SlideShare a Scribd company logo
1 of 11
The James Webb Space Telescope
Introddvasvauction
 The James Webb Ssadapace Telescope
 The James Webb Space Telescope, also called Webb or JWST, is
a large, space-based observatory, optimized for infrared
wavelengths, which will complement and extend the discoveries
of the Hubble Space Telescope. It will have longer wavelength
coverage and greatly improved sensitivity. The longer
wavelengths enable Webvsdavdab to look further back in time to
find the first galaxies that formed in the early Universe, and to
peer inside dust clouds where stars and planetary systems are
forming today. It is scheduled for launch in 2013.
Jamedvsaadss E .Webb
 This space-based observatory is named after James E. Webb (1906- 1992),
NASA's second administrator. Webb is best known for leading Apollo, a
series of lunar exvdsaasdvploration programs that landed the first humans on
the Moon. However, he also initiated a vigorous space science program that
was responsible for more than 75 launches during his tenure, including
America's first interplanetary explorers.
How will dsavad be better?
 Webb is designed to look deeper into space to see the earliest stars and
galaxies that formed in the Universe and to look deep into nearby dust
clouds to study the formation of stars and planets. In order to do this, Webb
will have a much larger primary vdsavsvdsvamirror than Hubble (2.5 times
larger in diameter, or about 6 times larger in area), giving it more light-
gathering power. It also will have infrared instruments with longer
wavelength coverage and greatly improved sensitivity than Hubble. Finally,
Webb will operate much farther from Earth, maintaining its extremely cold
operating temperature, stable pointing and higher observing efficiency than
with the Earth-orbiting Hubble.
How long will the mission last?
 Webb will have a mission lifetime of not less than 5-1/2 years after launch,
with the goal of having a lifetime greater than 10 years. The lifetime is
limited by the amount of fuel used for maintaining the orbit, and by the
testing and redundancy that ensures that everything on the spacecraft will
work. Webb will carry fuel for a 10-year lifetime; the project will do mission
assurance testing to guarantee 5 years of scientific operations starting at the
end of the commissioning period 6 months after launch.
Servicing Webb
 Hubble is in low-Earth orbit, located approximately 600 kilometers away
from the Earth, and is therefore readily accessible for servicing using the
Space Shuttle. Webb will be operated at the second Sun-Earth Lagrange
point, located approximately 1.5 million kilometers away from the Earth,
and will therefore be beyond the reach of any manned vehicle currently
being planned for the next decade. In the early days of the Webb project,
studies were conducted to evaluate the benefits, practicality and cost of
servicing Webb either by human space flight, by robotic missions, or by
some combination such as retrieval to low-Earth orbit. Those studies
concluded that the potential benefits of servicing do not offset the increases
in mission complexity, mass and cost that would be required to make Webb
serviceable, or to conduct the servicing mission itself.
Size of the Webb
 The diameter of the primary mirror, will be about 6.5 meters (21 feet) for
Webb. This is about 2.7 times larger than the diameter of Hubble, or about 6
times larger in area. The Webb will have a mass of approximately 6,500 kg,
with a weight of 14,300 lbs on Earth (in orbit, everything is weightless), a
little more than half the mass of Hubble. The largest structure of Webb will
be its sunshade, which must be able to shield the deployed primary mirror
and the tower that holds the secondary mirror. The sunshade is
approximately the size of a tennis court.
Communication
 The Webb will send science and engineering data to Earth using a high
frequency radio transmitter. Large radio antennas that are part of the NASA
Deep Space Network will receive the signals and forward them to the Webb
Science and Operation Center at the Space Telescope Science Institute in
Baltimore, Maryland, USA.
Orbit
 Webb is going to the second Lagrange (L2) point, which is 1 million miles (1.5
million km) away from Earth, and it just takes a while to travel such a distance.
During the trip to L2, Webb will be fully deployed, will cool down to its operating
temperature, and its systems will begin to be checked out and adjusted. These
commissioning procedures will continue until 6 months after launch, at which point
routine scientific operations will begin.
 Webb will observe primarily the infrared light from faint and very distant objects. To
avoid swamping the very faint astronomical signals with radiation from the
telescope, the telescope and its instruments must be very cold.
 Webb's operating temperature is less than 50 degrees above absolute zero: 50 Kelvin,
(-225 Celcius, or -370 deg F). Therefore, Webb has a large shield that blocks the
light from the Sun, Earth, and Moon, which otherwise would heat up the telescope,
and interfere with the observations. To have this work, Webb will be in an orbit
where all three of these objects are in about the same direction; the second Lagrange
point (L2) of the Sun-Earth system has this property.
How far will Webb look?
 One of the main goals of Webb is to detect some of the very first star formation in
the Universe. This is thought to happen somewhere between redshift 15 and 30. At
those redshifts, the Universe was only one or two percent of its current age. The
Universe is now 13.7 billion years old, and these redshifts correspond to 100 to 250
million years after the Big Bang. The light from the first galaxies has traveled for
about 13.5 billion years, over a distance of 13.5 billion light-years.
Resources
 http://www.jwst.nasa.gov/

