SlideShare a Scribd company logo
1 of 39
Neural coding of interaural timing
differences in the mammalian midbrain:
Time and phase contributions to the
internal delay.
Torsten Marquardt
UCL EAR Institute,
(Clip from Brugge, http://www.neurophys.wisc.edu/ftp/pub/aud-tour)
Jeffress (1948): A place theory of sound localization.
Tone delay function
MSO
Time
rightleft
∫
∞
∞−
−⋅= dtITDtrighttleftITDcorrfcn )()()(
∫
∞
∞−
−⋅= dtITDtrighttleftITDcorrfcn )()()(
MSO
Noise delay function
Time
rightleft
(MSO data from Yin & Chan, 1990).
Neural tuning to interaural time difference
Tone Noise
cat, IC
Hancock & Delgutte, J. Neurosci. (2004)
+π
Best frequency [kHz]
The π-limit of coded ITDspikerate
-2 -1 0 1 2
ITD [ms]
-2 -1 0 1 2
ITD [ms]
-2 -1 0 1 2
ITD [ms] ITD [ms]
-1 0 1 2 3 -1 0 1 2 3
…
ITD [ms]
Outside
π -limit!
McAlpine et al, Nat. Neurosci.(2001)
guinea pig, IC
+π
The π-limit of coded ITDspikerate
-2 -1 0 1 2
ITD [ms]
-2 -1 0 1 2
ITD [ms]
-2 -1 0 1 2
ITD [ms] ITD [ms]
-1 0 1 2 3 -1 0 1 2 3
…
ITD [ms]
Outside
π -limit!
McAlpine et al, Nat. Neurosci.(2001)
guinea pig, IC
+π
(McAlpine et al., 2001)
n = 234
best ITD × BF [cycles]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITDs of guinea pig IC neurones
Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”.
In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
(McAlpine et al., 2001)
-1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
n = 49
ITD × BF [cycles]
1/6 < best ITD < 1/3
spikerate,normalized
0
0.5
1
1.5
2
2.5
-1 -0.5 0 0.5 1
n = 77
ITD × BF [cycles]
0 < best ITD < 1/6
Physiological evidence for internal phase delays
n = 234
best ITD × BF [cycles]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITD distribution (IC, guinea pig)
Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”.
In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
Physiological evidence for internal phase delays
spikerate,normalized
0
0.5
1
1.5
2
2.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
n = 21n = 49n = 77
-1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
ITD × BF [cycles] ITD × BF [cycles] ITD × BF [cycles]
0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2
-1 -0.5 0 0.5
0
0.5
1
1.5
2
1
n = 234
best ITD × BF [cycles]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITD distribution (IC, guinea pig)
Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”.
In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
Physiological evidence for internal phase delays
spikerate,normalized
0
0.5
1
1.5
2
2.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
n = 21n = 49n = 77
-1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF]
0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2
n = 234
best ITD × BF [cycles]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITD distribution (IC, guinea pig)
Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”.
In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
peaker trougherintermediateBestPhase[cycles]
0 0.5 1 1.5 freq
1.0
0.8
0.6
0.4
0.2
0.5 1 1.5 freq 0.5 1 1.5 f req
CD = 0
CP = 0
CD = 0
CP = 0.25 cycl
CD = 0
CP = 0.5 cycl
McAlpine D, Jiang D, & Palmer AR (1996):
“Interaural delay sensitivity and the classification
of low best-frequency binaural responses in the
inferior colliculus of the guinea pig.”
Hearing Research 97, 136-152.
Neural best-IPD vs. frequency plots (“phase plots”)
Σ
CD = 0.25 ms
CP = 0 º
CD = 0 ms
CP = 45 º
Bestphase
(degrees)
Bestphase
(degrees)
Neural best-IPD vs. frequency plots (“phase plots”)
Time delay (Jeffress Model)BestPhase[cycles]
…
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -0.5 0 0.5 1 1.5-0.5 0 0.5 1 1.5
0.5 1 1.5 f[kHz]
1.0
0.8
0.6
0.4
0.2
CD = 0 ms
CP = 0
CD = 0.25 ms
CP = 0
CD = 0.5 ms
CP = 0
CD = 0.75 ms
CP = 0
CD = 1 ms
CP = 0
0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz]
Physiological evidence for internal phase delays
spikerate,normalized
0
0.5
1
1.5
2
2.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
n = 21n = 49n = 77
-1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF]
0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2
peaker trougherintermediate
BestPhase[cycles]
1.0
0.8
0.6
0.4
0.2
CD = 0
CP = 0
CD = 0
CP = 0.25 cycl
CD = 0
CP = 0.5 cycl
Outside
π -limit!
n = 234
best ITD [cycles re. DF]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITD distribution (IC, guinea pig)
