SlideShare a Scribd company logo
1 of 55
Download to read offline
Employing a multivariate spatial hierarchical
model to characterize extremes with application
to US Gulf Coast precipitation
Brook T. Russell, CU Department of Mathematical Sciences
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 1 / 55
Outline
Introduction
Hurricane Harvey
Motivating Questions
Modeling Procedure
MV Spatial Model
Inference
Analysis
Precipitation Data and Covariate
Estimating Spatial Fields
Estimating Quantities of Interest
Discussion
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 2 / 55
Collaboraters
Ken Kunkel
Mark Risser
Richard Smith
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 3 / 55
Motivating Questions
1. How unusual was this event?
2. What is the probability of observing another event of this
magnitude in the US GC region?
3. What is the nature of the relationship between GoM SST and
precipitation extremes in the US GC region?
4. How can we account for “storm” level dependence using a
relatively simple spatial model?
NASA Richard Carson, Reuters
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 4 / 55
Outline
Introduction
Hurricane Harvey
Motivating Questions
Modeling Procedure
MV Spatial Model
Inference
Analysis
Precipitation Data and Covariate
Estimating Spatial Fields
Estimating Quantities of Interest
Discussion
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 5 / 55
MV Spatial Model
Capture spatial signal via MV spatial model
Spatially model GEV parameters
Use pointwise MLEs and covariance information as input
Use two-stage inference procedure
Approach similar to Holland et al. (2000), Tye and Cooley
(2015)
Setup:
Yt(s) – seasonal 7 day max precip at time t for s ∈ D ⊂ R2
Assume Yt(s)
·
∼ GEV (µt(s), σt(s), ξ(s))
Idea: incorporate GoM SST into location and scale parameters
Goal: estimate parameters ∀ s ∈ D, observed and unobserved
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 6 / 55
MV Spatial Model
At location s and time t, define the GEV parameters via
µt(s) = θ1(s) + SSTtθ2(s)
log σt(s) = θ3(s) + SSTtθ4(s)
ξ(s) = θ5(s)
For θ(s) = (θ1(s), θ2(s), θ3(s), θ4(s), θ5(s))T at location s,
assume
θ(s) = β + η(s)
Mean parameter values over region:
β = (β1, β2, β3, β4, β5)T
Spatially correlated random effects:
η(s) = (η1(s), η2(s), η3(s), η4(s), η5(s))T
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 7 / 55
Spatial Model
Use coregionalization model (Wackernagel, 2003)
η(s) = A δ(s)
for δ(s) = (δ1(s), δ2(s), δ3(s), δ4(s), δ5(s))T
A: lower triangular matrix (Finley et al., 2008)
δi : indep. second-order stationary GPs with mean 0 and
covariance function
Cov(δi (s), δi (s )) = exp − s − s /ρi
Assumes stationary and isotropic
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 8 / 55
Inference – Stage One
First stage of inference:
Obtain MLEs ˆθ(sl ) = (ˆθ1(sl ), ˆθ2(sl ), ˆθ3(sl ), ˆθ4(sl ), ˆθ5(sl ))T at
station l ∈ {1, . . . , L}
Assume
ˆθ(sl ) = θ(sl ) + ε(sl )
Estimation error (indep. of η):
ε(sl ) = (ε1(sl ), ε2(sl ), ε3(sl ), ε4(sl ), ε5(sl ))T
Further assume
(ε1(s1), . . . , ε1(sL), . . . , ε5(s1), . . . , ε5(sL))T
∼ N(0, W )
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 9 / 55
Resulting Hierarchical Model
Define:
Θ = (θ1(s1), . . . , θ1(sL), . . . , θ5(s1), . . . , θ5(sL))T
ˆΘ = (ˆθ1(s1), . . . , ˆθ1(sL), . . . , ˆθ5(s1), . . . , ˆθ5(sL))T
Hierarchical model
ˆΘ|Θ ∼ N(Θ, W ) and Θ ∼ N(β ⊗ 1L, ΩA,ρ)
Marginal model
ˆΘ ∼ N(β ⊗ 1L, ΩA,ρ + W )
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 10 / 55
Inference – Stage Two
Use MLEs and W as input
Estimate β, A, and ρ via sequential ML
Results in estimates ˜β, ˜A, and ˜ρ
Use fixed W :
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 11 / 55
Estimating W
First Approach: Wbd
Assume ε(sl ) is independent of ε(sl ) for all l = l
Results in banded W (sparse); ignores “storm” level
dependence
Could use ML based covariance estimates at each location
Second Approach: Wbs
No assumptions on W – allow for “storm” level dependence
Estimate W via NP block bootstrap; seasons are blocks
Obtain Wbs via empirical covariance matrix of BS ests
Third Approach: Regularize Wbs
Wbs is noisy, consider regularization methods
Two methods:
Sch¨afer and Strimmer (2005) method
Covariance tapering (Furrer et al., 2006; Katzfuss et al., 2016)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 12 / 55
Potential Regularization Methods
1. Regularize via Sch¨afer and Strimmer (2005)
Wreg = αTtarg + (1 − α)Wbs for α ∈ [0, 1]
Ttarg is a known “target” covariance matrix
Wreg is convex combination of Ttarg and Wbs
2. Regularize via covariance tapering (Furrer et al., 2006; Katzfuss
et al., 2016)
Wtap = Wbs ◦ Ttap
◦ is Hadamard (Schur) product
Ttap is a correlation matrix based on covariance function with
property
Cov(Z(s), Z(s )) = 0 ∀ s, s such that s − s > λ > 0
Ttap is sparse ⇒ Wtap is sparse
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 13 / 55
Using Covariance Tapering
Covariance Functions considered in Furrer et al. (2006):
0 20 40 60 80 100 120
0.00.20.40.60.81.0
Distance
Correlation
Wendland 1
Wendland 2
Spherical
Could define
Ttap = 151T
5 ⊗ ΣW 2(λ)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 14 / 55
Illustrative Example
Data for exploratory analysis
Different than data used for analysis presented later
Smaller number of stations
Different definition of season
Different criteria for excluding seasons/stations
Use model with SST in location only
Estimate fields via co-kriging
Consider Wbd , Wbs, and Wtap with several values of λ
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 15 / 55
First Approach: Use Wbd
ML based estimate of covariance matrices
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.2
0.4
0.6
0.8
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.3
1.4
1.5
1.6
1.7
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.04
0.06
0.08
0.10
0.12
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 16 / 55
Second Approach: Use Wbs
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0
0.2
0.4
0.6
0.8
1.0
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.3
1.4
1.5
1.6
1.7
1.8
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
−0.05
0.00
0.05
0.10
0.15
0.20
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 17 / 55
Third Approach: Use Wtap
Using Ttap generated via Wendland 2 (λ = 300km)
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
