SlideShare a Scribd company logo
1 of 24
PROPERTIES OF OPTICAL
MATERIALS
PRESENTED BY:
HARIS KHAN MM-20
SAAD ARIF MM-26
OMAR SIDDIQUI MM-04
MOIZ ULLAH BAIG MM-36
DANIYAL AHMED MM-33
INTRODUCTION
• Optical materials are substances used to manipulate the flow of light
• Does every material has some optical properties?
• Optical property of a material is defined as its interaction with electro-magnetic radiation in the visible
region.
• Visible light is one form of electromagnetic radiation with wavelengths ranging from 0.39 to 0.77 μm.
2
ELECTROMAGNETIC RADIATIONS
• Electromagnetic spectrum of radiation
spans the wide range from γ-rays with
wavelength as 10-12 m,
• Through x-rays, ultraviolet, visible, infrared,
and finally radio waves with wavelengths as
along as 105 m.
• Visible light is one form of electromagnetic
radiation with wavelengths ranging from
0.39 to 0.77 μm.
• Light can be considered as having waves and
consisting of particles called photons.
3
LIGHT INTERACTION WITH MATERIALS
• Interaction of photons with the electronic or crystal structure of a
material leads to a number of phenomena.
1. The photons may give their energy to the material (absorption);
2. Photons give their energy, but photons of identical energy are
immediately emitted by the material (reflection);
3. Photons may not interact with the material structure (transmission);
4. Or during transmission photons are changes in velocity (refraction).
• The efficiency of a specific material at each task is strongly wavelength
dependent, thus a full understanding of the interaction between light
and matter is vital.
4
CLASSIFICATION
• Materials are classified on the basis of their interaction with visible light in
three categories:
• Materials that are capable of transmitting light with relatively little
absorption and reflection are transparent.
• Those materials through which light is transmitted diffusely; that is, light is
scattered within the interior, to the degree that objects are not clearly
distinguishable when viewed through a specimen of the material are termed
as translucent.
• Materials that are impervious to the transmission of visible light are termed
opaque.
5
OPTICAL PROPERTIES OF METALS
• There are opaque to visible light due to crystallinity
but are transparent to high frequency radiations (x-
rays & gamma radiations)
• The incident radiation having frequencies within the
visible range excites electrons into unoccupied
energy states above the fermi energy
• All frequencies of visible light are absorbed by
metals because of the continuously available empty
electron states, which permit eletron transitions.
• Absorption take place in a very thin outer layer,
usually less than 0.1 um; thus only metallic films
thinner than 0.1 um are capable of transmitting
visible light. 6
OPTICAL PROPERTIES OF NONMETALS
• Non-metallic materials consist of various energy band structures. Thus, all four optical phenomena are
important.
• They may be transparent, translucent or opaque
• Examples are glass, plastics and semiconductors.
7
REFRACTION
• Light that is transmitted into the interior of transparent materials
experiences a decrease in velocity, and, as a result, is bent at the
interface; this phenomenon is termed refraction.
• The index of refraction n of a material is defined as the ratio of the
velocity in a vacuum c to the velocity in the medium v
• Velocity of light in a medium, in terms of the medium’s electric
permittivity and magnetic permeability.
• Relationship between index of refraction and dielectric constant for a
nonmagnetic material, Because most substances are only slightly
magnetic, therefore µ 𝑟= 1
8
REFLECTION
• The reflectivity is defined as the fraction of the incident light that is
reflected at the interface.
• If the material is in other material with refractive index
• Materials with a high index of refraction have a higher reflectivity than
materials with a low index. Because the index of refraction varies with the
wavelength of the photons, so does the reflectivity.
• In metals, the reflectivity is typically on the order of 0.90-0.95, whereas
for glasses it is close to 0.05. The high reflectivity of metals is one reason
that they are opaque. High reflectivity is desired in many applications
including mirrors, coatings on glasses, etc.
9
ABSORPTION
• The fraction of beam that is absorbed is related to the thickness of the materials and the manner in which the
photons interact with the material’s structure.
• Absorption occurs by two mechanisms: rayleigh scattering and compton scattering.
• Rayleigh scattering: where photon interacts with the electrons, it is deflected without any change in its energy. This is