More Related Content

Similar to jameswebb.ppt

12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
todd991
 
Essay About Edwin Hubble Biography
Essay About Edwin Hubble BiographyEssay About Edwin Hubble Biography
Essay About Edwin Hubble Biography
Jill Ailts
 
Hubble Space telescope
Hubble Space telescopeHubble Space telescope
Hubble Space telescope
Bianca Nowak
 
Chapter 22 – astronomical technology
Chapter 22 – astronomical technologyChapter 22 – astronomical technology
Chapter 22 – astronomical technology
Annie cox
 
Grade 6 Astronomy
Grade 6 AstronomyGrade 6 Astronomy
Grade 6 Astronomy
Andrew Beck
 
Grade 6 Astronomy
Grade 6 AstronomyGrade 6 Astronomy
Grade 6 Astronomy
Andrew Beck
 
hubblespacetelescope-150407101134-conversion-gate01.pdf
hubblespacetelescope-150407101134-conversion-gate01.pdfhubblespacetelescope-150407101134-conversion-gate01.pdf
hubblespacetelescope-150407101134-conversion-gate01.pdf
Noemar Soria
 
20 years of hubble space telescope
20 years of hubble space telescope20 years of hubble space telescope
20 years of hubble space telescope
jemsystems
 

Similar to jameswebb.ppt (20)

Hubble Space telescope
Hubble Space telescopeHubble Space telescope
Hubble Space telescope
 
Hubble telescope [Dev N Patel]
Hubble telescope [Dev N Patel]Hubble telescope [Dev N Patel]
Hubble telescope [Dev N Patel]
 
12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
12-19 Notes Compare and contrast the Hubble Space Telescope with James.docx
 
Essay About Edwin Hubble Biography
Essay About Edwin Hubble BiographyEssay About Edwin Hubble Biography
Essay About Edwin Hubble Biography
 
Satellites, Space Transports, and Space Probes
Satellites, Space Transports, and Space ProbesSatellites, Space Transports, and Space Probes
Satellites, Space Transports, and Space Probes
 
Hubble Space telescope
Hubble Space telescopeHubble Space telescope
Hubble Space telescope
 
Chapter 22 – astronomical technology
Chapter 22 – astronomical technologyChapter 22 – astronomical technology
Chapter 22 – astronomical technology
 
JWST
JWSTJWST
JWST
 
Reimagining Big Bang with James Webb Space Telescope
Reimagining Big Bang with James Webb Space TelescopeReimagining Big Bang with James Webb Space Telescope
Reimagining Big Bang with James Webb Space Telescope
 
PodHandler.pptx
PodHandler.pptxPodHandler.pptx
PodHandler.pptx
 
How old and the expansion of the universe
How old and the expansion of the universeHow old and the expansion of the universe
How old and the expansion of the universe
 
Grade 6 Astronomy
Grade 6 AstronomyGrade 6 Astronomy
Grade 6 Astronomy
 
Grade 6 Astronomy
Grade 6 AstronomyGrade 6 Astronomy
Grade 6 Astronomy
 
hubblespacetelescope-150407101134-conversion-gate01.pdf
hubblespacetelescope-150407101134-conversion-gate01.pdfhubblespacetelescope-150407101134-conversion-gate01.pdf
hubblespacetelescope-150407101134-conversion-gate01.pdf
 
Hubble space telescope
Hubble space telescopeHubble space telescope
Hubble space telescope
 
Presentation Evidence for the Big Bang_p.ppt
Presentation Evidence for the Big Bang_p.pptPresentation Evidence for the Big Bang_p.ppt
Presentation Evidence for the Big Bang_p.ppt
 
document-part- (8).doc
document-part- (8).docdocument-part- (8).doc
document-part- (8).doc
 
20 years of hubble space telescope
20 years of hubble space telescope20 years of hubble space telescope
20 years of hubble space telescope
 