BestPhase[cycles]
…
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -0.5 0 0.5 1 1.5-0.5 0 0.5 1 1.5
0.5 1 1.5 f[kHz]
1.0
0.8
0.6
0.4
0.2
CD = 0 ms
CP = 0
CD = 0.25 ms
CP = 0
CD = 0.5 ms
CP = 0
CD = 0.75 ms
CP = 0
CD = 1 ms
CP = 0
0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz]
0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz]
1 -0.5 0 0.5 1
Interaural Time Difference [cycles re. BF]
Inherent π-Limit !
Phase delay (constant envelope) explains π-Limit
John Agapiou, PhD thesis 2006
John Agapiou, PhD thesis 2006, guinea pig
CD×BF(cycles)
CP (cycles)
-0.2 0 0.2
0
0.1
0.2
0.3
0.4
CD×BF(cycles)
CP (cycles)
-0.2 0 0.2 0.4
-0.5
0
0.5DNLL: IC:
CD × BF = 0.5 CP + 0.125
Guinea pig (McAlpine et al. 1996) Cat (Karino & Joris, ARO 2012)
CD vs. CP from tone ITD functions (“phase plot fits”)
N = 228
Color code indicates best ITD
0.75-0.25 0.25
Gerbil DNLL (Lueling,Siveke,Grothe & Leibold, 2011)
1
CD vs. CP from tone ITD functions (“phase plot fits”)
Time and phase contributions to the internal delay
0.25 0.5
0
0.125
0.25
-0.25
-0.125
-0.25 0 0.750.6250.3750.125-0.125
CD×BF(cycles)
CP (cycles)
0.25
0.5
0
0.375
0.125
Best ITD
×
BF
(cycles)
CD = ⅛ − ½CP
DNLL and IC data (Agapiou, 2006)
1
2
3
4
5
Best ITD × BF = (CD × BF) + CP
DNLL
IC
BestPhase[cycles]
CD = –0.25
CP = 0.75
0 0.5 1 1.5 20 0.5 1 1.5 2
CD = –0.125
CP = 0.5
CD = 0
CP = 0.25
0 0.5 1 1.5 2
CD = 0.125
CP = 0
0 0.5 1 1.5 2
CD = 0.25
CP = –0.25
0 0.5 1 1.5 2
0.75
-0.25
0
0.25
0.5
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
norm. frequency
ICdata
CD = –0.25
CP = 0.75
0 0.5 1 1.5 20 0.5 1 1.5 2
CD = –0.125
CP = 0.5
CD = 0
CP = 0.25
0 0.5 1 1.5 2
CD = 0.125
CP = 0
0 0.5 1 1.5 2
CD = 0.25
CP = –0.25
0 0.5 1 1.5 2
0.75
-0.25
0
0.25
0.5
Purephasedelay
CD = 0
CP = 0.5
CD = 0
CP = 0.375
CD = 0
CP = 0.25
CD = 0
CP = 0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Jeffress’timedelay
CD = 0.5
CP = 0
CD = 0.375
CP = 0
CD = 0.25
CP = 0
CD = 0.125
CP = 0
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Time and phase contributions to the internal delay
Time and phase contributions to the internal delay
0.25
0.5
0
0.375
0.125
0.25 0.5
0
0.125
0.25
-0.25
-0.125
-0.25 0 0.750.6250.3750.125-0.125
CD×BF(cycles)
CP (cycles)
Best ITD
×
BF
(cycles)
CD = ⅛ − ½CP
DNLL and IC data (Agapiou, 2006)
1
2
3
4
5
DNLL
IC
norm.spikerate
noise ITD × BF (cycl)
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
Best ITD × BF = (CD × BF) + CP
BestPhase[cycles]
CD = –0.25
CP = 0.75
0 0.5 1 1.5 20 0.5 1 1.5 2
CD = –0.125
CP = 0.5
CD = 0
CP = 0.25
0 0.5 1 1.5 2
CD = 0.125
CP = 0
0 0.5 1 1.5 2
CD = 0.25
CP = –0.25
0 0.5 1 1.5 2
0.75
-0.25
0
0.25
0.5
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
norm. frequency
Cochlear disparity
Modelling cochlear disparity
(Day & Semple, 2011)
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
CD = 1
CP = –0.5
CD = 0.75
CP = –0.375
CD = 0.5
CP = –0.25
CD = 0.25
CP = –0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
BestPhase[cycles]
0 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 2
norm. frequency
Accumulatedphase[cycles]
f [kHz]
800 1200400 1600 2000
CP
2
0
1
-1
-2
4
3
best ITD
Cochlear disparity
Modelling cochlear disparity
(Day & Semple, 2011)
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
CD = 1
CP = –0.5
CD = 0.75
CP = –0.375
CD = 0.5
CP = –0.25
CD = 0.25
CP = –0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
BestPhase[cycles]
0 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 2
norm. frequency
Accumulatedphase[cycles]
f [kHz]
800 1200400 1600 2000
CP
2
0
1
-1
-2
4
3
best ITD
norm.spikerate
noise ITD × BF (cycl)
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.25, CP = 0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
Cochlear disparityAccumulatedphase[cycles]
f [kHz]
800 1200400 1600 2000
CP
2
0
1
-1
-2
4
3
best ITD
norm.spikerate
noise ITD × BF (cycl)
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.25, CP = -0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
Shuffled cross-correlation of AN data (Joris et al., 2006)
ICdata
CD = –0.25
CP = 0.75
0 0.5 1 1.5 20 0.5 1 1.5 2
CD = –0.125
CP = 0.5
CD = 0
CP = 0.25
0 0.5 1 1.5 2
CD = 0.125
CP = 0
0 0.5 1 1.5 2
CD = 0.25
CP = –0.25
0 0.5 1 1.5 2
0.75
-0.25
0
0.25
0.5
Purephasedelay
CD = 0
CP = 0.5
CD = 0
CP = 0.375
CD = 0
CP = 0.25
CD = 0
