SlideShare a Scribd company logo
1 of 58
STUDY ON CHEMICAL ACTIVITY OF PIERRE
SHALES AND ITS EFFECT ON NEAR
WELLBORE PORE PRESSURE
DISTRIBUTION
Sabarisha Subramaniyan
July 2014
3/2/2019 2
Objectives
 Shale - Chemical nature
 Contribution to wellbore instability
 Impact on mechanical response
 Sensitivity to other properties
3/2/2019 3
Outline
 Introduction
 Matlab coding structure
 Case Study – Results
 Code Verification
 Conclusions
 Limitations
3/2/2019 4
Introduction
Wellbore Instability Problems are
 Borehole enlargement
 Hole shrinkage
 Hole fracture
 Hole collapse
Principle of wellbore stability = Equilibrium between rock
strength and in-situ stresses
Petrowiki.spe.org
3/2/2019 5
Causes for Wellbore instability
 Rock removal
 Stress redistribution
 Stress state > or < in-situ
stresses = failure
Contributors
Mechanical, chemical, thermal, angular instability
(McLean, 1990)
3/2/2019 6
Clay Colloidal Chemistry (Negative charges)
 Isomorphic substitution
 If pH < or > Zero Point Charge (ZPC)
Clay in electrolyte =
Diffuse double layer
 Stern layer – equilibrium
(zeta potential)
 Concentration decline
(Colloidal chemistry department, University of Szeged)
3/2/2019 7
Cation Exchange Capacity (CEC)
1. Measure of exchangeable ions
2. CEC ↑ = Reactivity ↑
3. CEC ∝ pH
Membrane Efficiency (ME)
 Restricting ions (size & charge)
 ME ∝ CEC
 ME ∝ 1/(Φ, k)
(Colline et al., 2008)
3/2/2019 8
Water Activity (aw)
 State of hydration
 aw ∝ P, T
 𝑃𝑤 = 𝜎 𝑚
𝑅𝑇
𝑉 𝑤
ln
𝑎 𝑤,𝑚𝑢𝑑
𝑎 𝑤,𝑠ℎ𝑎𝑙𝑒
 swelling / shrinking
Transport Mechanisms in Shale
Osmosis (Osmotic pressure)
 Chemical Potential , Membrane efficiency (ME)
3/2/2019 9
Osmosis (continued)
 Salinity differences in subsurface
 Total solute concentration
 Longevity of the Osmotic pressure
Diffusion (Fick’s Law)
 Opposes Osmosis
 Concentration gradient
 Effective when ME ↓ and permeability ↑ (drags H2O)
3/2/2019 10
Hydraulic Flow (Darcy’s Law)
 Hydraulic pressure gradient
 Mud Weight ↑ = Mechanical Stability
 Overbalanced drilling  Hydration of Shales
 Conductivity ∝ fractures
Electro-Osmosis
 Movement of charges – electrical potential difference
3/2/2019 11
Year Process
1908 - Von Reuss Electro osmosis
1925, 1941 – Terzaghi, Biot Poroelastic consolidation
1965, 1969 – Young, Olsen Semi-Permeability of Shales
1967, 1993 – Katchalsky,
Yeung
Transport equations
1968 – Esrig 1D electro kinetic
consolidation
2006 - Nguyen &
Abousleiman
3D solution for electrokinetics
in Biot’s model
2009, 2013 – Ghassemi, Tran
et al.,
Thermal model, anisotropic
model
Chronology of Formulations
3/2/2019 12
𝑞𝑖 = 𝐿11
𝜕(−𝑝)
𝜕𝑥𝑖
+ 𝐿12
𝜕(−𝜓)
𝜕𝑥𝑖
+ 𝐿13
𝑅𝑇
𝑚 𝑜
𝑎
𝜕(−𝑚 𝑎)
𝜕𝑥𝑖
+ 𝐿14
𝑅𝑇
𝑚 𝑜
𝑐
𝜕(−𝑚 𝑐)
𝜕𝑥𝑖
𝐼𝑖 = 𝐿21
𝜕(−𝑝)
𝜕𝑥𝑖
+ 𝐿22
𝜕(−𝜓)
𝜕𝑥𝑖
+ 𝐿23
𝑅𝑇
𝑚 𝑜
𝑎
𝜕(−𝑚 𝑎)
𝜕𝑥𝑖
+ 𝐿24
𝑅𝑇
𝑚 𝑜
𝑐
𝜕(−𝑚 𝑐)
𝜕𝑥𝑖
𝐽𝑖
𝑎,𝑑
= 𝐿31
𝜕(−𝑝)
𝜕𝑥𝑖
+ 𝐿32
𝜕(−𝜓)
𝜕𝑥𝑖
+ 𝐿33
𝑅𝑇
𝑚 𝑜
𝑎
𝜕(−𝑚 𝑎
)
𝜕𝑥𝑖
+ 𝐿34
𝑅𝑇
𝑚 𝑜
𝑐
𝜕(−𝑚 𝑐
)
𝜕𝑥𝑖
𝐽𝑖
𝑐,𝑑
= 𝐿41
𝜕(−𝑝)
𝜕𝑥𝑖
+ 𝐿42
𝜕(−𝜓)
𝜕𝑥𝑖
+ 𝐿43
𝑅𝑇
𝑚 𝑜
𝑎
𝜕(−𝑚 𝑎
)
𝜕𝑥𝑖
+ 𝐿44
𝑅𝑇
𝑚 𝑜
𝑐
𝜕(−𝑚 𝑐
)
𝜕𝑥𝑖
Coupled Flow Transport Equations
Yeung &
Mitchell
(1993)
3/2/2019 13
𝑑𝜎𝑖𝑗 = 2𝐺𝑑𝜀𝑖𝑗 +
2𝐺𝜈
1−2𝜈
𝑑𝜀 𝑘𝑘 𝛿𝑖𝑗 + 𝛼𝑑𝑝𝛿𝑖𝑗
𝑑𝜙 = −𝛼𝑑𝜀 𝑘𝑘 +
1
𝐾 𝜙
𝑑𝑝
𝑑𝜁 = −𝛼𝑑𝜀 𝑘𝑘 +
1
𝑀
𝑑𝑝
Constitutive Equations
Coussy (2004)
3/2/2019 14
𝜕𝜌 𝑒
𝜕𝑡
= −
𝜕𝐼 𝑖
𝜕𝑥 𝑖
= 0
Far Field Boundary Conditions
𝜎𝑥𝑥 = 𝑆 𝑥 𝜎 𝑦𝑦 = 𝑆 𝑦 𝜎𝑧𝑧 = 𝑆𝑧
𝜏 𝑥𝑦 = 𝑆 𝑥𝑦 𝜏 𝑦𝑧 = 𝑆 𝑦𝑧 𝜏 𝑥𝑧 = 𝑆 𝑥𝑧
𝑝 = 𝑝 𝑜
Sachs et al., 1987
Governing Equations
3/2/2019 15
Near Wellbore Boundary Conditions
𝜎𝑟𝑟 = (𝜎 𝑚 + 𝜎 𝑑 cos 2 𝜃 − 𝜃𝑟 𝐻 −𝑡 + 𝑝 𝑚𝑢𝑑 𝐻 𝑡
𝜏 𝑟𝜃 = −𝜎 𝑑 sin 2 𝜃 − 𝜃𝑟 𝐻 −𝑡
𝜏 𝑟𝑧 = ( 𝑆 𝑥𝑧 cos θ + 𝑆 𝑦𝑥si n( 𝜃))𝐻(−𝑡
𝑝 = 𝑝 𝑜 𝐻 −𝑡 + 𝑝 𝑚𝑢𝑑 + ∆𝑝 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒 𝐻 𝑡
Abousleiman et
al., (2008)
3/2/2019 16
 Poroelastic Plane
strain problem
1. Elastic radial loading
2. Diffusional loading
3. Deviatoric loading
 Elastic Uniaxial
stress
 Elastic anti plane
shear problem
(Cui et al., 1997)
3/2/2019 17
Input
Parameters
(CEC, aw )
Primary
Parameters
(mole fractions)
Secondary
Parameters
(𝝈 𝒎, 𝝈 𝒅, 𝜽 𝒓)
if
𝝈 𝒅, 𝜽 𝒓
= 0
Deviatoric stress
loading is
included
Deviatoric stress
loading is ignored
Sum of Inverse
(individual solutions) =
Superposed solutions
Matlab code structure
No Yes
3/2/2019 18
Case Study
Properties of Pierre Shale considered
Parameters Values (Salisbury et al.,1991)
Shear (G), Bulk (K) modulus 600 , 4800 (MPa)
Porosity (φ) 0.176
Permeability (k) 6E-21 (m2)
CEC 36 meq/100 grams dry clay
Pore pressure (p0) 21.4 (MPa)
Sv , SH , Sh 54, 44, 44 (MPa)
Membrane efficiency 0.8 (dimensionless)
Temperature 82° C
Depth 2200 (meters)
mfc ,ma , mc 0.0719, 0.0052, 0.0771
3/2/2019 19
Case 1: When mud activity > pore fluid activity
Pore Pressure (in MPa) Vs Distance Ratio
Water moves from mud → shale (hydration)
3/2/2019 20
Effective Radial Stress (in MPa) Vs Distance Ratio
Tensile Stress > Compressive Stress ( Spalling Failure)
