SlideShare a Scribd company logo
  • Upload
  • Home
  • Explore
  • Login
  • Signup
SlideShare a Scribd company logo
  • Home
  • Explore
  • Upload
  • Login
  • Signup

We've updated our privacy policy. Click here to review the details. Tap here to review the details.

×
×
×
×
×
×
Yusuke Iwasawa

Yusuke Iwasawa

100 Followers
19 SlideShares 1 Clipboard 100 Followers 100 Followings
  • Unblock User Block User
19 SlideShares 1 Clipboard 100 Followers 100 Followings

Personal Information
Organization / Workplace
Within 23 wards, Tokyo, Japan Japan
Occupation
Researcher, the University of Tokyo
Industry
Education
Contact Details
Tags
deep learning 深層学習 machine learning dl輪読会 icml iclr representation learning adversarial training 機械学習 表現学習 転移学習 neural networks ニューラルネットワーク nips 敵対的訓練 jsai2018 robotics planning iclr2018 vae nips2017 fairness ドメイン適応 jsai2017 iclr2017 ディープラーニング generative adversarial nets nature deep mind 因果推論 causal structure iclr2016 蒸留 vapnik privileged information 特権情報 dl hacks 輪読 2016 domain adaptation 分散表現 distributed representation nips2015 ladder network nips2014 spl
See more
Presentations (19)
See all
DL Hacks輪読 Semi-supervised Learning with Deep Generative Models
7 years ago • 1657 Views
研究室輪読 Recommending Investors
for Crowdfunding Projects
7 years ago • 1034 Views
研究室輪読 Feature Learning for Activity Recognition in Ubiquitous Computing
7 years ago • 1179 Views
[DL Hacks] Self Paced Learning with Diversity
7 years ago • 1187 Views
[DL Hacks輪読] Semi-Supervised Learning with Ladder Networks (NIPS2015)
7 years ago • 11297 Views
[Paper Reading] Learning Distributed Representations for Structured Output Prediction
6 years ago • 792 Views
[DL Hacks] Learning Transferable Features with Deep Adaptation Networks
6 years ago • 4809 Views
[ICLR2016] 採録論文の個人的まとめ
6 years ago • 2609 Views
Dl hacks輪読: "Unifying distillation and privileged information"
6 years ago • 2511 Views
Paper Reading, "On Causal and Anticausal Learning", ICML-12
6 years ago • 967 Views
[DL輪読会] Hybrid computing using a neural network with dynamic external memory
6 years ago • 2720 Views
[DL輪読会] GAN系の研究まとめ (NIPS2016とICLR2016が中心)
6 years ago • 7283 Views
[DL輪読会] Semi-Supervised Knowledge Transfer For Deep Learning From Private Training Data
5 years ago • 827 Views
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
5 years ago • 1892 Views
[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017)” and Neural Domain Adaptation
5 years ago • 5263 Views
[DL輪読会] Controllable Invariance through Adversarial Feature Learning” (NIPS2017)
5 years ago • 1957 Views
ICLR2018参加報告
4 years ago • 1053 Views
"Universal Planning Networks" and "Composable Planning with Attributes"
4 years ago • 1515 Views
JSAI2018 類似度学習を用いた敵対的訓練による 特徴表現の検閲
4 years ago • 848 Views
Likes (37)
See all
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP • 1 year ago
深層学習による非滑らかな関数の推定
Masaaki Imaizumi • 4 years ago
[DL輪読会] Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
Yuya Soneoka • 5 years ago
君にグロースハックはいらない
Takaaki Umada • 8 years ago
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada • 5 years ago
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
Masatoshi Yoshida • 6 years ago
[DL輪読会]最新の深層強化学習
Deep Learning JP • 5 years ago
How AlphaGo Works
Shane (Seungwhan) Moon • 6 years ago
人工知能 - アニメーション- マップ (2006-2016)
Youichiro Miyake • 6 years ago
研究法(Claimとは)
Jun Rekimoto • 6 years ago
プライバシー保護のためのサンプリング、k-匿名化、そして差分プライバシー
Hiroshi Nakagawa • 8 years ago
計算論的学習理論入門 -PAC学習とかVC次元とか-
sleepy_yoshi • 9 years ago
ディープラーニングの最新動向
Preferred Networks • 7 years ago
優れた研究論文の書き方―7つの提案
Masanori Kado • 7 years ago
EMアルゴリズム
Sotetsu KOYAMADA(小山田創哲) • 8 years ago
The Invisible Work of Accessibility (ASSETS 2015)
Stacy Branham • 7 years ago
Scikit learnで学ぶ機械学習入門
Takami Sato • 8 years ago
ロジスティック回帰分析の書き方
Sayuri Shimizu • 9 years ago
Rで学ぶ逆変換(逆関数)法
Nagi Teramo • 10 years ago
Website Optimization Problem and Its Solutions
Shuhei Iitsuka • 7 years ago
Deep Learning技術の今
Seiya Tokui • 9 years ago
Lisp meetup #29 cl-online-learningの紹介
Satoshi imai • 7 years ago
Active Learning 入門
Shuyo Nakatani • 9 years ago
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Yuta Kikuchi • 8 years ago
2013.12.26 prml勉強会 線形回帰モデル3.2~3.4
Takeshi Sakaki • 9 years ago
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki • 9 years ago
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku • 7 years ago
Unsupervised Object Discovery and Localization in the Wild: Part-Based Matching With Bottom-Up Region Proposals (関東CV勉強会 CVPR 2015 読み会)
Yoshitaka Ushiku • 7 years ago
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
Koichi Hamada • 12 years ago
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi • 8 years ago
カップルが一緒にお風呂に入る割合をベイズ推定してみた
hoxo_m • 7 years ago
5分でわかるベイズ確率
hoxo_m • 9 years ago
ディープラーニングが活かすIoT
Preferred Networks • 7 years ago
Rでisomap(多様体学習のはなし)
Kohta Ishikawa • 11 years ago
いつやるの?Git入門
Masakazu Matsushita • 9 years ago
パターン認識と機械学習入門
Momoko Hayamizu • 10 years ago
Android UI Design Tips
Android Developers • 12 years ago
  • Activity
  • About