CP = 0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Jeffress’timedelay
CD = 0.5
CP = 0
CD = 0.375
CP = 0
CD = 0.25
CP = 0
CD = 0.125
CP = 0
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Time and phase contributions to the internal delay
ICdata
CD = –0.25
CP = 0.75
0 0.5 1 1.5 20 0.5 1 1.5 2
CD = –0.125
CP = 0.5
CD = 0
CP = 0.25
0 0.5 1 1.5 2
CD = 0.125
CP = 0
0 0.5 1 1.5 2
CD = 0.25
CP = –0.25
0 0.5 1 1.5 2
0.75
-0.25
0
0.25
0.5
Purephasedelay
CD = 0
CP = 0.5
CD = 0
CP = 0.375
CD = 0
CP = 0.25
CD = 0
CP = 0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Jeffress’timedelay
CD = 0.5
CP = 0
CD = 0.375
CP = 0
CD = 0.25
CP = 0
CD = 0.125
CP = 0
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
Cochleardisparity CD = 1
CP = –0.5
CD = 0.75
CP = –0.375
CD = 0.5
CP = –0.25
CD = 0.25
CP = –0.125
CD = 0
CP = 0
0.75
-0.25
0
0.25
0.5
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
ICdataPurephasedelayJeffress’timedelayCochleardisparity
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
ICdataPurephasedelayJeffress’timedelayCochleardisparity
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0
spikerate,normalized
0
0.5
1
1.5
2
2.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
n = 21n = 49n = 77
-1 -0.5 0 0.5 1
0
0.5
1
1.5
2
2.5
ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF]
0 < best ITD < 1/6 1/6 < best ITD <
1/3
1/3 < best ITD <
1/2
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
ICdataPurephasedelayJeffress’timedelayCochleardisparity
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0
n = 234
best ITD × BF [cycles]
dominantfrequency,DF[Hz]
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
125
250
500
1000
Best ITD distribution (IC, guinea pig)
Summary
 Data disagree with Jeffress’ axonal time delay
 Time delay appears even negatively correlated with best ITD
 Neither do data support a pure phase delay
 But, at least phase delay correlates positively with best ITD
 Time and phase delay are in opposition, with phase having
twice the impact on best ITD
 This all very peculiar!
norm.spikerate
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
Time and phase contributions to the internal delay
0.25
0.5
0
0.375
0.125
0.25 0.5
0
0.125
0.25
-0.25
-0.125
-0.25 0 0.750.6250.3750.125-0.125
CD×BF(cycles)
CP (cycles)
Best ITD
×
BF
(cycles)
CD = ⅛ − ½CP
DNLL and IC data (Agapiou, 2006)
1
2
3
4
5
B
estITD
=
C
D
×
B
F
+
C
P
DNLL
IC
norm.spikerate
1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc
3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc
2 Best ITD = 0.125 cyc
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
-3 -2 -1 0 1 2 3
0
0.5
1
CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
(Illustrations from Grothe, Nat. Rev. Neurosci. 2003)
Asymmetries in the MSO?
Brand, Behrend, Marquardt, McAlpine & Grothe, Nature 417, pp543-544, 2002
Brand, Behrend, Marquardt, McAlpine & Grothe, Nature 417, pp543-544, 2002
(Illustration from Grothe, Nat. Rev. Neurosci. 2003)
Asymmetries in the MSO?
-10 -5 0 5 10
0
20
40
60
80
100
120
140
ITD (ms)
spikerate(Hz)
Interaural Time Difference (sec)
100 200 300 400 500 600 700 800 900
-1
0
1
2
3
frequency (Hz)
to single tones to tone complex
0 200 400 600 800 1000 1200
-3
-2
-1
0
1
2
3
-10 -5 0 5 10
0
20
40
60
80
100
120
140
Simulation of contralateral inhibition in MSO (Hodgkin-Huxley Model)
frequency (Hz)
ITD (ms)
BestPhase[rad]
spikerate(Hz)BestPhase[rad]
Trougher (E,I)Peaker (E,E) Tweener (E,0)
-0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD
Inherent π-Limit !
Inhibition causes phase shift and continuous shape change!
Results of Hodgkin-Huxley Model with precisely timed inhibition:
spikerate
-10 -5 0 5 10
60
70
80
90
100
110
120
ITD [ms] ITD [ms] ITD [ms]
-10 -5 0 5 10
70
80
90
100
110
120
-10 -5 0 5 10
70
80
90
100
110
120
Gmax_inh = 2.5 nS Gmax_exc = 0.75 nS Gmax_inh = 3.5 nS Gmax_exc = 0.45 nS Gmax_inh = 4 nS Gmax_exc = 0.3 nS
Simulation of contralateral inhibition in MSO (Hodgkin-Huxley Model)
(McAlpine et al, Hear. Res., 1996)
Correlation between Best IPD and Inhibition
0
20
40
60
80
F S F S F S
neurons[%]Binaurally facilitated (F): > 1
Binaurally suppressed (S): < 1
mean(NDF)
max(monaural)
mean(NDF)
max(monaural)
0 < best ITD < 0.166
n = 77
1/6 < best ITD < 0.33
n = 49
1/3 < best ITD < 0.5
n = 21
Simulation of contralateral inhibition in MSO by Day & Semple, 2011