−0.2
0.0
0.2
0.4
0.6
0.8
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.4
1.5
1.6
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.06
0.07
0.08
0.09
0.10
0.11
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 18 / 55
Third Approach: Use Wtap
Using Ttap generated via Wendland 2 (λ = 150km)
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
−0.2
0.0
0.2
0.4
0.6
0.8
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.4
1.5
1.6
1.7
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.06
0.07
0.08
0.09
0.10
0.11
0.12
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 19 / 55
Third Approach: Use Wtap
Using Ttap generated via Wendland 2 (λ = 75km)
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0
0.2
0.4
0.6
0.8
1.0
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.4
1.5
1.6
1.7
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.04
0.06
0.08
0.10
0.12
0.14
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 20 / 55
Third Approach: Use Wtap
Using Ttap generated via Wendland 2 (λ = 35km)
13
14
15
16
17
Location Const
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
−0.2
0.0
0.2
0.4
0.6
0.8
1.0
SST Coef
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1.4
1.5
1.6
1.7
Log of Scale
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.06
0.08
0.10
0.12
Shape
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 21 / 55
Thoughts Regarding W
ML based estimates of covariance matrices seem to result in
estimated fields that are too smooth
Unconstrained BS based estimate of W seems to result in
rough estimated fields
How does a non-banded estimate of W impact the spatial
model?
Could we work on correlation scale and transform back later?
Perhaps using banded W with BS based covariances is
enough...
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 22 / 55
Outline
Introduction
Hurricane Harvey
Motivating Questions
Modeling Procedure
MV Spatial Model
Inference
Analysis
Precipitation Data and Covariate
Estimating Spatial Fields
Estimating Quantities of Interest
Discussion
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 23 / 55
Precipitation Data
Obtain seasonal (June – Nov) daily precip totals (1949–2016)
from GHCN
Omit seasons with more than 5 missing values during
hurricane season
Exclude stations with at least 10 years omitted (n = 326)
Extract series of 7 day seasonal maxima for each station
2017 data held out
q
q
q
qq
q
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 24 / 55
Incorporating SST
Monthly TS of avg GoM SST via Hadley Centre Sea Ice and
Sea Surface Temperature data set (Rayner et al., 2003)
between 83◦ − 97◦W and 21◦ − 29◦N
Exploratory analysis at each station suggests using avg SST
March–June
Centered and scaled SST covariate:
1950 1970 1990 2010
−2−1012
Year
GoMSST(centeredandscaled)
GoM SST (centered and scaled)
Frequency
−2 −1 0 1 2
0246810
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 25 / 55
Inference and Spatial Interpolation
Two-step Inference Procedure:
1. Assume
Yt(s)
·
∼ GEV (θ1(s) + SSTtθ2(s), θ3(s) + SSTtθ4(s), θ5(s));
use precip data and SST series to get station MLEs ˆΘ
2. Assume marginal model
ˆΘ ∼ N(β ⊗ 1L, ΩA,ρ + W );
use ˆΘ and W to get estimates ˜β, ˜A, and ˜ρ (via seq likelihood)
Spatial Interpolation:
Goal: At s0 ∈ D (observed or unobserved), estimate θ(s0)
Use co-kriging and model output ( ˜β, ˜A, and ˜ρ) to obtain
estimate ˜θ(s0)
Estimate spatial fields by interpolating over a grid of points
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 26 / 55
Characterizing Precipitation Extremes
Using Parameter Estimates:
˜θ(s0) can be used to estimate quantities of interest at s0
Return levels – consider 100 yr. RLs
Exceedance probabilities
Observed return periods
Consider three SST scenarios
“Low” SST = −1
“High” SST = 1
“2017” SST ≈ 1.71
Methods for quantifying uncertainty
Delta method – simple but has known problems
Profile likelihood – challenges using at unobserved locations
Bootstrapping – parametric vs NP
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 27 / 55
100 Year RL Ests
Based on “Low” SST
25
30
35
40
45
q
q
q
qq
q
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 28 / 55
100 Year RL Ests
Pointwise 90% CIs for “Low” SST (based on parametric
bootstrap)
20
25
30
35
40
90% CI (lower limits)
25
30
35
40
45
50
55
90% CI (upper limits)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 29 / 55
100 Year RL Ests
Based on “High” SST
25
30
35
40
45
50
55
q
q
q
qq
q
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 30 / 55
100 Year RL Ests
Pointwise 90% CIs for “High” SST (based on parametric
bootstrap)
20
25
30
35
40
45
90% CI (lower limits)
30
40
50
60
90% CI (upper limits)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 31 / 55
100 Year RL Ests
Based on “2017” SST
25
30
35
40
45
50
55
q
q
q
qq
q
q
q
q
q
qq
q
q
q q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 32 / 55
100 Year RL Ests
Pointwise 90% CIs for “2017” SST (based on parametric
bootstrap)
20
25
30
35
40
45
50
90% CI (lower limits)
30
40
50
60
70
80
90% CI (upper limits)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 33 / 55
Comparing 100 Year RL Ests
Ratio: “High” SST versus “Low” SST
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Ratio of 100 Yr RLs (High SST vs Low SST)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 34 / 55
Comparing 100 Year RL Ests
Pointwise 90% CIs for ratio of 100 yr RLs (“High” SST versus
“Low” SST)
0.7
0.8
0.9
1.0
1.1
1.2
1.3
90% CI (lower limits)
0.7
0.8
0.9
1.0
1.1
1.2
1.3
90% CI (upper limits)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 35 / 55
100 Year RL Ests
Ratio: “2017” SST versus “Low” SST
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Ratio of 100 Yr RLs (2017 SST vs Low SST)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 36 / 55
Comparing 100 Year RL Ests
Pointwise 90% CIs for ratio of 100 yr RLs (“2017” SST versus
“Low” SST)
0.4
0.6
0.8
1.0
1.2
1.4
1.6
90% CI (lower limits)
0.4
0.6
0.8
1.0
1.2
1.4
1.6
90% CI (upper limits)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 37 / 55
2017 Event in Houston Area
Approximately 100cm in Houston area
Observed return periods for this amount in downtown
Houston based on spatial model
SST Obs Ret Per CI Lwr CI Upr
Low 8512.24 2079.44 70123.68
High 3471.28 1059.97 20659.49
2017 2549.66 404.20 6435.60
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 38 / 55
