SlideShare a Scribd company logo
1 of 37
BATTERY MANAGEMENT SYSTEM
(BMS) IN ELECTRIC VEHICLES
Prepared by
SAHIL S
1
Overview
2
• Battery Basics
• Introduction
• Why we need BMS?
• General function of BMS
• Block diagram of BMS
• BMS architecture
• Battery pack – Voltage, Current, Temperature and Isolation sensing
• HV contactor control
• BMS communications interface
• Estimation of energy and power and SOC
• Methods to find SOC
• Cell Balancing
• Relationship between SOC and DOD
• Conclusion
BATTERY BASICS
3
Difference Between Cell, Module & Pack
4
• Battery cell:
• Unit of a battery that exerts electric energy by charging and discharging. Made by
inserting anode, cathode, separator and electrolyte into a aluminum case.
• Battery module:
• Connecting a number of cells in parallel or series is called battery module.
• Battery Pack:
• Composed of battery module connected in series and parallel.
INTRODUCTION
5
Difference Between Lithium and Other Batteries
6
DIFFERENCE BETWEEN LITHIUM AND OTHER
BATTERIES
7
• Lead based cell – 2.1V/cell
• Nickel based cell – 1.2V/cell
• Lithium based cell – 3.8V/cell
Types of Lithium Batteries
• LCO - Lithium Cobalt Oxide
• LMO - Lithium Manganese Oxide
• NMC - Lithium Nickel Manganese Cobalt Oxide
• LFP - Lithium Iron Phosphate
• NCA - Lithium Nickel Cobalt Aluminum Oxide
• LTO - Lithium Titanate Oxide
8
C – Rate
• Battery current handling capability
• It is a constant current charge or discharge rate, which the battery can sustain for one hour
• For eg : 12V,20Ah battery
• 20A can be deliver at one hour or 2A for 10hrs
• 1C rate - 20A for 1hr
• 2C rate - 40A for 30min
• 3C rate - 60A for 15min
• 0.5C rate - 10A for 2hrs
• 0.1C rate - 2A for 10hrs
9
CELL FORMATS OF LITHIUM BATTERIES
1
Introduction to BMS
1
• An electric vehicle generally contains the following major components: an electric motor, a motor
controller, a traction battery, a battery management system, a wiring system, a vehicle body and a
frame.
• The battery management system is one of the most important components, especially when using lithium
batteries.
• The lithium cell operating voltage, current and temperature must be maintained within the “Safe
Operation Area” (SOA) at all times.
• To maintain the safe operation of these batteries, they require a protective device to be built into each
pack is called battery management system (BMS).
• BMS make decisions on charge and discharge rates on the basis of load demands, cell voltage, current,
and temperature measurements, and estimated battery SOC, capacity, impedance, etc. BMS is a part of
complex and fast-acting power management system.
History of BMS
• On 7th January 2013, a Boeing 787 flight was parked for maintenance, during that time a mechanic
noticed flames and smoke coming from the Auxiliary power unit (Lithium battery Pack) of the flight. On
16th January 2013 another battery failure occurred in a 787 flight operated by All Nippon Airways which
caused an emergency landing at the Japanese airport.
• After a series of joint investigation by the US and Japanese, the Lithium battery Pack of B-787 went
through a CT scan and revealed that one of the eight Li-ion cell was damaged causing a short circuit
which triggered a thermal runaway with fire.
• This incident could have been easily avoided if the Battery management system of the Li-ion battery
pack was designed to detect/prevent short circuits.
1
Why we need BMS?
1
• Detects unsafe operating conditions and responds.
• Protects cells of battery from damage in abuse and failure cases.
• Prolongs life of battery. Maintains battery in a state.
General function of BMS
1
• Sensing and high-voltage control
Measure voltage, current, temperature, control contactor, pre-charge; ground-fault detection,
thermal management.
• Protection
Over-charge, over-discharge, over-current, short circuit, extreme temperatures.
• Interface
Range estimation, communications, data recording, reporting.
• Performance management
State of charge (SOC) estimation, power limit computation, balance and equalize cells.
• Diagnostics
Abuse detection, state of health (SOH) estimation, state of life (SOL) estimation.
Batter
P a c
"' ....
- -----=== ::;;;;;;;;;_;;;-- ;;;;;- ;;;;; ------_;; ;;;_..;;;_..,,1: --.,;;-..;---=
-
..;:=._;;;;;;;:;...:;;;;;;;;;_-,
Capa il ty
Estrr1a t o n
c r e n t
V
C
ClJ
E
(JJ
5-...
:::::l
If.I')
ro
ClJ
Vn
S t a t e o f
Cha·ge
State of
H e a t
I
I
I
Thernna1
Ma a g e n i e n t
C
0
{.J
ti")
::s
...c
2
<C
LJ
■ ■ ■
D sc -_arge
Cel
Bala ci g
BMS architecture
• A modular battery pack suggests a hierarchical master – slave BMS
design.
• There is normally a single “master” unit for each pack.
1
BMS master role
1
• Control contactors that connect battery to load.
• Monitor pack current, isolation. Communicate with BMS slaves. Control thermal-management.
• Communicate with host application controller.
BMS slave role
1
• Measure voltage of every cell within the module.
• Measure temperatures.
• Balance the energy stored in every cell within the module.
Communicate this information to the master.
Battery pack- voltage sensing
1
• Why we consider cell voltage?
1. Indicator of relative balance of cells.
2. Input to most SOC and SOH estimation algorithms.
3. Safety: overcharging a lithium-ion cell can lead to “thermal runaway,” so we cannot skip
measuring any voltages.
• Voltage is measured using an analog to digital converter(ADC). A direct-conversion or flashADC.
• Successive approximation. Delta-sigma.
• Special chipsets are made to aid high-voltage BMS design. Multiple vendors make chipsets (e.g.,
Analog Devices, Maxim, Texas Instruments).
Battery pack – Current sensing
• Why battery pack electrical currentmeasurementsarerequired?
1. To monitor battery-pack safety. To log abuse conditions.
2. By most state-of-charge and state-of-health algorithms.
• There are two basic methods to measure electrical current:
1. Using a resistive shunt.
2. Using a Hall-effect mechanism.
2
Battery pack – Temperature sensing
2
• Why battery pack temperature measurements are required?
1. Battery cell operational characteristics and cell degradation rates are very strong functions
of temperature.
2. Unexpected temperature changes can indicate cell failure or impending safety concern.
• There are two methods to measure temperature : Using a thermocouple and using a thermistor.
• Thermistor has two types.
1. Negative-temperature-coefficient (NTC) thermistors.
2. Positive-temperature-coefficient (PTC) thermistors.
Battery pack – Isolation sensing
2
• Why isolation sensing is required?
1. Isolation sensing detects presence of a ground fault. Primary concern is safety.
• In a vehicle application, we must maintain isolation between high-voltage battery pack and chassis of the
vehicle.