significant for high atomic number atoms and low photon energies. Ex.: Blue color in the sunlight gets scattered more
than other colors in the visible spectrum and thus making sky look blue.
• Compton scattering – interacting photon knocks out an electron loosing some of its energy during the process. This is
also significant for high atomic number atoms and low photon energies. Ex.: Solar cells
10
TRANSMISSION
• The fraction of light beam that is not reflected or
absorbed is transmitted through the material.
• This transmission depends on the losses that are
incurred by absorption and reflection.
• For an incident beam of intensity 𝐼0 that impinges
on the front surface of a specimen of thickness l
and absorption coefficient β, the transmitted
intensity 𝐼 𝑇 at the back face it is
11
COLOR, OPACITY & TRANSLUCENCY
• The color discerned is a result of the combination of wavelengths that are
transmitted
• If absorption is uniform for all visible wavelengths, the material appears
colorless
• Examples include high-purity inorganic glasses and high-purity and single-
crystal diamonds and sapphire
• Opacity and translucency depends to a great degree on their internal
reflectance and transmittance characteristics.
• Many materials that are intrinsically transparent may be made translucent
or even opaque because of interior reflection and refraction
• For intrinsic polymers (without additives and impurities), the degree of
translucency is influenced primarily by the extent of crystallinity.
Photograph showing the light transmittance of three aluminum
oxide specimens. From left to right; single-crystal material
(sapphire), which is transparent; a polycrystalline and fully dense
(nonporous) material, which is translucent; and a polycrystalline
material that contains approximately 5% porosity, which is
opaque.
12
APPLICATIONS
• Light interacts with a material in many ways.
• Depending on the material, its crystal-/micro-structure, and also on the characteristics of incident light,
there are many peculiar phenomena occurs, which are known as optical phenomena.
• These include:
1. Luminescence
2. Lasers
3. Photo-conductivity
4. Optical fibers
• All these find quite many applications in technology for every day life
13
LUMINESCENCE
• Materials are capable of absorbing energy and then reemitting visible light in a
phenomenon called luminescence.
• Based on source for electron excitation, luminescence is three types: photo-
luminescence, cathode-luminescence, and electro-luminescence.
• When light is reemitted in less than a second after excitation, the phenomenon
is called fluorescence (photo-luminescence).
• For longer reemission times, the term phosphorescence is used (cathodic-
luminescence).
• Electro-luminescence is the phenomenon whereby light is emitted as a result of
electron–hole recombination events that are induced in a forward-biased
diode.
• The device that experiences electroluminescence is the light-emitting diode
(led). 14
PHOTO-LUMINESCENCE
• Photo-luminescence occurs in fluorescent lamps.
• Ultra-violet radiation from low-pressure mercury arc is
converted to visible light by calcium halo-phosphate
phosphor (ca10f2p6o24).
• In commercial lamps, about 20% of f - ions are replaced
with Cl ions.
• Antimony, Sb3+ , ions provide a blue emission while
manganese, Mn2+ , ions provide an orange-red
emission band.
15
CATHODE-LUMINESCENCE
• Cathode-luminescence is produced by an energized cathode
which generates a beam of high-energy bombarding
electrons. Ex.: Applications of this include electron
microscope; cathode-ray oscilloscope; color television
screens.
• The modern televisions have very narrow, about 0.25 mm
wide, vertical stripes of red-, green-, and blue- emitting
phosphors deposited on the inner surface of the screens.
• Commercial phosphors for different colors are: red – yttrium
oxy-sulfide (y2o2s) with 3% europium (eu); green – (zn,cd)s
with a cu+ acceptor and al3+ donor; blue – zinc sulfide (zns)
with ag+ acceptor and cl- donor.
Cathodoluminescence image of calcite crystals lining a
fracture, showing very scale growth zoning highlighted by
contrasting luminescence characteristics.
16
ELECTRO-LUMINESCENCE
• Electro-luminescence occurs in devices with p-n rectifying
junctions which are stimulated by an externally applied
voltage.
• When a forward biased voltage is applied across the device,
electrons and holes recombine at the junction and emit
photons in the visible range (mono-chromatic light i.e. singe
color). These diodes are called light emitting diodes (LEDs).
• LEDs emit light of many colors, from red to violet, depending
on the composition of the semiconductor material used. Ex.:
GaAs, GaP, GaAlAs, and GaAsP are typical materials for LEDs.