Presentations (19)
See all
DL Hacks輪読 Semi-supervised Learning with Deep Generative Models
7 years ago • 1657 Views
研究室輪読 Recommending Investors
for Crowdfunding Projects
7 years ago • 1034 Views
研究室輪読 Feature Learning for Activity Recognition in Ubiquitous Computing
7 years ago • 1179 Views
[DL Hacks] Self Paced Learning with Diversity
7 years ago • 1187 Views
[DL Hacks輪読] Semi-Supervised Learning with Ladder Networks (NIPS2015)
7 years ago • 11297 Views
[Paper Reading] Learning Distributed Representations for Structured Output Prediction
6 years ago • 792 Views
[DL Hacks] Learning Transferable Features with Deep Adaptation Networks
6 years ago • 4809 Views
[ICLR2016] 採録論文の個人的まとめ
6 years ago • 2609 Views
Dl hacks輪読: "Unifying distillation and privileged information"
6 years ago • 2511 Views
Paper Reading, "On Causal and Anticausal Learning", ICML-12
6 years ago • 967 Views
[DL輪読会] Hybrid computing using a neural network with dynamic external memory
6 years ago • 2720 Views
[DL輪読会] GAN系の研究まとめ (NIPS2016とICLR2016が中心)
6 years ago • 7283 Views
[DL輪読会] Semi-Supervised Knowledge Transfer For Deep Learning From Private Training Data
5 years ago • 827 Views
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
5 years ago • 1892 Views
[DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017)” and Neural Domain Adaptation
5 years ago • 5263 Views
[DL輪読会] Controllable Invariance through Adversarial Feature Learning” (NIPS2017)
5 years ago • 1957 Views
ICLR2018参加報告
4 years ago • 1053 Views
"Universal Planning Networks" and "Composable Planning with Attributes"
4 years ago • 1515 Views
JSAI2018 類似度学習を用いた敵対的訓練による 特徴表現の検閲
4 years ago • 848 Views
Likes (37)
See all
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP • 1 year ago
深層学習による非滑らかな関数の推定
Masaaki Imaizumi • 4 years ago
[DL輪読会] Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
Yuya Soneoka • 5 years ago
君にグロースハックはいらない
Takaaki Umada • 8 years ago
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada • 5 years ago
「アクティブビジョンと フリストン自由エネルギー原理」@北大20170111
Masatoshi Yoshida • 6 years ago
[DL輪読会]最新の深層強化学習
Deep Learning JP • 5 years ago
How AlphaGo Works
Shane (Seungwhan) Moon • 6 years ago
人工知能 - アニメーション- マップ (2006-2016)
Youichiro Miyake • 6 years ago
研究法(Claimとは)
Jun Rekimoto • 6 years ago
プライバシー保護のためのサンプリング、k-匿名化、そして差分プライバシー
Hiroshi Nakagawa • 8 years ago
計算論的学習理論入門 -PAC学習とかVC次元とか-
sleepy_yoshi • 9 years ago
ディープラーニングの最新動向
Preferred Networks • 7 years ago
優れた研究論文の書き方―7つの提案
Masanori Kado • 7 years ago
EMアルゴリズム
Sotetsu KOYAMADA(小山田創哲) • 8 years ago