2017 Event in Houston Area
Approximately 100cm in Houston area
Estimate probability of exceeding this amount in downtown
Houston based on spatial model
SST Est Exc Pr RR vs “Low” RR CI Lwr RR CI Upr
Low 0.000117 – – –
High 0.000288 2.45 1.47 4.66
2017 0.000392 3.34 2.30 24.61
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 39 / 55
Chances of observing another event of this magnitude
Idea: use annual avg precip as baseline
Houston: 70cm is 53% of annual avg., 48cm is 36.5% of
annual avg.
PRISM annual avg. precip map1
50
100
150
200
1
PRISM Climate Group, Oregon State University,
http://prism.oregonstate.edu
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 40 / 55
Estimated Exceedance Probabilities
Based on “Low” SST
0e+00
2e−04
4e−04
6e−04
8e−04
1e−03
Est Prob of Exceeding 53% of Annual Avg
0.000
0.005
0.010
0.015
Est Prob of Exceeding 36.5% of Annual Avg
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 41 / 55
Estimated Exceedance Probabilities
Based on “High” SST
0e+00
2e−04
4e−04
6e−04
8e−04
1e−03
Est Prob of Exceeding 53% of Annual Avg
0.000
0.005
0.010
0.015
Est Prob of Exceeding 36.5% of Annual Avg
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 42 / 55
Estimated Exceedance Probabilities
Based on “2017” SST
0e+00
2e−04
4e−04
6e−04
8e−04
1e−03
Est Prob of Exceeding 53% of Annual Avg
0.000
0.005
0.010
0.015
Est Prob of Exceeding 36.5% of Annual Avg
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 43 / 55
Closer Look at Five Locations
q q
q
q
q
Houston
New Orleans
San Antonio
Tallahassee
Atlanta
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 44 / 55
Houston, TX
0.00.20.40.60.81.0
Proportion of Average Total Annual Precipitation
7DayEstimatedExceedanceProbability
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
3.29 6.57 9.86 13.15 16.43 19.72 23.01 26.3 29.58
Precipitation (cm)
Low SST
High SST
2017 SST
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 45 / 55
New Orleans, LA
0.00.20.40.60.81.0
Proportion of Average Total Annual Precipitation
7DayEstimatedExceedanceProbability
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
4.01 8.02 12.03 16.05 20.06 24.07 28.08 32.09 36.1
Precipitation (cm)
Low SST
High SST
2017 SST
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 46 / 55
San Antonio, TX
0.00.20.40.60.81.0
Proportion of Average Total Annual Precipitation
7DayEstimatedExceedanceProbability
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
1.9 3.8 5.7 7.6 9.5 11.4 13.29 15.19 17.09
Precipitation (cm)
Low SST
High SST
2017 SST
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 47 / 55
Tallahassee, FL
0.00.20.40.60.81.0
Proportion of Average Total Annual Precipitation
7DayEstimatedExceedanceProbability
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
3.54 7.08 10.62 14.16 17.69 21.23 24.77 28.31 31.85
Precipitation (cm)
Low SST
High SST
2017 SST
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 48 / 55
Atlanta, GA
0.00.20.40.60.81.0
Proportion of Average Total Annual Precipitation
7DayEstimatedExceedanceProbability
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
3.27 6.55 9.82 13.1 16.37 19.65 22.92 26.19 29.47
Precipitation (cm)
Low SST
High SST
2017 SST
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 49 / 55
Outline
Introduction
Hurricane Harvey
Motivating Questions
Modeling Procedure
MV Spatial Model
Inference
Analysis
Precipitation Data and Covariate
Estimating Spatial Fields
Estimating Quantities of Interest
Discussion
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 50 / 55
Incorporating GoM SST Projections
SST projections from Alexander et al. (2018):
GoM: 0.2 − 0.4◦
C decade−1
(1976 – 2099)
Below 60◦
Lat.: Little change in year to year variability
“The shift in the mean was so large in many regions that SSTs
during the last 30 years of the 21st century will always be
warmer than the warmest year in the historical period.” (1976
– 2005)
1950 1960 1970 1980 1990 2000 2010
25.025.526.0
Gulf of Mexico Mean SST (Mar−Jun)
Year
Temperature(Celcius)
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 51 / 55
Additional Thoughts and Future Work
Quantifying the degree to which Harvey was unusual:
accounting spatial extent
Impact of accounting for storm level dependence in W
Regularization methods for W – choice of λ
M. Yam, LA Times, Getty J. Raedle, Getty Images
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 52 / 55
References I
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye,
J. A., Pershing, A. J., and Thomas, A. C. (2018). Projected sea
surface temperatures over the 21st century: Changes in the
mean, variability and extremes for large marine ecosystem
regions of Northern Oceans. Elem Sci Anth, 6(1).
Finley, A. O., Banerjee, S., Ek, A. R., and McRoberts, R. E.
(2008). Bayesian multivariate process modeling for prediction of
forest attributes. Journal of Agricultural, Biological, and
Environmental Statistics, 13(1):60–83.
Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance
tapering for interpolation of large spatial datasets. Journal of
Computational and Graphical Statistics, 15(3):502–523.
Holland, D. M., De, O. V., Cox, L. H., and Smith, R. L. (2000).
Estimation of regional trends in sulfur dioxide over the eastern
united states. Environmetrics, 11(4):373–393.
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 53 / 55
References II
Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2016).
Understanding the ensemble kalman filter. The American
Statistician, 70(4):350–357.
Rayner, N., Parker, D., Horton, E., Folland, C., Alexander, L.,
Rowell, D., Kent, E., and Kaplan, A. (2003). Global analyses of
sea surface temperature, sea ice, and night marine air
temperature since the late nineteenth century. Journal of
Geophysical Research: Atmospheres, 108(D14).
Sch¨afer, J. and Strimmer, K. (2005). A shrinkage approach to
large-scale covariance matrix estimation and implications for
functional genomics. Statistical applications in genetics and
molecular biology, 4(1).
Tye, M. R. and Cooley, D. (2015). A spatial model to examine
rainfall extremes in Colorado’s Front Range. Journal of
Hydrology, 530(Supplement C):15 – 23.
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 54 / 55
References III
Wackernagel, H. (2003). Multivariate Geostatistics. Springer
Science & Business Media.
Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 55 / 55