Asiment3
Asiment3Asiment3
Asiment3
 
The hubble space telescope
The hubble space telescopeThe hubble space telescope
The hubble space telescope
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Silpa
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Silpa
 

Recently uploaded (20)

Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 

jameswebb.ppt

  • 1. The James Webb Space Telescope
  • 2. Introddvasvauction  The James Webb Ssadapace Telescope  The James Webb Space Telescope, also called Webb or JWST, is a large, space-based observatory, optimized for infrared wavelengths, which will complement and extend the discoveries of the Hubble Space Telescope. It will have longer wavelength coverage and greatly improved sensitivity. The longer wavelengths enable Webvsdavdab to look further back in time to find the first galaxies that formed in the early Universe, and to peer inside dust clouds where stars and planetary systems are forming today. It is scheduled for launch in 2013.
  • 3. Jamedvsaadss E .Webb  This space-based observatory is named after James E. Webb (1906- 1992), NASA's second administrator. Webb is best known for leading Apollo, a series of lunar exvdsaasdvploration programs that landed the first humans on the Moon. However, he also initiated a vigorous space science program that was responsible for more than 75 launches during his tenure, including America's first interplanetary explorers.
  • 4. How will dsavad be better?  Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. In order to do this, Webb will have a much larger primary vdsavsvdsvamirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light- gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble. Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.
  • 5. How long will the mission last?  Webb will have a mission lifetime of not less than 5-1/2 years after launch, with the goal of having a lifetime greater than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the testing and redundancy that ensures that everything on the spacecraft will work. Webb will carry fuel for a 10-year lifetime; the project will do mission assurance testing to guarantee 5 years of scientific operations starting at the end of the commissioning period 6 months after launch.
  • 6. Servicing Webb  Hubble is in low-Earth orbit, located approximately 600 kilometers away from the Earth, and is therefore readily accessible for servicing using the Space Shuttle. Webb will be operated at the second Sun-Earth Lagrange point, located approximately 1.5 million kilometers away from the Earth, and will therefore be beyond the reach of any manned vehicle currently being planned for the next decade. In the early days of the Webb project, studies were conducted to evaluate the benefits, practicality and cost of servicing Webb either by human space flight, by robotic missions, or by some combination such as retrieval to low-Earth orbit. Those studies concluded that the potential benefits of servicing do not offset the increases in mission complexity, mass and cost that would be required to make Webb serviceable, or to conduct the servicing mission itself.
  • 7. Size of the Webb  The diameter of the primary mirror, will be about 6.5 meters (21 feet) for Webb. This is about 2.7 times larger than the diameter of Hubble, or about 6 times larger in area. The Webb will have a mass of approximately 6,500 kg, with a weight of 14,300 lbs on Earth (in orbit, everything is weightless), a little more than half the mass of Hubble. The largest structure of Webb will be its sunshade, which must be able to shield the deployed primary mirror and the tower that holds the secondary mirror. The sunshade is approximately the size of a tennis court.
  • 8. Communication  The Webb will send science and engineering data to Earth using a high frequency radio transmitter. Large radio antennas that are part of the NASA Deep Space Network will receive the signals and forward them to the Webb Science and Operation Center at the Space Telescope Science Institute in Baltimore, Maryland, USA.
  • 9. Orbit  Webb is going to the second Lagrange (L2) point, which is 1 million miles (1.5 million km) away from Earth, and it just takes a while to travel such a distance. During the trip to L2, Webb will be fully deployed, will cool down to its operating temperature, and its systems will begin to be checked out and adjusted. These commissioning procedures will continue until 6 months after launch, at which point routine scientific operations will begin.  Webb will observe primarily the infrared light from faint and very distant objects. To avoid swamping the very faint astronomical signals with radiation from the telescope, the telescope and its instruments must be very cold.  Webb's operating temperature is less than 50 degrees above absolute zero: 50 Kelvin, (-225 Celcius, or -370 deg F). Therefore, Webb has a large shield that blocks the light from the Sun, Earth, and Moon, which otherwise would heat up the telescope, and interfere with the observations. To have this work, Webb will be in an orbit where all three of these objects are in about the same direction; the second Lagrange point (L2) of the Sun-Earth system has this property.
  • 10. How far will Webb look?  One of the main goals of Webb is to detect some of the very first star formation in the Universe. This is thought to happen somewhere between redshift 15 and 30. At those redshifts, the Universe was only one or two percent of its current age. The Universe is now 13.7 billion years old, and these redshifts correspond to 100 to 250 million years after the Big Bang. The light from the first galaxies has traveled for about 13.5 billion years, over a distance of 13.5 billion light-years.