The Invisible Work of Accessibility (ASSETS 2015)
Stacy Branham • 7 years ago
Scikit learnで学ぶ機械学習入門
Takami Sato • 8 years ago
ロジスティック回帰分析の書き方
Sayuri Shimizu • 9 years ago
Rで学ぶ逆変換(逆関数)法
Nagi Teramo • 10 years ago
Website Optimization Problem and Its Solutions
Shuhei Iitsuka • 7 years ago
Deep Learning技術の今
Seiya Tokui • 9 years ago
Lisp meetup #29 cl-online-learningの紹介
Satoshi imai • 7 years ago
Active Learning 入門
Shuyo Nakatani • 9 years ago
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Yuta Kikuchi • 8 years ago
2013.12.26 prml勉強会 線形回帰モデル3.2~3.4
Takeshi Sakaki • 9 years ago
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki • 9 years ago
Curriculum Learning (関東CV勉強会)
Yoshitaka Ushiku • 7 years ago
Unsupervised Object Discovery and Localization in the Wild: Part-Based Matching With Bottom-Up Region Proposals (関東CV勉強会 CVPR 2015 読み会)
Yoshitaka Ushiku • 7 years ago
パターン認識と機械学習 (PRML) 第1章-「多項式曲線フィッティング」「確率論」
Koichi Hamada • 12 years ago
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi • 8 years ago
カップルが一緒にお風呂に入る割合をベイズ推定してみた
hoxo_m • 7 years ago
5分でわかるベイズ確率
hoxo_m • 9 years ago
ディープラーニングが活かすIoT
Preferred Networks • 7 years ago
Rでisomap(多様体学習のはなし)
Kohta Ishikawa • 11 years ago
いつやるの?Git入門
Masakazu Matsushita • 9 years ago
パターン認識と機械学習入門
Momoko Hayamizu • 10 years ago
Android UI Design Tips
Android Developers • 12 years ago
Personal Information
Organization / Workplace
Within 23 wards, Tokyo, Japan Japan
Occupation
Researcher, the University of Tokyo
Industry
Education
Contact Details
Tags
deep learning 深層学習 machine learning dl輪読会 icml iclr representation learning adversarial training 機械学習 表現学習 転移学習 neural networks ニューラルネットワーク nips 敵対的訓練 jsai2018 robotics planning iclr2018 vae nips2017 fairness ドメイン適応 jsai2017 iclr2017 ディープラーニング generative adversarial nets nature deep mind 因果推論 causal structure iclr2016 蒸留 vapnik privileged information 特権情報 dl hacks 輪読 2016 domain adaptation 分散表現 distributed representation nips2015 ladder network nips2014 spl
See more

Modal header

  • About
  • Support
  • Terms
  • Privacy
  • Copyright
  • Cookie Preferences
  • Do not sell or share my personal information
English
Current Language: English
Español
Português
Français
Deutsch

© 2023 SlideShare from Scribd

We've updated our privacy policy.

We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.

You can read the details below. By accepting, you agree to the updated privacy policy.

Thank you!

View updated privacy policy
We've encountered a problem, please try again.