• FMVSS says isolation is sufficient if less than 2mA of current will flow when connecting chassis ground
to either the positive or negative terminal of the battery pack via a direct short.
HV contactor control
• Disconnecting or connecting a battery pack at
both terminals requires high-current capable
relays or
“contactors”.
• A low-voltage/low-current signal activates the
contactor, closing an internal switch that connects
its main terminals.
• If both contactors were closed simultaneously,
enormous current would flow instantly and
blowing a fuseSo, a third “pre-charge” contactor
is used.
2
BMS communications interface
2
• ControlArea Network (CAN) bus is industry ISO standard for on-board vehicle communications.
• Two-wire serial bus designed to network intelligent sensors and actuators; can operate at two rates:
1. High speed (e.g., 1M Baud): Used for critical operations such as engine management, vehicle
stability, motion control.
2. Low speed (e.g., 100 kBaud): Simple switching and control of lighting, windows, mirror
adjustments, and instrument displays etc.
• The LIN Bus is another automotive communications standard, similar to the CAN Bus. It is a single
wire Local Interconnect Network operating at 20 KBaud with low cost IC solutions.
• The FlexRay Bus can support fast responding dynamic control systems rather than just the simpler
sensors and actuators per- mitted with the CAN Bus. The FlexRay data payload per frame is 20 times
greater than the CAN Bus.
BMS communications interface
2
• The Integrated Circuit (I2C) Bus was a low speed bus originally designed for use between internal
modules within a system rather than for external communications. It is a bidirectional, half duplex,
two wire synchronous bus. It runs with data rates up to 3.4 Mbits/s and is suitable for Master - Slave
applications. Multiple slaves are possible but only a master can initiate a data transfer. Typically used
for internal communications within embedded systems such as a BMS.
• The SMBus (System Management Bus) is a two wire, 100 KHz, serial bus designed for use with low
power Smart Battery Systems (SBS) with the limited objectives of interconnecting Smart Batteries
which havebuilt in intelligence, with their associated chargers.
Estimation of energy and power
• Cannot directly measure the available energy or available power Therefore, must estimate SOC, SOH.
• To estimate energy, we must know all cell states-of-charge and charge capacities.
• To estimate power, we must know all cell states-of-charge and resistances.
• Available inputs include all cell voltages, pack current, and temperatures of cells or modules.
2
State of Charge (SOC)
2
• The SOC of a battery is defined as the ratio of its current capacity Q(t) to the nominal capacity
Q(n).The nominal capacity is given by the manufacturer and represents the maximum amount of
charge that can be stored in the battery.
• The SOC can be defined as follows:
Q(t)
SOC(t) =
Q(n)
• SOC changes only due to passage of current, either charging or discharging the cell due to external
circuitry, or dueto self- discharge within the cell.
Why SOC is important?
2
• Prevent overcharge or discharge.
• Improve the battery life. Protect battery.
• Improves the battery performance.
• For cell balancing applications, it is only necessary to know the SOC of any cell relative to the other
cells in the battery chain.
Methods to find SOC
2
• Direct measurement: this method uses physical battery properties, such as the voltage and impedance
of the battery.
• Book-keeping estimation: this method uses discharging current as the input and integrates the
discharging current over time to calculate the SOC.
• Adaptive systems: the adaptive systems are self designing and can automatically adjust the SOC for
different discharging conditions.
• Hybrid methods: combining any two methods to form a hybrid models of each SOC estimation.
Methods to find SOC
3
• Direct measurement:
1. Open circuit voltage method Terminal voltage method Impedance method
2. Impedance spectroscopy method
• Book-keeping estimation: 1. Coulomb counting method
2. Modified Coulomb counting method
Methods to find SOC
3
• Adaptive systems:
• BP neural network RBF neural network Support vector machine Fuzzy neural network Kalman
filter
• Hybrid systems:
• Coulomb counting and EMF combination Coulomb counting and Kalman filter combination
Per-unit system and EKF combination
Cell Balancing
3
• Cell Balancing schemeto preventindividual cells from becoming over stressed. These systems monitor
the voltage across each cell in the chain.
• Active cell balancing methods remove charge from one or more high cells and deliver the charge to
one or more low cells.
• Dissipative techniques find the cells with the highest charge in the pack, indicated by the higher cell
voltage, and remove excess energy through a bypass resistor until the voltage or charge matches the
voltage on the weakercells is known as passive balancing.
• Charge limiting is a crude way of protecting the battery from the effects of cell imbalances is to simply
switch off the charger when the first cell reaches the voltage which represents its fully charged state
(4.2 Volts for most Lithium cells) and to disconnect the battery when the lowest cell voltage reaches
its cut off point of 2 Volts during discharging.
Cell Balancing
3
• Lossless balancing is a superior way of cell balancing by means of software control. All of these
balancing techniques depend on being able to determine the state of charge of the individual cells in
the chain.
• More precise methods use coulomb counting and take account of the temperature and age of the cell
as well asthe cell voltage.
Relationship between SOC and DOD
3
• A battery’s depth of discharge (DoD) indicates the percentage of the battery that has been
discharged relative to the overall capacity of the battery.
• Depth of Discharge (DOD) is the fraction or percentage of the capacity which has been removed
from the fully charged battery. Conversely, the State of Charge (SOC) is the fraction or percentage
of the capacity is still available in the battery.
• A battery that is at 100 percent SOC is at 0 percent DOD. A battery at 80 percent SOC is at 20
percent DOD.
Conclusion
3
• As batteries are the core energy sources in EVs and HEVs, their performance greatly impacts the
salability of EVs. Therefore, manufacturers are seeking for breakthroughs in both battery technology
and
BMS.
• The major concerns of BMS were discussed in this presentation. Due to varying situations in real-
world applications, a standard solution was not wanted. Based on the specific situation, different
strategies should be applied to improve and optimize the performance of BMS in future EV and
HEV.
THANK YOU
3
3