More Related Content

More from TeruKamogashira

顔面神経麻痺の検査とENoGの基礎
顔面神経麻痺の検査とENoGの基礎顔面神経麻痺の検査とENoGの基礎
顔面神経麻痺の検査とENoGの基礎
TeruKamogashira
 

More from TeruKamogashira (20)

顔面神経麻痺の検査とENoGの基礎
顔面神経麻痺の検査とENoGの基礎顔面神経麻痺の検査とENoGの基礎
顔面神経麻痺の検査とENoGの基礎
 
前庭誘発電位(VEMP)の基礎 3 診断におけるVEMP
前庭誘発電位(VEMP)の基礎 3 診断におけるVEMP前庭誘発電位(VEMP)の基礎 3 診断におけるVEMP
前庭誘発電位(VEMP)の基礎 3 診断におけるVEMP
 
重心動揺検査データを用いた 機械学習による診断支援
重心動揺検査データを用いた機械学習による診断支援重心動揺検査データを用いた機械学習による診断支援
重心動揺検査データを用いた 機械学習による診断支援
 
Diagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography DataDiagnosis Support by Machine Learning Using Posturography Data
Diagnosis Support by Machine Learning Using Posturography Data
 
先天性眼振の一例
先天性眼振の一例先天性眼振の一例
先天性眼振の一例
 
小脳梗塞とめまい 2020年09月24日 抄読会
小脳梗塞とめまい 2020年09月24日 抄読会小脳梗塞とめまい 2020年09月24日 抄読会
小脳梗塞とめまい 2020年09月24日 抄読会
 
進行性核上性麻痺の一例
進行性核上性麻痺の一例進行性核上性麻痺の一例
進行性核上性麻痺の一例
 
交通外傷後のめまい
交通外傷後のめまい交通外傷後のめまい
交通外傷後のめまい
 
高安動脈炎経過中にともなう浮動性めまいの一症例
高安動脈炎経過中にともなう浮動性めまいの一症例高安動脈炎経過中にともなう浮動性めまいの一症例
高安動脈炎経過中にともなう浮動性めまいの一症例
 
良性発作性頭位めまい症で経過中進行性核上性麻痺と診断された一例
良性発作性頭位めまい症で経過中進行性核上性麻痺と診断された一例良性発作性頭位めまい症で経過中進行性核上性麻痺と診断された一例
良性発作性頭位めまい症で経過中進行性核上性麻痺と診断された一例
 
甲状腺機能低下・腎機能障害を伴う感音性難聴・めまいの一例
甲状腺機能低下・腎機能障害を伴う感音性難聴・めまいの一例甲状腺機能低下・腎機能障害を伴う感音性難聴・めまいの一例
甲状腺機能低下・腎機能障害を伴う感音性難聴・めまいの一例
 
ABRにおけるIEC60318-3及びIEC60318-1準拠ヘッドフォンの比較
ABRにおけるIEC60318-3及びIEC60318-1準拠ヘッドフォンの比較ABRにおけるIEC60318-3及びIEC60318-1準拠ヘッドフォンの比較
ABRにおけるIEC60318-3及びIEC60318-1準拠ヘッドフォンの比較
 
PICA梗塞に伴うめまい難聴の一例
PICA梗塞に伴うめまい難聴の一例PICA梗塞に伴うめまい難聴の一例
PICA梗塞に伴うめまい難聴の一例
 
めまい専門外来の症例における機械学習での疾患予測の評価
めまい専門外来の症例における機械学習での疾患予測の評価めまい専門外来の症例における機械学習での疾患予測の評価
めまい専門外来の症例における機械学習での疾患予測の評価
 