3/2/2019 21
Effective Tangential Stress (in MPa) Vs Distance Ratio
Tensile Stress > Compressive Stress ( Spalling Failure)
3/2/2019 22
Case 2: When mud activity < pore fluid activity
Pore Pressure (in MPa) Vs Distance Ratio
Water moves from shale → mud (Stability ↑ )
3/2/2019 23
Effective Radial Stress (in MPa) Vs Distance Ratio
More Compressive than Poroelastic medium (Stability ↑ )
3/2/2019 24
Effective Tangential Stress (in MPa) Vs Distance Ratio
More Compressive than Poroelastic medium (Stability ↑ )
3/2/2019 25
Case 3: Time Propagation of the pore pressures
generated (when mud activity < Pore fluid activity)
Saturation of Shale ↓ with increase in time (stability ↑)
3/2/2019 26
Case 4: Sensitivity of the pore pressures generated to
mechanical properties of the formation
Pore Pressure Vs distance ratio (varying G ∝ 1/ ν)
3/2/2019 27
Pore Pressure Vs distance ratio (varying K ∝ ν)
Limits for Pierre Shales = 300 – 13000 MPa
3/2/2019 28
Pore Pressure Vs Distance ratio (varying Poisson’s ratio)
The phenomena is sensitive only to differential volumetric ratio
3/2/2019 29
Sensitivity of the Pore Pressures generated to
Petrophysical and Surface Charge properties
Membrane Efficiency Vs CEC (varying porosities < 30%)
ME ∝ CEC/ porosity
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1
1.02
0 20 40 60 80 100 120
Reflectioncoefficient
CEC (meq/100 g)
por=0.0001
por=0.1
por=0.2
por=0.3
3/2/2019 30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 20 40 60 80 100 120
Reflectioncoefficient
CEC (meq/100 g)
por=0.4
por=0.5
por=0.6
Membrane Efficiency Vs CEC (varying porosities > 30%)
Changes in ME is more sensitive for higher porosities
Higher porosities affect ME even if CEC is high
3/2/2019 31
Pore pressure Vs distance ratio (varying porosities)
Osmosis is counter checked by Diffusion at higher porosities
30% porosity - threshold value for Pierre Shales
3/2/2019 32
Pore pressure Vs distance ratio (varying Cation Exchange
Capacity)
Osmosis is counter checked by Diffusion at lower CEC
3/2/2019 33
Pore pressure Vs distance ratio (varying Permeability)
Low permeable formations least affected if mud activity >
shale activity as pore pressure propagation is slower
3/2/2019 34
Code Verification
Type 1: Comparing the analytical solutions with results
of Nguyen et al., (2008)
Pore pressure Vs Distance Ratio (Poroelastic &
Porochemoelastic models)
The matching between the
results is excellent
28
29
30
31
32
33
34
35
36
1 1.1 1.2 1.3 1.4 1.5
Porepressure(MPa)
r/rw
abousleiman PE model
Matlab PE model
abousleiman PC model
Matlab PC model
3/2/2019 35
-6
-4
-2
0
2
4
6
8
10
12
14
1 1.05 1.1 1.15 1.2 1.25
Effectiveradialstress(MPa)
r/rw
abousleiman PC model
Matlab PC model
abousleiman PE model
Matlab PE model
47
48
49
50
51
52
53
54
55
56
57
1 1.05 1.1 1.15 1.2 1.25
Effectivetangentialstress(MPa)
r/rw
abousleiman PC model
Matlab PC model
abousleiman PE model
Matlab PE model
Comparison of the effective
radial stresses obtained in
Matlab and by
Abousleiman et al.,(2008)
Comparison of the effective
tangential stresses obtained
in Matlab and by
Abousleiman et al.,(2008)
3/2/2019 36
Type 2: Verifying the results of sensitivity analysis
based on Jaeger’s analytical solutions for 1-D
Poroelastic consolidation
 Berea Sand - draining starts around t = 1000 (dimensionless)
0.36
0.37
0.38
0.39
0.4
0.41
0.42
0.43
0.44
0.45
0.000001 0.0001 0.01 1 100 10000 1000000 100000000 1E+10
Verticaldisplcement(m)
Dimensionless time (kt/μSh2)
Berea Sand formations
3/2/2019 37
0.633905
0.63391
0.633915
0.63392
0.633925
0.63393
0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15
Verticaldisplacement(m)
Dimensionless time (kt/μSh2)
Shale formations
Displacement at top of the column Vs Dimensionless time
 Shale - draining starts around t = 1011 (dimensionless)
due to low Permeability
3/2/2019 38
0.633918
0.63392
0.633922
0.633924
0.633926
0.633928
0.63393
0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15
Verticaldisplacement(m)
Dimensionless time (kt/μSh2)
k=E-15 m2
k=E-16 m2
k=E-17 m2
k=E-18 m2
k=E-19 m2
k=E-20 m2
Displacement Vs Dimensionless time (varying permeability)
 Low permeable formations need more time to initiate
draining
3/2/2019 39
0.63385
0.63386
0.63387
0.63388
0.63389
0.6339
0.63391
0.63392
0.63393
0.63394
0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15
Verticaldisplacement(m)
Dimensionless time (kt/μSh2)
por=0.05
por=0.1
por=0.2
por=0.3
por=0.4
Displacement Vs Dimensionless time (varying Porosities)
 Pore fluid drainage is rapid in less compacted formations
 Drainage initiation is quicker in consolidated shales - Pc
3/2/2019 40
Displacement Vs Dimensionless time (varying Bulk Modulus)
 Draining = function (volumetric changes)