More Related Content

What's hot

BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBhagavathyP
 
132 k v-substation-training-for-students
132 k v-substation-training-for-students132 k v-substation-training-for-students
132 k v-substation-training-for-studentsSanjay Kumar Sharma
 
Power System Protection
Power System ProtectionPower System Protection
Power System ProtectionRahul Mehra
 
AAMI: Rechargeable Battery Management Guidelines
AAMI: Rechargeable Battery Management GuidelinesAAMI: Rechargeable Battery Management Guidelines
AAMI: Rechargeable Battery Management GuidelinesAnne Ruthmann
 
SEMINAR Report Of SolarPowerController
SEMINAR Report Of SolarPowerControllerSEMINAR Report Of SolarPowerController
SEMINAR Report Of SolarPowerControllerVaisakh Shanmughan
 
Flexible Ac Transmission System
Flexible Ac Transmission SystemFlexible Ac Transmission System
Flexible Ac Transmission SystemBrunda R
 
Protective relay
Protective relay Protective relay
Protective relay Uday Wankar
 
VRLA battery state of health estimation based on charging time
VRLA battery state of health estimation based on charging timeVRLA battery state of health estimation based on charging time
VRLA battery state of health estimation based on charging timeTELKOMNIKA JOURNAL
 
substation automation
substation automationsubstation automation
substation automationMahbub Rashid
 
17 mse017 battery and battery management system
17 mse017 battery and battery management system17 mse017 battery and battery management system
17 mse017 battery and battery management systempaneliya sagar
 