17
LASER
• Laser is the acronym for light amplification by stimulated emission
of radiation
• All the radiative electron transitions are spontaneous; that an
electron falls from a high energy state to a lower one without any
external provocation. These transition events occur independently
of one another and at random times, producing radiation that is
incoherent.
• With lasers, however, coherent light is generated by electron
transitions initiated by an external stimulus
18
SCHEMATIC REPRESENTATION FOR A RUBY LASER
(a) The chromium ions before excitation.
(b) Electrons in some chromium ions are excited into higher energy
states by the xenon light flash.
(c) Emission from metastable electron states is initiated or stimulated by
photons that are spontaneously emitted.
(d) Upon reflection from the silvered ends, the photons continue to
stimulate emissions as they traverse the rod length.
(e) The coherent and intense beam is finally emitted through the
partially silvered end.
19
SCHEMATIC REPRESENTATIONS FOR A
SEMICONDUCTOR LASER
Semiconducting materials such as gallium arsenide may also be used
as lasers that are employed in compact disc players and in the
modern telecommunications industry
(a) One excited electron recombines with a hole; the energy
associated with this recombination is emitted as a photon of light.
(b) The photon emitted in (a) stimulates the recombination of
another excited electron and hole, resulting in the emission of
another photon of light.
(c) The two photons emitted in (a) and (b), having the same
wavelength and being in phase with one another, are reflected by the
fully reflecting mirror back into the laser semiconductor. In addition,
new excited electrons and new holes are generated by a current that
passes through the semiconductor.
(d) and (e) In proceeding through the semiconductor, more excited
electron–hole recombinations are stimulated, which give rise to
additional photons of light that also become part of the
monochromatic and coherent laser beam.
(f) Some portion of this laser beam escapes through the partially
reflecting mirror at one end of the semiconducting material. 20
PHOTOCONDUCTIVITY
• Photoconductivity is the phenomenon whereby the semiconductors are
bombarded by photons and results in the creation of electron-hole pairs
that can be used to generate current.
• It is different from photo-electric effect in the sense that an electron-hole
pair is generated whose energy is related to the band gap energy instead
of free electron alone whose energy is related to the Fermi level.
• The current produced in photo-conductivity is directly related to the
incident light intensity.
• This phenomenon is utilized in photographic light meters. Cadmium
sulfide (CdS) is commonly used for the detection of visible light, as in light
meters.
• Photo-conductivity is also the underlying principle of the photo-voltaic
cell, known to common man as solar cell, used for conversion of solar
energy into electricity
21
OPTICAL FIBERS
• Use of fiber-optic technology in our modern telecommunications provides for the transmission of
information that is interference free, rapid, and intense.
• Encoder; the information in electronic form must first be digitized into bits, that is, 1s and 0s.
• Electrical-to-optical converter; convert this electrical signal into an optical (photonic) one. This
converter is normally a semiconductor laser, which emits monochromatic and coherent light.
• Fiber-optic cable; these photonic pulse signals are then fed into and carried through it to the
receiving end.
• Repeater; for long transmissions, they may be required; these are devices that amplify and
regenerate the signal.
• Decoder; at the receiving end the photonic signal is reconverted to an electronic one.
22
PARTS OF OPTICAL FIBER
• An optical fiber is composed of the following elements:
1. A core through which the pulses of light propagate.
2. The cladding, which provides for total internal reflection and
containment of the light beam within the core .
3. The coating, which protects the core and cladding from damage.
• Internal reflection is accomplished by varying the index of refraction of
the core and cladding glass materials.
• The indices of refraction are selected such that ;
𝑛 𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑑 < 𝑛 𝑐𝑜𝑟
• Impurities such as boron oxide (B2O3) or germanium dioxide (GeO2) are
added to the silica glass.
23
REFERENCES
• Fox, M., Optical Properties of Solids, Oxford University Press, New York, 2001.
• Svelto, O., Principles of Lasers, 4th edition, Springer, New York, 1998
• Materials Science and Engineering An Introduction, 8th edition, William D. Callister, Jr., David G.
Rethwisch
24