 Shales with higher bulk modulus drains less
-0.00005
0
0.00005
0.0001
0.00015
0.0002
0.00025
0.000001 0.01 100 1000000 1E+10 1E+14 1E+18 1E+22
Verticaldisplacement(m)
Dimensionless time (kt/μSh2)
K=2528 MPa
K=3550 MPa
K=4800 MPa
3/2/2019 41
Displacement Vs Dimensionless time (varying Shear Modulus)
 Shales with higher shear modulus drains more
 Poisson’s ratio – Deciding factor
-0.00002
0
0.00002
0.00004
0.00006
0.00008
0.0001
0.000001 0.01 100 1000000 1E+10 1E+14 1E+18 1E+22
Verticaldisplacement(m)
Dimensionless time (kt/μSh2)
600 MPa
700 MPa
800 MPa
3/2/2019 42
Conclusions
 Mud activity < pore fluid activity (favorable
condition)
 Diffusion > osmosis (salt concentration ↑ )
 Sensitivity to CEC, porosity and membrane
efficiency
 Compressibility of the medium is important (ν >>
K, G)
 Effect of permeability
3/2/2019 43
Limitations
 Valid only for isotropic
 Thermal effects neglected
 Elasticity of shales
3/2/2019 44
Acknowledgement:
• Dr. Ahmad Jamili – Advisor
• Dr. Deepak Devegowda
• Dr. Ben Shiau
3/2/2019 45
THANKS
QUESTIONS?
3/2/2019 46
Supporting Slides
Conductivity coefficients Coupling Coefficients
𝐿11 =
𝑘ℎ
𝛾𝑡 𝑛
+
𝐿12 𝐿21
𝐿22
𝐿12 = 𝐿21 =
𝑘 𝑒
𝑛
𝐿22 =
𝜅
𝑛
𝐿33 =
𝐷𝑐
∗ 𝐶𝑐
𝑅𝑇
𝐿23 = 𝐿32 =
𝐷𝑐
∗ 𝑧 𝑐 𝐹𝐶𝑐
𝑅𝑇
𝐿44 =
𝐷 𝑎
∗
𝐶 𝑎
𝑅𝑇
𝐿24 = 𝐿42 =
𝐷 𝑎
∗ 𝑧 𝑎 𝐹𝐶 𝑎
𝑅𝑇
𝐿13 = −
𝜔𝐶𝑐 𝐿11 𝐿22 − 𝐿12 𝐿21 − 𝐿12 𝐿23
𝐿22
Yeung & Mitchell (1993)
𝐿14 = −
𝜔𝐶 𝑎 𝐿11 𝐿22 − 𝐿12 𝐿21 − 𝐿12 𝐿24
𝐿22
𝐿34 = 𝐿43 = 0
3/2/2019 47
Governing Equations
Strain Displacement equation
𝜀𝑖𝑗 = 0.5 ∗
𝜕𝑢 𝑖
𝜕𝑥 𝑗
+
𝜕𝑢 𝑗
𝜕𝑥 𝑖
Semi-static stress equilibrium equation
𝜕𝜎 𝑖𝑗
𝜕𝑥 𝑖
= 0
Katchalsky
& Curran
(1967)
3/2/2019 48
Final Equations – Abousleiman et al., (2008)
−𝛼
𝜕𝜀 𝑘𝑘
𝜕𝑡
+
1
𝑀
𝜕𝑝
𝜕𝑡
= 𝐷11 𝛻2 𝑝 + 𝐷12 𝛻2 𝑝 𝑎 + 𝐷13 𝛻2 𝑝 𝑐
𝑚 𝑜
𝑎 −𝛼
𝜕𝜀 𝑘𝑘
𝜕𝑡
+
1
𝑀
𝜕𝑝
𝜕𝑡
+
𝜙 𝑜 𝑉𝑜
𝑓
𝑅𝑇
𝜕𝑝 𝑎
𝜕𝑡
= 𝐷21 𝛻2 𝑝 + 𝐷22 𝛻2 𝑝 𝑎 + 𝐷23 𝛻2 𝑝 𝑐
𝑚 𝑜
𝑐 −𝛼
𝜕𝜀 𝑘𝑘
𝜕𝑡
+
1
𝑀
𝜕𝑝
𝜕𝑡
+
𝜙 𝑜 𝑉𝑜
𝑓
𝑅𝑇
𝜕𝑝 𝑐
𝜕𝑡
= 𝐷31 𝛻2 𝑝 + 𝐷32 𝛻2 𝑝 𝑎 + 𝐷33 𝛻2 𝑝 𝑐
3/2/2019 49
D matrix with coefficients of diffusion equations – transport
coefficients – Abousleiman et al., (2008)
𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33
=
𝜅 −𝜒𝜅 −𝜒𝜅
𝑚 𝑜
𝑎(1 − 𝜒)𝜅 𝐷𝑒𝑓𝑓
𝑎 𝑉𝑜
𝑓
𝑅𝑇
− 𝑚 𝑜
𝑎(1 − 𝜒)𝜒𝜅 −𝑚 𝑜
𝑎(1 − 𝜒)𝜒𝜅
𝑚 𝑜
𝑐
(1 − 𝜒)𝜅 −𝑚 𝑜
𝑐
(1 − 𝜒)𝜒𝜅 𝐷𝑒𝑓𝑓
𝑐 𝑉𝑜
𝑓
𝑅𝑇
− 𝑚 𝑜
𝑐
(1 − 𝜒)𝜒𝜅
3/2/2019 50
Matrix for converting global coordinates to local coordinates
𝑆 𝑥
𝑆 𝑦
𝑆𝑧
𝑆 𝑥𝑦
𝑆 𝑦𝑧
𝑆 𝑥𝑧
=
𝑙 𝑥𝑥′
2
𝑙 𝑦𝑥′
2
𝑙 𝑧𝑥′
2
𝑙 𝑥𝑥′ 𝑙 𝑦𝑥′
𝑙 𝑦𝑥′ 𝑙 𝑧𝑥′
𝑙 𝑧𝑥′ 𝑙 𝑥𝑥′
𝑙 𝑥𝑦′
2
𝑙 𝑦𝑦′
2
𝑙 𝑧𝑦′
2
𝑙 𝑥𝑦′ 𝑙 𝑦𝑦′
𝑙 𝑦𝑦′ 𝑙 𝑧𝑦′
𝑙 𝑧𝑦′ 𝑙 𝑥𝑦′
𝑙 𝑥𝑧′
2
𝑙 𝑦𝑧′
2
𝑙 𝑧𝑧′
2
𝑙 𝑥𝑧′ 𝑙 𝑧𝑧′
𝑙 𝑦𝑧′ 𝑙 𝑧𝑧′
𝑙 𝑧𝑧′ 𝑙 𝑥𝑧′
𝑆 𝑥′
𝑆 𝑦′
𝑆𝑧′
Where
𝑙 𝑥𝑥′ 𝑙 𝑥𝑦′ 𝑙 𝑥𝑧′
𝑙 𝑦𝑥′ 𝑙 𝑦𝑦′ 𝑙 𝑦𝑧′
𝑙 𝑧𝑥′ 𝑙 𝑧𝑦′ 𝑙 𝑧𝑧′
=
𝑐𝑜𝑠𝜑 𝑧 𝑐𝑜𝑠𝜑 𝑦 𝑠𝑖𝑛𝜑 𝑧 𝑐𝑜𝑠 𝜑 𝑦 −𝑠𝑖𝑛𝜑 𝑦
−𝑠𝑖𝑛𝜑 𝑧 𝑐𝑜𝑠𝜑𝑧 0
𝑐𝑜𝑠𝜑 𝑧 𝑠𝑖𝑛𝜑 𝑦 𝑠𝑖𝑛𝜑 𝑧 𝑠𝑖𝑛𝜑 𝑦 𝑐𝑜𝑠𝜑 𝑦
Fjaer (2000)
3/2/2019 51
Miscellaneous Equations – Abousleiman et al., (2008)
𝑚 𝑓𝑐 = 10−2 ∗
𝐶𝐸𝐶 1−𝜙 𝑜 𝜌 𝑠 𝑉𝑜
𝑓
𝜙 𝑜
𝑚 𝑠ℎ𝑎𝑙𝑒
𝑎
= 0.5 −𝑚 𝑓𝑐
+ (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑
𝑠
)2
𝑚 𝑠ℎ𝑎𝑙𝑒
𝑐
= 0.5 𝑚 𝑓𝑐 + (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑
𝑠
)2
𝑎 𝑜
𝑓
= 1 − 𝑥 + 𝑦 𝑚 𝑒𝑞
𝑠
∆𝑝 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒=
𝑅𝑇
𝑉𝑜
𝑓 ∗ (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑
𝑠
)2 − 2𝑚 𝑚𝑢𝑑
𝑠
𝜂 = 𝑙𝑢𝑚𝑝𝑒𝑑 𝑝𝑜𝑟𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝛼 1−2𝜈
2 1−𝜈
3/2/2019 52
Continued…
𝜎 𝑚 =
𝑆 𝑥+𝑆 𝑦
2
𝜎 𝑑 = 0.5 (𝑆 𝑥 − 𝑆 𝑦)2+4𝑆 𝑥𝑦
2
𝜃𝑟 = 0.5𝑡𝑎𝑛−1 2𝑆 𝑥𝑦
𝑆 𝑥−𝑆 𝑦
∆𝑚 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒
𝑎
= 𝑚 𝑠ℎ𝑎𝑙𝑒
𝑎
− 𝑚 𝑚𝑢𝑑
𝑠
∆𝑚 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒
𝑐
= 𝑚 𝑠ℎ𝑎𝑙𝑒
𝑐
− 𝑚 𝑚𝑢𝑑
𝑠
3/2/2019 53
Continued…
𝑌 =
1
𝑀
+
𝛼𝜂
𝐺
𝑚 𝑜
𝑎
(
1
𝑀
+
𝛼𝜂
𝐺
)
𝑚 𝑜
𝑐
(
1
𝑀
+
𝛼𝜂
𝐺
)
0
𝜙 𝑂 𝑉𝑜
𝑓
𝑅𝑇
0
0
0
𝜙 𝑂 𝑉𝑜
𝑓
𝑅𝑇
𝑍 = 𝑌 −1 𝐷
Superposed solutions
𝜎𝑟𝑟 = 𝜎 𝑚 + 𝜎 𝑑 cos 2 𝜃 − 𝜃𝑟 + 𝜎𝑟𝑟
1 + 𝜎𝑟𝑟
2 + 𝜎𝑟𝑟
3
𝜏 𝑟𝜃 = −𝜎 𝑑 sin 2 𝜃 − 𝜃𝑟 + 𝜏 𝑟𝜃
3
3/2/2019 54
𝑝 = 𝑝 𝑜 + 𝑝2 + 𝑝3
𝜎𝑟𝑟
1 = − 𝜎 𝑚 − 𝑝 𝑚𝑢𝑑
𝑅 𝑤
2
𝑟2
𝜎 𝜃𝜃
1
= 𝜎 𝑚 − 𝑝 𝑚𝑢𝑑
𝑅 𝑤
2
𝑟2
𝜎𝑧𝑧 = 𝑆𝑧 − 2𝜈𝜎 𝑚 − 𝛼 1 − 2𝜈 𝑝 𝑜
𝜏 𝑟𝑧 = 𝑆 𝑥𝑧 𝑐𝑜𝑠𝜃 + 𝑆 𝑦𝑧 𝑠𝑖𝑛𝜃 1 −
𝑅 𝑤
2
𝑟2
𝜏 𝜃𝑧 = − 𝑆 𝑥𝑧 𝑠𝑖𝑛𝜃 − 𝑆 𝑦𝑧 𝑐𝑜𝑠𝜃 1 +
𝑅 𝑤
2
𝑟2
Continued…
3/2/2019 55
Continued…
Mode 2: Diffusional loading - Detourney et al.,(1988)
𝑠 𝑝(2) = 𝑚11∆1 𝛷 𝜉1 + 𝑚12∆2 𝛷 𝜉2 + 𝑚13∆3 𝛷 𝜉3
𝑠 𝜎𝑟𝑟
(2)
= −2𝜂{𝑚11∆1 𝛯 𝜉1 + 𝑚12∆2 𝛯 𝜉2 + 𝑚13∆3 𝛯 𝜉3
𝑠 𝜎 𝜃𝜃
(2)
= 2𝜂{ 𝑚11∆1 𝛯 𝜉1 + 𝛷 𝜉1 + 𝑚12∆2 𝛯 𝜉2 + 𝛷 𝜉1 +
3/2/2019 56
Continued…
Mode 3: Deviatoric loading – Detourney et al., (1988)
𝑠 𝑝(3) = 𝜎 𝑑 𝑚11 𝐷1 𝐾2 𝜉1 𝑟 + 𝑚12 𝐷2 𝐾2 𝜉2 𝑟 + 𝑚13 𝐷3 𝐾2 𝜉3 𝑟 + 𝐷4 𝑓1
𝑅 𝑤
2
𝑟2 𝑐𝑜𝑠 2 𝜃 − 𝜃𝑟
𝑠 𝜎𝑟𝑟
3
=
− 𝜎 𝑑
2𝜂 𝑚11 𝐷1 𝛩 𝜉1 + 𝑚12 𝐷2 𝛩 𝜉2 + 𝑚13 𝐷3 𝛩 𝜉3 − 2𝐺 ℎ +
𝛼
𝜂
𝐷4
𝑅 𝑤
2
𝑟2
−𝐷5
𝑅 𝑤
4
𝑟4
𝑐𝑜𝑠 2 𝜃 − 𝜃𝑟
3/2/2019 57
Continued…
𝑠 𝜎 𝜃𝜃
3
= 𝜎 𝑑 2𝜂 𝑚11 𝐷1 𝛱 𝜉1 + 𝑚12 𝐷2 𝛱 𝜉2 + 𝑚13 𝐷3 𝛱 𝜉3 −
3/2/2019 58
Inverse Laplace – Stehfest’s algorithm
𝑓𝑛𝑢𝑚 𝑡 =
𝑙𝑛2
𝑡 𝑖=1
𝑁
𝐺𝑖 𝑓(𝑖 ∗
𝑙𝑛2
𝑡
)
𝑁 = 𝑆𝑡𝑒ℎ𝑓𝑒𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎𝑛𝑑 20
𝐺𝑖 = (−1)𝑖+
𝑁
2
𝑘=(𝑖+1)/2
min(𝑖,
𝑁
2
) 𝑘
𝑁
2 2𝑘 !
𝑁
2
−𝑘 !𝑘! 𝑘−1 ! 𝑖−𝑘 ! 2𝑘−𝑖 !