加振器によるマウス前庭機能計測システムの評価
加振器によるマウス前庭機能計測システムの評価加振器によるマウス前庭機能計測システムの評価
加振器によるマウス前庭機能計測システムの評価
 
加振器を使用したマウス前庭機能検査システムの構築
加振器を使用したマウス前庭機能検査システムの構築加振器を使用したマウス前庭機能検査システムの構築
加振器を使用したマウス前庭機能検査システムの構築
 
心因性めまい1例と頭部外傷後のめまい1例
心因性めまい1例と頭部外傷後のめまい1例心因性めまい1例と頭部外傷後のめまい1例
心因性めまい1例と頭部外傷後のめまい1例
 
Responses from the trapezoid body in the Mongolian gerbil
Responses from the trapezoid body in the Mongolian gerbilResponses from the trapezoid body in the Mongolian gerbil
Responses from the trapezoid body in the Mongolian gerbil
 
Androgen receptors and gender-specific distribution of alkaline phosphatase i...
Androgen receptors and gender-specific distribution of alkaline phosphatase i...Androgen receptors and gender-specific distribution of alkaline phosphatase i...
Androgen receptors and gender-specific distribution of alkaline phosphatase i...
 
閉経時に女性の喉頭に形態的な変化が生じ、それに伴う症状が現れる
閉経時に女性の喉頭に形態的な変化が生じ、それに伴う症状が現れる閉経時に女性の喉頭に形態的な変化が生じ、それに伴う症状が現れる
閉経時に女性の喉頭に形態的な変化が生じ、それに伴う症状が現れる
 

Recently uploaded

💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
Sheetaleventcompany
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Sheetaleventcompany
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
rajnisinghkjn
 
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Sheetaleventcompany
 
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
amritaverma53
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan 087776558899
 

Recently uploaded (20)

💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
 
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
 
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
 
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
 
Cheap Rate Call Girls Bangalore {9179660964} ❤️VVIP BEBO Call Girls in Bangal...
Cheap Rate Call Girls Bangalore {9179660964} ❤️VVIP BEBO Call Girls in Bangal...Cheap Rate Call Girls Bangalore {9179660964} ❤️VVIP BEBO Call Girls in Bangal...
Cheap Rate Call Girls Bangalore {9179660964} ❤️VVIP BEBO Call Girls in Bangal...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
 
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room DeliveryCall 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
 
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
 
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
 
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
 
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
 
Cardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their RegulationCardiac Output, Venous Return, and Their Regulation
Cardiac Output, Venous Return, and Their Regulation
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
 
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
 
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
 

Neural coding of interaural timing differences in the mammalian midbrain: Time and phase contributions to the internal delay.