More Related Content

What's hot

S curve hydrograph
S curve hydrographS curve hydrograph
S curve hydrographSatish Taji
 
The Dvorak Technique
The Dvorak TechniqueThe Dvorak Technique
The Dvorak TechniqueKatelyn Hearn
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12World University of Bangladesh
 
MS thesis
MS thesisMS thesis
MS thesisBo Luan
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9World University of Bangladesh
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Hydrology ( computation of average rainfall )
Hydrology ( computation of average rainfall )Hydrology ( computation of average rainfall )
Hydrology ( computation of average rainfall )Latif Hyder Wadho
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3World University of Bangladesh
 
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8World University of Bangladesh
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
Lecture 6   ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...Lecture 6   ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...World University of Bangladesh
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13World University of Bangladesh
 
YellowIGARSS.ppt
YellowIGARSS.pptYellowIGARSS.ppt
YellowIGARSS.pptgrssieee
 
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...World University of Bangladesh
 

What's hot (20)

S curve hydrograph
S curve hydrographS curve hydrograph
S curve hydrograph
 
The Dvorak Technique
The Dvorak TechniqueThe Dvorak Technique
The Dvorak Technique
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
 
MS thesis
MS thesisMS thesis
MS thesis
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Hydrology ( computation of average rainfall )
Hydrology ( computation of average rainfall )Hydrology ( computation of average rainfall )
Hydrology ( computation of average rainfall )
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3Class lectures on Hydrology by Rabindra Ranjan Saha  Lecture 3
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
 
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
Lecture 6   ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...Lecture 6   ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
 
Lo3
Lo3Lo3
Lo3
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
 
YellowIGARSS.ppt
YellowIGARSS.pptYellowIGARSS.ppt
YellowIGARSS.ppt
 
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
 

Similar to Climate Extremes Workshop - Employing a Multivariate Spatial Hierarchical Model to Characterize Extremes with Application to US Gulf Coast Precipitation - Brook Russell, May 16, 2018

AGU 2012 Bayesian analysis of non Gaussian LRD processes
AGU 2012 Bayesian analysis of non Gaussian LRD processesAGU 2012 Bayesian analysis of non Gaussian LRD processes
AGU 2012 Bayesian analysis of non Gaussian LRD processesNick Watkins
 
Cambridge 2014 Complexity, tails and trends
Cambridge 2014  Complexity, tails and trendsCambridge 2014  Complexity, tails and trends
Cambridge 2014 Complexity, tails and trendsNick Watkins
 
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...Sérgio Sacani
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...JeremyHeyl
 
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...Sérgio Sacani
 
Bicep2 detection of_b_mode_polarization_at_degree_angular_scales
Bicep2 detection of_b_mode_polarization_at_degree_angular_scalesBicep2 detection of_b_mode_polarization_at_degree_angular_scales
Bicep2 detection of_b_mode_polarization_at_degree_angular_scalesSérgio Sacani
 