More Related Content

What's hot

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsbeerappa143
 
Fracture and damage
Fracture and damage Fracture and damage
Fracture and damage noor albtoosh
 
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Northwestern Polytechnical University
 
Computational fracture mechanics
Computational fracture mechanicsComputational fracture mechanics
Computational fracture mechanicsNguyen Vinh Phu
 
A fracture mechanics based method for prediction of
A fracture mechanics based method for prediction ofA fracture mechanics based method for prediction of
A fracture mechanics based method for prediction ofSAJITH GEORGE
 
Dendrite Growth Model at Bonded (001) GaAs Interface
Dendrite Growth Model at Bonded (001) GaAs InterfaceDendrite Growth Model at Bonded (001) GaAs Interface
Dendrite Growth Model at Bonded (001) GaAs InterfaceIOSRJEEE
 
1 Bligh Sydney Modelling Project
1 Bligh Sydney Modelling Project1 Bligh Sydney Modelling Project
1 Bligh Sydney Modelling ProjectJoshua Yu
 
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.Ramaswamy Narayanasamy
 
Peculiarities of irrecoverable straining in stress-drop test
Peculiarities of irrecoverable straining in stress-drop testPeculiarities of irrecoverable straining in stress-drop test
Peculiarities of irrecoverable straining in stress-drop testIJERA Editor
 
Elastic plastic fracture mechanics
Elastic plastic fracture mechanicsElastic plastic fracture mechanics
Elastic plastic fracture mechanicsDr. Saad Mahmood Ali
 
IRJET- Analytical Comparison of a G+8 Story Residential Building with Tun...
IRJET-  	  Analytical Comparison of a G+8 Story Residential Building with Tun...IRJET-  	  Analytical Comparison of a G+8 Story Residential Building with Tun...
IRJET- Analytical Comparison of a G+8 Story Residential Building with Tun...IRJET Journal
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
EUVL Symposium 2009 - Poster
EUVL Symposium 2009 - PosterEUVL Symposium 2009 - Poster
EUVL Symposium 2009 - Posterpreetish09
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTP singh
 

What's hot (20)

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
20320140501001 2
20320140501001 220320140501001 2
20320140501001 2
 
Fracture and damage
Fracture and damage Fracture and damage
Fracture and damage
 
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
Determination of Johnson-Cook Material’s Strength Parameter, Fracture Paramet...
 
E04701035045
E04701035045E04701035045
E04701035045
 
Computational fracture mechanics
Computational fracture mechanicsComputational fracture mechanics
Computational fracture mechanics
 
A fracture mechanics based method for prediction of
A fracture mechanics based method for prediction ofA fracture mechanics based method for prediction of
A fracture mechanics based method for prediction of
 
Dendrite Growth Model at Bonded (001) GaAs Interface
Dendrite Growth Model at Bonded (001) GaAs InterfaceDendrite Growth Model at Bonded (001) GaAs Interface
Dendrite Growth Model at Bonded (001) GaAs Interface
 
1 Bligh Sydney Modelling Project
1 Bligh Sydney Modelling Project1 Bligh Sydney Modelling Project
1 Bligh Sydney Modelling Project
 
pub-14-10
pub-14-10pub-14-10
pub-14-10
 
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tensionDr.R.Narayanasamy - Plastic instability in uniaxial tension
Dr.R.Narayanasamy - Plastic instability in uniaxial tension
 
J0736367
J0736367J0736367
J0736367
 
Peculiarities of irrecoverable straining in stress-drop test
Peculiarities of irrecoverable straining in stress-drop testPeculiarities of irrecoverable straining in stress-drop test
Peculiarities of irrecoverable straining in stress-drop test
 
Elastic plastic fracture mechanics
Elastic plastic fracture mechanicsElastic plastic fracture mechanics
Elastic plastic fracture mechanics
 
IRJET- Analytical Comparison of a G+8 Story Residential Building with Tun...
IRJET-  	  Analytical Comparison of a G+8 Story Residential Building with Tun...IRJET-  	  Analytical Comparison of a G+8 Story Residential Building with Tun...
IRJET- Analytical Comparison of a G+8 Story Residential Building with Tun...
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Foundation on Layered Soil under Torsional Harmonic Vibration using Cone model
Foundation on Layered Soil under Torsional Harmonic Vibration using Cone modelFoundation on Layered Soil under Torsional Harmonic Vibration using Cone model
Foundation on Layered Soil under Torsional Harmonic Vibration using Cone model
 