  • 1. Neural coding of interaural timing differences in the mammalian midbrain: Time and phase contributions to the internal delay. Torsten Marquardt UCL EAR Institute,
  • 2. (Clip from Brugge, http://www.neurophys.wisc.edu/ftp/pub/aud-tour) Jeffress (1948): A place theory of sound localization.
  • 5. (MSO data from Yin & Chan, 1990). Neural tuning to interaural time difference Tone Noise
  • 6. cat, IC Hancock & Delgutte, J. Neurosci. (2004) +π Best frequency [kHz] The π-limit of coded ITDspikerate -2 -1 0 1 2 ITD [ms] -2 -1 0 1 2 ITD [ms] -2 -1 0 1 2 ITD [ms] ITD [ms] -1 0 1 2 3 -1 0 1 2 3 … ITD [ms] Outside π -limit! McAlpine et al, Nat. Neurosci.(2001) guinea pig, IC +π
  • 7. The π-limit of coded ITDspikerate -2 -1 0 1 2 ITD [ms] -2 -1 0 1 2 ITD [ms] -2 -1 0 1 2 ITD [ms] ITD [ms] -1 0 1 2 3 -1 0 1 2 3 … ITD [ms] Outside π -limit! McAlpine et al, Nat. Neurosci.(2001) guinea pig, IC +π (McAlpine et al., 2001)
  • 8. n = 234 best ITD × BF [cycles] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITDs of guinea pig IC neurones Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”. In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag. (McAlpine et al., 2001)
  • 9. -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 n = 49 ITD × BF [cycles] 1/6 < best ITD < 1/3 spikerate,normalized 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 n = 77 ITD × BF [cycles] 0 < best ITD < 1/6 Physiological evidence for internal phase delays n = 234 best ITD × BF [cycles] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITD distribution (IC, guinea pig) Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”. In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
  • 10. Physiological evidence for internal phase delays spikerate,normalized 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 n = 21n = 49n = 77 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 ITD × BF [cycles] ITD × BF [cycles] ITD × BF [cycles] 0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2 -1 -0.5 0 0.5 0 0.5 1 1.5 2 1 n = 234 best ITD × BF [cycles] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITD distribution (IC, guinea pig) Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”. In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag.
  • 11. Physiological evidence for internal phase delays spikerate,normalized 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 n = 21n = 49n = 77 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF] 0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2 n = 234 best ITD × BF [cycles] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITD distribution (IC, guinea pig) Marquardt T & McAlpine D (2007): “A pi-limit for coding ITDs: implications for binaural models”. In Hearing - From Sensory Processing to Perception, ed. Kollmeier et al., Springer Verlag. peaker trougherintermediateBestPhase[cycles] 0 0.5 1 1.5 freq 1.0 0.8 0.6 0.4 0.2 0.5 1 1.5 freq 0.5 1 1.5 f req CD = 0 CP = 0 CD = 0 CP = 0.25 cycl CD = 0 CP = 0.5 cycl
  • 12. McAlpine D, Jiang D, & Palmer AR (1996): “Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig.” Hearing Research 97, 136-152. Neural best-IPD vs. frequency plots (“phase plots”)
  • 13. Σ CD = 0.25 ms CP = 0 º CD = 0 ms CP = 45 º Bestphase (degrees) Bestphase (degrees) Neural best-IPD vs. frequency plots (“phase plots”)
  • 14. Time delay (Jeffress Model)BestPhase[cycles] … -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -0.5 0 0.5 1 1.5-0.5 0 0.5 1 1.5 0.5 1 1.5 f[kHz] 1.0 0.8 0.6 0.4 0.2 CD = 0 ms CP = 0 CD = 0.25 ms CP = 0 CD = 0.5 ms CP = 0 CD = 0.75 ms CP = 0 CD = 1 ms CP = 0 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz]
  • 15. Physiological evidence for internal phase delays spikerate,normalized 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 n = 21n = 49n = 77 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF] 0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2 peaker trougherintermediate BestPhase[cycles] 1.0 0.8 0.6 0.4 0.2 CD = 0 CP = 0 CD = 0 CP = 0.25 cycl CD = 0 CP = 0.5 cycl Outside π -limit! n = 234 best ITD [cycles re. DF] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITD distribution (IC, guinea pig) BestPhase[cycles] … -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -0.5 0 0.5 1 1.5-0.5 0 0.5 1 1.5 0.5 1 1.5 f[kHz] 1.0 0.8 0.6 0.4 0.2 CD = 0 ms CP = 0 CD = 0.25 ms CP = 0 CD = 0.5 ms CP = 0 CD = 0.75 ms CP = 0 CD = 1 ms CP = 0 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz] 0.5 1 1.5 f[kHz]
  • 16. 1 -0.5 0 0.5 1 Interaural Time Difference [cycles re. BF] Inherent π-Limit ! Phase delay (constant envelope) explains π-Limit
  • 17. John Agapiou, PhD thesis 2006