09. operating instruction c20 c30
09. operating instruction c20 c3009. operating instruction c20 c30
09. operating instruction c20 c30vietcdt
 
Busbar protection LEC 2.pptx
Busbar protection LEC 2.pptxBusbar protection LEC 2.pptx
Busbar protection LEC 2.pptxRahaf Waheep
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]moiz89
 
Numerical Relaying.pptx
Numerical Relaying.pptxNumerical Relaying.pptx
Numerical Relaying.pptxrohith650557
 

What's hot (20)

Facts
FactsFacts
Facts
 
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
 
132 k v-substation-training-for-students
132 k v-substation-training-for-students132 k v-substation-training-for-students
132 k v-substation-training-for-students
 
Power System Protection
Power System ProtectionPower System Protection
Power System Protection
 
AAMI: Rechargeable Battery Management Guidelines
AAMI: Rechargeable Battery Management GuidelinesAAMI: Rechargeable Battery Management Guidelines
AAMI: Rechargeable Battery Management Guidelines
 
SEMINAR Report Of SolarPowerController
SEMINAR Report Of SolarPowerControllerSEMINAR Report Of SolarPowerController
SEMINAR Report Of SolarPowerController
 
Protective relaying
Protective relayingProtective relaying
Protective relaying
 
Flexible Ac Transmission System
Flexible Ac Transmission SystemFlexible Ac Transmission System
Flexible Ac Transmission System
 
Protective relay
Protective relay Protective relay
Protective relay
 
Protection of alternator
Protection of alternatorProtection of alternator
Protection of alternator
 
Tcsc
TcscTcsc
Tcsc
 
VRLA battery state of health estimation based on charging time
VRLA battery state of health estimation based on charging timeVRLA battery state of health estimation based on charging time
VRLA battery state of health estimation based on charging time
 
substation automation
substation automationsubstation automation
substation automation
 
17 mse017 battery and battery management system
17 mse017 battery and battery management system17 mse017 battery and battery management system
17 mse017 battery and battery management system
 
09. operating instruction c20 c30
09. operating instruction c20 c3009. operating instruction c20 c30
09. operating instruction c20 c30
 
Busbar protection LEC 2.pptx
Busbar protection LEC 2.pptxBusbar protection LEC 2.pptx
Busbar protection LEC 2.pptx
 
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
BUS BAR  PROTECTION PPT BY:-R.K.PANDITBUS BAR  PROTECTION PPT BY:-R.K.PANDIT
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
 
Power quality
Power qualityPower quality
Power quality
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]
 
Numerical Relaying.pptx
Numerical Relaying.pptxNumerical Relaying.pptx
Numerical Relaying.pptx
 

Similar to sahil s.pptx

BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBhagavathyP
 
Battery Management Solution
Battery Management SolutionBattery Management Solution
Battery Management SolutionAvinash Sista
 
Lithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.pptLithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.pptSAnsariQUARBZ
 
Lithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptLithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptRajeshGangwar20
 
Lithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptLithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptRajeshGangwar20
 
A modular high power battery system for pulsed
A modular high power battery system for pulsedA modular high power battery system for pulsed
A modular high power battery system for pulsedShaurya Tyagi
 
Analysis of Battery Management Systems
Analysis of Battery Management SystemsAnalysis of Battery Management Systems
Analysis of Battery Management SystemsIRJET Journal
 
ppt EV Seminar .pptx
ppt EV Seminar  .pptxppt EV Seminar  .pptx
ppt EV Seminar .pptxsagarkorde4
 
Smart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatterySmart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatteryIRJET Journal
 
Battery Management System– Hardware Design
Battery Management System– Hardware DesignBattery Management System– Hardware Design
Battery Management System– Hardware DesignIRJET Journal
 
Three cell battery manager module
Three cell battery manager moduleThree cell battery manager module
Three cell battery manager modulelouayalhomsi
 
Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.IRJET Journal
 
Digitization of Battery management System and Charging by Solar Panel
Digitization of Battery management System and Charging by Solar PanelDigitization of Battery management System and Charging by Solar Panel
Digitization of Battery management System and Charging by Solar PanelSHEIKHMASEMMANDAL
 
BMS-Development-ppt.pdf
BMS-Development-ppt.pdfBMS-Development-ppt.pdf
BMS-Development-ppt.pdfakdr1
 
BMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxBMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxboltgaming3
 
InComplianceJune2015_Hoerman
InComplianceJune2015_HoermanInComplianceJune2015_Hoerman
InComplianceJune2015_HoermanBrent Hoerman
 

Similar to sahil s.pptx (20)

BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLESBATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES
 
Battery Management Solution
Battery Management SolutionBattery Management Solution
Battery Management Solution
 
Lithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.pptLithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.ppt
 
Lithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptLithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).ppt
 
Lithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).pptLithium_BMS_Tutorial (1).ppt
Lithium_BMS_Tutorial (1).ppt
 
Lithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.pptLithium_BMS_Tutorial.ppt
Lithium_BMS_Tutorial.ppt
 
A modular high power battery system for pulsed
A modular high power battery system for pulsedA modular high power battery system for pulsed
A modular high power battery system for pulsed
 
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
 
Analysis of Battery Management Systems
Analysis of Battery Management SystemsAnalysis of Battery Management Systems
Analysis of Battery Management Systems
 
A-13.ppt
A-13.pptA-13.ppt
A-13.ppt
 
ppt EV Seminar .pptx
ppt EV Seminar  .pptxppt EV Seminar  .pptx
ppt EV Seminar .pptx
 
Smart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion BatterySmart Battery Management System for Lithium Ion Battery
Smart Battery Management System for Lithium Ion Battery
 
Battery Management System– Hardware Design
Battery Management System– Hardware DesignBattery Management System– Hardware Design
Battery Management System– Hardware Design
 
Three cell battery manager module
Three cell battery manager moduleThree cell battery manager module
Three cell battery manager module
 
Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.Development of Power train in Electric Vehicles.
Development of Power train in Electric Vehicles.
 
Digitization of Battery management System and Charging by Solar Panel
Digitization of Battery management System and Charging by Solar PanelDigitization of Battery management System and Charging by Solar Panel
Digitization of Battery management System and Charging by Solar Panel
 
BMS-Development-ppt.pdf
BMS-Development-ppt.pdfBMS-Development-ppt.pdf
BMS-Development-ppt.pdf
 
BMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptxBMS_PPT_09_NOV[1][1].pptx
BMS_PPT_09_NOV[1][1].pptx
 
InComplianceJune2015_Hoerman
InComplianceJune2015_HoermanInComplianceJune2015_Hoerman
InComplianceJune2015_Hoerman
 
IEEE Final only
IEEE Final onlyIEEE Final only
IEEE Final only
 

Recently uploaded

Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...Delhi Call girls
 
GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024AHOhOops1
 
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorHow To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorAndres Auto Service
 
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girls
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile GirlsVip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girls
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girlsshivangimorya083
 
Call me @ 9892124323 Call Girl in Andheri East With Free Home Delivery
Call me @ 9892124323 Call Girl in Andheri East With Free Home DeliveryCall me @ 9892124323 Call Girl in Andheri East With Free Home Delivery
Call me @ 9892124323 Call Girl in Andheri East With Free Home DeliveryPooja Nehwal
 
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...Niya Khan
 
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...Hot Call Girls In Sector 58 (Noida)
 
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...Garima Khatri
 
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂Hot Call Girls In Sector 58 (Noida)
 
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
How To Fix Mercedes Benz Anti-Theft Protection Activation Issue
How To Fix Mercedes Benz Anti-Theft Protection Activation IssueHow To Fix Mercedes Benz Anti-Theft Protection Activation Issue
How To Fix Mercedes Benz Anti-Theft Protection Activation IssueTerry Sayther Automotive
 
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfJohn Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfExcavator
 
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 person
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 personDelhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 person
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 personshivangimorya083
 
Hyundai World Rally Team in action at 2024 WRC
Hyundai World Rally Team in action at 2024 WRCHyundai World Rally Team in action at 2024 WRC
Hyundai World Rally Team in action at 2024 WRCHyundai Motor Group
 
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...Hot Call Girls In Sector 58 (Noida)
 
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...Suhani Kapoor
 
Introduction of Basic of Paint Technology
Introduction of Basic of Paint TechnologyIntroduction of Basic of Paint Technology
Introduction of Basic of Paint TechnologyRaghavendraMishra19
 

Recently uploaded (20)

Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts Ser...
 
GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024
 
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorHow To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
 
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girls
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile GirlsVip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girls
Vip Hot🥵 Call Girls Delhi Delhi {9711199012} Avni Thakur 🧡😘 High Profile Girls
 
Call me @ 9892124323 Call Girl in Andheri East With Free Home Delivery
Call me @ 9892124323 Call Girl in Andheri East With Free Home DeliveryCall me @ 9892124323 Call Girl in Andheri East With Free Home Delivery
Call me @ 9892124323 Call Girl in Andheri East With Free Home Delivery
 
Stay Cool and Compliant: Know Your Window Tint Laws Before You Tint
Stay Cool and Compliant: Know Your Window Tint Laws Before You TintStay Cool and Compliant: Know Your Window Tint Laws Before You Tint
Stay Cool and Compliant: Know Your Window Tint Laws Before You Tint
 
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...
Alia +91-9537192988-Experience the Unmatchable Pleasure with Model Ahmedabad ...
 
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...
꧁ ୨⎯Call Girls In Ashok Vihar, New Delhi **✿❀7042364481❀✿**Escorts ServiCes C...
 