EUVL Symposium 2009 - Poster
EUVL Symposium 2009 - PosterEUVL Symposium 2009 - Poster
EUVL Symposium 2009 - Poster
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
 
J integral report
J integral reportJ integral report
J integral report
 

Similar to Thesis Defense Presentation-Sabarisha

MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...
MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...
MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...IAEME Publication
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]Atul Verma
 
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesLow energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesDr. Basanta Kumar Parida
 
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITY
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITYPRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITY
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITYAkshay Patel
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research HighlightPing Du
 
Pullout Behavior of Geotextiles: Numerical Prediction
Pullout Behavior of Geotextiles: Numerical PredictionPullout Behavior of Geotextiles: Numerical Prediction
Pullout Behavior of Geotextiles: Numerical PredictionIJERA Editor
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfHeiddyPaolaQuirozGai
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturingPomcert
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturingPomcert
 
Microstructure_and_Metallography.ppt
Microstructure_and_Metallography.pptMicrostructure_and_Metallography.ppt
Microstructure_and_Metallography.pptGhanshyamshahi
 
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...HectorMayolNovoa
 
1 viscoelastic foundation on soil under vertical load
1 viscoelastic foundation on soil under vertical load1 viscoelastic foundation on soil under vertical load
1 viscoelastic foundation on soil under vertical loadJeorge Esrom Chambi
 
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...Editor IJCATR
 
Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...eSAT Publishing House
 
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESSLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESIAEME Publication
 
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...Engenheiro Civil
 
3RD sem progress of thesis MINAR.pptx
3RD sem progress of  thesis MINAR.pptx3RD sem progress of  thesis MINAR.pptx
3RD sem progress of thesis MINAR.pptxMinarIslam2
 

Similar to Thesis Defense Presentation-Sabarisha (20)

Porfolio
PorfolioPorfolio
Porfolio
 
MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...
MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...
MODELING AND SIMULATION OF COMPRESSION STRENGTH FOR FIRM CLAY IN SWAMPY AREA ...
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]
 
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesLow energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
 
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITY
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITYPRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITY
PRE-SLIDING FRICTIONAL ANALYSIS OF A COATED SPHERICAL ASPERITY
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research Highlight
 
Pullout Behavior of Geotextiles: Numerical Prediction
Pullout Behavior of Geotextiles: Numerical PredictionPullout Behavior of Geotextiles: Numerical Prediction
Pullout Behavior of Geotextiles: Numerical Prediction
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdf
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing
 
20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing20141009 tno@eera hydraulic fracturing
20141009 tno@eera hydraulic fracturing
 
Microstructure_and_Metallography.ppt
Microstructure_and_Metallography.pptMicrostructure_and_Metallography.ppt
Microstructure_and_Metallography.ppt
 
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
 
1 viscoelastic foundation on soil under vertical load
1 viscoelastic foundation on soil under vertical load1 viscoelastic foundation on soil under vertical load
1 viscoelastic foundation on soil under vertical load
 
PhysRevA.92.063606
PhysRevA.92.063606PhysRevA.92.063606
PhysRevA.92.063606
 
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
 
Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...
 
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITESSLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
SLIDING WEAR OF AA6061/CARBON BLACK METAL MATRIX COMPOSITES
 
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...
APPLICATION OF THE BOUNDARY ELEMENT METHOD IN DETERMINING THE CRITICAL BUCKLI...
 
Em2004 270
Em2004 270Em2004 270
Em2004 270
 
3RD sem progress of thesis MINAR.pptx
3RD sem progress of  thesis MINAR.pptx3RD sem progress of  thesis MINAR.pptx
3RD sem progress of thesis MINAR.pptx
 