  • 18. John Agapiou, PhD thesis 2006, guinea pig CD×BF(cycles) CP (cycles) -0.2 0 0.2 0 0.1 0.2 0.3 0.4 CD×BF(cycles) CP (cycles) -0.2 0 0.2 0.4 -0.5 0 0.5DNLL: IC: CD × BF = 0.5 CP + 0.125
  • 19. Guinea pig (McAlpine et al. 1996) Cat (Karino & Joris, ARO 2012) CD vs. CP from tone ITD functions (“phase plot fits”) N = 228 Color code indicates best ITD
  • 20. 0.75-0.25 0.25 Gerbil DNLL (Lueling,Siveke,Grothe & Leibold, 2011) 1 CD vs. CP from tone ITD functions (“phase plot fits”)
  • 21. Time and phase contributions to the internal delay 0.25 0.5 0 0.125 0.25 -0.25 -0.125 -0.25 0 0.750.6250.3750.125-0.125 CD×BF(cycles) CP (cycles) 0.25 0.5 0 0.375 0.125 Best ITD × BF (cycles) CD = ⅛ − ½CP DNLL and IC data (Agapiou, 2006) 1 2 3 4 5 Best ITD × BF = (CD × BF) + CP DNLL IC BestPhase[cycles] CD = –0.25 CP = 0.75 0 0.5 1 1.5 20 0.5 1 1.5 2 CD = –0.125 CP = 0.5 CD = 0 CP = 0.25 0 0.5 1 1.5 2 CD = 0.125 CP = 0 0 0.5 1 1.5 2 CD = 0.25 CP = –0.25 0 0.5 1 1.5 2 0.75 -0.25 0 0.25 0.5 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc norm. frequency
  • 22. ICdata CD = –0.25 CP = 0.75 0 0.5 1 1.5 20 0.5 1 1.5 2 CD = –0.125 CP = 0.5 CD = 0 CP = 0.25 0 0.5 1 1.5 2 CD = 0.125 CP = 0 0 0.5 1 1.5 2 CD = 0.25 CP = –0.25 0 0.5 1 1.5 2 0.75 -0.25 0 0.25 0.5 Purephasedelay CD = 0 CP = 0.5 CD = 0 CP = 0.375 CD = 0 CP = 0.25 CD = 0 CP = 0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Jeffress’timedelay CD = 0.5 CP = 0 CD = 0.375 CP = 0 CD = 0.25 CP = 0 CD = 0.125 CP = 0 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Time and phase contributions to the internal delay
  • 23. Time and phase contributions to the internal delay 0.25 0.5 0 0.375 0.125 0.25 0.5 0 0.125 0.25 -0.25 -0.125 -0.25 0 0.750.6250.3750.125-0.125 CD×BF(cycles) CP (cycles) Best ITD × BF (cycles) CD = ⅛ − ½CP DNLL and IC data (Agapiou, 2006) 1 2 3 4 5 DNLL IC norm.spikerate noise ITD × BF (cycl) 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25 Best ITD × BF = (CD × BF) + CP BestPhase[cycles] CD = –0.25 CP = 0.75 0 0.5 1 1.5 20 0.5 1 1.5 2 CD = –0.125 CP = 0.5 CD = 0 CP = 0.25 0 0.5 1 1.5 2 CD = 0.125 CP = 0 0 0.5 1 1.5 2 CD = 0.25 CP = –0.25 0 0.5 1 1.5 2 0.75 -0.25 0 0.25 0.5 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc norm. frequency
  • 24. Cochlear disparity Modelling cochlear disparity (Day & Semple, 2011) 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc CD = 1 CP = –0.5 CD = 0.75 CP = –0.375 CD = 0.5 CP = –0.25 CD = 0.25 CP = –0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 BestPhase[cycles] 0 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 2 norm. frequency Accumulatedphase[cycles] f [kHz] 800 1200400 1600 2000 CP 2 0 1 -1 -2 4 3 best ITD
  • 25. Cochlear disparity Modelling cochlear disparity (Day & Semple, 2011) 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc CD = 1 CP = –0.5 CD = 0.75 CP = –0.375 CD = 0.5 CP = –0.25 CD = 0.25 CP = –0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 BestPhase[cycles] 0 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1 1.5 2 norm. frequency Accumulatedphase[cycles] f [kHz] 800 1200400 1600 2000 CP 2 0 1 -1 -2 4 3 best ITD norm.spikerate noise ITD × BF (cycl) 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.25, CP = 0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25
  • 26. Cochlear disparityAccumulatedphase[cycles] f [kHz] 800 1200400 1600 2000 CP 2 0 1 -1 -2 4 3 best ITD norm.spikerate noise ITD × BF (cycl) 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.25, CP = -0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25 Shuffled cross-correlation of AN data (Joris et al., 2006)
  • 27. ICdata CD = –0.25 CP = 0.75 0 0.5 1 1.5 20 0.5 1 1.5 2 CD = –0.125 CP = 0.5 CD = 0 CP = 0.25 0 0.5 1 1.5 2 CD = 0.125 CP = 0 0 0.5 1 1.5 2 CD = 0.25 CP = –0.25 0 0.5 1 1.5 2 0.75 -0.25 0 0.25 0.5 Purephasedelay CD = 0 CP = 0.5 CD = 0 CP = 0.375 CD = 0 CP = 0.25 CD = 0 CP = 0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Jeffress’timedelay CD = 0.5 CP = 0 CD = 0.375 CP = 0 CD = 0.25 CP = 0 CD = 0.125 CP = 0 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Time and phase contributions to the internal delay
  • 28. ICdata CD = –0.25 CP = 0.75 0 0.5 1 1.5 20 0.5 1 1.5 2 CD = –0.125 CP = 0.5 CD = 0 CP = 0.25 0 0.5 1 1.5 2 CD = 0.125 CP = 0 0 0.5 1 1.5 2 CD = 0.25 CP = –0.25 0 0.5 1 1.5 2 0.75 -0.25 0 0.25 0.5 Purephasedelay CD = 0 CP = 0.5 CD = 0 CP = 0.375 CD = 0 CP = 0.25 CD = 0 CP = 0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Jeffress’timedelay CD = 0.5 CP = 0 CD = 0.375 CP = 0 CD = 0.25 CP = 0 CD = 0.125 CP = 0 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5 Cochleardisparity CD = 1 CP = –0.5 CD = 0.75 CP = –0.375 CD = 0.5 CP = –0.25 CD = 0.25 CP = –0.125 CD = 0 CP = 0 0.75 -0.25 0 0.25 0.5