More Related Content

What's hot

Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructuresGandhimathi Muthuselvam
 
Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its typesMuhammadWajid37
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materialskrishslide
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Sajjad Ullah
 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)faheem maqsood
 
Surface defects in crystals
Surface defects in crystalsSurface defects in crystals
Surface defects in crystalsARUN K S
 
Float Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETFloat Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETA. S. M. Jannatul Islam
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsZaahir Salam
 
Optical properties of 2D materials
Optical properties of 2D materialsOptical properties of 2D materials
Optical properties of 2D materialsMariaAshraf25
 

What's hot (20)

DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
 
Interband and intraband electronic transition in quantum nanostructures
Interband and intraband  electronic transition in quantum nanostructuresInterband and intraband  electronic transition in quantum nanostructures
Interband and intraband electronic transition in quantum nanostructures
 
Solar cell
Solar cellSolar cell
Solar cell
 
Solar cell
 Solar cell Solar cell
Solar cell
 
Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its types
 
Optical Properties of Solids
Optical Properties of SolidsOptical Properties of Solids
Optical Properties of Solids
 
Crystal Defects
Crystal DefectsCrystal Defects
Crystal Defects
 
sol gel method
sol gel methodsol gel method
sol gel method
 
Four probe-method
Four probe-methodFour probe-method
Four probe-method
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materials
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
 
MAGNETIC PROPERTIES
MAGNETIC PROPERTIESMAGNETIC PROPERTIES
MAGNETIC PROPERTIES
 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
Surface defects in crystals
Surface defects in crystalsSurface defects in crystals
Surface defects in crystals
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 
Float Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETFloat Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUET
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
 
Optical properties of 2D materials
Optical properties of 2D materialsOptical properties of 2D materials
Optical properties of 2D materials
 
Magnetic properties of materials
Magnetic properties of materialsMagnetic properties of materials
Magnetic properties of materials
 

Similar to Properties of optical materials

ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )Preeti Choudhary
 
Electromagnetic Spectrum-Dr AZ UET.pptx
Electromagnetic Spectrum-Dr AZ UET.pptxElectromagnetic Spectrum-Dr AZ UET.pptx
Electromagnetic Spectrum-Dr AZ UET.pptxssuser9c8c75
 
Optical communication unit 1
Optical communication unit 1Optical communication unit 1
Optical communication unit 1selvalakshmi24
 
ENG2000_10_optic_v1 (1).pptx
ENG2000_10_optic_v1 (1).pptxENG2000_10_optic_v1 (1).pptx
ENG2000_10_optic_v1 (1).pptxdondon880857
 
Laser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologyLaser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologykaroline Enoch
 
B.Tech ECE IV Year I Sem, MWOC UNIT 5 Optical CommunicationsUNIT 5 MWOC.pptx
B.Tech ECE IV Year I Sem, MWOC UNIT 5  Optical CommunicationsUNIT 5 MWOC.pptxB.Tech ECE IV Year I Sem, MWOC UNIT 5  Optical CommunicationsUNIT 5 MWOC.pptx
B.Tech ECE IV Year I Sem, MWOC UNIT 5 Optical CommunicationsUNIT 5 MWOC.pptxjanakiravi
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYSalmanLatif14
 
Spectrophotometry.pptx
Spectrophotometry.pptxSpectrophotometry.pptx
Spectrophotometry.pptxRafeeqCM1
 
uv -visible spectroscopy
 uv -visible spectroscopy uv -visible spectroscopy
uv -visible spectroscopykeshav pai
 
New ppt of uv visible
New ppt of uv visibleNew ppt of uv visible
New ppt of uv visiblekeshav pai
 
Radiation physics
Radiation physicsRadiation physics
Radiation physicsDr Kumar
 
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdf
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdfRadiology_Equipment_Lec-2_Dr. Emad Taleb.pdf
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdfEmadTaleb1
 
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptx
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptxECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptx
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptxIdrisJeffreyManguera
 

Similar to Properties of optical materials (20)

ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
 
EEM MODULE 5.pptx
EEM MODULE 5.pptxEEM MODULE 5.pptx
EEM MODULE 5.pptx
 
Electromagnetic Spectrum-Dr AZ UET.pptx
Electromagnetic Spectrum-Dr AZ UET.pptxElectromagnetic Spectrum-Dr AZ UET.pptx
Electromagnetic Spectrum-Dr AZ UET.pptx
 
Optical communication unit 1
Optical communication unit 1Optical communication unit 1
Optical communication unit 1
 