Jgrass-NewAge: Kriging component
Jgrass-NewAge: Kriging componentJgrass-NewAge: Kriging component
Jgrass-NewAge: Kriging componentNiccolò Tubini
 
Wavelet estimation for a multidimensional acoustic or elastic earth
Wavelet estimation for a multidimensional acoustic or elastic earthWavelet estimation for a multidimensional acoustic or elastic earth
Wavelet estimation for a multidimensional acoustic or elastic earthArthur Weglein
 
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...Arthur Weglein
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...Land Cover and Land use Classifiction from Satellite Image Time Series Data u...
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...Lorena Santos
 
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxBarber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxgrssieee
 

Similar to Climate Extremes Workshop - Employing a Multivariate Spatial Hierarchical Model to Characterize Extremes with Application to US Gulf Coast Precipitation - Brook Russell, May 16, 2018 (20)

AGU 2012 Bayesian analysis of non Gaussian LRD processes
AGU 2012 Bayesian analysis of non Gaussian LRD processesAGU 2012 Bayesian analysis of non Gaussian LRD processes
AGU 2012 Bayesian analysis of non Gaussian LRD processes
 
Cambridge 2014 Complexity, tails and trends
Cambridge 2014  Complexity, tails and trendsCambridge 2014  Complexity, tails and trends
Cambridge 2014 Complexity, tails and trends
 
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
 
Climate Extremes Workshop - A Semiparametric Bayesian Clustering Model for S...
Climate Extremes Workshop -  A Semiparametric Bayesian Clustering Model for S...Climate Extremes Workshop -  A Semiparametric Bayesian Clustering Model for S...
Climate Extremes Workshop - A Semiparametric Bayesian Clustering Model for S...
 
1.1444077
1.14440771.1444077
1.1444077
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
AIAA Paper dlt228
AIAA Paper dlt228AIAA Paper dlt228
AIAA Paper dlt228
 
Undergraduate Modeling Workshop - Hierarchical Models for Sparsely Sampled Hi...
Undergraduate Modeling Workshop - Hierarchical Models for Sparsely Sampled Hi...Undergraduate Modeling Workshop - Hierarchical Models for Sparsely Sampled Hi...
Undergraduate Modeling Workshop - Hierarchical Models for Sparsely Sampled Hi...
 
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...
A statistical analysis_of_the_accuracy_of_the_digitized_magnitudes_of_photome...
 
Bicep2 detection of_b_mode_polarization_at_degree_angular_scales
Bicep2 detection of_b_mode_polarization_at_degree_angular_scalesBicep2 detection of_b_mode_polarization_at_degree_angular_scales
Bicep2 detection of_b_mode_polarization_at_degree_angular_scales
 
Jgrass-NewAge: Kriging component
Jgrass-NewAge: Kriging componentJgrass-NewAge: Kriging component
Jgrass-NewAge: Kriging component
 
Wavelet estimation for a multidimensional acoustic or elastic earth
Wavelet estimation for a multidimensional acoustic or elastic earthWavelet estimation for a multidimensional acoustic or elastic earth
Wavelet estimation for a multidimensional acoustic or elastic earth
 
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
Wavelet estimation for a multidimensional acoustic or elastic earth- Arthur W...
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...Land Cover and Land use Classifiction from Satellite Image Time Series Data u...
Land Cover and Land use Classifiction from Satellite Image Time Series Data u...
 
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxBarber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
 

More from The Statistical and Applied Mathematical Sciences Institute

More from The Statistical and Applied Mathematical Sciences Institute (20)

Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
 
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
 
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
 
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
 
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
 
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
 
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
 
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
 
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
 
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
 
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
 
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
 
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
 
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
 
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
 

Recently uploaded

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Recently uploaded (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

Climate Extremes Workshop - Employing a Multivariate Spatial Hierarchical Model to Characterize Extremes with Application to US Gulf Coast Precipitation - Brook Russell, May 16, 2018