Recently uploaded

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 

Thesis Defense Presentation-Sabarisha

  • 1. STUDY ON CHEMICAL ACTIVITY OF PIERRE SHALES AND ITS EFFECT ON NEAR WELLBORE PORE PRESSURE DISTRIBUTION Sabarisha Subramaniyan July 2014
  • 2. 3/2/2019 2 Objectives  Shale - Chemical nature  Contribution to wellbore instability  Impact on mechanical response  Sensitivity to other properties
  • 3. 3/2/2019 3 Outline  Introduction  Matlab coding structure  Case Study – Results  Code Verification  Conclusions  Limitations
  • 4. 3/2/2019 4 Introduction Wellbore Instability Problems are  Borehole enlargement  Hole shrinkage  Hole fracture  Hole collapse Principle of wellbore stability = Equilibrium between rock strength and in-situ stresses Petrowiki.spe.org
  • 5. 3/2/2019 5 Causes for Wellbore instability  Rock removal  Stress redistribution  Stress state > or < in-situ stresses = failure Contributors Mechanical, chemical, thermal, angular instability (McLean, 1990)
  • 6. 3/2/2019 6 Clay Colloidal Chemistry (Negative charges)  Isomorphic substitution  If pH < or > Zero Point Charge (ZPC) Clay in electrolyte = Diffuse double layer  Stern layer – equilibrium (zeta potential)  Concentration decline (Colloidal chemistry department, University of Szeged)
  • 7. 3/2/2019 7 Cation Exchange Capacity (CEC) 1. Measure of exchangeable ions 2. CEC ↑ = Reactivity ↑ 3. CEC ∝ pH Membrane Efficiency (ME)  Restricting ions (size & charge)  ME ∝ CEC  ME ∝ 1/(Φ, k) (Colline et al., 2008)
  • 8. 3/2/2019 8 Water Activity (aw)  State of hydration  aw ∝ P, T  𝑃𝑤 = 𝜎 𝑚 𝑅𝑇 𝑉 𝑤 ln 𝑎 𝑤,𝑚𝑢𝑑 𝑎 𝑤,𝑠ℎ𝑎𝑙𝑒  swelling / shrinking Transport Mechanisms in Shale Osmosis (Osmotic pressure)  Chemical Potential , Membrane efficiency (ME)
  • 9. 3/2/2019 9 Osmosis (continued)  Salinity differences in subsurface  Total solute concentration  Longevity of the Osmotic pressure Diffusion (Fick’s Law)  Opposes Osmosis  Concentration gradient  Effective when ME ↓ and permeability ↑ (drags H2O)
  • 10. 3/2/2019 10 Hydraulic Flow (Darcy’s Law)  Hydraulic pressure gradient  Mud Weight ↑ = Mechanical Stability  Overbalanced drilling  Hydration of Shales  Conductivity ∝ fractures Electro-Osmosis  Movement of charges – electrical potential difference
  • 11. 3/2/2019 11 Year Process 1908 - Von Reuss Electro osmosis 1925, 1941 – Terzaghi, Biot Poroelastic consolidation 1965, 1969 – Young, Olsen Semi-Permeability of Shales 1967, 1993 – Katchalsky, Yeung Transport equations 1968 – Esrig 1D electro kinetic consolidation 2006 - Nguyen & Abousleiman 3D solution for electrokinetics in Biot’s model 2009, 2013 – Ghassemi, Tran et al., Thermal model, anisotropic model Chronology of Formulations
  • 12. 3/2/2019 12 𝑞𝑖 = 𝐿11 𝜕(−𝑝) 𝜕𝑥𝑖 + 𝐿12 𝜕(−𝜓) 𝜕𝑥𝑖 + 𝐿13 𝑅𝑇 𝑚 𝑜 𝑎 𝜕(−𝑚 𝑎) 𝜕𝑥𝑖 + 𝐿14 𝑅𝑇 𝑚 𝑜 𝑐 𝜕(−𝑚 𝑐) 𝜕𝑥𝑖 𝐼𝑖 = 𝐿21 𝜕(−𝑝) 𝜕𝑥𝑖 + 𝐿22 𝜕(−𝜓) 𝜕𝑥𝑖 + 𝐿23 𝑅𝑇 𝑚 𝑜 𝑎 𝜕(−𝑚 𝑎) 𝜕𝑥𝑖 + 𝐿24 𝑅𝑇 𝑚 𝑜 𝑐 𝜕(−𝑚 𝑐) 𝜕𝑥𝑖 𝐽𝑖 𝑎,𝑑 = 𝐿31 𝜕(−𝑝) 𝜕𝑥𝑖 + 𝐿32 𝜕(−𝜓) 𝜕𝑥𝑖 + 𝐿33 𝑅𝑇 𝑚 𝑜 𝑎 𝜕(−𝑚 𝑎 ) 𝜕𝑥𝑖 + 𝐿34 𝑅𝑇 𝑚 𝑜 𝑐 𝜕(−𝑚 𝑐 ) 𝜕𝑥𝑖 𝐽𝑖 𝑐,𝑑 = 𝐿41 𝜕(−𝑝) 𝜕𝑥𝑖 + 𝐿42 𝜕(−𝜓) 𝜕𝑥𝑖 + 𝐿43 𝑅𝑇 𝑚 𝑜 𝑎 𝜕(−𝑚 𝑎 ) 𝜕𝑥𝑖 + 𝐿44 𝑅𝑇 𝑚 𝑜 𝑐 𝜕(−𝑚 𝑐 ) 𝜕𝑥𝑖 Coupled Flow Transport Equations Yeung & Mitchell (1993)
  • 13. 3/2/2019 13 𝑑𝜎𝑖𝑗 = 2𝐺𝑑𝜀𝑖𝑗 + 2𝐺𝜈 1−2𝜈 𝑑𝜀 𝑘𝑘 𝛿𝑖𝑗 + 𝛼𝑑𝑝𝛿𝑖𝑗 𝑑𝜙 = −𝛼𝑑𝜀 𝑘𝑘 + 1 𝐾 𝜙 𝑑𝑝 𝑑𝜁 = −𝛼𝑑𝜀 𝑘𝑘 + 1 𝑀 𝑑𝑝 Constitutive Equations Coussy (2004)
  • 14. 3/2/2019 14 𝜕𝜌 𝑒 𝜕𝑡 = − 𝜕𝐼 𝑖 𝜕𝑥 𝑖 = 0 Far Field Boundary Conditions 𝜎𝑥𝑥 = 𝑆 𝑥 𝜎 𝑦𝑦 = 𝑆 𝑦 𝜎𝑧𝑧 = 𝑆𝑧 𝜏 𝑥𝑦 = 𝑆 𝑥𝑦 𝜏 𝑦𝑧 = 𝑆 𝑦𝑧 𝜏 𝑥𝑧 = 𝑆 𝑥𝑧 𝑝 = 𝑝 𝑜 Sachs et al., 1987 Governing Equations
  • 15. 3/2/2019 15 Near Wellbore Boundary Conditions 𝜎𝑟𝑟 = (𝜎 𝑚 + 𝜎 𝑑 cos 2 𝜃 − 𝜃𝑟 𝐻 −𝑡 + 𝑝 𝑚𝑢𝑑 𝐻 𝑡 𝜏 𝑟𝜃 = −𝜎 𝑑 sin 2 𝜃 − 𝜃𝑟 𝐻 −𝑡 𝜏 𝑟𝑧 = ( 𝑆 𝑥𝑧 cos θ + 𝑆 𝑦𝑥si n( 𝜃))𝐻(−𝑡 𝑝 = 𝑝 𝑜 𝐻 −𝑡 + 𝑝 𝑚𝑢𝑑 + ∆𝑝 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒 𝐻 𝑡 Abousleiman et al., (2008)
  • 16. 3/2/2019 16  Poroelastic Plane strain problem 1. Elastic radial loading 2. Diffusional loading 3. Deviatoric loading  Elastic Uniaxial stress  Elastic anti plane shear problem (Cui et al., 1997)
  • 17. 3/2/2019 17 Input Parameters (CEC, aw ) Primary Parameters (mole fractions) Secondary Parameters (𝝈 𝒎, 𝝈 𝒅, 𝜽 𝒓) if 𝝈 𝒅, 𝜽 𝒓 = 0 Deviatoric stress loading is included Deviatoric stress loading is ignored Sum of Inverse (individual solutions) = Superposed solutions Matlab code structure No Yes
  • 18. 3/2/2019 18 Case Study Properties of Pierre Shale considered Parameters Values (Salisbury et al.,1991) Shear (G), Bulk (K) modulus 600 , 4800 (MPa) Porosity (φ) 0.176 Permeability (k) 6E-21 (m2) CEC 36 meq/100 grams dry clay Pore pressure (p0) 21.4 (MPa) Sv , SH , Sh 54, 44, 44 (MPa) Membrane efficiency 0.8 (dimensionless) Temperature 82° C Depth 2200 (meters) mfc ,ma , mc 0.0719, 0.0052, 0.0771
  • 19. 3/2/2019 19 Case 1: When mud activity > pore fluid activity Pore Pressure (in MPa) Vs Distance Ratio Water moves from mud → shale (hydration)