ENG2000_10_optic_v1 (1).pptx
ENG2000_10_optic_v1 (1).pptxENG2000_10_optic_v1 (1).pptx
ENG2000_10_optic_v1 (1).pptx
 
Laser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologyLaser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biology
 
B.Tech ECE IV Year I Sem, MWOC UNIT 5 Optical CommunicationsUNIT 5 MWOC.pptx
B.Tech ECE IV Year I Sem, MWOC UNIT 5  Optical CommunicationsUNIT 5 MWOC.pptxB.Tech ECE IV Year I Sem, MWOC UNIT 5  Optical CommunicationsUNIT 5 MWOC.pptx
B.Tech ECE IV Year I Sem, MWOC UNIT 5 Optical CommunicationsUNIT 5 MWOC.pptx
 
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPYFOURIER TRANSFORM - INFRARED SPECTROSCOPY
FOURIER TRANSFORM - INFRARED SPECTROSCOPY
 
(Optical_Properties).pptx
(Optical_Properties).pptx(Optical_Properties).pptx
(Optical_Properties).pptx
 
SPECTROSCOPY
SPECTROSCOPYSPECTROSCOPY
SPECTROSCOPY
 
Spectrophotometry.pptx
Spectrophotometry.pptxSpectrophotometry.pptx
Spectrophotometry.pptx
 
U.V Spectroscopy.
U.V Spectroscopy.U.V Spectroscopy.
U.V Spectroscopy.
 
Optical Fiber
Optical FiberOptical Fiber
Optical Fiber
 
uv -visible spectroscopy
 uv -visible spectroscopy uv -visible spectroscopy
uv -visible spectroscopy
 
New ppt of uv visible
New ppt of uv visibleNew ppt of uv visible
New ppt of uv visible
 
Radiation physics
Radiation physicsRadiation physics
Radiation physics
 
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdf
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdfRadiology_Equipment_Lec-2_Dr. Emad Taleb.pdf
Radiology_Equipment_Lec-2_Dr. Emad Taleb.pdf
 
Uv visible spectroscopy
Uv visible spectroscopyUv visible spectroscopy
Uv visible spectroscopy
 
Spectroscopy
Spectroscopy   Spectroscopy
Spectroscopy
 
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptx
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptxECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptx
ECEP433 FIBER OPTIC COMMUNICATION SYSTEMS.pptx
 

More from SAAD ARIF

Temperature Time Transformation Diagram (TTT Diagram)
Temperature Time Transformation Diagram (TTT Diagram)Temperature Time Transformation Diagram (TTT Diagram)
Temperature Time Transformation Diagram (TTT Diagram)SAAD ARIF
 
Ergonomics (A safer and healthier environment practise for workers)
Ergonomics (A safer and healthier environment practise for workers)Ergonomics (A safer and healthier environment practise for workers)
Ergonomics (A safer and healthier environment practise for workers)SAAD ARIF
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...SAAD ARIF
 
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...Magnesium and-its-alloys, properties, structures, effect of alloying, applica...
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...SAAD ARIF
 
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...Magnesium and-its-alloys, structures, properties, effects of alloying, applic...
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...SAAD ARIF
 
Glass, properties, manufacturing, applications, advance techniques
Glass, properties, manufacturing, applications, advance techniquesGlass, properties, manufacturing, applications, advance techniques
Glass, properties, manufacturing, applications, advance techniquesSAAD ARIF
 
Travelling: An important segment in life?
 Travelling: An important segment in life? Travelling: An important segment in life?
Travelling: An important segment in life?SAAD ARIF
 

More from SAAD ARIF (7)

Temperature Time Transformation Diagram (TTT Diagram)
Temperature Time Transformation Diagram (TTT Diagram)Temperature Time Transformation Diagram (TTT Diagram)
Temperature Time Transformation Diagram (TTT Diagram)
 
Ergonomics (A safer and healthier environment practise for workers)
Ergonomics (A safer and healthier environment practise for workers)Ergonomics (A safer and healthier environment practise for workers)
Ergonomics (A safer and healthier environment practise for workers)
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
 
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...Magnesium and-its-alloys, properties, structures, effect of alloying, applica...
Magnesium and-its-alloys, properties, structures, effect of alloying, applica...
 