  • 1. Employing a multivariate spatial hierarchical model to characterize extremes with application to US Gulf Coast precipitation Brook T. Russell, CU Department of Mathematical Sciences Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 1 / 55
  • 2. Outline Introduction Hurricane Harvey Motivating Questions Modeling Procedure MV Spatial Model Inference Analysis Precipitation Data and Covariate Estimating Spatial Fields Estimating Quantities of Interest Discussion Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 2 / 55
  • 3. Collaboraters Ken Kunkel Mark Risser Richard Smith Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 3 / 55
  • 4. Motivating Questions 1. How unusual was this event? 2. What is the probability of observing another event of this magnitude in the US GC region? 3. What is the nature of the relationship between GoM SST and precipitation extremes in the US GC region? 4. How can we account for “storm” level dependence using a relatively simple spatial model? NASA Richard Carson, Reuters Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 4 / 55
  • 5. Outline Introduction Hurricane Harvey Motivating Questions Modeling Procedure MV Spatial Model Inference Analysis Precipitation Data and Covariate Estimating Spatial Fields Estimating Quantities of Interest Discussion Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 5 / 55
  • 6. MV Spatial Model Capture spatial signal via MV spatial model Spatially model GEV parameters Use pointwise MLEs and covariance information as input Use two-stage inference procedure Approach similar to Holland et al. (2000), Tye and Cooley (2015) Setup: Yt(s) – seasonal 7 day max precip at time t for s ∈ D ⊂ R2 Assume Yt(s) · ∼ GEV (µt(s), σt(s), ξ(s)) Idea: incorporate GoM SST into location and scale parameters Goal: estimate parameters ∀ s ∈ D, observed and unobserved Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 6 / 55
  • 7. MV Spatial Model At location s and time t, define the GEV parameters via µt(s) = θ1(s) + SSTtθ2(s) log σt(s) = θ3(s) + SSTtθ4(s) ξ(s) = θ5(s) For θ(s) = (θ1(s), θ2(s), θ3(s), θ4(s), θ5(s))T at location s, assume θ(s) = β + η(s) Mean parameter values over region: β = (β1, β2, β3, β4, β5)T Spatially correlated random effects: η(s) = (η1(s), η2(s), η3(s), η4(s), η5(s))T Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 7 / 55
  • 8. Spatial Model Use coregionalization model (Wackernagel, 2003) η(s) = A δ(s) for δ(s) = (δ1(s), δ2(s), δ3(s), δ4(s), δ5(s))T A: lower triangular matrix (Finley et al., 2008) δi : indep. second-order stationary GPs with mean 0 and covariance function Cov(δi (s), δi (s )) = exp − s − s /ρi Assumes stationary and isotropic Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 8 / 55
  • 9. Inference – Stage One First stage of inference: Obtain MLEs ˆθ(sl ) = (ˆθ1(sl ), ˆθ2(sl ), ˆθ3(sl ), ˆθ4(sl ), ˆθ5(sl ))T at station l ∈ {1, . . . , L} Assume ˆθ(sl ) = θ(sl ) + ε(sl ) Estimation error (indep. of η): ε(sl ) = (ε1(sl ), ε2(sl ), ε3(sl ), ε4(sl ), ε5(sl ))T Further assume (ε1(s1), . . . , ε1(sL), . . . , ε5(s1), . . . , ε5(sL))T ∼ N(0, W ) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 9 / 55
  • 10. Resulting Hierarchical Model Define: Θ = (θ1(s1), . . . , θ1(sL), . . . , θ5(s1), . . . , θ5(sL))T ˆΘ = (ˆθ1(s1), . . . , ˆθ1(sL), . . . , ˆθ5(s1), . . . , ˆθ5(sL))T Hierarchical model ˆΘ|Θ ∼ N(Θ, W ) and Θ ∼ N(β ⊗ 1L, ΩA,ρ) Marginal model ˆΘ ∼ N(β ⊗ 1L, ΩA,ρ + W ) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 10 / 55
  • 11. Inference – Stage Two Use MLEs and W as input Estimate β, A, and ρ via sequential ML Results in estimates ˜β, ˜A, and ˜ρ Use fixed W : Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 11 / 55
  • 12. Estimating W First Approach: Wbd Assume ε(sl ) is independent of ε(sl ) for all l = l Results in banded W (sparse); ignores “storm” level dependence Could use ML based covariance estimates at each location Second Approach: Wbs No assumptions on W – allow for “storm” level dependence Estimate W via NP block bootstrap; seasons are blocks Obtain Wbs via empirical covariance matrix of BS ests Third Approach: Regularize Wbs Wbs is noisy, consider regularization methods Two methods: Sch¨afer and Strimmer (2005) method Covariance tapering (Furrer et al., 2006; Katzfuss et al., 2016) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 12 / 55
  • 13. Potential Regularization Methods 1. Regularize via Sch¨afer and Strimmer (2005) Wreg = αTtarg + (1 − α)Wbs for α ∈ [0, 1] Ttarg is a known “target” covariance matrix Wreg is convex combination of Ttarg and Wbs 2. Regularize via covariance tapering (Furrer et al., 2006; Katzfuss et al., 2016) Wtap = Wbs ◦ Ttap ◦ is Hadamard (Schur) product Ttap is a correlation matrix based on covariance function with property Cov(Z(s), Z(s )) = 0 ∀ s, s such that s − s > λ > 0 Ttap is sparse ⇒ Wtap is sparse Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 13 / 55
  • 14. Using Covariance Tapering Covariance Functions considered in Furrer et al. (2006): 0 20 40 60 80 100 120 0.00.20.40.60.81.0 Distance Correlation Wendland 1 Wendland 2 Spherical Could define Ttap = 151T 5 ⊗ ΣW 2(λ) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 14 / 55
  • 15. Illustrative Example Data for exploratory analysis Different than data used for analysis presented later Smaller number of stations Different definition of season Different criteria for excluding seasons/stations Use model with SST in location only Estimate fields via co-kriging Consider Wbd , Wbs, and Wtap with several values of λ Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 15 / 55
  • 16. First Approach: Use Wbd ML based estimate of covariance matrices 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.2 0.4 0.6 0.8 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.3 1.4 1.5 1.6 1.7 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.04 0.06 0.08 0.10 0.12 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 16 / 55
  • 17. Second Approach: Use Wbs 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.3 1.4 1.5 1.6 1.7 1.8 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q −0.05 0.00 0.05 0.10 0.15 0.20 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 17 / 55