  • 20. 3/2/2019 20 Effective Radial Stress (in MPa) Vs Distance Ratio Tensile Stress > Compressive Stress ( Spalling Failure)
  • 21. 3/2/2019 21 Effective Tangential Stress (in MPa) Vs Distance Ratio Tensile Stress > Compressive Stress ( Spalling Failure)
  • 22. 3/2/2019 22 Case 2: When mud activity < pore fluid activity Pore Pressure (in MPa) Vs Distance Ratio Water moves from shale → mud (Stability ↑ )
  • 23. 3/2/2019 23 Effective Radial Stress (in MPa) Vs Distance Ratio More Compressive than Poroelastic medium (Stability ↑ )
  • 24. 3/2/2019 24 Effective Tangential Stress (in MPa) Vs Distance Ratio More Compressive than Poroelastic medium (Stability ↑ )
  • 25. 3/2/2019 25 Case 3: Time Propagation of the pore pressures generated (when mud activity < Pore fluid activity) Saturation of Shale ↓ with increase in time (stability ↑)
  • 26. 3/2/2019 26 Case 4: Sensitivity of the pore pressures generated to mechanical properties of the formation Pore Pressure Vs distance ratio (varying G ∝ 1/ ν)
  • 27. 3/2/2019 27 Pore Pressure Vs distance ratio (varying K ∝ ν) Limits for Pierre Shales = 300 – 13000 MPa
  • 28. 3/2/2019 28 Pore Pressure Vs Distance ratio (varying Poisson’s ratio) The phenomena is sensitive only to differential volumetric ratio
  • 29. 3/2/2019 29 Sensitivity of the Pore Pressures generated to Petrophysical and Surface Charge properties Membrane Efficiency Vs CEC (varying porosities < 30%) ME ∝ CEC/ porosity 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 0 20 40 60 80 100 120 Reflectioncoefficient CEC (meq/100 g) por=0.0001 por=0.1 por=0.2 por=0.3
  • 30. 3/2/2019 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 20 40 60 80 100 120 Reflectioncoefficient CEC (meq/100 g) por=0.4 por=0.5 por=0.6 Membrane Efficiency Vs CEC (varying porosities > 30%) Changes in ME is more sensitive for higher porosities Higher porosities affect ME even if CEC is high
  • 31. 3/2/2019 31 Pore pressure Vs distance ratio (varying porosities) Osmosis is counter checked by Diffusion at higher porosities 30% porosity - threshold value for Pierre Shales
  • 32. 3/2/2019 32 Pore pressure Vs distance ratio (varying Cation Exchange Capacity) Osmosis is counter checked by Diffusion at lower CEC
  • 33. 3/2/2019 33 Pore pressure Vs distance ratio (varying Permeability) Low permeable formations least affected if mud activity > shale activity as pore pressure propagation is slower
  • 34. 3/2/2019 34 Code Verification Type 1: Comparing the analytical solutions with results of Nguyen et al., (2008) Pore pressure Vs Distance Ratio (Poroelastic & Porochemoelastic models) The matching between the results is excellent 28 29 30 31 32 33 34 35 36 1 1.1 1.2 1.3 1.4 1.5 Porepressure(MPa) r/rw abousleiman PE model Matlab PE model abousleiman PC model Matlab PC model
  • 35. 3/2/2019 35 -6 -4 -2 0 2 4 6 8 10 12 14 1 1.05 1.1 1.15 1.2 1.25 Effectiveradialstress(MPa) r/rw abousleiman PC model Matlab PC model abousleiman PE model Matlab PE model 47 48 49 50 51 52 53 54 55 56 57 1 1.05 1.1 1.15 1.2 1.25 Effectivetangentialstress(MPa) r/rw abousleiman PC model Matlab PC model abousleiman PE model Matlab PE model Comparison of the effective radial stresses obtained in Matlab and by Abousleiman et al.,(2008) Comparison of the effective tangential stresses obtained in Matlab and by Abousleiman et al.,(2008)
  • 36. 3/2/2019 36 Type 2: Verifying the results of sensitivity analysis based on Jaeger’s analytical solutions for 1-D Poroelastic consolidation  Berea Sand - draining starts around t = 1000 (dimensionless) 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.000001 0.0001 0.01 1 100 10000 1000000 100000000 1E+10 Verticaldisplcement(m) Dimensionless time (kt/μSh2) Berea Sand formations
  • 37. 3/2/2019 37 0.633905 0.63391 0.633915 0.63392 0.633925 0.63393 0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15 Verticaldisplacement(m) Dimensionless time (kt/μSh2) Shale formations Displacement at top of the column Vs Dimensionless time  Shale - draining starts around t = 1011 (dimensionless) due to low Permeability
  • 38. 3/2/2019 38 0.633918 0.63392 0.633922 0.633924 0.633926 0.633928 0.63393 0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15 Verticaldisplacement(m) Dimensionless time (kt/μSh2) k=E-15 m2 k=E-16 m2 k=E-17 m2 k=E-18 m2 k=E-19 m2 k=E-20 m2 Displacement Vs Dimensionless time (varying permeability)  Low permeable formations need more time to initiate draining
  • 39. 3/2/2019 39 0.63385 0.63386 0.63387 0.63388 0.63389 0.6339 0.63391 0.63392 0.63393 0.63394 0.000001 0.001 1 1000 1000000 1E+09 1E+12 1E+15 Verticaldisplacement(m) Dimensionless time (kt/μSh2) por=0.05 por=0.1 por=0.2 por=0.3 por=0.4 Displacement Vs Dimensionless time (varying Porosities)  Pore fluid drainage is rapid in less compacted formations  Drainage initiation is quicker in consolidated shales - Pc