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...Magnesium and-its-alloys, structures, properties, effects of alloying, applic...
Magnesium and-its-alloys, structures, properties, effects of alloying, applic...
 
Glass, properties, manufacturing, applications, advance techniques
Glass, properties, manufacturing, applications, advance techniquesGlass, properties, manufacturing, applications, advance techniques
Glass, properties, manufacturing, applications, advance techniques
 
Travelling: An important segment in life?
 Travelling: An important segment in life? Travelling: An important segment in life?
Travelling: An important segment in life?
 

Recently uploaded

Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 

Recently uploaded (20)

Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 

Properties of optical materials

  • 1. PROPERTIES OF OPTICAL MATERIALS PRESENTED BY: HARIS KHAN MM-20 SAAD ARIF MM-26 OMAR SIDDIQUI MM-04 MOIZ ULLAH BAIG MM-36 DANIYAL AHMED MM-33
  • 2. INTRODUCTION • Optical materials are substances used to manipulate the flow of light • Does every material has some optical properties? • Optical property of a material is defined as its interaction with electro-magnetic radiation in the visible region. • Visible light is one form of electromagnetic radiation with wavelengths ranging from 0.39 to 0.77 μm. 2
  • 3. ELECTROMAGNETIC RADIATIONS • Electromagnetic spectrum of radiation spans the wide range from γ-rays with wavelength as 10-12 m, • Through x-rays, ultraviolet, visible, infrared, and finally radio waves with wavelengths as along as 105 m. • Visible light is one form of electromagnetic radiation with wavelengths ranging from 0.39 to 0.77 μm. • Light can be considered as having waves and consisting of particles called photons. 3
  • 4. LIGHT INTERACTION WITH MATERIALS • Interaction of photons with the electronic or crystal structure of a material leads to a number of phenomena. 1. The photons may give their energy to the material (absorption); 2. Photons give their energy, but photons of identical energy are immediately emitted by the material (reflection); 3. Photons may not interact with the material structure (transmission); 4. Or during transmission photons are changes in velocity (refraction). • The efficiency of a specific material at each task is strongly wavelength dependent, thus a full understanding of the interaction between light and matter is vital. 4
  • 5. CLASSIFICATION • Materials are classified on the basis of their interaction with visible light in three categories: • Materials that are capable of transmitting light with relatively little absorption and reflection are transparent. • Those materials through which light is transmitted diffusely; that is, light is scattered within the interior, to the degree that objects are not clearly distinguishable when viewed through a specimen of the material are termed as translucent. • Materials that are impervious to the transmission of visible light are termed opaque. 5
  • 6. OPTICAL PROPERTIES OF METALS • There are opaque to visible light due to crystallinity but are transparent to high frequency radiations (x- rays & gamma radiations) • The incident radiation having frequencies within the visible range excites electrons into unoccupied energy states above the fermi energy • All frequencies of visible light are absorbed by metals because of the continuously available empty electron states, which permit eletron transitions. • Absorption take place in a very thin outer layer, usually less than 0.1 um; thus only metallic films thinner than 0.1 um are capable of transmitting visible light. 6
  • 7. OPTICAL PROPERTIES OF NONMETALS • Non-metallic materials consist of various energy band structures. Thus, all four optical phenomena are important. • They may be transparent, translucent or opaque • Examples are glass, plastics and semiconductors. 7
  • 8. REFRACTION • Light that is transmitted into the interior of transparent materials experiences a decrease in velocity, and, as a result, is bent at the interface; this phenomenon is termed refraction. • The index of refraction n of a material is defined as the ratio of the velocity in a vacuum c to the velocity in the medium v • Velocity of light in a medium, in terms of the medium’s electric permittivity and magnetic permeability. • Relationship between index of refraction and dielectric constant for a nonmagnetic material, Because most substances are only slightly magnetic, therefore µ 𝑟= 1 8
  • 9. REFLECTION • The reflectivity is defined as the fraction of the incident light that is reflected at the interface. • If the material is in other material with refractive index • Materials with a high index of refraction have a higher reflectivity than materials with a low index. Because the index of refraction varies with the wavelength of the photons, so does the reflectivity. • In metals, the reflectivity is typically on the order of 0.90-0.95, whereas for glasses it is close to 0.05. The high reflectivity of metals is one reason that they are opaque. High reflectivity is desired in many applications including mirrors, coatings on glasses, etc. 9
