SlideShare a Scribd company logo
1 of 12
CV・PRML勉強会
ShuffleNet: An Extremely Efficient Convolutional Neural Network
for Mobile Devices
中部大学大学院 工学研究科情報工学専攻 修士1年
近藤 良太
1
ShuffleNetとは?
3
• 計算効率の高いモデルアーキテクチャ
– 性能の低い携帯端末向けに設計
– 精度を維持しつつ計算コストを削減
• 手法
– Pointwise Group Convolution
– Channel Shuffle
Pointwise Group Convolution
• 1×1の畳み込みにGroup Convolutionを使用
– 入力特徴マップをチャンネル方向に分割してグループ化
• グループ数が多いほど計算量が減少
4
N: 入力チャンネル数
M: 出力チャンネル数
K: カーネルサイズ
G: グループ数
N
M
K
Normal Covolution
N × M × K2
パラメータ数の比較
N
M
K
Pointwise Group Convolution
(N × M × 1) / G
Pointwise Group Convolution
• 1×1の畳み込みにGroup Convolutionを使用
– 入力特徴マップをチャンネル方向に分割してグループ化
• グループ数が多いほど計算量が減少
5
(a): bottleneck unit
(b): ShuffleNet unit
(c): ShuffleNet unit with stride=2
Pointwise Group Convolution
• 問題点
– Group Convolutionが連続するとチャンネル間の畳み込
みがされない
• 精度に悪影響
6
(a): bottleneck unit
(b): ShuffleNet unit
(c): ShuffleNet unit with stride=2
Channel Shuffle
• 入力特徴マップのチャンネルの順番を入れ替える
– Group Convolutionが連続しても精度低下を抑制
• Group Convolutionと併用
7
(a): Channel Shuffleなし (b): 他のグループから入力を取得できれば入出力が関連する (c): Channel Shuffleあり
Channel Shuffle
• 入力特徴マップのチャンネルの順番を入れ替える
– Group Convolutionが連続しても精度低下を抑制
• Group Convolutionと併用
8
Channel Shuffle有無の比較
※ShuffleNet 1x, 0.5xは各層のフィルタ数の倍数
実験
• 学習
– ImageNet train set
• Weight decay: 4e-5~1e-4
• 300,000 iterations
• Batch size: 1024
• ネットワーク→
• 評価
– ImageNet validation set
• 入力: 256×256
• 224×224のsingle crop
• Top-1で評価
9
結果
• 精度低下を抑えつつ計算量の削減に成功
• 他のネットワークモデルとも比較
– 計算効率が高い
10
比較
• MobileNetとの比較
– 計算量,エラー率共に優勢
• 他のネットワークモデルとの計算量比較
– 計算量を大幅に削減
11
比較
• MS COCOの物体検出による比較
– MobileNet,ShuffleNetとも設定は同一
• 携帯端末による推論速度比較
– CPU: Snapdragon820 @2.15GHz(※シングルスレッド)
12
論文リンク
• https://arxiv.org/pdf/1707.01083.pdf
13

More Related Content

What's hot

What's hot (20)

AtCoder Regular Contest 026 解説
AtCoder Regular Contest 026 解説AtCoder Regular Contest 026 解説
AtCoder Regular Contest 026 解説
 
【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
 
Deeplearning輪読会
Deeplearning輪読会Deeplearning輪読会
Deeplearning輪読会
 
20210711 deepI2P
20210711 deepI2P20210711 deepI2P
20210711 deepI2P
 
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs
 
論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」
 
[DL輪読会]Objects as Points
[DL輪読会]Objects as Points[DL輪読会]Objects as Points
[DL輪読会]Objects as Points
 
[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series
[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series
[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series
 
[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalization[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalization
 
ICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめ
 
[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks
 
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
 
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
 
[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017...
[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017...[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017...
[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017...
 
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
 
High performance python computing for data science
High performance python computing for data scienceHigh performance python computing for data science
High performance python computing for data science
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
 
Chainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなすChainer で Tensor コア (fp16) を使いこなす
Chainer で Tensor コア (fp16) を使いこなす
 
Stand alone self attention in vision models
Stand alone self attention in vision modelsStand alone self attention in vision models
Stand alone self attention in vision models
 

Similar to 名古屋CV・PRML勉強会 ShuffleNetの論文調査(説明追加)

Similar to 名古屋CV・PRML勉強会 ShuffleNetの論文調査(説明追加) (16)

名古屋CV・PRML勉強会 ShuffleNetの論文調査
名古屋CV・PRML勉強会 ShuffleNetの論文調査名古屋CV・PRML勉強会 ShuffleNetの論文調査
名古屋CV・PRML勉強会 ShuffleNetの論文調査
 
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
 
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
 
畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
 
論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning
 
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
 
Wssit slide
Wssit slideWssit slide
Wssit slide
 
PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装
 
Kdd2015reading-tabei
Kdd2015reading-tabeiKdd2015reading-tabei
Kdd2015reading-tabei
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
 
[DLHacks]Fast and Accurate Entity Recognition with Iterated Dilated Convoluti...
[DLHacks]Fast and Accurate Entity Recognition with Iterated Dilated Convoluti...[DLHacks]Fast and Accurate Entity Recognition with Iterated Dilated Convoluti...
[DLHacks]Fast and Accurate Entity Recognition with Iterated Dilated Convoluti...
 

名古屋CV・PRML勉強会 ShuffleNetの論文調査(説明追加)

Editor's Notes

  1. 18分
  2. 5hun(3situmon)
  3. Imagenet validation set 224*224のsingle cropによる評価
  4. Shuffle net 1x, 0.5x フィルタ数の倍の数
  5. Shuffle net 1x, 0.5x フィルタ数の倍の数
  6. 5hun(3situmon)
  7. 5hun(3situmon)
  8. 5hun(3situmon)