  • 40. 3/2/2019 40 Displacement Vs Dimensionless time (varying Bulk Modulus)  Draining = function (volumetric changes)  Shales with higher bulk modulus drains less -0.00005 0 0.00005 0.0001 0.00015 0.0002 0.00025 0.000001 0.01 100 1000000 1E+10 1E+14 1E+18 1E+22 Verticaldisplacement(m) Dimensionless time (kt/μSh2) K=2528 MPa K=3550 MPa K=4800 MPa
  • 41. 3/2/2019 41 Displacement Vs Dimensionless time (varying Shear Modulus)  Shales with higher shear modulus drains more  Poisson’s ratio – Deciding factor -0.00002 0 0.00002 0.00004 0.00006 0.00008 0.0001 0.000001 0.01 100 1000000 1E+10 1E+14 1E+18 1E+22 Verticaldisplacement(m) Dimensionless time (kt/μSh2) 600 MPa 700 MPa 800 MPa
  • 42. 3/2/2019 42 Conclusions  Mud activity < pore fluid activity (favorable condition)  Diffusion > osmosis (salt concentration ↑ )  Sensitivity to CEC, porosity and membrane efficiency  Compressibility of the medium is important (ν >> K, G)  Effect of permeability
  • 43. 3/2/2019 43 Limitations  Valid only for isotropic  Thermal effects neglected  Elasticity of shales
  • 44. 3/2/2019 44 Acknowledgement: • Dr. Ahmad Jamili – Advisor • Dr. Deepak Devegowda • Dr. Ben Shiau
  • 46. 3/2/2019 46 Supporting Slides Conductivity coefficients Coupling Coefficients 𝐿11 = 𝑘ℎ 𝛾𝑡 𝑛 + 𝐿12 𝐿21 𝐿22 𝐿12 = 𝐿21 = 𝑘 𝑒 𝑛 𝐿22 = 𝜅 𝑛 𝐿33 = 𝐷𝑐 ∗ 𝐶𝑐 𝑅𝑇 𝐿23 = 𝐿32 = 𝐷𝑐 ∗ 𝑧 𝑐 𝐹𝐶𝑐 𝑅𝑇 𝐿44 = 𝐷 𝑎 ∗ 𝐶 𝑎 𝑅𝑇 𝐿24 = 𝐿42 = 𝐷 𝑎 ∗ 𝑧 𝑎 𝐹𝐶 𝑎 𝑅𝑇 𝐿13 = − 𝜔𝐶𝑐 𝐿11 𝐿22 − 𝐿12 𝐿21 − 𝐿12 𝐿23 𝐿22 Yeung & Mitchell (1993) 𝐿14 = − 𝜔𝐶 𝑎 𝐿11 𝐿22 − 𝐿12 𝐿21 − 𝐿12 𝐿24 𝐿22 𝐿34 = 𝐿43 = 0
  • 47. 3/2/2019 47 Governing Equations Strain Displacement equation 𝜀𝑖𝑗 = 0.5 ∗ 𝜕𝑢 𝑖 𝜕𝑥 𝑗 + 𝜕𝑢 𝑗 𝜕𝑥 𝑖 Semi-static stress equilibrium equation 𝜕𝜎 𝑖𝑗 𝜕𝑥 𝑖 = 0 Katchalsky & Curran (1967)
  • 48. 3/2/2019 48 Final Equations – Abousleiman et al., (2008) −𝛼 𝜕𝜀 𝑘𝑘 𝜕𝑡 + 1 𝑀 𝜕𝑝 𝜕𝑡 = 𝐷11 𝛻2 𝑝 + 𝐷12 𝛻2 𝑝 𝑎 + 𝐷13 𝛻2 𝑝 𝑐 𝑚 𝑜 𝑎 −𝛼 𝜕𝜀 𝑘𝑘 𝜕𝑡 + 1 𝑀 𝜕𝑝 𝜕𝑡 + 𝜙 𝑜 𝑉𝑜 𝑓 𝑅𝑇 𝜕𝑝 𝑎 𝜕𝑡 = 𝐷21 𝛻2 𝑝 + 𝐷22 𝛻2 𝑝 𝑎 + 𝐷23 𝛻2 𝑝 𝑐 𝑚 𝑜 𝑐 −𝛼 𝜕𝜀 𝑘𝑘 𝜕𝑡 + 1 𝑀 𝜕𝑝 𝜕𝑡 + 𝜙 𝑜 𝑉𝑜 𝑓 𝑅𝑇 𝜕𝑝 𝑐 𝜕𝑡 = 𝐷31 𝛻2 𝑝 + 𝐷32 𝛻2 𝑝 𝑎 + 𝐷33 𝛻2 𝑝 𝑐
  • 49. 3/2/2019 49 D matrix with coefficients of diffusion equations – transport coefficients – Abousleiman et al., (2008) 𝐷11 𝐷12 𝐷13 𝐷21 𝐷22 𝐷23 𝐷31 𝐷32 𝐷33 = 𝜅 −𝜒𝜅 −𝜒𝜅 𝑚 𝑜 𝑎(1 − 𝜒)𝜅 𝐷𝑒𝑓𝑓 𝑎 𝑉𝑜 𝑓 𝑅𝑇 − 𝑚 𝑜 𝑎(1 − 𝜒)𝜒𝜅 −𝑚 𝑜 𝑎(1 − 𝜒)𝜒𝜅 𝑚 𝑜 𝑐 (1 − 𝜒)𝜅 −𝑚 𝑜 𝑐 (1 − 𝜒)𝜒𝜅 𝐷𝑒𝑓𝑓 𝑐 𝑉𝑜 𝑓 𝑅𝑇 − 𝑚 𝑜 𝑐 (1 − 𝜒)𝜒𝜅
  • 50. 3/2/2019 50 Matrix for converting global coordinates to local coordinates 𝑆 𝑥 𝑆 𝑦 𝑆𝑧 𝑆 𝑥𝑦 𝑆 𝑦𝑧 𝑆 𝑥𝑧 = 𝑙 𝑥𝑥′ 2 𝑙 𝑦𝑥′ 2 𝑙 𝑧𝑥′ 2 𝑙 𝑥𝑥′ 𝑙 𝑦𝑥′ 𝑙 𝑦𝑥′ 𝑙 𝑧𝑥′ 𝑙 𝑧𝑥′ 𝑙 𝑥𝑥′ 𝑙 𝑥𝑦′ 2 𝑙 𝑦𝑦′ 2 𝑙 𝑧𝑦′ 2 𝑙 𝑥𝑦′ 𝑙 𝑦𝑦′ 𝑙 𝑦𝑦′ 𝑙 𝑧𝑦′ 𝑙 𝑧𝑦′ 𝑙 𝑥𝑦′ 𝑙 𝑥𝑧′ 2 𝑙 𝑦𝑧′ 2 𝑙 𝑧𝑧′ 2 𝑙 𝑥𝑧′ 𝑙 𝑧𝑧′ 𝑙 𝑦𝑧′ 𝑙 𝑧𝑧′ 𝑙 𝑧𝑧′ 𝑙 𝑥𝑧′ 𝑆 𝑥′ 𝑆 𝑦′ 𝑆𝑧′ Where 𝑙 𝑥𝑥′ 𝑙 𝑥𝑦′ 𝑙 𝑥𝑧′ 𝑙 𝑦𝑥′ 𝑙 𝑦𝑦′ 𝑙 𝑦𝑧′ 𝑙 𝑧𝑥′ 𝑙 𝑧𝑦′ 𝑙 𝑧𝑧′ = 𝑐𝑜𝑠𝜑 𝑧 𝑐𝑜𝑠𝜑 𝑦 𝑠𝑖𝑛𝜑 𝑧 𝑐𝑜𝑠 𝜑 𝑦 −𝑠𝑖𝑛𝜑 𝑦 −𝑠𝑖𝑛𝜑 𝑧 𝑐𝑜𝑠𝜑𝑧 0 𝑐𝑜𝑠𝜑 𝑧 𝑠𝑖𝑛𝜑 𝑦 𝑠𝑖𝑛𝜑 𝑧 𝑠𝑖𝑛𝜑 𝑦 𝑐𝑜𝑠𝜑 𝑦 Fjaer (2000)
  • 51. 3/2/2019 51 Miscellaneous Equations – Abousleiman et al., (2008) 𝑚 𝑓𝑐 = 10−2 ∗ 𝐶𝐸𝐶 1−𝜙 𝑜 𝜌 𝑠 𝑉𝑜 𝑓 𝜙 𝑜 𝑚 𝑠ℎ𝑎𝑙𝑒 𝑎 = 0.5 −𝑚 𝑓𝑐 + (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑 𝑠 )2 𝑚 𝑠ℎ𝑎𝑙𝑒 𝑐 = 0.5 𝑚 𝑓𝑐 + (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑 𝑠 )2 𝑎 𝑜 𝑓 = 1 − 𝑥 + 𝑦 𝑚 𝑒𝑞 𝑠 ∆𝑝 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒= 𝑅𝑇 𝑉𝑜 𝑓 ∗ (𝑚 𝑓𝑐)2 + 4(𝑚 𝑚𝑢𝑑 𝑠 )2 − 2𝑚 𝑚𝑢𝑑 𝑠 𝜂 = 𝑙𝑢𝑚𝑝𝑒𝑑 𝑝𝑜𝑟𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝛼 1−2𝜈 2 1−𝜈
  • 52. 3/2/2019 52 Continued… 𝜎 𝑚 = 𝑆 𝑥+𝑆 𝑦 2 𝜎 𝑑 = 0.5 (𝑆 𝑥 − 𝑆 𝑦)2+4𝑆 𝑥𝑦 2 𝜃𝑟 = 0.5𝑡𝑎𝑛−1 2𝑆 𝑥𝑦 𝑆 𝑥−𝑆 𝑦 ∆𝑚 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒 𝑎 = 𝑚 𝑠ℎ𝑎𝑙𝑒 𝑎 − 𝑚 𝑚𝑢𝑑 𝑠 ∆𝑚 𝑚𝑢𝑑−𝑠ℎ𝑎𝑙𝑒 𝑐 = 𝑚 𝑠ℎ𝑎𝑙𝑒 𝑐 − 𝑚 𝑚𝑢𝑑 𝑠
  • 53. 3/2/2019 53 Continued… 𝑌 = 1 𝑀 + 𝛼𝜂 𝐺 𝑚 𝑜 𝑎 ( 1 𝑀 + 𝛼𝜂 𝐺 ) 𝑚 𝑜 𝑐 ( 1 𝑀 + 𝛼𝜂 𝐺 ) 0 𝜙 𝑂 𝑉𝑜 𝑓 𝑅𝑇 0 0 0 𝜙 𝑂 𝑉𝑜 𝑓 𝑅𝑇 𝑍 = 𝑌 −1 𝐷 Superposed solutions 𝜎𝑟𝑟 = 𝜎 𝑚 + 𝜎 𝑑 cos 2 𝜃 − 𝜃𝑟 + 𝜎𝑟𝑟 1 + 𝜎𝑟𝑟 2 + 𝜎𝑟𝑟 3 𝜏 𝑟𝜃 = −𝜎 𝑑 sin 2 𝜃 − 𝜃𝑟 + 𝜏 𝑟𝜃 3
  • 54. 3/2/2019 54 𝑝 = 𝑝 𝑜 + 𝑝2 + 𝑝3 𝜎𝑟𝑟 1 = − 𝜎 𝑚 − 𝑝 𝑚𝑢𝑑 𝑅 𝑤 2 𝑟2 𝜎 𝜃𝜃 1 = 𝜎 𝑚 − 𝑝 𝑚𝑢𝑑 𝑅 𝑤 2 𝑟2 𝜎𝑧𝑧 = 𝑆𝑧 − 2𝜈𝜎 𝑚 − 𝛼 1 − 2𝜈 𝑝 𝑜 𝜏 𝑟𝑧 = 𝑆 𝑥𝑧 𝑐𝑜𝑠𝜃 + 𝑆 𝑦𝑧 𝑠𝑖𝑛𝜃 1 − 𝑅 𝑤 2 𝑟2 𝜏 𝜃𝑧 = − 𝑆 𝑥𝑧 𝑠𝑖𝑛𝜃 − 𝑆 𝑦𝑧 𝑐𝑜𝑠𝜃 1 + 𝑅 𝑤 2 𝑟2 Continued…
  • 55. 3/2/2019 55 Continued… Mode 2: Diffusional loading - Detourney et al.,(1988) 𝑠 𝑝(2) = 𝑚11∆1 𝛷 𝜉1 + 𝑚12∆2 𝛷 𝜉2 + 𝑚13∆3 𝛷 𝜉3 𝑠 𝜎𝑟𝑟 (2) = −2𝜂{𝑚11∆1 𝛯 𝜉1 + 𝑚12∆2 𝛯 𝜉2 + 𝑚13∆3 𝛯 𝜉3 𝑠 𝜎 𝜃𝜃 (2) = 2𝜂{ 𝑚11∆1 𝛯 𝜉1 + 𝛷 𝜉1 + 𝑚12∆2 𝛯 𝜉2 + 𝛷 𝜉1 +
  • 56. 3/2/2019 56 Continued… Mode 3: Deviatoric loading – Detourney et al., (1988) 𝑠 𝑝(3) = 𝜎 𝑑 𝑚11 𝐷1 𝐾2 𝜉1 𝑟 + 𝑚12 𝐷2 𝐾2 𝜉2 𝑟 + 𝑚13 𝐷3 𝐾2 𝜉3 𝑟 + 𝐷4 𝑓1 𝑅 𝑤 2 𝑟2 𝑐𝑜𝑠 2 𝜃 − 𝜃𝑟 𝑠 𝜎𝑟𝑟 3 = − 𝜎 𝑑 2𝜂 𝑚11 𝐷1 𝛩 𝜉1 + 𝑚12 𝐷2 𝛩 𝜉2 + 𝑚13 𝐷3 𝛩 𝜉3 − 2𝐺 ℎ + 𝛼 𝜂 𝐷4 𝑅 𝑤 2 𝑟2 −𝐷5 𝑅 𝑤 4 𝑟4 𝑐𝑜𝑠 2 𝜃 − 𝜃𝑟
  • 57. 3/2/2019 57 Continued… 𝑠 𝜎 𝜃𝜃 3 = 𝜎 𝑑 2𝜂 𝑚11 𝐷1 𝛱 𝜉1 + 𝑚12 𝐷2 𝛱 𝜉2 + 𝑚13 𝐷3 𝛱 𝜉3 −
  • 58. 3/2/2019 58 Inverse Laplace – Stehfest’s algorithm 𝑓𝑛𝑢𝑚 𝑡 = 𝑙𝑛2 𝑡 𝑖=1 𝑁 𝐺𝑖 𝑓(𝑖 ∗ 𝑙𝑛2 𝑡 ) 𝑁 = 𝑆𝑡𝑒ℎ𝑓𝑒𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎𝑛𝑑 20 𝐺𝑖 = (−1)𝑖+ 𝑁 2 𝑘=(𝑖+1)/2 min(𝑖, 𝑁 2 ) 𝑘 𝑁 2 2𝑘 ! 𝑁 2 −𝑘 !𝑘! 𝑘−1 ! 𝑖−𝑘 ! 2𝑘−𝑖 !