  • 10. ABSORPTION • The fraction of beam that is absorbed is related to the thickness of the materials and the manner in which the photons interact with the material’s structure. • Absorption occurs by two mechanisms: rayleigh scattering and compton scattering. • Rayleigh scattering: where photon interacts with the electrons, it is deflected without any change in its energy. This is significant for high atomic number atoms and low photon energies. Ex.: Blue color in the sunlight gets scattered more than other colors in the visible spectrum and thus making sky look blue. • Compton scattering – interacting photon knocks out an electron loosing some of its energy during the process. This is also significant for high atomic number atoms and low photon energies. Ex.: Solar cells 10
  • 11. TRANSMISSION • The fraction of light beam that is not reflected or absorbed is transmitted through the material. • This transmission depends on the losses that are incurred by absorption and reflection. • For an incident beam of intensity 𝐼0 that impinges on the front surface of a specimen of thickness l and absorption coefficient β, the transmitted intensity 𝐼 𝑇 at the back face it is 11
  • 12. COLOR, OPACITY & TRANSLUCENCY • The color discerned is a result of the combination of wavelengths that are transmitted • If absorption is uniform for all visible wavelengths, the material appears colorless • Examples include high-purity inorganic glasses and high-purity and single- crystal diamonds and sapphire • Opacity and translucency depends to a great degree on their internal reflectance and transmittance characteristics. • Many materials that are intrinsically transparent may be made translucent or even opaque because of interior reflection and refraction • For intrinsic polymers (without additives and impurities), the degree of translucency is influenced primarily by the extent of crystallinity. Photograph showing the light transmittance of three aluminum oxide specimens. From left to right; single-crystal material (sapphire), which is transparent; a polycrystalline and fully dense (nonporous) material, which is translucent; and a polycrystalline material that contains approximately 5% porosity, which is opaque. 12
  • 13. APPLICATIONS • Light interacts with a material in many ways. • Depending on the material, its crystal-/micro-structure, and also on the characteristics of incident light, there are many peculiar phenomena occurs, which are known as optical phenomena. • These include: 1. Luminescence 2. Lasers 3. Photo-conductivity 4. Optical fibers • All these find quite many applications in technology for every day life 13
  • 14. LUMINESCENCE • Materials are capable of absorbing energy and then reemitting visible light in a phenomenon called luminescence. • Based on source for electron excitation, luminescence is three types: photo- luminescence, cathode-luminescence, and electro-luminescence. • When light is reemitted in less than a second after excitation, the phenomenon is called fluorescence (photo-luminescence). • For longer reemission times, the term phosphorescence is used (cathodic- luminescence). • Electro-luminescence is the phenomenon whereby light is emitted as a result of electron–hole recombination events that are induced in a forward-biased diode. • The device that experiences electroluminescence is the light-emitting diode (led). 14
  • 15. PHOTO-LUMINESCENCE • Photo-luminescence occurs in fluorescent lamps. • Ultra-violet radiation from low-pressure mercury arc is converted to visible light by calcium halo-phosphate phosphor (ca10f2p6o24). • In commercial lamps, about 20% of f - ions are replaced with Cl ions. • Antimony, Sb3+ , ions provide a blue emission while manganese, Mn2+ , ions provide an orange-red emission band. 15
  • 16. CATHODE-LUMINESCENCE • Cathode-luminescence is produced by an energized cathode which generates a beam of high-energy bombarding electrons. Ex.: Applications of this include electron microscope; cathode-ray oscilloscope; color television screens. • The modern televisions have very narrow, about 0.25 mm wide, vertical stripes of red-, green-, and blue- emitting phosphors deposited on the inner surface of the screens. • Commercial phosphors for different colors are: red – yttrium oxy-sulfide (y2o2s) with 3% europium (eu); green – (zn,cd)s with a cu+ acceptor and al3+ donor; blue – zinc sulfide (zns) with ag+ acceptor and cl- donor. Cathodoluminescence image of calcite crystals lining a fracture, showing very scale growth zoning highlighted by contrasting luminescence characteristics. 16
  • 17. ELECTRO-LUMINESCENCE • Electro-luminescence occurs in devices with p-n rectifying junctions which are stimulated by an externally applied voltage. • When a forward biased voltage is applied across the device, electrons and holes recombine at the junction and emit photons in the visible range (mono-chromatic light i.e. singe color). These diodes are called light emitting diodes (LEDs). • LEDs emit light of many colors, from red to violet, depending on the composition of the semiconductor material used. Ex.: GaAs, GaP, GaAlAs, and GaAsP are typical materials for LEDs. 17