  • 18. Third Approach: Use Wtap Using Ttap generated via Wendland 2 (λ = 300km) 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q −0.2 0.0 0.2 0.4 0.6 0.8 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.4 1.5 1.6 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.06 0.07 0.08 0.09 0.10 0.11 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 18 / 55
  • 19. Third Approach: Use Wtap Using Ttap generated via Wendland 2 (λ = 150km) 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q −0.2 0.0 0.2 0.4 0.6 0.8 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.4 1.5 1.6 1.7 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 19 / 55
  • 20. Third Approach: Use Wtap Using Ttap generated via Wendland 2 (λ = 75km) 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.4 1.5 1.6 1.7 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.04 0.06 0.08 0.10 0.12 0.14 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 20 / 55
  • 21. Third Approach: Use Wtap Using Ttap generated via Wendland 2 (λ = 35km) 13 14 15 16 17 Location Const q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q −0.2 0.0 0.2 0.4 0.6 0.8 1.0 SST Coef q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.4 1.5 1.6 1.7 Log of Scale q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.06 0.08 0.10 0.12 Shape q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 21 / 55
  • 22. Thoughts Regarding W ML based estimates of covariance matrices seem to result in estimated fields that are too smooth Unconstrained BS based estimate of W seems to result in rough estimated fields How does a non-banded estimate of W impact the spatial model? Could we work on correlation scale and transform back later? Perhaps using banded W with BS based covariances is enough... Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 22 / 55
  • 23. Outline Introduction Hurricane Harvey Motivating Questions Modeling Procedure MV Spatial Model Inference Analysis Precipitation Data and Covariate Estimating Spatial Fields Estimating Quantities of Interest Discussion Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 23 / 55
  • 24. Precipitation Data Obtain seasonal (June – Nov) daily precip totals (1949–2016) from GHCN Omit seasons with more than 5 missing values during hurricane season Exclude stations with at least 10 years omitted (n = 326) Extract series of 7 day seasonal maxima for each station 2017 data held out q q q qq q q q q q qq q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 24 / 55
  • 25. Incorporating SST Monthly TS of avg GoM SST via Hadley Centre Sea Ice and Sea Surface Temperature data set (Rayner et al., 2003) between 83◦ − 97◦W and 21◦ − 29◦N Exploratory analysis at each station suggests using avg SST March–June Centered and scaled SST covariate: 1950 1970 1990 2010 −2−1012 Year GoMSST(centeredandscaled) GoM SST (centered and scaled) Frequency −2 −1 0 1 2 0246810 Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 25 / 55
  • 26. Inference and Spatial Interpolation Two-step Inference Procedure: 1. Assume Yt(s) · ∼ GEV (θ1(s) + SSTtθ2(s), θ3(s) + SSTtθ4(s), θ5(s)); use precip data and SST series to get station MLEs ˆΘ 2. Assume marginal model ˆΘ ∼ N(β ⊗ 1L, ΩA,ρ + W ); use ˆΘ and W to get estimates ˜β, ˜A, and ˜ρ (via seq likelihood) Spatial Interpolation: Goal: At s0 ∈ D (observed or unobserved), estimate θ(s0) Use co-kriging and model output ( ˜β, ˜A, and ˜ρ) to obtain estimate ˜θ(s0) Estimate spatial fields by interpolating over a grid of points Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 26 / 55
  • 27. Characterizing Precipitation Extremes Using Parameter Estimates: ˜θ(s0) can be used to estimate quantities of interest at s0 Return levels – consider 100 yr. RLs Exceedance probabilities Observed return periods Consider three SST scenarios “Low” SST = −1 “High” SST = 1 “2017” SST ≈ 1.71 Methods for quantifying uncertainty Delta method – simple but has known problems Profile likelihood – challenges using at unobserved locations Bootstrapping – parametric vs NP Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 27 / 55
  • 28. 100 Year RL Ests Based on “Low” SST 25 30 35 40 45 q q q qq q q q q q qq q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 28 / 55
  • 29. 100 Year RL Ests Pointwise 90% CIs for “Low” SST (based on parametric bootstrap) 20 25 30 35 40 90% CI (lower limits) 25 30 35 40 45 50 55 90% CI (upper limits) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 29 / 55
  • 30. 100 Year RL Ests Based on “High” SST 25 30 35 40 45 50 55 q q q qq q q q q q qq q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 30 / 55
  • 31. 100 Year RL Ests Pointwise 90% CIs for “High” SST (based on parametric bootstrap) 20 25 30 35 40 45 90% CI (lower limits) 30 40 50 60 90% CI (upper limits) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 31 / 55
  • 32. 100 Year RL Ests Based on “2017” SST 25 30 35 40 45 50 55 q q q qq q q q q q qq q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 32 / 55
  • 33. 100 Year RL Ests Pointwise 90% CIs for “2017” SST (based on parametric bootstrap) 20 25 30 35 40 45 50 90% CI (lower limits) 30 40 50 60 70 80 90% CI (upper limits) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 33 / 55
  • 34. Comparing 100 Year RL Ests Ratio: “High” SST versus “Low” SST 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Ratio of 100 Yr RLs (High SST vs Low SST) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 34 / 55
  • 35. Comparing 100 Year RL Ests Pointwise 90% CIs for ratio of 100 yr RLs (“High” SST versus “Low” SST) 0.7 0.8 0.9 1.0 1.1 1.2 1.3 90% CI (lower limits) 0.7 0.8 0.9 1.0 1.1 1.2 1.3 90% CI (upper limits) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 35 / 55
  • 36. 100 Year RL Ests Ratio: “2017” SST versus “Low” SST 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Ratio of 100 Yr RLs (2017 SST vs Low SST) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 36 / 55
  • 37. Comparing 100 Year RL Ests Pointwise 90% CIs for ratio of 100 yr RLs (“2017” SST versus “Low” SST) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 90% CI (lower limits) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 90% CI (upper limits) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 37 / 55