  • 29. -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25 ICdataPurephasedelayJeffress’timedelayCochleardisparity -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0
  • 30. -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25 ICdataPurephasedelayJeffress’timedelayCochleardisparity -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0 spikerate,normalized 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 n = 21n = 49n = 77 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 ITD [cycles re. DF] ITD [cycles re. DF] ITD [cycles re. DF] 0 < best ITD < 1/6 1/6 < best ITD < 1/3 1/3 < best ITD < 1/2
  • 31. -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.25, CP = –0.125 CD = 0.75, CP = –0.375 CD = 1.0, CP = –0.5CD = 0.5, CP = –0.25 ICdataPurephasedelayJeffress’timedelayCochleardisparity -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0.375, CP = 0 CD = 0.5, CP = 0CD = 0.25, CP = 0 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0, CP = 0 CD = 0.125, CP = 0 CD = 0, CP = 0 CD = 0, CP = 0CD = 0, CP = 0 n = 234 best ITD × BF [cycles] dominantfrequency,DF[Hz] -0.75 -0.5 -0.25 0 0.25 0.5 0.75 125 250 500 1000 Best ITD distribution (IC, guinea pig)
  • 32. Summary  Data disagree with Jeffress’ axonal time delay  Time delay appears even negatively correlated with best ITD  Neither do data support a pure phase delay  But, at least phase delay correlates positively with best ITD  Time and phase delay are in opposition, with phase having twice the impact on best ITD  This all very peculiar! norm.spikerate 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
  • 33. Time and phase contributions to the internal delay 0.25 0.5 0 0.375 0.125 0.25 0.5 0 0.125 0.25 -0.25 -0.125 -0.25 0 0.750.6250.3750.125-0.125 CD×BF(cycles) CP (cycles) Best ITD × BF (cycles) CD = ⅛ − ½CP DNLL and IC data (Agapiou, 2006) 1 2 3 4 5 B estITD = C D × B F + C P DNLL IC norm.spikerate 1 Best ITD = 0 cyc 5 Best ITD = 0.5 cyc 3 Best ITD = 0.25 cyc 4 Best ITD = 0.375 cyc 2 Best ITD = 0.125 cyc -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 -3 -2 -1 0 1 2 3 0 0.5 1 CD = 0.25, CP = –0.25 CD = 0.125, CP = 0 CD = –0.125, CP = 0.5 CD = –0.25, CP = 0.75CD = 0, CP = 0.25
  • 34. (Illustrations from Grothe, Nat. Rev. Neurosci. 2003) Asymmetries in the MSO? Brand, Behrend, Marquardt, McAlpine & Grothe, Nature 417, pp543-544, 2002
  • 35. Brand, Behrend, Marquardt, McAlpine & Grothe, Nature 417, pp543-544, 2002 (Illustration from Grothe, Nat. Rev. Neurosci. 2003) Asymmetries in the MSO?
  • 36. -10 -5 0 5 10 0 20 40 60 80 100 120 140 ITD (ms) spikerate(Hz) Interaural Time Difference (sec) 100 200 300 400 500 600 700 800 900 -1 0 1 2 3 frequency (Hz) to single tones to tone complex 0 200 400 600 800 1000 1200 -3 -2 -1 0 1 2 3 -10 -5 0 5 10 0 20 40 60 80 100 120 140 Simulation of contralateral inhibition in MSO (Hodgkin-Huxley Model) frequency (Hz) ITD (ms) BestPhase[rad] spikerate(Hz)BestPhase[rad]
  • 37. Trougher (E,I)Peaker (E,E) Tweener (E,0) -0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD -0.5 0 0.5 ITD Inherent π-Limit ! Inhibition causes phase shift and continuous shape change! Results of Hodgkin-Huxley Model with precisely timed inhibition: spikerate -10 -5 0 5 10 60 70 80 90 100 110 120 ITD [ms] ITD [ms] ITD [ms] -10 -5 0 5 10 70 80 90 100 110 120 -10 -5 0 5 10 70 80 90 100 110 120 Gmax_inh = 2.5 nS Gmax_exc = 0.75 nS Gmax_inh = 3.5 nS Gmax_exc = 0.45 nS Gmax_inh = 4 nS Gmax_exc = 0.3 nS Simulation of contralateral inhibition in MSO (Hodgkin-Huxley Model)
  • 38. (McAlpine et al, Hear. Res., 1996) Correlation between Best IPD and Inhibition 0 20 40 60 80 F S F S F S neurons[%]Binaurally facilitated (F): > 1 Binaurally suppressed (S): < 1 mean(NDF) max(monaural) mean(NDF) max(monaural) 0 < best ITD < 0.166 n = 77 1/6 < best ITD < 0.33 n = 49 1/3 < best ITD < 0.5 n = 21
  • 39. Simulation of contralateral inhibition in MSO by Day & Semple, 2011

Editor's Notes

  1. Get animation going!
  2. 2. picture of real TDF + physiological range only here
  3. Mongolian Gerbil (n=5) In absence of inhibition NO DELAY on average Inhibition seems to have periodic effect shaping the response Inhibition either MNTB or LNTB… STRESS THIS INHIBITION Constant time lead… Brand et al suggest inhibition works by shaping EPSP, but main point of importance is that : inhibition is monaural no direct effect on coincidence detection Excitatory Response no delay between epsps so centred AT ZERO Inhibitory response fromed from ipsp and epsp, contra ipsp leads so max correlation when IPSI LEADS