powders. J Material Sci Eng S11: 001. 19. Trivedi MK, Patil S., Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144. 20. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth). Biotechnology 11: 154-162. 21. Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9. 22. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222. 23. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105. 24. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita, J Agric Sci 35. 25. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to Spectroscopy (3rd edn), Thomson Learning, Singapore. 26. Stuart BH (2004) Infrared spectroscopy: Fundamentals and applications (analytical techniques in the sciences (AnTs). John Wiley & Sons Ltd, Chichester, UK. 27. Colthup NB (1975) Introduction to infrared and raman spectroscopy. (2nd edn), Academic Press Inc, New York. 28. Portia SAU, Jayanthi K, Ramamoorthy K (2014) Growth and characterization of pure and disodium hydrogen phosphate mixed with potassium dihydrogen phosphate crystal by using slow evaporation technique. Am J Biol Pharm Res 1: 77-82. 29. Hernandez-Paredes J, Glossman-Mitnik D, Esparza-Ponce HE, Alvarez- Ramos ME, Duarte-Moller A (2008) Band structure, optical properties and infrared spectrum of glycine-sodium nitrate crystal. J Mol Struct 875: 295-301. OMICS International: Publication Benefits & Features Unique features: • Increased global visibility of articles through worldwide distribution and indexing • Showcasing recent research output in a timely and updated manner • Special issues on the current trends of scientific research Special features: • 700 Open Access Journals • 50,000 editorial team • Rapid review process • Quality and quick editorial, review and publication processing • Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc • Sharing Option: Social Networking Enabled • Authors, Reviewers and Editors rewarded with online Scientific Credits • Better discount for your subsequent articles Submit your manuscript at: http://www.editorialmanager.com/biochem Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, et al. (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 6: 282. doi:10.4172/2157-7064.1000282