  • 38. 2017 Event in Houston Area Approximately 100cm in Houston area Observed return periods for this amount in downtown Houston based on spatial model SST Obs Ret Per CI Lwr CI Upr Low 8512.24 2079.44 70123.68 High 3471.28 1059.97 20659.49 2017 2549.66 404.20 6435.60 Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 38 / 55
  • 39. 2017 Event in Houston Area Approximately 100cm in Houston area Estimate probability of exceeding this amount in downtown Houston based on spatial model SST Est Exc Pr RR vs “Low” RR CI Lwr RR CI Upr Low 0.000117 – – – High 0.000288 2.45 1.47 4.66 2017 0.000392 3.34 2.30 24.61 Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 39 / 55
  • 40. Chances of observing another event of this magnitude Idea: use annual avg precip as baseline Houston: 70cm is 53% of annual avg., 48cm is 36.5% of annual avg. PRISM annual avg. precip map1 50 100 150 200 1 PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 40 / 55
  • 41. Estimated Exceedance Probabilities Based on “Low” SST 0e+00 2e−04 4e−04 6e−04 8e−04 1e−03 Est Prob of Exceeding 53% of Annual Avg 0.000 0.005 0.010 0.015 Est Prob of Exceeding 36.5% of Annual Avg Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 41 / 55
  • 42. Estimated Exceedance Probabilities Based on “High” SST 0e+00 2e−04 4e−04 6e−04 8e−04 1e−03 Est Prob of Exceeding 53% of Annual Avg 0.000 0.005 0.010 0.015 Est Prob of Exceeding 36.5% of Annual Avg Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 42 / 55
  • 43. Estimated Exceedance Probabilities Based on “2017” SST 0e+00 2e−04 4e−04 6e−04 8e−04 1e−03 Est Prob of Exceeding 53% of Annual Avg 0.000 0.005 0.010 0.015 Est Prob of Exceeding 36.5% of Annual Avg Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 43 / 55
  • 44. Closer Look at Five Locations q q q q q Houston New Orleans San Antonio Tallahassee Atlanta Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 44 / 55
  • 45. Houston, TX 0.00.20.40.60.81.0 Proportion of Average Total Annual Precipitation 7DayEstimatedExceedanceProbability 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 3.29 6.57 9.86 13.15 16.43 19.72 23.01 26.3 29.58 Precipitation (cm) Low SST High SST 2017 SST Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 45 / 55
  • 46. New Orleans, LA 0.00.20.40.60.81.0 Proportion of Average Total Annual Precipitation 7DayEstimatedExceedanceProbability 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 4.01 8.02 12.03 16.05 20.06 24.07 28.08 32.09 36.1 Precipitation (cm) Low SST High SST 2017 SST Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 46 / 55
  • 47. San Antonio, TX 0.00.20.40.60.81.0 Proportion of Average Total Annual Precipitation 7DayEstimatedExceedanceProbability 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 1.9 3.8 5.7 7.6 9.5 11.4 13.29 15.19 17.09 Precipitation (cm) Low SST High SST 2017 SST Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 47 / 55
  • 48. Tallahassee, FL 0.00.20.40.60.81.0 Proportion of Average Total Annual Precipitation 7DayEstimatedExceedanceProbability 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 3.54 7.08 10.62 14.16 17.69 21.23 24.77 28.31 31.85 Precipitation (cm) Low SST High SST 2017 SST Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 48 / 55
  • 49. Atlanta, GA 0.00.20.40.60.81.0 Proportion of Average Total Annual Precipitation 7DayEstimatedExceedanceProbability 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 3.27 6.55 9.82 13.1 16.37 19.65 22.92 26.19 29.47 Precipitation (cm) Low SST High SST 2017 SST Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 49 / 55
  • 50. Outline Introduction Hurricane Harvey Motivating Questions Modeling Procedure MV Spatial Model Inference Analysis Precipitation Data and Covariate Estimating Spatial Fields Estimating Quantities of Interest Discussion Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 50 / 55
  • 51. Incorporating GoM SST Projections SST projections from Alexander et al. (2018): GoM: 0.2 − 0.4◦ C decade−1 (1976 – 2099) Below 60◦ Lat.: Little change in year to year variability “The shift in the mean was so large in many regions that SSTs during the last 30 years of the 21st century will always be warmer than the warmest year in the historical period.” (1976 – 2005) 1950 1960 1970 1980 1990 2000 2010 25.025.526.0 Gulf of Mexico Mean SST (Mar−Jun) Year Temperature(Celcius) Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 51 / 55
  • 52. Additional Thoughts and Future Work Quantifying the degree to which Harvey was unusual: accounting spatial extent Impact of accounting for storm level dependence in W Regularization methods for W – choice of λ M. Yam, LA Times, Getty J. Raedle, Getty Images Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 52 / 55
  • 53. References I Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J., and Thomas, A. C. (2018). Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem Sci Anth, 6(1). Finley, A. O., Banerjee, S., Ek, A. R., and McRoberts, R. E. (2008). Bayesian multivariate process modeling for prediction of forest attributes. Journal of Agricultural, Biological, and Environmental Statistics, 13(1):60–83. Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–523. Holland, D. M., De, O. V., Cox, L. H., and Smith, R. L. (2000). Estimation of regional trends in sulfur dioxide over the eastern united states. Environmetrics, 11(4):373–393. Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 53 / 55
  • 54. References II Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2016). Understanding the ensemble kalman filter. The American Statistician, 70(4):350–357. Rayner, N., Parker, D., Horton, E., Folland, C., Alexander, L., Rowell, D., Kent, E., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14). Sch¨afer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1). Tye, M. R. and Cooley, D. (2015). A spatial model to examine rainfall extremes in Colorado’s Front Range. Journal of Hydrology, 530(Supplement C):15 – 23. Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 54 / 55
  • 55. References III Wackernagel, H. (2003). Multivariate Geostatistics. Springer Science & Business Media. Brook T. Russell SAMSI Climate Extremes Workshop (5/16/18) 55 / 55