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...
VIP Mumbai Call Girls Thakur village Just Call 9920874524 with A/C Room Cash ...
 
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂
꧁༒☬ 7042364481 (Call Girl) In Dwarka Delhi Escort Service In Delhi Ncr☬༒꧂
 
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls East Of Kailash 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
How To Fix Mercedes Benz Anti-Theft Protection Activation Issue
How To Fix Mercedes Benz Anti-Theft Protection Activation IssueHow To Fix Mercedes Benz Anti-Theft Protection Activation Issue
How To Fix Mercedes Benz Anti-Theft Protection Activation Issue
 
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfJohn Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
 
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 person
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 personDelhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 person
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Full night Service for more than 1 person
 
Hyundai World Rally Team in action at 2024 WRC
Hyundai World Rally Team in action at 2024 WRCHyundai World Rally Team in action at 2024 WRC
Hyundai World Rally Team in action at 2024 WRC
 
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...
꧁ ୨ Call Girls In Radisson Blu Plaza Delhi Airport, New Delhi ❀7042364481❀ Es...
 
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Saket 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...
VIP Russian Call Girls in Jamshedpur Deepika 8250192130 Independent Escort Se...
 
Introduction of Basic of Paint Technology
Introduction of Basic of Paint TechnologyIntroduction of Basic of Paint Technology
Introduction of Basic of Paint Technology
 
Hotel Escorts Sushant Golf City - 9548273370 Call Girls Service in Lucknow, c...
Hotel Escorts Sushant Golf City - 9548273370 Call Girls Service in Lucknow, c...Hotel Escorts Sushant Golf City - 9548273370 Call Girls Service in Lucknow, c...
Hotel Escorts Sushant Golf City - 9548273370 Call Girls Service in Lucknow, c...
 