  • 18. LASER • Laser is the acronym for light amplification by stimulated emission of radiation • All the radiative electron transitions are spontaneous; that an electron falls from a high energy state to a lower one without any external provocation. These transition events occur independently of one another and at random times, producing radiation that is incoherent. • With lasers, however, coherent light is generated by electron transitions initiated by an external stimulus 18
  • 19. SCHEMATIC REPRESENTATION FOR A RUBY LASER (a) The chromium ions before excitation. (b) Electrons in some chromium ions are excited into higher energy states by the xenon light flash. (c) Emission from metastable electron states is initiated or stimulated by photons that are spontaneously emitted. (d) Upon reflection from the silvered ends, the photons continue to stimulate emissions as they traverse the rod length. (e) The coherent and intense beam is finally emitted through the partially silvered end. 19
  • 20. SCHEMATIC REPRESENTATIONS FOR A SEMICONDUCTOR LASER Semiconducting materials such as gallium arsenide may also be used as lasers that are employed in compact disc players and in the modern telecommunications industry (a) One excited electron recombines with a hole; the energy associated with this recombination is emitted as a photon of light. (b) The photon emitted in (a) stimulates the recombination of another excited electron and hole, resulting in the emission of another photon of light. (c) The two photons emitted in (a) and (b), having the same wavelength and being in phase with one another, are reflected by the fully reflecting mirror back into the laser semiconductor. In addition, new excited electrons and new holes are generated by a current that passes through the semiconductor. (d) and (e) In proceeding through the semiconductor, more excited electron–hole recombinations are stimulated, which give rise to additional photons of light that also become part of the monochromatic and coherent laser beam. (f) Some portion of this laser beam escapes through the partially reflecting mirror at one end of the semiconducting material. 20
  • 21. PHOTOCONDUCTIVITY • Photoconductivity is the phenomenon whereby the semiconductors are bombarded by photons and results in the creation of electron-hole pairs that can be used to generate current. • It is different from photo-electric effect in the sense that an electron-hole pair is generated whose energy is related to the band gap energy instead of free electron alone whose energy is related to the Fermi level. • The current produced in photo-conductivity is directly related to the incident light intensity. • This phenomenon is utilized in photographic light meters. Cadmium sulfide (CdS) is commonly used for the detection of visible light, as in light meters. • Photo-conductivity is also the underlying principle of the photo-voltaic cell, known to common man as solar cell, used for conversion of solar energy into electricity 21
  • 22. OPTICAL FIBERS • Use of fiber-optic technology in our modern telecommunications provides for the transmission of information that is interference free, rapid, and intense. • Encoder; the information in electronic form must first be digitized into bits, that is, 1s and 0s. • Electrical-to-optical converter; convert this electrical signal into an optical (photonic) one. This converter is normally a semiconductor laser, which emits monochromatic and coherent light. • Fiber-optic cable; these photonic pulse signals are then fed into and carried through it to the receiving end. • Repeater; for long transmissions, they may be required; these are devices that amplify and regenerate the signal. • Decoder; at the receiving end the photonic signal is reconverted to an electronic one. 22
  • 23. PARTS OF OPTICAL FIBER • An optical fiber is composed of the following elements: 1. A core through which the pulses of light propagate. 2. The cladding, which provides for total internal reflection and containment of the light beam within the core . 3. The coating, which protects the core and cladding from damage. • Internal reflection is accomplished by varying the index of refraction of the core and cladding glass materials. • The indices of refraction are selected such that ; 𝑛 𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑑 < 𝑛 𝑐𝑜𝑟 • Impurities such as boron oxide (B2O3) or germanium dioxide (GeO2) are added to the silica glass. 23
  • 24. REFERENCES • Fox, M., Optical Properties of Solids, Oxford University Press, New York, 2001. • Svelto, O., Principles of Lasers, 4th edition, Springer, New York, 1998 • Materials Science and Engineering An Introduction, 8th edition, William D. Callister, Jr., David G. Rethwisch 24