sahil s.pptx

  • 1. BATTERY MANAGEMENT SYSTEM (BMS) IN ELECTRIC VEHICLES Prepared by SAHIL S 1
  • 2. Overview 2 • Battery Basics • Introduction • Why we need BMS? • General function of BMS • Block diagram of BMS • BMS architecture • Battery pack – Voltage, Current, Temperature and Isolation sensing • HV contactor control • BMS communications interface • Estimation of energy and power and SOC • Methods to find SOC • Cell Balancing • Relationship between SOC and DOD • Conclusion
  • 4. Difference Between Cell, Module & Pack 4 • Battery cell: • Unit of a battery that exerts electric energy by charging and discharging. Made by inserting anode, cathode, separator and electrolyte into a aluminum case. • Battery module: • Connecting a number of cells in parallel or series is called battery module. • Battery Pack: • Composed of battery module connected in series and parallel.
  • 6. Difference Between Lithium and Other Batteries 6
  • 7. DIFFERENCE BETWEEN LITHIUM AND OTHER BATTERIES 7 • Lead based cell – 2.1V/cell • Nickel based cell – 1.2V/cell • Lithium based cell – 3.8V/cell
  • 8. Types of Lithium Batteries • LCO - Lithium Cobalt Oxide • LMO - Lithium Manganese Oxide • NMC - Lithium Nickel Manganese Cobalt Oxide • LFP - Lithium Iron Phosphate • NCA - Lithium Nickel Cobalt Aluminum Oxide • LTO - Lithium Titanate Oxide 8
  • 9. C – Rate • Battery current handling capability • It is a constant current charge or discharge rate, which the battery can sustain for one hour • For eg : 12V,20Ah battery • 20A can be deliver at one hour or 2A for 10hrs • 1C rate - 20A for 1hr • 2C rate - 40A for 30min • 3C rate - 60A for 15min • 0.5C rate - 10A for 2hrs • 0.1C rate - 2A for 10hrs 9
  • 10. CELL FORMATS OF LITHIUM BATTERIES 1
  • 11. Introduction to BMS 1 • An electric vehicle generally contains the following major components: an electric motor, a motor controller, a traction battery, a battery management system, a wiring system, a vehicle body and a frame. • The battery management system is one of the most important components, especially when using lithium batteries. • The lithium cell operating voltage, current and temperature must be maintained within the “Safe Operation Area” (SOA) at all times. • To maintain the safe operation of these batteries, they require a protective device to be built into each pack is called battery management system (BMS).
  • 12. • BMS make decisions on charge and discharge rates on the basis of load demands, cell voltage, current, and temperature measurements, and estimated battery SOC, capacity, impedance, etc. BMS is a part of complex and fast-acting power management system. History of BMS • On 7th January 2013, a Boeing 787 flight was parked for maintenance, during that time a mechanic noticed flames and smoke coming from the Auxiliary power unit (Lithium battery Pack) of the flight. On 16th January 2013 another battery failure occurred in a 787 flight operated by All Nippon Airways which caused an emergency landing at the Japanese airport. • After a series of joint investigation by the US and Japanese, the Lithium battery Pack of B-787 went through a CT scan and revealed that one of the eight Li-ion cell was damaged causing a short circuit which triggered a thermal runaway with fire. • This incident could have been easily avoided if the Battery management system of the Li-ion battery pack was designed to detect/prevent short circuits. 1
  • 13. Why we need BMS? 1 • Detects unsafe operating conditions and responds. • Protects cells of battery from damage in abuse and failure cases. • Prolongs life of battery. Maintains battery in a state.
  • 14. General function of BMS 1 • Sensing and high-voltage control Measure voltage, current, temperature, control contactor, pre-charge; ground-fault detection, thermal management. • Protection Over-charge, over-discharge, over-current, short circuit, extreme temperatures. • Interface Range estimation, communications, data recording, reporting. • Performance management State of charge (SOC) estimation, power limit computation, balance and equalize cells. • Diagnostics Abuse detection, state of health (SOH) estimation, state of life (SOL) estimation.
  • 15. Batter P a c "' .... - -----=== ::;;;;;;;;;_;;;-- ;;;;;- ;;;;; ------_;; ;;;_..;;;_..,,1: --.,;;-..;---= - ..;:=._;;;;;;;:;...:;;;;;;;;;_-, Capa il ty Estrr1a t o n c r e n t V C ClJ E (JJ 5-... :::::l If.I') ro ClJ Vn S t a t e o f Cha·ge State of H e a t I I I Thernna1 Ma a g e n i e n t C 0 {.J ti") ::s ...c 2 <C LJ ■ ■ ■ D sc -_arge Cel Bala ci g
  • 16. BMS architecture • A modular battery pack suggests a hierarchical master – slave BMS design. • There is normally a single “master” unit for each pack. 1
  • 17. BMS master role 1 • Control contactors that connect battery to load. • Monitor pack current, isolation. Communicate with BMS slaves. Control thermal-management. • Communicate with host application controller.
  • 18. BMS slave role 1 • Measure voltage of every cell within the module. • Measure temperatures. • Balance the energy stored in every cell within the module. Communicate this information to the master.
  • 19. Battery pack- voltage sensing 1 • Why we consider cell voltage? 1. Indicator of relative balance of cells. 2. Input to most SOC and SOH estimation algorithms. 3. Safety: overcharging a lithium-ion cell can lead to “thermal runaway,” so we cannot skip measuring any voltages. • Voltage is measured using an analog to digital converter(ADC). A direct-conversion or flashADC. • Successive approximation. Delta-sigma.
  • 20. • Special chipsets are made to aid high-voltage BMS design. Multiple vendors make chipsets (e.g., Analog Devices, Maxim, Texas Instruments). Battery pack – Current sensing • Why battery pack electrical currentmeasurementsarerequired? 1. To monitor battery-pack safety. To log abuse conditions. 2. By most state-of-charge and state-of-health algorithms. • There are two basic methods to measure electrical current: 1. Using a resistive shunt. 2. Using a Hall-effect mechanism. 2
  • 21. Battery pack – Temperature sensing 2 • Why battery pack temperature measurements are required? 1. Battery cell operational characteristics and cell degradation rates are very strong functions of temperature. 2. Unexpected temperature changes can indicate cell failure or impending safety concern. • There are two methods to measure temperature : Using a thermocouple and using a thermistor. • Thermistor has two types. 1. Negative-temperature-coefficient (NTC) thermistors. 2. Positive-temperature-coefficient (PTC) thermistors.
  • 22. Battery pack – Isolation sensing 2 • Why isolation sensing is required? 1. Isolation sensing detects presence of a ground fault. Primary concern is safety. • In a vehicle application, we must maintain isolation between high-voltage battery pack and chassis of the vehicle. • FMVSS says isolation is sufficient if less than 2mA of current will flow when connecting chassis ground to either the positive or negative terminal of the battery pack via a direct short.
  • 23. HV contactor control • Disconnecting or connecting a battery pack at both terminals requires high-current capable relays or “contactors”. • A low-voltage/low-current signal activates the contactor, closing an internal switch that connects its main terminals. • If both contactors were closed simultaneously, enormous current would flow instantly and blowing a fuseSo, a third “pre-charge” contactor is used. 2
  • 24. BMS communications interface 2 • ControlArea Network (CAN) bus is industry ISO standard for on-board vehicle communications. • Two-wire serial bus designed to network intelligent sensors and actuators; can operate at two rates: 1. High speed (e.g., 1M Baud): Used for critical operations such as engine management, vehicle stability, motion control. 2. Low speed (e.g., 100 kBaud): Simple switching and control of lighting, windows, mirror adjustments, and instrument displays etc. • The LIN Bus is another automotive communications standard, similar to the CAN Bus. It is a single wire Local Interconnect Network operating at 20 KBaud with low cost IC solutions. • The FlexRay Bus can support fast responding dynamic control systems rather than just the simpler sensors and actuators per- mitted with the CAN Bus. The FlexRay data payload per frame is 20 times greater than the CAN Bus.
  • 25. BMS communications interface 2 • The Integrated Circuit (I2C) Bus was a low speed bus originally designed for use between internal modules within a system rather than for external communications. It is a bidirectional, half duplex, two wire synchronous bus. It runs with data rates up to 3.4 Mbits/s and is suitable for Master - Slave applications. Multiple slaves are possible but only a master can initiate a data transfer. Typically used for internal communications within embedded systems such as a BMS. • The SMBus (System Management Bus) is a two wire, 100 KHz, serial bus designed for use with low power Smart Battery Systems (SBS) with the limited objectives of interconnecting Smart Batteries which havebuilt in intelligence, with their associated chargers.
  • 26. Estimation of energy and power • Cannot directly measure the available energy or available power Therefore, must estimate SOC, SOH. • To estimate energy, we must know all cell states-of-charge and charge capacities. • To estimate power, we must know all cell states-of-charge and resistances. • Available inputs include all cell voltages, pack current, and temperatures of cells or modules. 2
  • 27. State of Charge (SOC) 2 • The SOC of a battery is defined as the ratio of its current capacity Q(t) to the nominal capacity Q(n).The nominal capacity is given by the manufacturer and represents the maximum amount of charge that can be stored in the battery. • The SOC can be defined as follows: Q(t) SOC(t) = Q(n) • SOC changes only due to passage of current, either charging or discharging the cell due to external circuitry, or dueto self- discharge within the cell.
  • 28. Why SOC is important? 2 • Prevent overcharge or discharge. • Improve the battery life. Protect battery. • Improves the battery performance. • For cell balancing applications, it is only necessary to know the SOC of any cell relative to the other cells in the battery chain.
  • 29. Methods to find SOC 2 • Direct measurement: this method uses physical battery properties, such as the voltage and impedance of the battery. • Book-keeping estimation: this method uses discharging current as the input and integrates the discharging current over time to calculate the SOC. • Adaptive systems: the adaptive systems are self designing and can automatically adjust the SOC for different discharging conditions. • Hybrid methods: combining any two methods to form a hybrid models of each SOC estimation.
  • 30. Methods to find SOC 3 • Direct measurement: 1. Open circuit voltage method Terminal voltage method Impedance method 2. Impedance spectroscopy method • Book-keeping estimation: 1. Coulomb counting method 2. Modified Coulomb counting method
  • 31. Methods to find SOC 3 • Adaptive systems: • BP neural network RBF neural network Support vector machine Fuzzy neural network Kalman filter • Hybrid systems: • Coulomb counting and EMF combination Coulomb counting and Kalman filter combination Per-unit system and EKF combination
  • 32. Cell Balancing 3 • Cell Balancing schemeto preventindividual cells from becoming over stressed. These systems monitor the voltage across each cell in the chain. • Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. • Dissipative techniques find the cells with the highest charge in the pack, indicated by the higher cell voltage, and remove excess energy through a bypass resistor until the voltage or charge matches the voltage on the weakercells is known as passive balancing. • Charge limiting is a crude way of protecting the battery from the effects of cell imbalances is to simply switch off the charger when the first cell reaches the voltage which represents its fully charged state (4.2 Volts for most Lithium cells) and to disconnect the battery when the lowest cell voltage reaches its cut off point of 2 Volts during discharging.
  • 33. Cell Balancing 3 • Lossless balancing is a superior way of cell balancing by means of software control. All of these balancing techniques depend on being able to determine the state of charge of the individual cells in the chain. • More precise methods use coulomb counting and take account of the temperature and age of the cell as well asthe cell voltage.
  • 34. Relationship between SOC and DOD 3 • A battery’s depth of discharge (DoD) indicates the percentage of the battery that has been discharged relative to the overall capacity of the battery. • Depth of Discharge (DOD) is the fraction or percentage of the capacity which has been removed from the fully charged battery. Conversely, the State of Charge (SOC) is the fraction or percentage of the capacity is still available in the battery. • A battery that is at 100 percent SOC is at 0 percent DOD. A battery at 80 percent SOC is at 20 percent DOD.
  • 35. Conclusion 3 • As batteries are the core energy sources in EVs and HEVs, their performance greatly impacts the salability of EVs. Therefore, manufacturers are seeking for breakthroughs in both battery technology and BMS. • The major concerns of BMS were discussed in this presentation. Due to varying situations in real- world applications, a standard solution was not wanted. Based on the specific situation, different strategies should be applied to improve and optimize the performance of BMS in future EV and HEV.
  • 37. 3